mirror of
https://github.com/autistic-symposium/master-algorithms-py.git
synced 2025-04-29 20:26:07 -04:00
add some fun tree playing
This commit is contained in:
parent
48720ada4d
commit
bb72bab679
6
trees_and_graphs/find_max_depth_tree.py
Normal file
6
trees_and_graphs/find_max_depth_tree.py
Normal file
@ -0,0 +1,6 @@
|
||||
def max_depth(root: Optional[TreeNode]) -> int:
|
||||
|
||||
if root is None:
|
||||
return 0
|
||||
|
||||
return max(max_depth(root.left) + 1, max_depth(root.right) + 1)
|
21
trees_and_graphs/has_path_sum.py
Normal file
21
trees_and_graphs/has_path_sum.py
Normal file
@ -0,0 +1,21 @@
|
||||
def has_path_sum(root: Optional[TreeNode], target_sum: int) -> bool:
|
||||
|
||||
def transverse(node, sum_here=0):
|
||||
|
||||
if not node:
|
||||
return sum_here == target_sum
|
||||
|
||||
sum_here += node.val
|
||||
|
||||
if not node.left:
|
||||
return transverse(node.right, sum_here)
|
||||
if not node.right:
|
||||
return transverse(node.left, sum_here)
|
||||
else:
|
||||
return transverse(node.left, sum_here) or transverse(node.right, sum_here)
|
||||
|
||||
if not root:
|
||||
return False
|
||||
|
||||
return transverse(root)
|
||||
|
38
trees_and_graphs/is_tree_symmetric.py
Normal file
38
trees_and_graphs/is_tree_symmetric.py
Normal file
@ -0,0 +1,38 @@
|
||||
def is_symmetrical(root: Optional[TreeNode]) -> bool:
|
||||
|
||||
stack = [(root, root)]
|
||||
|
||||
while stack:
|
||||
|
||||
node1, node2 = stack.pop()
|
||||
|
||||
if (not node1 and node2) or (not node2 and node1):
|
||||
return False
|
||||
|
||||
elif not node1 and not node2:
|
||||
continue
|
||||
|
||||
elif node1 and node2 and node1.val != node2.val:
|
||||
return False
|
||||
|
||||
stack.append([node1.left, node2.right])
|
||||
stack.append([node1.right, node2.left])
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def is_symmetrical_recursive(root: Optional[TreeNode]) -> bool:
|
||||
|
||||
def helper(node1, node2):
|
||||
if (not node1 and node2) or \
|
||||
(not node2 and node1) or \
|
||||
(node1 and node2 and node1.val != node2.val):
|
||||
return False
|
||||
|
||||
if (not node1 and not node2):
|
||||
return True
|
||||
|
||||
return helper(node1.left, node2.right) and helper(node2.left, node1.right)
|
||||
|
||||
return helper(root.left, root.right)
|
||||
|
28
trees_and_graphs/preorder_transversal.py
Normal file
28
trees_and_graphs/preorder_transversal.py
Normal file
@ -0,0 +1,28 @@
|
||||
# recursive and iterative inorder traversal
|
||||
|
||||
def preorder_recursive(root: Optional[TreeNode]) -> list[int]:
|
||||
|
||||
if root == None:
|
||||
return []
|
||||
|
||||
return [root.val] + preorder_recursive(root.left) + preorder_recursive(root.right)
|
||||
|
||||
|
||||
def preorder_iterative(root: Optional[TreeNode]) -> list[int]:
|
||||
|
||||
result = []
|
||||
stack = [root]
|
||||
|
||||
while stack:
|
||||
|
||||
current = stack.pop()
|
||||
result.append(current.val)
|
||||
|
||||
if current.right:
|
||||
stack.append(current.right)
|
||||
|
||||
if current.left:
|
||||
stack.append(current.left)
|
||||
|
||||
return result
|
||||
|
86
trees_and_graphs/sum_2_numbers_with_bs.py
Normal file
86
trees_and_graphs/sum_2_numbers_with_bs.py
Normal file
@ -0,0 +1,86 @@
|
||||
# given a collection of numbers, find the pair
|
||||
# of numbers that sum to a given number
|
||||
|
||||
|
||||
|
||||
def bs(array, desired_num):
|
||||
|
||||
start = 0
|
||||
end = len(array)
|
||||
mid = (end - start) // 2
|
||||
|
||||
while len(array) > 0:
|
||||
if array[mid] == desired_num:
|
||||
return True
|
||||
elif array[mid] > desired_num:
|
||||
return bs(array[mid+1:], desired_num)
|
||||
else:
|
||||
return bs(array[:mid], desired_num)
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def find_pairs_bs(array, desired_sum):
|
||||
|
||||
for i in range(len(array)):
|
||||
num1 = array[i]
|
||||
desired_num = desired_sum - num1
|
||||
if bs(array[i + 1:], desired_num) == True:
|
||||
return (num1, desired_num)
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def find_pairs_max_sum(array, desired_sum):
|
||||
|
||||
i, j = 0, len(array) - 1
|
||||
|
||||
while i < j:
|
||||
if array[i] + array[j] == desired_sum:
|
||||
return array[i], array[j]
|
||||
elif array[i] + array[j] > desired_sum:
|
||||
j = j - 1
|
||||
elif array[i] + array[j] < desired_sum:
|
||||
i = i + 1
|
||||
|
||||
return False
|
||||
|
||||
def find_pairs_not_sorted(array, desired_sum):
|
||||
|
||||
lookup = {}
|
||||
|
||||
for item in array:
|
||||
key = desired_sum - item
|
||||
|
||||
if key in lookup.keys():
|
||||
lookup[key] += 1
|
||||
else:
|
||||
lookup[key] = 1
|
||||
|
||||
for item in array:
|
||||
key = desired_sum - item
|
||||
|
||||
if item in lookup.keys():
|
||||
if lookup[item] == 1:
|
||||
return (item, key)
|
||||
else:
|
||||
lookup[item] -= 1
|
||||
|
||||
return False
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
desired_sum = 8
|
||||
array1 = [1, 2, 3, 9]
|
||||
array2 = [1, 2, 4, 5, 4]
|
||||
array3 = [2, 1, 6, 3, 11, 2]
|
||||
|
||||
assert(find_pairs_bs(array1, desired_sum) == False)
|
||||
assert(find_pairs_bs(array2, desired_sum) == (4, 4))
|
||||
assert(find_pairs_max_sum(array1, desired_sum) == False)
|
||||
assert(find_pairs_max_sum(array2, desired_sum) == (4,4))
|
||||
assert(find_pairs_not_sorted(array1, desired_sum) == False)
|
||||
assert(find_pairs_not_sorted(array2, desired_sum) == (4, 4))
|
||||
assert(find_pairs_not_sorted(array3, desired_sum) == (2, 6))
|
30
trees_and_graphs/tree_level_traversal.py
Normal file
30
trees_and_graphs/tree_level_traversal.py
Normal file
@ -0,0 +1,30 @@
|
||||
# Given the root of a binary tree, return the level order traversal of its nodes' values.
|
||||
# (i.e., from left to right, level by level).
|
||||
|
||||
|
||||
def levelOrder(root: Optional[TreeNode]) -> list[list[int]]:
|
||||
|
||||
if root is None:
|
||||
return []
|
||||
|
||||
queue = collections.deque()
|
||||
queue.append(root)
|
||||
result = []
|
||||
|
||||
while queue:
|
||||
|
||||
this_level = []
|
||||
|
||||
for _ in range(len(queue)):
|
||||
|
||||
current = queue.popleft()
|
||||
|
||||
if current:
|
||||
this_level.append(current.val)
|
||||
queue.append(current.left)
|
||||
queue.append(current.right)
|
||||
|
||||
if this_level:
|
||||
result.append(this_level)
|
||||
|
||||
return result
|
Loading…
x
Reference in New Issue
Block a user