reorganize dir

Signed-off-by: Mia Steinkirch <mia.steinkirch@gmail.com>
This commit is contained in:
Mia Steinkirch 2019-10-11 04:29:17 -07:00
parent 1b6f705e7c
commit a8e71c50db
276 changed files with 23954 additions and 0 deletions

View file

@ -0,0 +1,42 @@
#!/usr/bin/python3
__author__ = "bt3"
from functools import wraps
from do_benchmark import benchmark
def memo(func):
''' an example of dynamic programming using a memoizing decorator '''
cache = {}
@wraps(func)
def wrap(*args):
if args not in cache:
cache[args] = func(*args)
return cache[args]
return wrap
@memo
def find_fibonacci_seq_rec(n):
''' implements the nth fibonacci value in a recursive exponential runtime '''
if n < 2: return n
return find_fibonacci_seq_rec(n - 1) + find_fibonacci_seq_rec(n - 2)
def test_memo():
n = 50
# find_fibonacci_seq_rec = memo(find_fibonacci_seq_rec)
# @benchmark
print(find_fibonacci_seq_rec(n))
if __name__ == '__main__':
test_memo()

View file

@ -0,0 +1,85 @@
#!/usr/bin/python3
__author__ = "bt3"
from itertools import combinations
from bisect import bisect
from memo import memo
from do_benchmark import benchmark
def naive_longest_inc_subseq(seq):
''' naive (exponential) solution to the longest increasing subsequence problem '''
for length in range(len(seq), 0, -1):
for sub in combinations(seq, length):
if list(sub) == sorted(sub):
return len(sub)
def longest_inc_subseq1(seq):
''' an iterative algorithm for the longest increasing subsequence problem '''
end = []
for val in seq:
idx = bisect(end, val)
if idx == len(end): end.append(val)
else: end[idx] = val
return len(end)
def longest_inc_subseq2(seq):
''' another iterative algorithm for the longest increasing subsequence problem '''
L = [1] * len(seq)
for cur, val in enumerate(seq):
for pre in range(cur):
if seq[pre] <= val:
L[cur] = max(L[cur], 1 + L[pre])
return max(L)
def memoized_longest_inc_subseq(seq):
''' a memoized recursive solution to find the longest increasing subsequence problem '''
@memo
def L(cur):
res = 1
for pre in range(cur):
if seq[pre] <= seq[cur]:
res = max(res, 1 + L(pre))
return res
return max(L(i) for i in range(len(seq)))
@benchmark
def test_naive_longest_inc_subseq():
print(naive_longest_inc_subseq(s1))
benchmark
def test_longest_inc_subseq1():
print(longest_inc_subseq1(s1))
@benchmark
def test_longest_inc_subseq2():
print(longest_inc_subseq2(s1))
@benchmark
def test_memoized_longest_inc_subseq():
print(memoized_longest_inc_subseq(s1))
if __name__ == '__main__':
from random import randrange
s1 = [randrange(100) for i in range(25)]
print(s1)
test_naive_longest_inc_subseq()
test_longest_inc_subseq1()
test_longest_inc_subseq2()
test_memoized_longest_inc_subseq()