mirror of
https://github.com/autistic-symposium/master-algorithms-py.git
synced 2025-04-29 20:26:07 -04:00
more ex
This commit is contained in:
parent
bb6afce467
commit
85ecba5ace
76
interview_cake/data_structures/file_system_hashing.py
Normal file
76
interview_cake/data_structures/file_system_hashing.py
Normal file
@ -0,0 +1,76 @@
|
||||
#!/bin/python
|
||||
|
||||
"""
|
||||
Write a function that returns a list of all the duplicate files.
|
||||
|
||||
the first item is the duplicate file
|
||||
the second item is the original file
|
||||
For example:
|
||||
|
||||
[('/tmp/parker_is_dumb.mpg', '/home/parker/secret_puppy_dance.mpg'),
|
||||
('/home/trololol.mov', '/etc/apache2/httpd.conf')]
|
||||
You can assume each file was only duplicated once.
|
||||
"""
|
||||
|
||||
import os
|
||||
import hashlib
|
||||
|
||||
def find_duplicate_files(starting_directory):
|
||||
files_seen_already = {}
|
||||
stack = [starting_directory]
|
||||
|
||||
duplicates = []
|
||||
|
||||
while len(stack):
|
||||
current_path = stack.pop()
|
||||
|
||||
if os.path.isdir(current_path):
|
||||
for path in os.listdir(current_path):
|
||||
full_path = os.path.join(current_path, path)
|
||||
stack.append(full_path)
|
||||
|
||||
else:
|
||||
file_hash = sample_hash_file(current_path)
|
||||
|
||||
current_last_edited_time = os.path.getmtime(current_path)
|
||||
|
||||
if file_hash in files_seen_already:
|
||||
existing_last_edited_time, existing_path = files_seen_already[file_hash]
|
||||
if current_last_edited_time > existing_last_edited_time:
|
||||
|
||||
duplicates.append((current_path, existing_path))
|
||||
else:
|
||||
|
||||
duplicates.append((existing_path, current_path))
|
||||
files_seen_already[file_hash] = (current_last_edited_time, current_path)
|
||||
|
||||
else:
|
||||
files_seen_already[file_hash] = (current_last_edited_time, current_path)
|
||||
|
||||
return duplicates
|
||||
|
||||
|
||||
def sample_hash_file(path):
|
||||
num_bytes_to_read_per_sample = 4000
|
||||
total_bytes = os.path.getsize(path)
|
||||
hasher = hashlib.sha512()
|
||||
|
||||
with open(path, 'rb') as file:
|
||||
|
||||
if total_bytes < num_bytes_to_read_per_sample * 3:
|
||||
hasher.update(file.read())
|
||||
else:
|
||||
num_bytes_between_samples = (
|
||||
(total_bytes - num_bytes_to_read_per_sample * 3) / 2
|
||||
)
|
||||
|
||||
for offset_multiplier in range(3):
|
||||
start_of_sample = (
|
||||
offset_multiplier
|
||||
* (num_bytes_to_read_per_sample + num_bytes_between_samples)
|
||||
)
|
||||
file.seek(start_of_sample)
|
||||
sample = file.read(num_bytes_to_read_per_sample)
|
||||
hasher.update(sample)
|
||||
|
||||
return hasher.hexdigest()
|
27
interview_cake/math/apple_stocks.py
Normal file
27
interview_cake/math/apple_stocks.py
Normal file
@ -0,0 +1,27 @@
|
||||
#!/bin/python
|
||||
|
||||
"""
|
||||
Grab Apple's stock prices and put them in a list called stock_prices, where:
|
||||
|
||||
The indices are the time (in minutes) past trade opening time, which was 9:30am local time.
|
||||
The values are the price (in US dollars) of one share of Apple stock at that time.
|
||||
So if the stock cost $500 at 10:30am, that means stock_prices[60] = 500.
|
||||
|
||||
Write an efficient function that takes stock_prices and returns the best profit I could have made from one purchase and one sale of one share.
|
||||
"""
|
||||
|
||||
def apple_stock_profit(stock_prices):
|
||||
|
||||
min_s, max_s = max(stock_prices), 0
|
||||
|
||||
while stock_prices:
|
||||
stock = stock_prices.pop()
|
||||
min_s = min(min_s, stock)
|
||||
max_s = max(max_s, stock)
|
||||
|
||||
return max_s - min_s
|
||||
|
||||
|
||||
stock_prices = [10, 7, 5, 8, 11, 9]
|
||||
print apple_stock_profit(stock_prices)
|
||||
print("Should return 6 (buying for $5 and selling for $11)")
|
Loading…
x
Reference in New Issue
Block a user