mirror of
https://github.com/autistic-symposium/master-algorithms-py.git
synced 2025-04-29 20:26:07 -04:00
Update README.md
This commit is contained in:
parent
af264699b7
commit
5f44f6b89f
168
queues/README.md
168
queues/README.md
@ -4,7 +4,7 @@
|
||||
|
||||
* queues are **first in, first out (FIFO) abstract structures** (*i.e.*, items are removed at the same order they are added) that can be implemented with two arrays or a dynamic array (linked list), as long as items are added and removed from opposite sides.
|
||||
|
||||
* queues support **enqueue** (add to the end one end) and **dequeue** (remove from the other end, or tail).
|
||||
* queues support **enqueue** (add to one end) and **dequeue** (remove from the other end, or tail).
|
||||
|
||||
* if implemented with a dynamic array, a more efficient solution is to use a circular queue (ring buffer), *i.e.*, a fixed-size array and two pointers to indicate the starting and ending positions.
|
||||
* an advantage of circular queues is that we can use the spaces in front of the queue.
|
||||
@ -13,6 +13,7 @@
|
||||
* queues are often used in **breath-first search** (where you store a list of nodes to be processed) or when implementing a cache.
|
||||
|
||||
|
||||
|
||||
<br>
|
||||
|
||||
---
|
||||
@ -25,18 +26,51 @@
|
||||
|
||||
<br>
|
||||
|
||||
#### using arrays
|
||||
#### with an array
|
||||
|
||||
<br>
|
||||
|
||||
* to build a ring with a fixed size array, any of the elements could be considered as the head.
|
||||
|
||||
* to enqueue, you loop the queue with the tail index until find a `None` (even if it has to loop back):
|
||||
|
||||
<br>
|
||||
|
||||
```python
|
||||
while self.queue[self.tail] is not None:
|
||||
self.tail += 1
|
||||
if self.tail == self.size:
|
||||
self.tail = 0
|
||||
self.queue[self.tail] = value
|
||||
```
|
||||
|
||||
<br>
|
||||
|
||||
* to dequeue, you simply pop the head value:
|
||||
|
||||
<br>
|
||||
|
||||
```python
|
||||
value = self.queue[self.head]
|
||||
self.queue[self.head] = None
|
||||
self.head += 1
|
||||
```
|
||||
|
||||
<br>
|
||||
|
||||
* there is one occasion when `tail` index is set to zero:
|
||||
* when the enqueue operation adds to the last position in the array and tail has to loop back (`self.tail == self.size`).
|
||||
|
||||
* there are two occasions when `head` index is set to zero:
|
||||
* when the queue is checked as empty
|
||||
* when the dequeue operation popped the last element in the array and head has to loop back (`self.head == self.size`).
|
||||
|
||||
* as long as we know the length of the queue, we can instantly locat its tails based on this formula:
|
||||
* as long as we know the length of the queue, we can instantly locate its tails based on this formula:
|
||||
|
||||
<br>
|
||||
|
||||
```
|
||||
tail_index = (head_index + queue_length - 1) % queue_capacity
|
||||
tail_index = (head_index + current_length - 1) % size
|
||||
```
|
||||
|
||||
<br>
|
||||
@ -45,33 +79,28 @@ tail_index = (head_index + queue_length - 1) % queue_capacity
|
||||
```python
|
||||
class CircularQueue:
|
||||
|
||||
def __init__(self, k: int):
|
||||
def __init__(self, size):
|
||||
self.head = 0
|
||||
self.tail = 0
|
||||
self.size = k
|
||||
self.size = size
|
||||
self.queue = [None] * self.size
|
||||
|
||||
def enqueue(self, value: int) -> bool:
|
||||
|
||||
if value is None:
|
||||
return False
|
||||
|
||||
if self.is_full():
|
||||
return False
|
||||
|
||||
if self.is_empty():
|
||||
self.heard = 0
|
||||
self.head = 0
|
||||
|
||||
while self.queue[self.tail] is not None:
|
||||
self.tail += 1
|
||||
if self.tail == self.size:
|
||||
self.tail = 0
|
||||
|
||||
self.queue[self.tail] = value
|
||||
|
||||
return True
|
||||
|
||||
def dequeue(self) -> bool:
|
||||
|
||||
if self.is_empty():
|
||||
return False
|
||||
|
||||
@ -85,10 +114,10 @@ class CircularQueue:
|
||||
return True
|
||||
|
||||
def front(self) -> int:
|
||||
return self.queue[self.head] or -1
|
||||
return self.queue[self.head] or False
|
||||
|
||||
def rear(self) -> int:
|
||||
return self.queue[self.tail] or -1
|
||||
return self.queue[self.tail] or False
|
||||
|
||||
def is_empty(self) -> bool:
|
||||
for n in self.queue:
|
||||
@ -105,10 +134,14 @@ class CircularQueue:
|
||||
|
||||
<br>
|
||||
|
||||
#### using linked lists
|
||||
|
||||
|
||||
### with linked lists
|
||||
|
||||
<br>
|
||||
|
||||
* in this example we implement the methods `is_empty` and `is_full` using an extra counter variable `self.count` that can be compared to `self.size` or `0` and used to validate `rear` and `front`.
|
||||
|
||||
* note that this queue is not thread-safe: the data structure could be corrupted in a multi-threaded environment (as race-condition could occur). to mitigate this problem, one could add the protection of a lock.
|
||||
|
||||
<br>
|
||||
@ -116,57 +149,124 @@ class CircularQueue:
|
||||
```python
|
||||
class Node:
|
||||
def __init__(self, value, next=None):
|
||||
|
||||
self.value = value
|
||||
self.next = next
|
||||
|
||||
|
||||
class CircularQueue:
|
||||
class Queue:
|
||||
|
||||
def __init__(self, k: int):
|
||||
self.capacity = k
|
||||
def __init__(self, size):
|
||||
|
||||
self.size = size
|
||||
self.count = 0
|
||||
self.head = None
|
||||
self.tail = None
|
||||
|
||||
def enqueue(self, value: int) -> bool:
|
||||
if self.count == self.capacity:
|
||||
|
||||
if self.is_full():
|
||||
return False
|
||||
if self.count == 0:
|
||||
self.head = Node(value)
|
||||
self.tail = self.head
|
||||
|
||||
if self.is_empty():
|
||||
self.head = self.tail = Node(value)
|
||||
|
||||
else:
|
||||
new_node = Node(value)
|
||||
self.tail.next = new_node
|
||||
self.tail = new_node
|
||||
self.tail.next = Node(value)
|
||||
self.tail = self.tail.next
|
||||
|
||||
self.count += 1
|
||||
|
||||
return True
|
||||
|
||||
def dequeue(self) -> bool:
|
||||
if self.count == 0:
|
||||
|
||||
if self.is_empty():
|
||||
return False
|
||||
|
||||
self.head = self.head.next
|
||||
self.count -= 1
|
||||
|
||||
return True
|
||||
|
||||
def front(self) -> int:
|
||||
if self.count == 0:
|
||||
return -1
|
||||
|
||||
if self.is_empty():
|
||||
return False
|
||||
return self.head.value
|
||||
|
||||
def rear(self) -> int:
|
||||
if self.count == 0:
|
||||
return -1
|
||||
if self.is_empty():
|
||||
return False
|
||||
return self.tail.value
|
||||
|
||||
def is_empty(self) -> bool:
|
||||
return self.count == 0
|
||||
|
||||
def is_full(self) -> bool:
|
||||
return self.count == self.capacity
|
||||
return self.count == self.size
|
||||
```
|
||||
|
||||
|
||||
<br>
|
||||
|
||||
---
|
||||
|
||||
### a stream with rate limiter
|
||||
|
||||
<br>
|
||||
|
||||
```python
|
||||
class Logger:
|
||||
|
||||
def __init__(self):
|
||||
self.msg_set = set()
|
||||
self.msg_queue = deque()
|
||||
|
||||
def print_message(self, timestamp, message) -> bool:
|
||||
|
||||
while self.msg_queue:
|
||||
msg, msg_timestamp = self.msg_queue[0]
|
||||
if timestamp - msg_timestamp >= 10:
|
||||
self.msg_queue.popleft()
|
||||
self.msg_set.remove(msg)
|
||||
else:
|
||||
break
|
||||
|
||||
if message not in self.msg_set:
|
||||
self.msg_set.add(message)
|
||||
self.msg_queue.append((message, timestamp))
|
||||
return True
|
||||
|
||||
return False
|
||||
```
|
||||
|
||||
<br>
|
||||
|
||||
---
|
||||
|
||||
### moving average
|
||||
|
||||
<br>
|
||||
|
||||
* given a stream of integers and a window size, the moving average in the sliding window can be calculated with a queue:
|
||||
|
||||
<br>
|
||||
|
||||
```python
|
||||
|
||||
class MovingAverage:
|
||||
|
||||
def __init__(self, size: int):
|
||||
|
||||
self.queue = []
|
||||
self.size = size
|
||||
|
||||
|
||||
def next(self, val: int) -> float:
|
||||
|
||||
self.queue.append(val)
|
||||
|
||||
if len(self.queue) > self.size:
|
||||
self.queue.pop(0)
|
||||
|
||||
return sum(self.queue) / len(self.queue)
|
||||
```
|
||||
|
Loading…
x
Reference in New Issue
Block a user