fix few details, stacks

This commit is contained in:
Mari Wahl 2014-08-27 18:53:46 -04:00
parent dffd4fb2b7
commit 5a7a97b25f
22 changed files with 369 additions and 128 deletions

View File

@ -0,0 +1,173 @@
#!/usr/bin/python
__author__ = "Mari Wahl"
__email__ = "marina.w4hl@gmail.com"
''' Implementation of a binary tree and its properties. For example, the following bt:
1 ---> level 0
2 3 ---> level 1
4 5 ---> level 2
6 7 ---> level 3
8 9 ---> level 4
has the following properties:
- SIZE OR NUMBER OF NODES: n = 9
- NUMBER OF BRANCHES OR INTERNAL NODES: b = n-1 = 8
- VALUE OF ROOT = 1
- MAX_DEPTH OR HEIGHT: h = 4
- IS BALANCED? NO
- IS BST? NO
'''
class NodeBT(object):
def __init__(self, item=None, level=0):
self.item = item
self.level = level
self.left = None
self.right = None
def __repr__(self):
return '{}'.format(self.item)
def _addNextNode(self, value, level_here=1):
new_node = NodeBT(value, level_here)
if not self.item:
self.item = new_node
elif not self.left:
self.left = new_node
elif not self.right:
self.right = new_node
else:
self.left = self.left._addNextNode(value, level_here+1)
return self
def _searchForNode(self, value):
if self.item == value:
return self
else:
found = None
if self.left:
found = self.left._searchForNode(value)
if self.right:
found = found or self.right._searchForNode(value)
return found
def _isLeaf(self):
return not self.right and not self.left
def _getMaxHeight(self):
''' Get the max height at the node, O(n)'''
levelr, levell = 0, 0
if self.right:
levelr = self.right._getMaxHeight() + 1
if self.left:
levell = self.left._getMaxHeight() + 1
return max(levelr, levell)
def _getMinHeight(self, level=0):
''' Get the min height at the node, O(n)'''
levelr, levell = -1, -1
if self.right:
levelr = self.right._getMinHeight(level +1)
if self.left:
levell = self.left._getMinHeight(level +1)
return min(levelr, levell) + 1
def _isBalanced(self):
''' Find whether the tree is balanced, by calculating heights first, O(n2) '''
if self._getMaxHeight() - self._getMinHeight() < 2:
return False
else:
if self._isLeaf():
return True
elif self.left and self.right:
return self.left._isBalanced() and self.right._isBalanced()
elif not self.left and self.right:
return self.right._isBalanced()
elif not self.right and self.left:
return self.left._isBalanced()
def _isBST(self):
''' Find whether the tree is a BST, inorder '''
if self.item:
if self._isLeaf():
return True
elif self.left:
if self.left.item < self.item:
return self.left._isBST()
else:
return False
elif self.right:
if self.right.item > self.item:
return self.right._isBST()
else:
return False
else:
raise Exception('Tree is empty')
class BinaryTree(object):
def __init__(self):
self.root = None
def addNode(self, value):
if not self.root:
self.root = NodeBT(value)
else:
self.root._addNextNode(value)
def isLeaf(self, value):
node = self.root._searchForNode(value)
return node._isLeaf()
def getNodeLevel(self, item):
node = self.root._searchForNode(item)
if node:
return node.level
else:
raise Exception('Node not found')
def isRoot(self, value):
return self.root.item == value
def getHeight(self):
return self.root._getMaxHeight()
def isBalanced(self):
return self.root._isBalanced()
def isBST(self):
return self.root._isBST()
if __name__ == '__main__':
bt = BinaryTree()
print "Adding nodes 1 to 10 in the tree..."
for i in range(1, 10):
bt.addNode(i)
print "Is 8 a leaf? ", bt.isLeaf(8)
print "Whats the level of node 8? ", bt.getNodeLevel(8)
print "Is node 10 a root? ", bt.isRoot(10)
print "Is node 1 a root? ", bt.isRoot(1)
print "Whats the tree height? ", bt.getHeight()
print "Is this tree BST? ", bt.isBST()
print "Is this tree balanced? ", bt.isBalanced()

View File

@ -0,0 +1,64 @@
#!/usr/bin/python
__author__ = "Mari Wahl"
__email__ = "marina.w4hl@gmail.com"
''' constructs a list with a root and 2 empty sublists for the children. To add a left subtree to the root of a tree, we need to insert a new list into the second position of the root list '''
def BinaryTreeList(r):
return [r, [], []]
def insertLeft(root, newBranch):
t = root.pop(1)
if len(t) > 1:
root.insert(1,[newBranch,t,[]])
else:
root.insert(1,[newBranch, [], []])
return root
def insertRight(root, newBranch):
t = root.pop(2)
if len(t) > 1:
root.insert(2,[newBranch,[],t])
else:
root.insert(2,[newBranch,[],[]])
return root
def getRootVal(root):
return root[0]
def setRootVal(root, newVal):
root[0] = newVal
def getLeftChild(root):
return root[1]
def getRightChild(root):
return root[2]
def main():
'''
3
[5, [4, [], []], []]
[7, [], [6, [], []]]
'''
r = BinaryTreeList(3)
insertLeft(r,4)
insertLeft(r,5)
insertRight(r,6)
insertRight(r,7)
print(getRootVal(r))
print(getLeftChild(r))
print(getRightChild(r))
if __name__ == '__main__':
main()

View File

@ -1,13 +1,13 @@
#!/usr/bin/python3
# mari von steinkirch @2013
# steinkirch at gmail
#!/usr/bin/python
__author__ = "Mari Wahl"
__email__ = "marina.w4hl@gmail.com"
class BunchClass(dict):
def __init__(self, *args, **kwds):
super(BunchClass, self).__init__(*args, **kwds)
self.__dict__ = self
def main():
''' {'right': {'right': 'Xander', 'left': 'Willow'}, 'left': {'right': 'Angel', 'left': 'Buffy'}}'''
@ -20,4 +20,4 @@ if __name__ == '__main__':

View File

@ -1,13 +1,16 @@
#!/usr/bin/python3
# mari von steinkirch @2013
# steinkirch at gmail
#!/usr/bin/python
__author__ = "Mari Wahl"
__email__ = "marina.w4hl@gmail.com"
""" A class for a simple tree """
class SimpleTree(object):
def __init__(self, value, children = None):
if children == None: children = []
def __init__(self, value=None, children = None):
self.value = value
self.children = children
self.value = value
if self.children == None:
self.children = []
def __repr__(self, level=0):
ret = "\t"*level+repr(self.value)+"\n"
@ -16,6 +19,7 @@ class SimpleTree(object):
return ret
def main():
"""
'a'

View File

@ -1,20 +1,20 @@
#!/usr/bin/python3
# mari von steinkirch 2013
# http://astro.sunysb.edu/steinkirch
#!/usr/bin/python
__author__ = "Mari Wahl"
__email__ = "marina.w4hl@gmail.com"
''' Implementation of a binary tree and its properties. For example, the following bt:
''' Implementation of a binary tree and its properties. For example, the following bt:
1 ---> level 0
2 3 ---> level 1
4 5 ---> level 2
6 7 ---> level 3
8 9 ---> level 4
8 9 ---> level 4
has the following properties:
- SIZE OR NUMBER OF NODES: n = 9
- NUMBER OF BRANCHES OR INTERNAL NODES: b = n-1 = 8
- VALUE OF ROOT = 1
@ -35,13 +35,13 @@ class NodeBT(object):
self.level = level
self.left = None
self.right = None
self.traversal = []
self.traversal = []
#self.parent = None # not used here but can be necessary for some problems
'''
'''
METHODS TO MODIFY NODES
'''
'''
def _addNextNode(self, value, level_here=1):
''' Aux for self.addNode(value)'''
self.traversal = []
@ -53,27 +53,27 @@ class NodeBT(object):
elif not self.right:
self.right = new_node
else:
self.left = self.left._addNextNode(value, level_here+1)
return self
self.left = self.left._addNextNode(value, level_here+1)
return self
'''
METHODS TO PRINT/SHOW NODES' ATTRIBUTES
'''
METHODS TO PRINT/SHOW NODES' ATTRIBUTES
'''
def __repr__(self):
''' Private method for this class'string representation'''
return '{}'.format(self.item)
return '{}'.format(self.item)
def _getDFTpreOrder(self, node):
''' Traversal Pre-Order, O(n)'''
if node:
if node.item: self.traversal.append(node.item)
self._getDFTpreOrder(node.left)
self._getDFTpreOrder(node.right)
self._getDFTpreOrder(node.right)
return self
def _printDFTpreOrder(self, noderoot):
''' Fill the pre-order traversal array '''
self.traversal = []
@ -85,9 +85,9 @@ class NodeBT(object):
if node:
self._getDFTinOrder(node.left)
if node.item: self.traversal.append(node.item)
self._getDFTinOrder(node.right)
self._getDFTinOrder(node.right)
return self
def _printDFTinOrder(self, noderoot):
''' Fill the in-order traversal array '''
self.traversal = []
@ -98,29 +98,29 @@ class NodeBT(object):
''' Traversal post-Order, O(n)'''
if node:
self._getDFTpostOrder(node.left)
self._getDFTpostOrder(node.right)
self._getDFTpostOrder(node.right)
if node.item: self.traversal.append(node.item)
return self
return self
def _getBFT(self, node):
''' Traversal bft, O(n)'''
''' Traversal bft, O(n)'''
if node:
queue = deque()
queue = deque()
queue.append(node)
while len(queue) > 0:
current = queue.popleft()
if current.item: self.traversal.append(current)
if current.left: queue.append(current.left)
if current.right: queue.append(current.right)
return self
if current.right: queue.append(current.right)
return self
def _printBFT(self, noderoot):
''' Fill the in-order traversal array '''
self.traversal = []
self._getBFT(noderoot)
return self.traversal
def _printDFTpostOrder(self, noderoot):
''' Fill the post-order traversal array '''
self.traversal = []
@ -132,14 +132,14 @@ class NodeBT(object):
if self.item == value: return self
else:
found = None
if self.left: found = self.left._searchForNode(value)
if self.right: found = found or self.right._searchForNode(value)
if self.left: found = self.left._searchForNode(value)
if self.right: found = found or self.right._searchForNode(value)
return found
def _findNode(self, value):
''' Find whether a node is in the tree.
if the traversal was calculated, it is just a membership
checking, which is O(1), otherwise it is necessary to traverse
checking, which is O(1), otherwise it is necessary to traverse
the binary tree, so best case is O(1) and worst is O(n). '''
if self.traversal: return value in self.traversal
else: return self._searchForNode(value)
@ -154,8 +154,8 @@ class NodeBT(object):
if self.right:
levelr = self.right._getMaxHeight() + 1
if self.left:
levell = self.left._getMaxHeight() + 1
return max(levelr, levell)
levell = self.left._getMaxHeight() + 1
return max(levelr, levell)
def _getMinHeight(self, level=0):
''' Get the min height at the node, O(n)'''
@ -163,9 +163,9 @@ class NodeBT(object):
if self.right:
levelr = self.right._getMinHeight(level +1)
if self.left:
levell = self.left._getMinHeight(level +1)
return min(levelr, levell) + 1
levell = self.left._getMinHeight(level +1)
return min(levelr, levell) + 1
def _isBalanced(self):
''' Find whether the tree is balanced, by calculating heights first, O(n2) '''
if self._getMaxHeight() - self._getMinHeight() < 2:
@ -174,14 +174,14 @@ class NodeBT(object):
if self._isLeaf():
return True
elif self.left and self.right:
return self.left._isBalanced() and self.right._isBalanced()
return self.left._isBalanced() and self.right._isBalanced()
elif not self.left and self.right:
return self.right._isBalanced()
return self.right._isBalanced()
elif not self.right and self.left:
return self.right._isBalanced()
return self.right._isBalanced()
def _isBalancedImproved(self):
''' Find whehter the tree is balanced in each node, O(n) '''
return 'To Be written'
@ -190,37 +190,37 @@ class NodeBT(object):
(1) Do an inorder, check if the inorder is sorted. However inorder
can't handle the difference between duplicate values on the left
or on the right (if it is in the right, the tree is not bst).
'''
'''
def _isBST(self):
''' Find whether the tree is a BST, inorder '''
if self.item:
if self._isLeaf(): return True
if self._isLeaf(): return True
elif self.left:
if self.left.item < self.item: return self.left._isBST()
if self.left.item < self.item: return self.left._isBST()
else: return False
elif self.right:
if self.right.item > self.item: return self.right._isBST()
else: return False
else:
raise Exception('Tree is empty')
def _getAncestorBST(self, n1, n2):
''' Return the ancestor of two nodes if it is a bst.
we are supposing the values in the tree are unique.'''
if n1 == self.item or n2 == self.item : return self.item
if n1 == self.item or n2 == self.item : return self.item
elif self.item < n1 and self.item < n2:
self.right.getAncestorBST(n1, n2)
elif self.item > n1 and self.item > n2:
self.left.getAncestorBST(n1, n2)
else:
return self.item
return self.item
class BinaryTree(object):
'''
>>> bt = BinaryTree()
@ -270,30 +270,30 @@ class BinaryTree(object):
>>> bt.getAncestor(8, 5, 'post-in')
2
'''
def __init__(self):
''' Construtor for the Binary Tree, which is a container of Nodes'''
self.root = None
'''
def __init__(self):
''' Constructor for the Binary Tree, which is a container of Nodes'''
self.root = None
'''
METHODS TO MODIFY THE TREE
'''
'''
def addNode(self, value):
''' Add new node to the tree, by the left first, O(n) '''
if not self.root: self.root = NodeBT(value)
else: self.root._addNextNode(value)
else: self.root._addNextNode(value)
'''
METHODS TO PRINT/SHOW TREES' ATTRIBUTES
'''
METHODS TO PRINT/SHOW TREES' ATTRIBUTES
'''
def __repr__(self):
''' Private method for this class'string representation'''
return '{}'.format(self.item)
return '{}'.format(self.item)
def printTree(self, order = 'pre'):
''' Print Tree in the chosen order '''
@ -301,53 +301,53 @@ class BinaryTree(object):
if order == 'pre': return self.root._printDFTpreOrder(self.root)
elif order == 'in': return self.root._printDFTinOrder(self.root)
elif order == 'post': return self.root._printDFTpostOrder(self.root)
elif order == 'bft': return self.root._printBFT(self.root)
elif order == 'bft': return self.root._printBFT(self.root)
else: raise Exception('Tree is empty')
def hasNode(self, value):
''' Verify whether the node is in the Tree '''
return bool(self.root._findNode(value))
return bool(self.root._findNode(value))
def isLeaf(self, value):
''' Return True if the node is a Leaf '''
node = self.root._searchForNode(value)
return node._isLeaf()
return node._isLeaf()
def getNodeLevel(self, item):
''' Return the level of the node, best O(1), worst O(n) '''
node = self.root._searchForNode(item)
if node: return node.level
else: raise Exception('Node not found')
def getSizeTree(self):
''' Return how many nodes in the tree, O(n) '''
''' Return how many nodes in the tree, O(n) '''
return len(self.root._printDFTpreOrder(self.root))
def isRoot(self, value):
'''Return the root of the tree '''
return self.root.item == value
def getHeight(self):
''' Returns the height/depth of the tree, best/worst O(n) '''
return self.root._getMaxHeight()
def isBalanced(self, method=1):
''' Return True if the tree is balanced'''
if method == 1:
''' O(n2)'''
return self.root._isBalanced()
return self.root._isBalanced()
else:
''' O(n)'''
return self.root._isBalancedImproved()
return self.root._isBalancedImproved()
''' The followin methods are for searching the lowest common ancestor
''' The following methods are for searching the lowest common ancestor
in a BT. Since a simple BT does not have ordering, it can be O(n). If
we have a link for the ancestors, the steps are:
(1) search both trees in order to find the nodes separately
(2) list all ancestors
(3) find first that mach
(2) list all ancestors
(3) find first that mach
obs: if we do this too many times we can do a pre and use the methods here'''
def isBST(self, method=1):
@ -365,12 +365,12 @@ class BinaryTree(object):
preorder = preorder[1:]
i = 0
item = inorder[0]
value1left, value2left = False, False
while item != root and i < len(inorder):
value1left, value2left = False, False
while item != root and i < len(inorder):
if item == value1: value1left = True
elif item == value2: value2left = True
i += 1
item = inorder[i]
item = inorder[i]
if (value1left and not value2left) or (value2left and not value1left):
return root
else:
@ -380,44 +380,44 @@ class BinaryTree(object):
''' Return the ancestor of two nodes with pre and post'''
root = preorder[0]
preorder = preorder[1:]
postorder = postorder[:-1]
value1right, value2right = False, False
postorder = postorder[:-1]
value1right, value2right = False, False
i = len(postorder)-1
itempre = preorder[0]
itempos = postorder[i]
itempos = postorder[i]
while itempre != itempos and i > 0:
if itempos == value1: value1right = True
elif itempos == value2: value2right = True
elif itempos == value2: value2right = True
i -= 1
itempos = postorder[i]
if (value1right and not value2right) or (value2right and not value1right):
return root
else:
return self._getAncestorPrePost(preorder, postorder[:i] + postorder[i+1:], value1, value2)
return self._getAncestorPrePost(preorder, postorder[:i] + postorder[i+1:], value1, value2)
def _getAncestorInPost(self, inorder, postorder, value1, value2):
''' Return the ancestor of two nodes with in and post'''
root = postorder[-1]
postorder = postorder[:-1]
value1left, value2left = False, False
postorder = postorder[:-1]
value1left, value2left = False, False
i = 0
item = inorder[i]
item = inorder[i]
while item != root and i < len(inorder):
if item == value1: value1left = True
elif item == value2: value2left = True
elif item == value2: value2left = True
i += 1
item = inorder[i]
if (value1left and not value2left) or (value2left and not value1left):
return root
else:
return self._getAncestorInPost(postorder, inorder[:i] + inorder[i+1:], value1, value2)
return self._getAncestorInPost(postorder, inorder[:i] + inorder[i+1:], value1, value2)
def _getAncestorBST2(self, preorder, value1, value2):
''' Return the ancestor of two nodes if it is a bst, using traversal'''
while preorder:
@ -430,35 +430,35 @@ class BinaryTree(object):
except: return current
elif value1 <= current <= value2:
return current
return None
return None
def getAncestor(self, value1, value2, method='pre-in'):
''' Return the commom ancestor for two nodes'''
if method == 'pre-in':
''' Using pre and inorder, best/worst O(n)'''
''' Using pre and inorder, best/worst O(n)'''
preorder = self.root._printDFTpreOrder(self.root)
inorder = self.root._printDFTinOrder(self.root)
return self._getAncestorPreIn(preorder, inorder, value1, value2)
return self._getAncestorPreIn(preorder, inorder, value1, value2)
if method == 'pre-post':
''' Using pre and postorder, best/worst O(n)'''
''' Using pre and postorder, best/worst O(n)'''
preorder = self.root._printDFTpreOrder(self.root)
postorder = self.root._printDFTpostOrder(self.root)
return self._getAncestorPrePost(preorder, postorder, value1, value2)
return self._getAncestorPrePost(preorder, postorder, value1, value2)
if method == 'post-in':
''' Using in and postorder, best/worst O(n)'''
''' Using in and postorder, best/worst O(n)'''
inorder = self.root._printDFTinOrder(self.root)
postorder = self.root._printDFTpostOrder(self.root)
return self._getAncestorInPost(inorder, postorder, value1, value2)
return self._getAncestorInPost(inorder, postorder, value1, value2)
if method == 'bst':
if self.isBST():
return self.root._getAncestorBST(value1, value2)
return self.root._getAncestorBST(value1, value2)
#preorder = self.root._printDFTpreOrder(self.root)
#return self._getAncestorBST2(preorder, value1, value2)
#return self._getAncestorBST2(preorder, value1, value2)
else:
return Exception('The tree is not a BST')
return Exception('The tree is not a BST')
if __name__ == '__main__':
import doctest
doctest.testmod()