Add CLI tests and improve coding style and i18n

The CLI module was lacking unit test coverage and showed some severe
coding style violations, which this patch addresses.

In addition, all uses of qCritical() with untranslatble raw char*
sequences were removed in favor of proper locale strings. These are
written to STDERR through QTextStreams and support output
redirection for testing purposes. With this change, error messages don't
depend on the global Qt logging settings and targets anymore and go
directly to the terminal or into a file if needed.

This patch also fixes a bug discovered during unit test development,
where the extract command would just dump the raw XML contents without
decrypting embedded Salsa20-protected values first, making the XML
export mostly useless, since passwords are scrambled.

Lastly, all CLI commands received a dedicated -h/--help option.
This commit is contained in:
Janek Bevendorff 2018-09-29 19:00:47 +02:00
parent 18b22834c1
commit 113c8eb702
67 changed files with 2259 additions and 1250 deletions

View file

@ -18,19 +18,20 @@
*/
#include "Tools.h"
#include "core/Config.h"
#include "core/Translator.h"
#include <QCoreApplication>
#include <QIODevice>
#include <QImageReader>
#include <QLocale>
#include <QStringList>
#include <cctype>
#include <QElapsedTimer>
#include <cctype>
#ifdef Q_OS_WIN
#include <aclapi.h> // for SetSecurityInfo()
#include <windows.h> // for Sleep(), SetDllDirectoryA(), SetSearchPathMode(), ...
#include <windows.h> // for Sleep()
#endif
#ifdef Q_OS_UNIX
@ -56,294 +57,161 @@
namespace Tools
{
QString humanReadableFileSize(qint64 bytes, quint32 precision)
{
constexpr auto kibibyte = 1024;
double size = bytes;
QString humanReadableFileSize(qint64 bytes, quint32 precision)
{
constexpr auto kibibyte = 1024;
double size = bytes;
QStringList units = QStringList() << "B"
<< "KiB"
<< "MiB"
<< "GiB";
int i = 0;
int maxI = units.size() - 1;
QStringList units = QStringList() << "B"
<< "KiB"
<< "MiB"
<< "GiB";
int i = 0;
int maxI = units.size() - 1;
while ((size >= kibibyte) && (i < maxI)) {
size /= kibibyte;
i++;
}
return QString("%1 %2").arg(QLocale().toString(size, 'f', precision), units.at(i));
while ((size >= kibibyte) && (i < maxI)) {
size /= kibibyte;
i++;
}
bool hasChild(const QObject* parent, const QObject* child)
{
if (!parent || !child) {
return false;
}
return QString("%1 %2").arg(QLocale().toString(size, 'f', precision), units.at(i));
}
const QObjectList children = parent->children();
for (QObject* c : children) {
if (child == c || hasChild(c, child)) {
return true;
}
}
bool hasChild(const QObject* parent, const QObject* child)
{
if (!parent || !child) {
return false;
}
bool readFromDevice(QIODevice* device, QByteArray& data, int size)
{
QByteArray buffer;
buffer.resize(size);
qint64 readResult = device->read(buffer.data(), size);
if (readResult == -1) {
return false;
} else {
buffer.resize(readResult);
data = buffer;
const QObjectList children = parent->children();
for (QObject* c : children) {
if (child == c || hasChild(c, child)) {
return true;
}
}
return false;
}
bool readAllFromDevice(QIODevice* device, QByteArray& data)
{
QByteArray result;
qint64 readBytes = 0;
qint64 readResult;
do {
result.resize(result.size() + 16384);
readResult = device->read(result.data() + readBytes, result.size() - readBytes);
if (readResult > 0) {
readBytes += readResult;
}
} while (readResult > 0);
if (readResult == -1) {
return false;
} else {
result.resize(static_cast<int>(readBytes));
data = result;
return true;
}
}
QString imageReaderFilter()
{
const QList<QByteArray> formats = QImageReader::supportedImageFormats();
QStringList formatsStringList;
for (const QByteArray& format : formats) {
for (int i = 0; i < format.size(); i++) {
if (!QChar(format.at(i)).isLetterOrNumber()) {
continue;
}
}
formatsStringList.append("*." + QString::fromLatin1(format).toLower());
}
return formatsStringList.join(" ");
}
bool isHex(const QByteArray& ba)
{
for (const unsigned char c : ba) {
if (!std::isxdigit(c)) {
return false;
}
}
bool readFromDevice(QIODevice* device, QByteArray& data, int size)
{
QByteArray buffer;
buffer.resize(size);
qint64 readResult = device->read(buffer.data(), size);
if (readResult == -1) {
return false;
} else {
buffer.resize(readResult);
data = buffer;
return true;
}
}
bool isBase64(const QByteArray& ba)
{
constexpr auto pattern = R"(^(?:[a-z0-9+]{4})*(?:[a-z0-9+]{3}=|[a-z0-9+]{2}==)?$)";
QRegExp regexp(pattern, Qt::CaseInsensitive, QRegExp::RegExp2);
QString base64 = QString::fromLatin1(ba.constData(), ba.size());
return regexp.exactMatch(base64);
bool readAllFromDevice(QIODevice* device, QByteArray& data)
{
QByteArray result;
qint64 readBytes = 0;
qint64 readResult;
do {
result.resize(result.size() + 16384);
readResult = device->read(result.data() + readBytes, result.size() - readBytes);
if (readResult > 0) {
readBytes += readResult;
}
}
while (readResult > 0);
void sleep(int ms)
{
Q_ASSERT(ms >= 0);
if (readResult == -1) {
return false;
} else {
result.resize(static_cast<int>(readBytes));
data = result;
return true;
}
}
if (ms == 0) {
return;
QString imageReaderFilter()
{
const QList<QByteArray> formats = QImageReader::supportedImageFormats();
QStringList formatsStringList;
for (const QByteArray& format : formats) {
for (int i = 0; i < format.size(); i++) {
if (!QChar(format.at(i)).isLetterOrNumber()) {
continue;
}
}
formatsStringList.append("*." + QString::fromLatin1(format).toLower());
}
return formatsStringList.join(" ");
}
bool isHex(const QByteArray& ba)
{
for (const unsigned char c : ba) {
if (!std::isxdigit(c)) {
return false;
}
}
return true;
}
bool isBase64(const QByteArray& ba)
{
constexpr auto pattern = R"(^(?:[a-z0-9+]{4})*(?:[a-z0-9+]{3}=|[a-z0-9+]{2}==)?$)";
QRegExp regexp(pattern, Qt::CaseInsensitive, QRegExp::RegExp2);
QString base64 = QString::fromLatin1(ba.constData(), ba.size());
return regexp.exactMatch(base64);
}
void sleep(int ms)
{
Q_ASSERT(ms >= 0);
if (ms == 0) {
return;
}
#ifdef Q_OS_WIN
Sleep(uint(ms));
Sleep(uint(ms));
#else
timespec ts;
ts.tv_sec = ms / 1000;
ts.tv_nsec = (ms % 1000) * 1000 * 1000;
nanosleep(&ts, nullptr);
timespec ts;
ts.tv_sec = ms/1000;
ts.tv_nsec = (ms%1000)*1000*1000;
nanosleep(&ts, nullptr);
#endif
}
void wait(int ms)
{
Q_ASSERT(ms >= 0);
if (ms == 0) {
return;
}
void wait(int ms)
{
Q_ASSERT(ms >= 0);
QElapsedTimer timer;
timer.start();
if (ms == 0) {
return;
}
QElapsedTimer timer;
timer.start();
if (ms <= 50) {
QCoreApplication::processEvents(QEventLoop::AllEvents, ms);
sleep(qMax(ms - static_cast<int>(timer.elapsed()), 0));
} else {
int timeLeft;
do {
timeLeft = ms - timer.elapsed();
if (timeLeft > 0) {
QCoreApplication::processEvents(QEventLoop::AllEvents, timeLeft);
sleep(10);
}
} while (!timer.hasExpired(ms));
if (ms <= 50) {
QCoreApplication::processEvents(QEventLoop::AllEvents, ms);
sleep(qMax(ms - static_cast<int>(timer.elapsed()), 0));
} else {
int timeLeft;
do {
timeLeft = ms - timer.elapsed();
if (timeLeft > 0) {
QCoreApplication::processEvents(QEventLoop::AllEvents, timeLeft);
sleep(10);
}
}
while (!timer.hasExpired(ms));
}
void disableCoreDumps()
{
// default to true
// there is no point in printing a warning if this is not implemented on the platform
bool success = true;
#if defined(HAVE_RLIMIT_CORE)
struct rlimit limit;
limit.rlim_cur = 0;
limit.rlim_max = 0;
success = success && (setrlimit(RLIMIT_CORE, &limit) == 0);
#endif
#if defined(HAVE_PR_SET_DUMPABLE)
success = success && (prctl(PR_SET_DUMPABLE, 0) == 0);
#endif
// Mac OS X
#ifdef HAVE_PT_DENY_ATTACH
success = success && (ptrace(PT_DENY_ATTACH, 0, 0, 0) == 0);
#endif
#ifdef Q_OS_WIN
success = success && createWindowsDACL();
#endif
if (!success) {
qWarning("Unable to disable core dumps.");
}
}
void setupSearchPaths()
{
#ifdef Q_OS_WIN
// Make sure Windows doesn't load DLLs from the current working directory
SetDllDirectoryA("");
SetSearchPathMode(BASE_SEARCH_PATH_ENABLE_SAFE_SEARCHMODE);
#endif
}
//
// This function grants the user associated with the process token minimal access rights and
// denies everything else on Windows. This includes PROCESS_QUERY_INFORMATION and
// PROCESS_VM_READ access rights that are required for MiniDumpWriteDump() or ReadProcessMemory().
// We do this using a discretionary access control list (DACL). Effectively this prevents
// crash dumps and disallows other processes from accessing our memory. This works as long
// as you do not have admin privileges, since then you are able to grant yourself the
// SeDebugPrivilege or SeTakeOwnershipPrivilege and circumvent the DACL.
//
bool createWindowsDACL()
{
bool bSuccess = false;
#ifdef Q_OS_WIN
// Process token and user
HANDLE hToken = nullptr;
PTOKEN_USER pTokenUser = nullptr;
DWORD cbBufferSize = 0;
// Access control list
PACL pACL = nullptr;
DWORD cbACL = 0;
// Open the access token associated with the calling process
if (!OpenProcessToken(GetCurrentProcess(), TOKEN_QUERY, &hToken)) {
goto Cleanup;
}
// Retrieve the token information in a TOKEN_USER structure
GetTokenInformation(hToken, TokenUser, nullptr, 0, &cbBufferSize);
pTokenUser = static_cast<PTOKEN_USER>(HeapAlloc(GetProcessHeap(), 0, cbBufferSize));
if (pTokenUser == nullptr) {
goto Cleanup;
}
if (!GetTokenInformation(hToken, TokenUser, pTokenUser, cbBufferSize, &cbBufferSize)) {
goto Cleanup;
}
if (!IsValidSid(pTokenUser->User.Sid)) {
goto Cleanup;
}
// Calculate the amount of memory that must be allocated for the DACL
cbACL = sizeof(ACL) + sizeof(ACCESS_ALLOWED_ACE) + GetLengthSid(pTokenUser->User.Sid);
// Create and initialize an ACL
pACL = static_cast<PACL>(HeapAlloc(GetProcessHeap(), 0, cbACL));
if (pACL == nullptr) {
goto Cleanup;
}
if (!InitializeAcl(pACL, cbACL, ACL_REVISION)) {
goto Cleanup;
}
// Add allowed access control entries, everything else is denied
if (!AddAccessAllowedAce(
pACL,
ACL_REVISION,
SYNCHRONIZE | PROCESS_QUERY_LIMITED_INFORMATION | PROCESS_TERMINATE, // same as protected process
pTokenUser->User.Sid // pointer to the trustee's SID
)) {
goto Cleanup;
}
// Set discretionary access control list
bSuccess = ERROR_SUCCESS
== SetSecurityInfo(GetCurrentProcess(), // object handle
SE_KERNEL_OBJECT, // type of object
DACL_SECURITY_INFORMATION, // change only the objects DACL
nullptr,
nullptr, // do not change owner or group
pACL, // DACL specified
nullptr // do not change SACL
);
Cleanup:
if (pACL != nullptr) {
HeapFree(GetProcessHeap(), 0, pACL);
}
if (pTokenUser != nullptr) {
HeapFree(GetProcessHeap(), 0, pTokenUser);
}
if (hToken != nullptr) {
CloseHandle(hToken);
}
#endif
return bSuccess;
}
}
} // namespace Tools