keepassxc/src/keys/CompositeKey.cpp

196 lines
4.4 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2010 Felix Geyer <debfx@fobos.de>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 or (at your option)
* version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "CompositeKey.h"
#include "CompositeKey_p.h"
#include <QtConcurrent>
#include <QTime>
2012-04-18 16:08:22 -04:00
#include "crypto/CryptoHash.h"
#include "crypto/SymmetricCipher.h"
CompositeKey::CompositeKey()
{
}
CompositeKey::CompositeKey(const CompositeKey& key)
{
*this = key;
}
CompositeKey::~CompositeKey()
{
clear();
}
2012-01-11 17:59:50 -05:00
void CompositeKey::clear()
{
qDeleteAll(m_keys);
m_keys.clear();
}
2012-10-12 06:10:13 -04:00
bool CompositeKey::isEmpty() const
{
return m_keys.isEmpty();
}
CompositeKey* CompositeKey::clone() const
{
return new CompositeKey(*this);
}
CompositeKey& CompositeKey::operator=(const CompositeKey& key)
{
2012-07-17 04:47:56 -04:00
// handle self assignment as that would break when calling clear()
if (this == &key) {
return *this;
}
clear();
Q_FOREACH (const Key* subKey, key.m_keys) {
addKey(*subKey);
}
return *this;
}
QByteArray CompositeKey::rawKey() const
{
CryptoHash cryptoHash(CryptoHash::Sha256);
Q_FOREACH (const Key* key, m_keys) {
cryptoHash.addData(key->rawKey());
}
return cryptoHash.result();
}
QByteArray CompositeKey::transform(const QByteArray& seed, quint64 rounds,
bool* ok, QString* errorString) const
{
Q_ASSERT(seed.size() == 32);
Q_ASSERT(rounds > 0);
bool okLeft;
QString errorStringLeft;
bool okRight;
QString errorStringRight;
QByteArray key = rawKey();
QFuture<QByteArray> future = QtConcurrent::run(transformKeyRaw, key.left(16), seed, rounds, &okLeft, &errorStringLeft);
QByteArray result2 = transformKeyRaw(key.right(16), seed, rounds, &okRight, &errorStringRight);
QByteArray transformed;
transformed.append(future.result());
transformed.append(result2);
*ok = (okLeft && okRight);
if (!okLeft) {
*errorString = errorStringLeft;
return QByteArray();
}
if (!okRight) {
*errorString = errorStringRight;
return QByteArray();
}
return CryptoHash::hash(transformed, CryptoHash::Sha256);
}
QByteArray CompositeKey::transformKeyRaw(const QByteArray& key, const QByteArray& seed,
quint64 rounds, bool* ok, QString* errorString)
2012-06-29 18:22:07 -04:00
{
QByteArray iv(16, 0);
SymmetricCipher cipher(SymmetricCipher::Aes256, SymmetricCipher::Ecb,
SymmetricCipher::Encrypt);
if (!cipher.init(seed, iv)) {
*ok = false;
*errorString = cipher.errorString();
return QByteArray();
}
QByteArray result = key;
if (!cipher.processInPlace(result, rounds)) {
*ok = false;
*errorString = cipher.errorString();
return QByteArray();
}
*ok = true;
return result;
}
void CompositeKey::addKey(const Key& key)
{
m_keys.append(key.clone());
}
int CompositeKey::transformKeyBenchmark(int msec)
{
TransformKeyBenchmarkThread thread1(msec);
TransformKeyBenchmarkThread thread2(msec);
thread1.start();
thread2.start();
thread1.wait();
thread2.wait();
return qMin(thread1.rounds(), thread2.rounds());
}
TransformKeyBenchmarkThread::TransformKeyBenchmarkThread(int msec)
: m_msec(msec)
, m_rounds(0)
{
Q_ASSERT(msec > 0);
}
int TransformKeyBenchmarkThread::rounds()
{
return m_rounds;
}
void TransformKeyBenchmarkThread::run()
{
2012-05-12 09:39:33 -04:00
QByteArray key = QByteArray(16, '\x7E');
QByteArray seed = QByteArray(32, '\x4B');
QByteArray iv(16, 0);
SymmetricCipher cipher(SymmetricCipher::Aes256, SymmetricCipher::Ecb,
SymmetricCipher::Encrypt);
cipher.init(seed, iv);
QTime t;
t.start();
do {
if (!cipher.processInPlace(key, 10000)) {
m_rounds = -1;
return;
}
m_rounds += 10000;
} while (t.elapsed() < m_msec);
}