/*! @name videojs-vr @version 1.7.1 @license Apache-2.0 */
(function (global, factory) {
  typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory(require('global/window'), require('global/document'), require('video.js')) :
  typeof define === 'function' && define.amd ? define(['global/window', 'global/document', 'video.js'], factory) :
  (global = global || self, global.videojsVr = factory(global.window, global.document, global.videojs));
}(this, function (window$1, document$1, videojs) { 'use strict';

  window$1 = window$1 && window$1.hasOwnProperty('default') ? window$1['default'] : window$1;
  document$1 = document$1 && document$1.hasOwnProperty('default') ? document$1['default'] : document$1;
  videojs = videojs && videojs.hasOwnProperty('default') ? videojs['default'] : videojs;

  function _assertThisInitialized(self) {
    if (self === void 0) {
      throw new ReferenceError("this hasn't been initialised - super() hasn't been called");
    }

    return self;
  }

  var assertThisInitialized = _assertThisInitialized;

  function _inheritsLoose(subClass, superClass) {
    subClass.prototype = Object.create(superClass.prototype);
    subClass.prototype.constructor = subClass;
    subClass.__proto__ = superClass;
  }

  var inheritsLoose = _inheritsLoose;

  var version = "1.7.1";

  var commonjsGlobal = typeof globalThis !== 'undefined' ? globalThis : typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {};

  function unwrapExports (x) {
  	return x && x.__esModule && Object.prototype.hasOwnProperty.call(x, 'default') ? x['default'] : x;
  }

  function createCommonjsModule(fn, module) {
  	return module = { exports: {} }, fn(module, module.exports), module.exports;
  }

  var webvrPolyfill = createCommonjsModule(function (module, exports) {
  /**
   * @license
   * webvr-polyfill
   * Copyright (c) 2015-2017 Google
   * Licensed under the Apache License, Version 2.0 (the "License");
   * you may not use this file except in compliance with the License.
   * You may obtain a copy of the License at
   *
   * http://www.apache.org/licenses/LICENSE-2.0
   *
   * Unless required by applicable law or agreed to in writing, software
   * distributed under the License is distributed on an "AS IS" BASIS,
   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   * See the License for the specific language governing permissions and
   * limitations under the License.
   */

  /**
   * @license
   * cardboard-vr-display
   * Copyright (c) 2015-2017 Google
   * Licensed under the Apache License, Version 2.0 (the "License");
   * you may not use this file except in compliance with the License.
   * You may obtain a copy of the License at
   *
   * http://www.apache.org/licenses/LICENSE-2.0
   *
   * Unless required by applicable law or agreed to in writing, software
   * distributed under the License is distributed on an "AS IS" BASIS,
   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   * See the License for the specific language governing permissions and
   * limitations under the License.
   */

  /**
   * @license
   * webvr-polyfill-dpdb 
   * Copyright (c) 2017 Google
   * Licensed under the Apache License, Version 2.0 (the "License");
   * you may not use this file except in compliance with the License.
   * You may obtain a copy of the License at
   *
   * http://www.apache.org/licenses/LICENSE-2.0
   *
   * Unless required by applicable law or agreed to in writing, software
   * distributed under the License is distributed on an "AS IS" BASIS,
   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   * See the License for the specific language governing permissions and
   * limitations under the License.
   */

  /**
   * @license
   * wglu-preserve-state
   * Copyright (c) 2016, Brandon Jones.
   *
   * Permission is hereby granted, free of charge, to any person obtaining a copy
   * of this software and associated documentation files (the "Software"), to deal
   * in the Software without restriction, including without limitation the rights
   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   * copies of the Software, and to permit persons to whom the Software is
   * furnished to do so, subject to the following conditions:
   *
   * The above copyright notice and this permission notice shall be included in
   * all copies or substantial portions of the Software.
   *
   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   * THE SOFTWARE.
   */

  /**
   * @license
   * nosleep.js
   * Copyright (c) 2017, Rich Tibbett
   *
   * Permission is hereby granted, free of charge, to any person obtaining a copy
   * of this software and associated documentation files (the "Software"), to deal
   * in the Software without restriction, including without limitation the rights
   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   * copies of the Software, and to permit persons to whom the Software is
   * furnished to do so, subject to the following conditions:
   *
   * The above copyright notice and this permission notice shall be included in
   * all copies or substantial portions of the Software.
   *
   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   * THE SOFTWARE.
   */

  (function (global, factory) {
  	 module.exports = factory() ;
  }(commonjsGlobal, (function () {
  var commonjsGlobal$1 = typeof window !== 'undefined' ? window : typeof commonjsGlobal !== 'undefined' ? commonjsGlobal : typeof self !== 'undefined' ? self : {};



  function unwrapExports (x) {
  	return x && x.__esModule && Object.prototype.hasOwnProperty.call(x, 'default') ? x['default'] : x;
  }

  function createCommonjsModule(fn, module) {
  	return module = { exports: {} }, fn(module, module.exports), module.exports;
  }

  var race = function race(promises) {
    if (Promise.race) {
      return Promise.race(promises);
    }
    return new Promise(function (resolve, reject) {
      for (var i = 0; i < promises.length; i++) {
        promises[i].then(resolve, reject);
      }
    });
  };

  var isMobile = function isMobile() {
    return (/Android/i.test(navigator.userAgent) || /iPhone|iPad|iPod/i.test(navigator.userAgent)
    );
  };
  var copyArray = function copyArray(source, dest) {
    for (var i = 0, n = source.length; i < n; i++) {
      dest[i] = source[i];
    }
  };
  var extend = function extend(dest, src) {
    for (var key in src) {
      if (src.hasOwnProperty(key)) {
        dest[key] = src[key];
      }
    }
    return dest;
  };

  var cardboardVrDisplay = createCommonjsModule(function (module, exports) {
  /**
   * @license
   * cardboard-vr-display
   * Copyright (c) 2015-2017 Google
   * Licensed under the Apache License, Version 2.0 (the "License");
   * you may not use this file except in compliance with the License.
   * You may obtain a copy of the License at
   *
   * http://www.apache.org/licenses/LICENSE-2.0
   *
   * Unless required by applicable law or agreed to in writing, software
   * distributed under the License is distributed on an "AS IS" BASIS,
   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   * See the License for the specific language governing permissions and
   * limitations under the License.
   */
  /**
   * @license
   * gl-preserve-state
   * Copyright (c) 2016, Brandon Jones.
   *
   * Permission is hereby granted, free of charge, to any person obtaining a copy
   * of this software and associated documentation files (the "Software"), to deal
   * in the Software without restriction, including without limitation the rights
   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   * copies of the Software, and to permit persons to whom the Software is
   * furnished to do so, subject to the following conditions:
   *
   * The above copyright notice and this permission notice shall be included in
   * all copies or substantial portions of the Software.
   *
   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   * THE SOFTWARE.
   */
  /**
   * @license
   * webvr-polyfill-dpdb
   * Copyright (c) 2015-2017 Google
   * Licensed under the Apache License, Version 2.0 (the "License");
   * you may not use this file except in compliance with the License.
   * You may obtain a copy of the License at
   *
   * http://www.apache.org/licenses/LICENSE-2.0
   *
   * Unless required by applicable law or agreed to in writing, software
   * distributed under the License is distributed on an "AS IS" BASIS,
   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   * See the License for the specific language governing permissions and
   * limitations under the License.
   */
  /**
   * @license
   * nosleep.js
   * Copyright (c) 2017, Rich Tibbett
   *
   * Permission is hereby granted, free of charge, to any person obtaining a copy
   * of this software and associated documentation files (the "Software"), to deal
   * in the Software without restriction, including without limitation the rights
   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   * copies of the Software, and to permit persons to whom the Software is
   * furnished to do so, subject to the following conditions:
   *
   * The above copyright notice and this permission notice shall be included in
   * all copies or substantial portions of the Software.
   *
   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   * THE SOFTWARE.
   */
  (function (global, factory) {
  	module.exports = factory();
  }(commonjsGlobal$1, (function () { var classCallCheck = function (instance, Constructor) {
    if (!(instance instanceof Constructor)) {
      throw new TypeError("Cannot call a class as a function");
    }
  };
  var createClass = function () {
    function defineProperties(target, props) {
      for (var i = 0; i < props.length; i++) {
        var descriptor = props[i];
        descriptor.enumerable = descriptor.enumerable || false;
        descriptor.configurable = true;
        if ("value" in descriptor) descriptor.writable = true;
        Object.defineProperty(target, descriptor.key, descriptor);
      }
    }
    return function (Constructor, protoProps, staticProps) {
      if (protoProps) defineProperties(Constructor.prototype, protoProps);
      if (staticProps) defineProperties(Constructor, staticProps);
      return Constructor;
    };
  }();
  var slicedToArray = function () {
    function sliceIterator(arr, i) {
      var _arr = [];
      var _n = true;
      var _d = false;
      var _e = undefined;
      try {
        for (var _i = arr[Symbol.iterator](), _s; !(_n = (_s = _i.next()).done); _n = true) {
          _arr.push(_s.value);
          if (i && _arr.length === i) break;
        }
      } catch (err) {
        _d = true;
        _e = err;
      } finally {
        try {
          if (!_n && _i["return"]) _i["return"]();
        } finally {
          if (_d) throw _e;
        }
      }
      return _arr;
    }
    return function (arr, i) {
      if (Array.isArray(arr)) {
        return arr;
      } else if (Symbol.iterator in Object(arr)) {
        return sliceIterator(arr, i);
      } else {
        throw new TypeError("Invalid attempt to destructure non-iterable instance");
      }
    };
  }();
  var MIN_TIMESTEP = 0.001;
  var MAX_TIMESTEP = 1;
  var base64 = function base64(mimeType, _base) {
    return 'data:' + mimeType + ';base64,' + _base;
  };
  var lerp = function lerp(a, b, t) {
    return a + (b - a) * t;
  };
  var isIOS = function () {
    var isIOS = /iPad|iPhone|iPod/.test(navigator.platform);
    return function () {
      return isIOS;
    };
  }();
  var isWebViewAndroid = function () {
    var isWebViewAndroid = navigator.userAgent.indexOf('Version') !== -1 && navigator.userAgent.indexOf('Android') !== -1 && navigator.userAgent.indexOf('Chrome') !== -1;
    return function () {
      return isWebViewAndroid;
    };
  }();
  var isSafari = function () {
    var isSafari = /^((?!chrome|android).)*safari/i.test(navigator.userAgent);
    return function () {
      return isSafari;
    };
  }();
  var isFirefoxAndroid = function () {
    var isFirefoxAndroid = navigator.userAgent.indexOf('Firefox') !== -1 && navigator.userAgent.indexOf('Android') !== -1;
    return function () {
      return isFirefoxAndroid;
    };
  }();
  var getChromeVersion = function () {
    var match = navigator.userAgent.match(/.*Chrome\/([0-9]+)/);
    var value = match ? parseInt(match[1], 10) : null;
    return function () {
      return value;
    };
  }();
  var isChromeWithoutDeviceMotion = function () {
    var value = false;
    if (getChromeVersion() === 65) {
      var match = navigator.userAgent.match(/.*Chrome\/([0-9\.]*)/);
      if (match) {
        var _match$1$split = match[1].split('.'),
            _match$1$split2 = slicedToArray(_match$1$split, 4),
            major = _match$1$split2[0],
            minor = _match$1$split2[1],
            branch = _match$1$split2[2],
            build = _match$1$split2[3];
        value = parseInt(branch, 10) === 3325 && parseInt(build, 10) < 148;
      }
    }
    return function () {
      return value;
    };
  }();
  var isR7 = function () {
    var isR7 = navigator.userAgent.indexOf('R7 Build') !== -1;
    return function () {
      return isR7;
    };
  }();
  var isLandscapeMode = function isLandscapeMode() {
    var rtn = window.orientation == 90 || window.orientation == -90;
    return isR7() ? !rtn : rtn;
  };
  var isTimestampDeltaValid = function isTimestampDeltaValid(timestampDeltaS) {
    if (isNaN(timestampDeltaS)) {
      return false;
    }
    if (timestampDeltaS <= MIN_TIMESTEP) {
      return false;
    }
    if (timestampDeltaS > MAX_TIMESTEP) {
      return false;
    }
    return true;
  };
  var getScreenWidth = function getScreenWidth() {
    return Math.max(window.screen.width, window.screen.height) * window.devicePixelRatio;
  };
  var getScreenHeight = function getScreenHeight() {
    return Math.min(window.screen.width, window.screen.height) * window.devicePixelRatio;
  };
  var requestFullscreen = function requestFullscreen(element) {
    if (isWebViewAndroid()) {
      return false;
    }
    if (element.requestFullscreen) {
      element.requestFullscreen();
    } else if (element.webkitRequestFullscreen) {
      element.webkitRequestFullscreen();
    } else if (element.mozRequestFullScreen) {
      element.mozRequestFullScreen();
    } else if (element.msRequestFullscreen) {
      element.msRequestFullscreen();
    } else {
      return false;
    }
    return true;
  };
  var exitFullscreen = function exitFullscreen() {
    if (document.exitFullscreen) {
      document.exitFullscreen();
    } else if (document.webkitExitFullscreen) {
      document.webkitExitFullscreen();
    } else if (document.mozCancelFullScreen) {
      document.mozCancelFullScreen();
    } else if (document.msExitFullscreen) {
      document.msExitFullscreen();
    } else {
      return false;
    }
    return true;
  };
  var getFullscreenElement = function getFullscreenElement() {
    return document.fullscreenElement || document.webkitFullscreenElement || document.mozFullScreenElement || document.msFullscreenElement;
  };
  var linkProgram = function linkProgram(gl, vertexSource, fragmentSource, attribLocationMap) {
    var vertexShader = gl.createShader(gl.VERTEX_SHADER);
    gl.shaderSource(vertexShader, vertexSource);
    gl.compileShader(vertexShader);
    var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
    gl.shaderSource(fragmentShader, fragmentSource);
    gl.compileShader(fragmentShader);
    var program = gl.createProgram();
    gl.attachShader(program, vertexShader);
    gl.attachShader(program, fragmentShader);
    for (var attribName in attribLocationMap) {
      gl.bindAttribLocation(program, attribLocationMap[attribName], attribName);
    }gl.linkProgram(program);
    gl.deleteShader(vertexShader);
    gl.deleteShader(fragmentShader);
    return program;
  };
  var getProgramUniforms = function getProgramUniforms(gl, program) {
    var uniforms = {};
    var uniformCount = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS);
    var uniformName = '';
    for (var i = 0; i < uniformCount; i++) {
      var uniformInfo = gl.getActiveUniform(program, i);
      uniformName = uniformInfo.name.replace('[0]', '');
      uniforms[uniformName] = gl.getUniformLocation(program, uniformName);
    }
    return uniforms;
  };
  var orthoMatrix = function orthoMatrix(out, left, right, bottom, top, near, far) {
    var lr = 1 / (left - right),
        bt = 1 / (bottom - top),
        nf = 1 / (near - far);
    out[0] = -2 * lr;
    out[1] = 0;
    out[2] = 0;
    out[3] = 0;
    out[4] = 0;
    out[5] = -2 * bt;
    out[6] = 0;
    out[7] = 0;
    out[8] = 0;
    out[9] = 0;
    out[10] = 2 * nf;
    out[11] = 0;
    out[12] = (left + right) * lr;
    out[13] = (top + bottom) * bt;
    out[14] = (far + near) * nf;
    out[15] = 1;
    return out;
  };
  var isMobile = function isMobile() {
    var check = false;
    (function (a) {
      if (/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a) || /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0, 4))) check = true;
    })(navigator.userAgent || navigator.vendor || window.opera);
    return check;
  };
  var extend = function extend(dest, src) {
    for (var key in src) {
      if (src.hasOwnProperty(key)) {
        dest[key] = src[key];
      }
    }
    return dest;
  };
  var safariCssSizeWorkaround = function safariCssSizeWorkaround(canvas) {
    if (isIOS()) {
      var width = canvas.style.width;
      var height = canvas.style.height;
      canvas.style.width = parseInt(width) + 1 + 'px';
      canvas.style.height = parseInt(height) + 'px';
      setTimeout(function () {
        canvas.style.width = width;
        canvas.style.height = height;
      }, 100);
    }
    window.canvas = canvas;
  };
  var frameDataFromPose = function () {
    var piOver180 = Math.PI / 180.0;
    var rad45 = Math.PI * 0.25;
    function mat4_perspectiveFromFieldOfView(out, fov, near, far) {
      var upTan = Math.tan(fov ? fov.upDegrees * piOver180 : rad45),
          downTan = Math.tan(fov ? fov.downDegrees * piOver180 : rad45),
          leftTan = Math.tan(fov ? fov.leftDegrees * piOver180 : rad45),
          rightTan = Math.tan(fov ? fov.rightDegrees * piOver180 : rad45),
          xScale = 2.0 / (leftTan + rightTan),
          yScale = 2.0 / (upTan + downTan);
      out[0] = xScale;
      out[1] = 0.0;
      out[2] = 0.0;
      out[3] = 0.0;
      out[4] = 0.0;
      out[5] = yScale;
      out[6] = 0.0;
      out[7] = 0.0;
      out[8] = -((leftTan - rightTan) * xScale * 0.5);
      out[9] = (upTan - downTan) * yScale * 0.5;
      out[10] = far / (near - far);
      out[11] = -1.0;
      out[12] = 0.0;
      out[13] = 0.0;
      out[14] = far * near / (near - far);
      out[15] = 0.0;
      return out;
    }
    function mat4_fromRotationTranslation(out, q, v) {
      var x = q[0],
          y = q[1],
          z = q[2],
          w = q[3],
          x2 = x + x,
          y2 = y + y,
          z2 = z + z,
          xx = x * x2,
          xy = x * y2,
          xz = x * z2,
          yy = y * y2,
          yz = y * z2,
          zz = z * z2,
          wx = w * x2,
          wy = w * y2,
          wz = w * z2;
      out[0] = 1 - (yy + zz);
      out[1] = xy + wz;
      out[2] = xz - wy;
      out[3] = 0;
      out[4] = xy - wz;
      out[5] = 1 - (xx + zz);
      out[6] = yz + wx;
      out[7] = 0;
      out[8] = xz + wy;
      out[9] = yz - wx;
      out[10] = 1 - (xx + yy);
      out[11] = 0;
      out[12] = v[0];
      out[13] = v[1];
      out[14] = v[2];
      out[15] = 1;
      return out;
    }
    function mat4_translate(out, a, v) {
      var x = v[0],
          y = v[1],
          z = v[2],
          a00,
          a01,
          a02,
          a03,
          a10,
          a11,
          a12,
          a13,
          a20,
          a21,
          a22,
          a23;
      if (a === out) {
        out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
        out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
        out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
        out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
      } else {
        a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3];
        a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7];
        a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11];
        out[0] = a00;out[1] = a01;out[2] = a02;out[3] = a03;
        out[4] = a10;out[5] = a11;out[6] = a12;out[7] = a13;
        out[8] = a20;out[9] = a21;out[10] = a22;out[11] = a23;
        out[12] = a00 * x + a10 * y + a20 * z + a[12];
        out[13] = a01 * x + a11 * y + a21 * z + a[13];
        out[14] = a02 * x + a12 * y + a22 * z + a[14];
        out[15] = a03 * x + a13 * y + a23 * z + a[15];
      }
      return out;
    }
    function mat4_invert(out, a) {
      var a00 = a[0],
          a01 = a[1],
          a02 = a[2],
          a03 = a[3],
          a10 = a[4],
          a11 = a[5],
          a12 = a[6],
          a13 = a[7],
          a20 = a[8],
          a21 = a[9],
          a22 = a[10],
          a23 = a[11],
          a30 = a[12],
          a31 = a[13],
          a32 = a[14],
          a33 = a[15],
          b00 = a00 * a11 - a01 * a10,
          b01 = a00 * a12 - a02 * a10,
          b02 = a00 * a13 - a03 * a10,
          b03 = a01 * a12 - a02 * a11,
          b04 = a01 * a13 - a03 * a11,
          b05 = a02 * a13 - a03 * a12,
          b06 = a20 * a31 - a21 * a30,
          b07 = a20 * a32 - a22 * a30,
          b08 = a20 * a33 - a23 * a30,
          b09 = a21 * a32 - a22 * a31,
          b10 = a21 * a33 - a23 * a31,
          b11 = a22 * a33 - a23 * a32,
      det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
      if (!det) {
        return null;
      }
      det = 1.0 / det;
      out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
      out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
      out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
      out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
      out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
      out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
      out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
      out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
      out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
      out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
      out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
      out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
      out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
      out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
      out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
      out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
      return out;
    }
    var defaultOrientation = new Float32Array([0, 0, 0, 1]);
    var defaultPosition = new Float32Array([0, 0, 0]);
    function updateEyeMatrices(projection, view, pose, fov, offset, vrDisplay) {
      mat4_perspectiveFromFieldOfView(projection, fov || null, vrDisplay.depthNear, vrDisplay.depthFar);
      var orientation = pose.orientation || defaultOrientation;
      var position = pose.position || defaultPosition;
      mat4_fromRotationTranslation(view, orientation, position);
      if (offset) mat4_translate(view, view, offset);
      mat4_invert(view, view);
    }
    return function (frameData, pose, vrDisplay) {
      if (!frameData || !pose) return false;
      frameData.pose = pose;
      frameData.timestamp = pose.timestamp;
      updateEyeMatrices(frameData.leftProjectionMatrix, frameData.leftViewMatrix, pose, vrDisplay._getFieldOfView("left"), vrDisplay._getEyeOffset("left"), vrDisplay);
      updateEyeMatrices(frameData.rightProjectionMatrix, frameData.rightViewMatrix, pose, vrDisplay._getFieldOfView("right"), vrDisplay._getEyeOffset("right"), vrDisplay);
      return true;
    };
  }();
  var isInsideCrossOriginIFrame = function isInsideCrossOriginIFrame() {
    var isFramed = window.self !== window.top;
    var refOrigin = getOriginFromUrl(document.referrer);
    var thisOrigin = getOriginFromUrl(window.location.href);
    return isFramed && refOrigin !== thisOrigin;
  };
  var getOriginFromUrl = function getOriginFromUrl(url) {
    var domainIdx;
    var protoSepIdx = url.indexOf("://");
    if (protoSepIdx !== -1) {
      domainIdx = protoSepIdx + 3;
    } else {
      domainIdx = 0;
    }
    var domainEndIdx = url.indexOf('/', domainIdx);
    if (domainEndIdx === -1) {
      domainEndIdx = url.length;
    }
    return url.substring(0, domainEndIdx);
  };
  var getQuaternionAngle = function getQuaternionAngle(quat) {
    if (quat.w > 1) {
      console.warn('getQuaternionAngle: w > 1');
      return 0;
    }
    var angle = 2 * Math.acos(quat.w);
    return angle;
  };
  var warnOnce = function () {
    var observedWarnings = {};
    return function (key, message) {
      if (observedWarnings[key] === undefined) {
        console.warn('webvr-polyfill: ' + message);
        observedWarnings[key] = true;
      }
    };
  }();
  var deprecateWarning = function deprecateWarning(deprecated, suggested) {
    var alternative = suggested ? 'Please use ' + suggested + ' instead.' : '';
    warnOnce(deprecated, deprecated + ' has been deprecated. ' + 'This may not work on native WebVR displays. ' + alternative);
  };
  function WGLUPreserveGLState(gl, bindings, callback) {
    if (!bindings) {
      callback(gl);
      return;
    }
    var boundValues = [];
    var activeTexture = null;
    for (var i = 0; i < bindings.length; ++i) {
      var binding = bindings[i];
      switch (binding) {
        case gl.TEXTURE_BINDING_2D:
        case gl.TEXTURE_BINDING_CUBE_MAP:
          var textureUnit = bindings[++i];
          if (textureUnit < gl.TEXTURE0 || textureUnit > gl.TEXTURE31) {
            console.error("TEXTURE_BINDING_2D or TEXTURE_BINDING_CUBE_MAP must be followed by a valid texture unit");
            boundValues.push(null, null);
            break;
          }
          if (!activeTexture) {
            activeTexture = gl.getParameter(gl.ACTIVE_TEXTURE);
          }
          gl.activeTexture(textureUnit);
          boundValues.push(gl.getParameter(binding), null);
          break;
        case gl.ACTIVE_TEXTURE:
          activeTexture = gl.getParameter(gl.ACTIVE_TEXTURE);
          boundValues.push(null);
          break;
        default:
          boundValues.push(gl.getParameter(binding));
          break;
      }
    }
    callback(gl);
    for (var i = 0; i < bindings.length; ++i) {
      var binding = bindings[i];
      var boundValue = boundValues[i];
      switch (binding) {
        case gl.ACTIVE_TEXTURE:
          break;
        case gl.ARRAY_BUFFER_BINDING:
          gl.bindBuffer(gl.ARRAY_BUFFER, boundValue);
          break;
        case gl.COLOR_CLEAR_VALUE:
          gl.clearColor(boundValue[0], boundValue[1], boundValue[2], boundValue[3]);
          break;
        case gl.COLOR_WRITEMASK:
          gl.colorMask(boundValue[0], boundValue[1], boundValue[2], boundValue[3]);
          break;
        case gl.CURRENT_PROGRAM:
          gl.useProgram(boundValue);
          break;
        case gl.ELEMENT_ARRAY_BUFFER_BINDING:
          gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, boundValue);
          break;
        case gl.FRAMEBUFFER_BINDING:
          gl.bindFramebuffer(gl.FRAMEBUFFER, boundValue);
          break;
        case gl.RENDERBUFFER_BINDING:
          gl.bindRenderbuffer(gl.RENDERBUFFER, boundValue);
          break;
        case gl.TEXTURE_BINDING_2D:
          var textureUnit = bindings[++i];
          if (textureUnit < gl.TEXTURE0 || textureUnit > gl.TEXTURE31)
            break;
          gl.activeTexture(textureUnit);
          gl.bindTexture(gl.TEXTURE_2D, boundValue);
          break;
        case gl.TEXTURE_BINDING_CUBE_MAP:
          var textureUnit = bindings[++i];
          if (textureUnit < gl.TEXTURE0 || textureUnit > gl.TEXTURE31)
            break;
          gl.activeTexture(textureUnit);
          gl.bindTexture(gl.TEXTURE_CUBE_MAP, boundValue);
          break;
        case gl.VIEWPORT:
          gl.viewport(boundValue[0], boundValue[1], boundValue[2], boundValue[3]);
          break;
        case gl.BLEND:
        case gl.CULL_FACE:
        case gl.DEPTH_TEST:
        case gl.SCISSOR_TEST:
        case gl.STENCIL_TEST:
          if (boundValue) {
            gl.enable(binding);
          } else {
            gl.disable(binding);
          }
          break;
        default:
          console.log("No GL restore behavior for 0x" + binding.toString(16));
          break;
      }
      if (activeTexture) {
        gl.activeTexture(activeTexture);
      }
    }
  }
  var glPreserveState = WGLUPreserveGLState;
  var distortionVS = ['attribute vec2 position;', 'attribute vec3 texCoord;', 'varying vec2 vTexCoord;', 'uniform vec4 viewportOffsetScale[2];', 'void main() {', '  vec4 viewport = viewportOffsetScale[int(texCoord.z)];', '  vTexCoord = (texCoord.xy * viewport.zw) + viewport.xy;', '  gl_Position = vec4( position, 1.0, 1.0 );', '}'].join('\n');
  var distortionFS = ['precision mediump float;', 'uniform sampler2D diffuse;', 'varying vec2 vTexCoord;', 'void main() {', '  gl_FragColor = texture2D(diffuse, vTexCoord);', '}'].join('\n');
  function CardboardDistorter(gl, cardboardUI, bufferScale, dirtySubmitFrameBindings) {
    this.gl = gl;
    this.cardboardUI = cardboardUI;
    this.bufferScale = bufferScale;
    this.dirtySubmitFrameBindings = dirtySubmitFrameBindings;
    this.ctxAttribs = gl.getContextAttributes();
    this.meshWidth = 20;
    this.meshHeight = 20;
    this.bufferWidth = gl.drawingBufferWidth;
    this.bufferHeight = gl.drawingBufferHeight;
    this.realBindFramebuffer = gl.bindFramebuffer;
    this.realEnable = gl.enable;
    this.realDisable = gl.disable;
    this.realColorMask = gl.colorMask;
    this.realClearColor = gl.clearColor;
    this.realViewport = gl.viewport;
    if (!isIOS()) {
      this.realCanvasWidth = Object.getOwnPropertyDescriptor(gl.canvas.__proto__, 'width');
      this.realCanvasHeight = Object.getOwnPropertyDescriptor(gl.canvas.__proto__, 'height');
    }
    this.isPatched = false;
    this.lastBoundFramebuffer = null;
    this.cullFace = false;
    this.depthTest = false;
    this.blend = false;
    this.scissorTest = false;
    this.stencilTest = false;
    this.viewport = [0, 0, 0, 0];
    this.colorMask = [true, true, true, true];
    this.clearColor = [0, 0, 0, 0];
    this.attribs = {
      position: 0,
      texCoord: 1
    };
    this.program = linkProgram(gl, distortionVS, distortionFS, this.attribs);
    this.uniforms = getProgramUniforms(gl, this.program);
    this.viewportOffsetScale = new Float32Array(8);
    this.setTextureBounds();
    this.vertexBuffer = gl.createBuffer();
    this.indexBuffer = gl.createBuffer();
    this.indexCount = 0;
    this.renderTarget = gl.createTexture();
    this.framebuffer = gl.createFramebuffer();
    this.depthStencilBuffer = null;
    this.depthBuffer = null;
    this.stencilBuffer = null;
    if (this.ctxAttribs.depth && this.ctxAttribs.stencil) {
      this.depthStencilBuffer = gl.createRenderbuffer();
    } else if (this.ctxAttribs.depth) {
      this.depthBuffer = gl.createRenderbuffer();
    } else if (this.ctxAttribs.stencil) {
      this.stencilBuffer = gl.createRenderbuffer();
    }
    this.patch();
    this.onResize();
  }
  CardboardDistorter.prototype.destroy = function () {
    var gl = this.gl;
    this.unpatch();
    gl.deleteProgram(this.program);
    gl.deleteBuffer(this.vertexBuffer);
    gl.deleteBuffer(this.indexBuffer);
    gl.deleteTexture(this.renderTarget);
    gl.deleteFramebuffer(this.framebuffer);
    if (this.depthStencilBuffer) {
      gl.deleteRenderbuffer(this.depthStencilBuffer);
    }
    if (this.depthBuffer) {
      gl.deleteRenderbuffer(this.depthBuffer);
    }
    if (this.stencilBuffer) {
      gl.deleteRenderbuffer(this.stencilBuffer);
    }
    if (this.cardboardUI) {
      this.cardboardUI.destroy();
    }
  };
  CardboardDistorter.prototype.onResize = function () {
    var gl = this.gl;
    var self = this;
    var glState = [gl.RENDERBUFFER_BINDING, gl.TEXTURE_BINDING_2D, gl.TEXTURE0];
    glPreserveState(gl, glState, function (gl) {
      self.realBindFramebuffer.call(gl, gl.FRAMEBUFFER, null);
      if (self.scissorTest) {
        self.realDisable.call(gl, gl.SCISSOR_TEST);
      }
      self.realColorMask.call(gl, true, true, true, true);
      self.realViewport.call(gl, 0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight);
      self.realClearColor.call(gl, 0, 0, 0, 1);
      gl.clear(gl.COLOR_BUFFER_BIT);
      self.realBindFramebuffer.call(gl, gl.FRAMEBUFFER, self.framebuffer);
      gl.bindTexture(gl.TEXTURE_2D, self.renderTarget);
      gl.texImage2D(gl.TEXTURE_2D, 0, self.ctxAttribs.alpha ? gl.RGBA : gl.RGB, self.bufferWidth, self.bufferHeight, 0, self.ctxAttribs.alpha ? gl.RGBA : gl.RGB, gl.UNSIGNED_BYTE, null);
      gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
      gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
      gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
      gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
      gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, self.renderTarget, 0);
      if (self.ctxAttribs.depth && self.ctxAttribs.stencil) {
        gl.bindRenderbuffer(gl.RENDERBUFFER, self.depthStencilBuffer);
        gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_STENCIL, self.bufferWidth, self.bufferHeight);
        gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_STENCIL_ATTACHMENT, gl.RENDERBUFFER, self.depthStencilBuffer);
      } else if (self.ctxAttribs.depth) {
        gl.bindRenderbuffer(gl.RENDERBUFFER, self.depthBuffer);
        gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT16, self.bufferWidth, self.bufferHeight);
        gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, self.depthBuffer);
      } else if (self.ctxAttribs.stencil) {
        gl.bindRenderbuffer(gl.RENDERBUFFER, self.stencilBuffer);
        gl.renderbufferStorage(gl.RENDERBUFFER, gl.STENCIL_INDEX8, self.bufferWidth, self.bufferHeight);
        gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.STENCIL_ATTACHMENT, gl.RENDERBUFFER, self.stencilBuffer);
      }
      if (!gl.checkFramebufferStatus(gl.FRAMEBUFFER) === gl.FRAMEBUFFER_COMPLETE) {
        console.error('Framebuffer incomplete!');
      }
      self.realBindFramebuffer.call(gl, gl.FRAMEBUFFER, self.lastBoundFramebuffer);
      if (self.scissorTest) {
        self.realEnable.call(gl, gl.SCISSOR_TEST);
      }
      self.realColorMask.apply(gl, self.colorMask);
      self.realViewport.apply(gl, self.viewport);
      self.realClearColor.apply(gl, self.clearColor);
    });
    if (this.cardboardUI) {
      this.cardboardUI.onResize();
    }
  };
  CardboardDistorter.prototype.patch = function () {
    if (this.isPatched) {
      return;
    }
    var self = this;
    var canvas = this.gl.canvas;
    var gl = this.gl;
    if (!isIOS()) {
      canvas.width = getScreenWidth() * this.bufferScale;
      canvas.height = getScreenHeight() * this.bufferScale;
      Object.defineProperty(canvas, 'width', {
        configurable: true,
        enumerable: true,
        get: function get() {
          return self.bufferWidth;
        },
        set: function set(value) {
          self.bufferWidth = value;
          self.realCanvasWidth.set.call(canvas, value);
          self.onResize();
        }
      });
      Object.defineProperty(canvas, 'height', {
        configurable: true,
        enumerable: true,
        get: function get() {
          return self.bufferHeight;
        },
        set: function set(value) {
          self.bufferHeight = value;
          self.realCanvasHeight.set.call(canvas, value);
          self.onResize();
        }
      });
    }
    this.lastBoundFramebuffer = gl.getParameter(gl.FRAMEBUFFER_BINDING);
    if (this.lastBoundFramebuffer == null) {
      this.lastBoundFramebuffer = this.framebuffer;
      this.gl.bindFramebuffer(gl.FRAMEBUFFER, this.framebuffer);
    }
    this.gl.bindFramebuffer = function (target, framebuffer) {
      self.lastBoundFramebuffer = framebuffer ? framebuffer : self.framebuffer;
      self.realBindFramebuffer.call(gl, target, self.lastBoundFramebuffer);
    };
    this.cullFace = gl.getParameter(gl.CULL_FACE);
    this.depthTest = gl.getParameter(gl.DEPTH_TEST);
    this.blend = gl.getParameter(gl.BLEND);
    this.scissorTest = gl.getParameter(gl.SCISSOR_TEST);
    this.stencilTest = gl.getParameter(gl.STENCIL_TEST);
    gl.enable = function (pname) {
      switch (pname) {
        case gl.CULL_FACE:
          self.cullFace = true;break;
        case gl.DEPTH_TEST:
          self.depthTest = true;break;
        case gl.BLEND:
          self.blend = true;break;
        case gl.SCISSOR_TEST:
          self.scissorTest = true;break;
        case gl.STENCIL_TEST:
          self.stencilTest = true;break;
      }
      self.realEnable.call(gl, pname);
    };
    gl.disable = function (pname) {
      switch (pname) {
        case gl.CULL_FACE:
          self.cullFace = false;break;
        case gl.DEPTH_TEST:
          self.depthTest = false;break;
        case gl.BLEND:
          self.blend = false;break;
        case gl.SCISSOR_TEST:
          self.scissorTest = false;break;
        case gl.STENCIL_TEST:
          self.stencilTest = false;break;
      }
      self.realDisable.call(gl, pname);
    };
    this.colorMask = gl.getParameter(gl.COLOR_WRITEMASK);
    gl.colorMask = function (r, g, b, a) {
      self.colorMask[0] = r;
      self.colorMask[1] = g;
      self.colorMask[2] = b;
      self.colorMask[3] = a;
      self.realColorMask.call(gl, r, g, b, a);
    };
    this.clearColor = gl.getParameter(gl.COLOR_CLEAR_VALUE);
    gl.clearColor = function (r, g, b, a) {
      self.clearColor[0] = r;
      self.clearColor[1] = g;
      self.clearColor[2] = b;
      self.clearColor[3] = a;
      self.realClearColor.call(gl, r, g, b, a);
    };
    this.viewport = gl.getParameter(gl.VIEWPORT);
    gl.viewport = function (x, y, w, h) {
      self.viewport[0] = x;
      self.viewport[1] = y;
      self.viewport[2] = w;
      self.viewport[3] = h;
      self.realViewport.call(gl, x, y, w, h);
    };
    this.isPatched = true;
    safariCssSizeWorkaround(canvas);
  };
  CardboardDistorter.prototype.unpatch = function () {
    if (!this.isPatched) {
      return;
    }
    var gl = this.gl;
    var canvas = this.gl.canvas;
    if (!isIOS()) {
      Object.defineProperty(canvas, 'width', this.realCanvasWidth);
      Object.defineProperty(canvas, 'height', this.realCanvasHeight);
    }
    canvas.width = this.bufferWidth;
    canvas.height = this.bufferHeight;
    gl.bindFramebuffer = this.realBindFramebuffer;
    gl.enable = this.realEnable;
    gl.disable = this.realDisable;
    gl.colorMask = this.realColorMask;
    gl.clearColor = this.realClearColor;
    gl.viewport = this.realViewport;
    if (this.lastBoundFramebuffer == this.framebuffer) {
      gl.bindFramebuffer(gl.FRAMEBUFFER, null);
    }
    this.isPatched = false;
    setTimeout(function () {
      safariCssSizeWorkaround(canvas);
    }, 1);
  };
  CardboardDistorter.prototype.setTextureBounds = function (leftBounds, rightBounds) {
    if (!leftBounds) {
      leftBounds = [0, 0, 0.5, 1];
    }
    if (!rightBounds) {
      rightBounds = [0.5, 0, 0.5, 1];
    }
    this.viewportOffsetScale[0] = leftBounds[0];
    this.viewportOffsetScale[1] = leftBounds[1];
    this.viewportOffsetScale[2] = leftBounds[2];
    this.viewportOffsetScale[3] = leftBounds[3];
    this.viewportOffsetScale[4] = rightBounds[0];
    this.viewportOffsetScale[5] = rightBounds[1];
    this.viewportOffsetScale[6] = rightBounds[2];
    this.viewportOffsetScale[7] = rightBounds[3];
  };
  CardboardDistorter.prototype.submitFrame = function () {
    var gl = this.gl;
    var self = this;
    var glState = [];
    if (!this.dirtySubmitFrameBindings) {
      glState.push(gl.CURRENT_PROGRAM, gl.ARRAY_BUFFER_BINDING, gl.ELEMENT_ARRAY_BUFFER_BINDING, gl.TEXTURE_BINDING_2D, gl.TEXTURE0);
    }
    glPreserveState(gl, glState, function (gl) {
      self.realBindFramebuffer.call(gl, gl.FRAMEBUFFER, null);
      if (self.cullFace) {
        self.realDisable.call(gl, gl.CULL_FACE);
      }
      if (self.depthTest) {
        self.realDisable.call(gl, gl.DEPTH_TEST);
      }
      if (self.blend) {
        self.realDisable.call(gl, gl.BLEND);
      }
      if (self.scissorTest) {
        self.realDisable.call(gl, gl.SCISSOR_TEST);
      }
      if (self.stencilTest) {
        self.realDisable.call(gl, gl.STENCIL_TEST);
      }
      self.realColorMask.call(gl, true, true, true, true);
      self.realViewport.call(gl, 0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight);
      if (self.ctxAttribs.alpha || isIOS()) {
        self.realClearColor.call(gl, 0, 0, 0, 1);
        gl.clear(gl.COLOR_BUFFER_BIT);
      }
      gl.useProgram(self.program);
      gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, self.indexBuffer);
      gl.bindBuffer(gl.ARRAY_BUFFER, self.vertexBuffer);
      gl.enableVertexAttribArray(self.attribs.position);
      gl.enableVertexAttribArray(self.attribs.texCoord);
      gl.vertexAttribPointer(self.attribs.position, 2, gl.FLOAT, false, 20, 0);
      gl.vertexAttribPointer(self.attribs.texCoord, 3, gl.FLOAT, false, 20, 8);
      gl.activeTexture(gl.TEXTURE0);
      gl.uniform1i(self.uniforms.diffuse, 0);
      gl.bindTexture(gl.TEXTURE_2D, self.renderTarget);
      gl.uniform4fv(self.uniforms.viewportOffsetScale, self.viewportOffsetScale);
      gl.drawElements(gl.TRIANGLES, self.indexCount, gl.UNSIGNED_SHORT, 0);
      if (self.cardboardUI) {
        self.cardboardUI.renderNoState();
      }
      self.realBindFramebuffer.call(self.gl, gl.FRAMEBUFFER, self.framebuffer);
      if (!self.ctxAttribs.preserveDrawingBuffer) {
        self.realClearColor.call(gl, 0, 0, 0, 0);
        gl.clear(gl.COLOR_BUFFER_BIT);
      }
      if (!self.dirtySubmitFrameBindings) {
        self.realBindFramebuffer.call(gl, gl.FRAMEBUFFER, self.lastBoundFramebuffer);
      }
      if (self.cullFace) {
        self.realEnable.call(gl, gl.CULL_FACE);
      }
      if (self.depthTest) {
        self.realEnable.call(gl, gl.DEPTH_TEST);
      }
      if (self.blend) {
        self.realEnable.call(gl, gl.BLEND);
      }
      if (self.scissorTest) {
        self.realEnable.call(gl, gl.SCISSOR_TEST);
      }
      if (self.stencilTest) {
        self.realEnable.call(gl, gl.STENCIL_TEST);
      }
      self.realColorMask.apply(gl, self.colorMask);
      self.realViewport.apply(gl, self.viewport);
      if (self.ctxAttribs.alpha || !self.ctxAttribs.preserveDrawingBuffer) {
        self.realClearColor.apply(gl, self.clearColor);
      }
    });
    if (isIOS()) {
      var canvas = gl.canvas;
      if (canvas.width != self.bufferWidth || canvas.height != self.bufferHeight) {
        self.bufferWidth = canvas.width;
        self.bufferHeight = canvas.height;
        self.onResize();
      }
    }
  };
  CardboardDistorter.prototype.updateDeviceInfo = function (deviceInfo) {
    var gl = this.gl;
    var self = this;
    var glState = [gl.ARRAY_BUFFER_BINDING, gl.ELEMENT_ARRAY_BUFFER_BINDING];
    glPreserveState(gl, glState, function (gl) {
      var vertices = self.computeMeshVertices_(self.meshWidth, self.meshHeight, deviceInfo);
      gl.bindBuffer(gl.ARRAY_BUFFER, self.vertexBuffer);
      gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);
      if (!self.indexCount) {
        var indices = self.computeMeshIndices_(self.meshWidth, self.meshHeight);
        gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, self.indexBuffer);
        gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);
        self.indexCount = indices.length;
      }
    });
  };
  CardboardDistorter.prototype.computeMeshVertices_ = function (width, height, deviceInfo) {
    var vertices = new Float32Array(2 * width * height * 5);
    var lensFrustum = deviceInfo.getLeftEyeVisibleTanAngles();
    var noLensFrustum = deviceInfo.getLeftEyeNoLensTanAngles();
    var viewport = deviceInfo.getLeftEyeVisibleScreenRect(noLensFrustum);
    var vidx = 0;
    for (var e = 0; e < 2; e++) {
      for (var j = 0; j < height; j++) {
        for (var i = 0; i < width; i++, vidx++) {
          var u = i / (width - 1);
          var v = j / (height - 1);
          var s = u;
          var t = v;
          var x = lerp(lensFrustum[0], lensFrustum[2], u);
          var y = lerp(lensFrustum[3], lensFrustum[1], v);
          var d = Math.sqrt(x * x + y * y);
          var r = deviceInfo.distortion.distortInverse(d);
          var p = x * r / d;
          var q = y * r / d;
          u = (p - noLensFrustum[0]) / (noLensFrustum[2] - noLensFrustum[0]);
          v = (q - noLensFrustum[3]) / (noLensFrustum[1] - noLensFrustum[3]);
          u = (viewport.x + u * viewport.width - 0.5) * 2.0;
          v = (viewport.y + v * viewport.height - 0.5) * 2.0;
          vertices[vidx * 5 + 0] = u;
          vertices[vidx * 5 + 1] = v;
          vertices[vidx * 5 + 2] = s;
          vertices[vidx * 5 + 3] = t;
          vertices[vidx * 5 + 4] = e;
        }
      }
      var w = lensFrustum[2] - lensFrustum[0];
      lensFrustum[0] = -(w + lensFrustum[0]);
      lensFrustum[2] = w - lensFrustum[2];
      w = noLensFrustum[2] - noLensFrustum[0];
      noLensFrustum[0] = -(w + noLensFrustum[0]);
      noLensFrustum[2] = w - noLensFrustum[2];
      viewport.x = 1 - (viewport.x + viewport.width);
    }
    return vertices;
  };
  CardboardDistorter.prototype.computeMeshIndices_ = function (width, height) {
    var indices = new Uint16Array(2 * (width - 1) * (height - 1) * 6);
    var halfwidth = width / 2;
    var halfheight = height / 2;
    var vidx = 0;
    var iidx = 0;
    for (var e = 0; e < 2; e++) {
      for (var j = 0; j < height; j++) {
        for (var i = 0; i < width; i++, vidx++) {
          if (i == 0 || j == 0) continue;
          if (i <= halfwidth == j <= halfheight) {
            indices[iidx++] = vidx;
            indices[iidx++] = vidx - width - 1;
            indices[iidx++] = vidx - width;
            indices[iidx++] = vidx - width - 1;
            indices[iidx++] = vidx;
            indices[iidx++] = vidx - 1;
          } else {
            indices[iidx++] = vidx - 1;
            indices[iidx++] = vidx - width;
            indices[iidx++] = vidx;
            indices[iidx++] = vidx - width;
            indices[iidx++] = vidx - 1;
            indices[iidx++] = vidx - width - 1;
          }
        }
      }
    }
    return indices;
  };
  CardboardDistorter.prototype.getOwnPropertyDescriptor_ = function (proto, attrName) {
    var descriptor = Object.getOwnPropertyDescriptor(proto, attrName);
    if (descriptor.get === undefined || descriptor.set === undefined) {
      descriptor.configurable = true;
      descriptor.enumerable = true;
      descriptor.get = function () {
        return this.getAttribute(attrName);
      };
      descriptor.set = function (val) {
        this.setAttribute(attrName, val);
      };
    }
    return descriptor;
  };
  var uiVS = ['attribute vec2 position;', 'uniform mat4 projectionMat;', 'void main() {', '  gl_Position = projectionMat * vec4( position, -1.0, 1.0 );', '}'].join('\n');
  var uiFS = ['precision mediump float;', 'uniform vec4 color;', 'void main() {', '  gl_FragColor = color;', '}'].join('\n');
  var DEG2RAD = Math.PI / 180.0;
  var kAnglePerGearSection = 60;
  var kOuterRimEndAngle = 12;
  var kInnerRimBeginAngle = 20;
  var kOuterRadius = 1;
  var kMiddleRadius = 0.75;
  var kInnerRadius = 0.3125;
  var kCenterLineThicknessDp = 4;
  var kButtonWidthDp = 28;
  var kTouchSlopFactor = 1.5;
  function CardboardUI(gl) {
    this.gl = gl;
    this.attribs = {
      position: 0
    };
    this.program = linkProgram(gl, uiVS, uiFS, this.attribs);
    this.uniforms = getProgramUniforms(gl, this.program);
    this.vertexBuffer = gl.createBuffer();
    this.gearOffset = 0;
    this.gearVertexCount = 0;
    this.arrowOffset = 0;
    this.arrowVertexCount = 0;
    this.projMat = new Float32Array(16);
    this.listener = null;
    this.onResize();
  }
  CardboardUI.prototype.destroy = function () {
    var gl = this.gl;
    if (this.listener) {
      gl.canvas.removeEventListener('click', this.listener, false);
    }
    gl.deleteProgram(this.program);
    gl.deleteBuffer(this.vertexBuffer);
  };
  CardboardUI.prototype.listen = function (optionsCallback, backCallback) {
    var canvas = this.gl.canvas;
    this.listener = function (event) {
      var midline = canvas.clientWidth / 2;
      var buttonSize = kButtonWidthDp * kTouchSlopFactor;
      if (event.clientX > midline - buttonSize && event.clientX < midline + buttonSize && event.clientY > canvas.clientHeight - buttonSize) {
        optionsCallback(event);
      }
      else if (event.clientX < buttonSize && event.clientY < buttonSize) {
          backCallback(event);
        }
    };
    canvas.addEventListener('click', this.listener, false);
  };
  CardboardUI.prototype.onResize = function () {
    var gl = this.gl;
    var self = this;
    var glState = [gl.ARRAY_BUFFER_BINDING];
    glPreserveState(gl, glState, function (gl) {
      var vertices = [];
      var midline = gl.drawingBufferWidth / 2;
      var physicalPixels = Math.max(screen.width, screen.height) * window.devicePixelRatio;
      var scalingRatio = gl.drawingBufferWidth / physicalPixels;
      var dps = scalingRatio * window.devicePixelRatio;
      var lineWidth = kCenterLineThicknessDp * dps / 2;
      var buttonSize = kButtonWidthDp * kTouchSlopFactor * dps;
      var buttonScale = kButtonWidthDp * dps / 2;
      var buttonBorder = (kButtonWidthDp * kTouchSlopFactor - kButtonWidthDp) * dps;
      vertices.push(midline - lineWidth, buttonSize);
      vertices.push(midline - lineWidth, gl.drawingBufferHeight);
      vertices.push(midline + lineWidth, buttonSize);
      vertices.push(midline + lineWidth, gl.drawingBufferHeight);
      self.gearOffset = vertices.length / 2;
      function addGearSegment(theta, r) {
        var angle = (90 - theta) * DEG2RAD;
        var x = Math.cos(angle);
        var y = Math.sin(angle);
        vertices.push(kInnerRadius * x * buttonScale + midline, kInnerRadius * y * buttonScale + buttonScale);
        vertices.push(r * x * buttonScale + midline, r * y * buttonScale + buttonScale);
      }
      for (var i = 0; i <= 6; i++) {
        var segmentTheta = i * kAnglePerGearSection;
        addGearSegment(segmentTheta, kOuterRadius);
        addGearSegment(segmentTheta + kOuterRimEndAngle, kOuterRadius);
        addGearSegment(segmentTheta + kInnerRimBeginAngle, kMiddleRadius);
        addGearSegment(segmentTheta + (kAnglePerGearSection - kInnerRimBeginAngle), kMiddleRadius);
        addGearSegment(segmentTheta + (kAnglePerGearSection - kOuterRimEndAngle), kOuterRadius);
      }
      self.gearVertexCount = vertices.length / 2 - self.gearOffset;
      self.arrowOffset = vertices.length / 2;
      function addArrowVertex(x, y) {
        vertices.push(buttonBorder + x, gl.drawingBufferHeight - buttonBorder - y);
      }
      var angledLineWidth = lineWidth / Math.sin(45 * DEG2RAD);
      addArrowVertex(0, buttonScale);
      addArrowVertex(buttonScale, 0);
      addArrowVertex(buttonScale + angledLineWidth, angledLineWidth);
      addArrowVertex(angledLineWidth, buttonScale + angledLineWidth);
      addArrowVertex(angledLineWidth, buttonScale - angledLineWidth);
      addArrowVertex(0, buttonScale);
      addArrowVertex(buttonScale, buttonScale * 2);
      addArrowVertex(buttonScale + angledLineWidth, buttonScale * 2 - angledLineWidth);
      addArrowVertex(angledLineWidth, buttonScale - angledLineWidth);
      addArrowVertex(0, buttonScale);
      addArrowVertex(angledLineWidth, buttonScale - lineWidth);
      addArrowVertex(kButtonWidthDp * dps, buttonScale - lineWidth);
      addArrowVertex(angledLineWidth, buttonScale + lineWidth);
      addArrowVertex(kButtonWidthDp * dps, buttonScale + lineWidth);
      self.arrowVertexCount = vertices.length / 2 - self.arrowOffset;
      gl.bindBuffer(gl.ARRAY_BUFFER, self.vertexBuffer);
      gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW);
    });
  };
  CardboardUI.prototype.render = function () {
    var gl = this.gl;
    var self = this;
    var glState = [gl.CULL_FACE, gl.DEPTH_TEST, gl.BLEND, gl.SCISSOR_TEST, gl.STENCIL_TEST, gl.COLOR_WRITEMASK, gl.VIEWPORT, gl.CURRENT_PROGRAM, gl.ARRAY_BUFFER_BINDING];
    glPreserveState(gl, glState, function (gl) {
      gl.disable(gl.CULL_FACE);
      gl.disable(gl.DEPTH_TEST);
      gl.disable(gl.BLEND);
      gl.disable(gl.SCISSOR_TEST);
      gl.disable(gl.STENCIL_TEST);
      gl.colorMask(true, true, true, true);
      gl.viewport(0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight);
      self.renderNoState();
    });
  };
  CardboardUI.prototype.renderNoState = function () {
    var gl = this.gl;
    gl.useProgram(this.program);
    gl.bindBuffer(gl.ARRAY_BUFFER, this.vertexBuffer);
    gl.enableVertexAttribArray(this.attribs.position);
    gl.vertexAttribPointer(this.attribs.position, 2, gl.FLOAT, false, 8, 0);
    gl.uniform4f(this.uniforms.color, 1.0, 1.0, 1.0, 1.0);
    orthoMatrix(this.projMat, 0, gl.drawingBufferWidth, 0, gl.drawingBufferHeight, 0.1, 1024.0);
    gl.uniformMatrix4fv(this.uniforms.projectionMat, false, this.projMat);
    gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
    gl.drawArrays(gl.TRIANGLE_STRIP, this.gearOffset, this.gearVertexCount);
    gl.drawArrays(gl.TRIANGLE_STRIP, this.arrowOffset, this.arrowVertexCount);
  };
  function Distortion(coefficients) {
    this.coefficients = coefficients;
  }
  Distortion.prototype.distortInverse = function (radius) {
    var r0 = 0;
    var r1 = 1;
    var dr0 = radius - this.distort(r0);
    while (Math.abs(r1 - r0) > 0.0001             ) {
      var dr1 = radius - this.distort(r1);
      var r2 = r1 - dr1 * ((r1 - r0) / (dr1 - dr0));
      r0 = r1;
      r1 = r2;
      dr0 = dr1;
    }
    return r1;
  };
  Distortion.prototype.distort = function (radius) {
    var r2 = radius * radius;
    var ret = 0;
    for (var i = 0; i < this.coefficients.length; i++) {
      ret = r2 * (ret + this.coefficients[i]);
    }
    return (ret + 1) * radius;
  };
  var degToRad = Math.PI / 180;
  var radToDeg = 180 / Math.PI;
  var Vector3 = function Vector3(x, y, z) {
    this.x = x || 0;
    this.y = y || 0;
    this.z = z || 0;
  };
  Vector3.prototype = {
    constructor: Vector3,
    set: function set(x, y, z) {
      this.x = x;
      this.y = y;
      this.z = z;
      return this;
    },
    copy: function copy(v) {
      this.x = v.x;
      this.y = v.y;
      this.z = v.z;
      return this;
    },
    length: function length() {
      return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
    },
    normalize: function normalize() {
      var scalar = this.length();
      if (scalar !== 0) {
        var invScalar = 1 / scalar;
        this.multiplyScalar(invScalar);
      } else {
        this.x = 0;
        this.y = 0;
        this.z = 0;
      }
      return this;
    },
    multiplyScalar: function multiplyScalar(scalar) {
      this.x *= scalar;
      this.y *= scalar;
      this.z *= scalar;
    },
    applyQuaternion: function applyQuaternion(q) {
      var x = this.x;
      var y = this.y;
      var z = this.z;
      var qx = q.x;
      var qy = q.y;
      var qz = q.z;
      var qw = q.w;
      var ix = qw * x + qy * z - qz * y;
      var iy = qw * y + qz * x - qx * z;
      var iz = qw * z + qx * y - qy * x;
      var iw = -qx * x - qy * y - qz * z;
      this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
      this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
      this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
      return this;
    },
    dot: function dot(v) {
      return this.x * v.x + this.y * v.y + this.z * v.z;
    },
    crossVectors: function crossVectors(a, b) {
      var ax = a.x,
          ay = a.y,
          az = a.z;
      var bx = b.x,
          by = b.y,
          bz = b.z;
      this.x = ay * bz - az * by;
      this.y = az * bx - ax * bz;
      this.z = ax * by - ay * bx;
      return this;
    }
  };
  var Quaternion = function Quaternion(x, y, z, w) {
    this.x = x || 0;
    this.y = y || 0;
    this.z = z || 0;
    this.w = w !== undefined ? w : 1;
  };
  Quaternion.prototype = {
    constructor: Quaternion,
    set: function set(x, y, z, w) {
      this.x = x;
      this.y = y;
      this.z = z;
      this.w = w;
      return this;
    },
    copy: function copy(quaternion) {
      this.x = quaternion.x;
      this.y = quaternion.y;
      this.z = quaternion.z;
      this.w = quaternion.w;
      return this;
    },
    setFromEulerXYZ: function setFromEulerXYZ(x, y, z) {
      var c1 = Math.cos(x / 2);
      var c2 = Math.cos(y / 2);
      var c3 = Math.cos(z / 2);
      var s1 = Math.sin(x / 2);
      var s2 = Math.sin(y / 2);
      var s3 = Math.sin(z / 2);
      this.x = s1 * c2 * c3 + c1 * s2 * s3;
      this.y = c1 * s2 * c3 - s1 * c2 * s3;
      this.z = c1 * c2 * s3 + s1 * s2 * c3;
      this.w = c1 * c2 * c3 - s1 * s2 * s3;
      return this;
    },
    setFromEulerYXZ: function setFromEulerYXZ(x, y, z) {
      var c1 = Math.cos(x / 2);
      var c2 = Math.cos(y / 2);
      var c3 = Math.cos(z / 2);
      var s1 = Math.sin(x / 2);
      var s2 = Math.sin(y / 2);
      var s3 = Math.sin(z / 2);
      this.x = s1 * c2 * c3 + c1 * s2 * s3;
      this.y = c1 * s2 * c3 - s1 * c2 * s3;
      this.z = c1 * c2 * s3 - s1 * s2 * c3;
      this.w = c1 * c2 * c3 + s1 * s2 * s3;
      return this;
    },
    setFromAxisAngle: function setFromAxisAngle(axis, angle) {
      var halfAngle = angle / 2,
          s = Math.sin(halfAngle);
      this.x = axis.x * s;
      this.y = axis.y * s;
      this.z = axis.z * s;
      this.w = Math.cos(halfAngle);
      return this;
    },
    multiply: function multiply(q) {
      return this.multiplyQuaternions(this, q);
    },
    multiplyQuaternions: function multiplyQuaternions(a, b) {
      var qax = a.x,
          qay = a.y,
          qaz = a.z,
          qaw = a.w;
      var qbx = b.x,
          qby = b.y,
          qbz = b.z,
          qbw = b.w;
      this.x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
      this.y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
      this.z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
      this.w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
      return this;
    },
    inverse: function inverse() {
      this.x *= -1;
      this.y *= -1;
      this.z *= -1;
      this.normalize();
      return this;
    },
    normalize: function normalize() {
      var l = Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
      if (l === 0) {
        this.x = 0;
        this.y = 0;
        this.z = 0;
        this.w = 1;
      } else {
        l = 1 / l;
        this.x = this.x * l;
        this.y = this.y * l;
        this.z = this.z * l;
        this.w = this.w * l;
      }
      return this;
    },
    slerp: function slerp(qb, t) {
      if (t === 0) return this;
      if (t === 1) return this.copy(qb);
      var x = this.x,
          y = this.y,
          z = this.z,
          w = this.w;
      var cosHalfTheta = w * qb.w + x * qb.x + y * qb.y + z * qb.z;
      if (cosHalfTheta < 0) {
        this.w = -qb.w;
        this.x = -qb.x;
        this.y = -qb.y;
        this.z = -qb.z;
        cosHalfTheta = -cosHalfTheta;
      } else {
        this.copy(qb);
      }
      if (cosHalfTheta >= 1.0) {
        this.w = w;
        this.x = x;
        this.y = y;
        this.z = z;
        return this;
      }
      var halfTheta = Math.acos(cosHalfTheta);
      var sinHalfTheta = Math.sqrt(1.0 - cosHalfTheta * cosHalfTheta);
      if (Math.abs(sinHalfTheta) < 0.001) {
        this.w = 0.5 * (w + this.w);
        this.x = 0.5 * (x + this.x);
        this.y = 0.5 * (y + this.y);
        this.z = 0.5 * (z + this.z);
        return this;
      }
      var ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta,
          ratioB = Math.sin(t * halfTheta) / sinHalfTheta;
      this.w = w * ratioA + this.w * ratioB;
      this.x = x * ratioA + this.x * ratioB;
      this.y = y * ratioA + this.y * ratioB;
      this.z = z * ratioA + this.z * ratioB;
      return this;
    },
    setFromUnitVectors: function () {
      var v1, r;
      var EPS = 0.000001;
      return function (vFrom, vTo) {
        if (v1 === undefined) v1 = new Vector3();
        r = vFrom.dot(vTo) + 1;
        if (r < EPS) {
          r = 0;
          if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) {
            v1.set(-vFrom.y, vFrom.x, 0);
          } else {
            v1.set(0, -vFrom.z, vFrom.y);
          }
        } else {
          v1.crossVectors(vFrom, vTo);
        }
        this.x = v1.x;
        this.y = v1.y;
        this.z = v1.z;
        this.w = r;
        this.normalize();
        return this;
      };
    }()
  };
  function Device(params) {
    this.width = params.width || getScreenWidth();
    this.height = params.height || getScreenHeight();
    this.widthMeters = params.widthMeters;
    this.heightMeters = params.heightMeters;
    this.bevelMeters = params.bevelMeters;
  }
  var DEFAULT_ANDROID = new Device({
    widthMeters: 0.110,
    heightMeters: 0.062,
    bevelMeters: 0.004
  });
  var DEFAULT_IOS = new Device({
    widthMeters: 0.1038,
    heightMeters: 0.0584,
    bevelMeters: 0.004
  });
  var Viewers = {
    CardboardV1: new CardboardViewer({
      id: 'CardboardV1',
      label: 'Cardboard I/O 2014',
      fov: 40,
      interLensDistance: 0.060,
      baselineLensDistance: 0.035,
      screenLensDistance: 0.042,
      distortionCoefficients: [0.441, 0.156],
      inverseCoefficients: [-0.4410035, 0.42756155, -0.4804439, 0.5460139, -0.58821183, 0.5733938, -0.48303202, 0.33299083, -0.17573841, 0.0651772, -0.01488963, 0.001559834]
    }),
    CardboardV2: new CardboardViewer({
      id: 'CardboardV2',
      label: 'Cardboard I/O 2015',
      fov: 60,
      interLensDistance: 0.064,
      baselineLensDistance: 0.035,
      screenLensDistance: 0.039,
      distortionCoefficients: [0.34, 0.55],
      inverseCoefficients: [-0.33836704, -0.18162185, 0.862655, -1.2462051, 1.0560602, -0.58208317, 0.21609078, -0.05444823, 0.009177956, -9.904169E-4, 6.183535E-5, -1.6981803E-6]
    })
  };
  function DeviceInfo(deviceParams, additionalViewers) {
    this.viewer = Viewers.CardboardV2;
    this.updateDeviceParams(deviceParams);
    this.distortion = new Distortion(this.viewer.distortionCoefficients);
    for (var i = 0; i < additionalViewers.length; i++) {
      var viewer = additionalViewers[i];
      Viewers[viewer.id] = new CardboardViewer(viewer);
    }
  }
  DeviceInfo.prototype.updateDeviceParams = function (deviceParams) {
    this.device = this.determineDevice_(deviceParams) || this.device;
  };
  DeviceInfo.prototype.getDevice = function () {
    return this.device;
  };
  DeviceInfo.prototype.setViewer = function (viewer) {
    this.viewer = viewer;
    this.distortion = new Distortion(this.viewer.distortionCoefficients);
  };
  DeviceInfo.prototype.determineDevice_ = function (deviceParams) {
    if (!deviceParams) {
      if (isIOS()) {
        console.warn('Using fallback iOS device measurements.');
        return DEFAULT_IOS;
      } else {
        console.warn('Using fallback Android device measurements.');
        return DEFAULT_ANDROID;
      }
    }
    var METERS_PER_INCH = 0.0254;
    var metersPerPixelX = METERS_PER_INCH / deviceParams.xdpi;
    var metersPerPixelY = METERS_PER_INCH / deviceParams.ydpi;
    var width = getScreenWidth();
    var height = getScreenHeight();
    return new Device({
      widthMeters: metersPerPixelX * width,
      heightMeters: metersPerPixelY * height,
      bevelMeters: deviceParams.bevelMm * 0.001
    });
  };
  DeviceInfo.prototype.getDistortedFieldOfViewLeftEye = function () {
    var viewer = this.viewer;
    var device = this.device;
    var distortion = this.distortion;
    var eyeToScreenDistance = viewer.screenLensDistance;
    var outerDist = (device.widthMeters - viewer.interLensDistance) / 2;
    var innerDist = viewer.interLensDistance / 2;
    var bottomDist = viewer.baselineLensDistance - device.bevelMeters;
    var topDist = device.heightMeters - bottomDist;
    var outerAngle = radToDeg * Math.atan(distortion.distort(outerDist / eyeToScreenDistance));
    var innerAngle = radToDeg * Math.atan(distortion.distort(innerDist / eyeToScreenDistance));
    var bottomAngle = radToDeg * Math.atan(distortion.distort(bottomDist / eyeToScreenDistance));
    var topAngle = radToDeg * Math.atan(distortion.distort(topDist / eyeToScreenDistance));
    return {
      leftDegrees: Math.min(outerAngle, viewer.fov),
      rightDegrees: Math.min(innerAngle, viewer.fov),
      downDegrees: Math.min(bottomAngle, viewer.fov),
      upDegrees: Math.min(topAngle, viewer.fov)
    };
  };
  DeviceInfo.prototype.getLeftEyeVisibleTanAngles = function () {
    var viewer = this.viewer;
    var device = this.device;
    var distortion = this.distortion;
    var fovLeft = Math.tan(-degToRad * viewer.fov);
    var fovTop = Math.tan(degToRad * viewer.fov);
    var fovRight = Math.tan(degToRad * viewer.fov);
    var fovBottom = Math.tan(-degToRad * viewer.fov);
    var halfWidth = device.widthMeters / 4;
    var halfHeight = device.heightMeters / 2;
    var verticalLensOffset = viewer.baselineLensDistance - device.bevelMeters - halfHeight;
    var centerX = viewer.interLensDistance / 2 - halfWidth;
    var centerY = -verticalLensOffset;
    var centerZ = viewer.screenLensDistance;
    var screenLeft = distortion.distort((centerX - halfWidth) / centerZ);
    var screenTop = distortion.distort((centerY + halfHeight) / centerZ);
    var screenRight = distortion.distort((centerX + halfWidth) / centerZ);
    var screenBottom = distortion.distort((centerY - halfHeight) / centerZ);
    var result = new Float32Array(4);
    result[0] = Math.max(fovLeft, screenLeft);
    result[1] = Math.min(fovTop, screenTop);
    result[2] = Math.min(fovRight, screenRight);
    result[3] = Math.max(fovBottom, screenBottom);
    return result;
  };
  DeviceInfo.prototype.getLeftEyeNoLensTanAngles = function () {
    var viewer = this.viewer;
    var device = this.device;
    var distortion = this.distortion;
    var result = new Float32Array(4);
    var fovLeft = distortion.distortInverse(Math.tan(-degToRad * viewer.fov));
    var fovTop = distortion.distortInverse(Math.tan(degToRad * viewer.fov));
    var fovRight = distortion.distortInverse(Math.tan(degToRad * viewer.fov));
    var fovBottom = distortion.distortInverse(Math.tan(-degToRad * viewer.fov));
    var halfWidth = device.widthMeters / 4;
    var halfHeight = device.heightMeters / 2;
    var verticalLensOffset = viewer.baselineLensDistance - device.bevelMeters - halfHeight;
    var centerX = viewer.interLensDistance / 2 - halfWidth;
    var centerY = -verticalLensOffset;
    var centerZ = viewer.screenLensDistance;
    var screenLeft = (centerX - halfWidth) / centerZ;
    var screenTop = (centerY + halfHeight) / centerZ;
    var screenRight = (centerX + halfWidth) / centerZ;
    var screenBottom = (centerY - halfHeight) / centerZ;
    result[0] = Math.max(fovLeft, screenLeft);
    result[1] = Math.min(fovTop, screenTop);
    result[2] = Math.min(fovRight, screenRight);
    result[3] = Math.max(fovBottom, screenBottom);
    return result;
  };
  DeviceInfo.prototype.getLeftEyeVisibleScreenRect = function (undistortedFrustum) {
    var viewer = this.viewer;
    var device = this.device;
    var dist = viewer.screenLensDistance;
    var eyeX = (device.widthMeters - viewer.interLensDistance) / 2;
    var eyeY = viewer.baselineLensDistance - device.bevelMeters;
    var left = (undistortedFrustum[0] * dist + eyeX) / device.widthMeters;
    var top = (undistortedFrustum[1] * dist + eyeY) / device.heightMeters;
    var right = (undistortedFrustum[2] * dist + eyeX) / device.widthMeters;
    var bottom = (undistortedFrustum[3] * dist + eyeY) / device.heightMeters;
    return {
      x: left,
      y: bottom,
      width: right - left,
      height: top - bottom
    };
  };
  DeviceInfo.prototype.getFieldOfViewLeftEye = function (opt_isUndistorted) {
    return opt_isUndistorted ? this.getUndistortedFieldOfViewLeftEye() : this.getDistortedFieldOfViewLeftEye();
  };
  DeviceInfo.prototype.getFieldOfViewRightEye = function (opt_isUndistorted) {
    var fov = this.getFieldOfViewLeftEye(opt_isUndistorted);
    return {
      leftDegrees: fov.rightDegrees,
      rightDegrees: fov.leftDegrees,
      upDegrees: fov.upDegrees,
      downDegrees: fov.downDegrees
    };
  };
  DeviceInfo.prototype.getUndistortedFieldOfViewLeftEye = function () {
    var p = this.getUndistortedParams_();
    return {
      leftDegrees: radToDeg * Math.atan(p.outerDist),
      rightDegrees: radToDeg * Math.atan(p.innerDist),
      downDegrees: radToDeg * Math.atan(p.bottomDist),
      upDegrees: radToDeg * Math.atan(p.topDist)
    };
  };
  DeviceInfo.prototype.getUndistortedViewportLeftEye = function () {
    var p = this.getUndistortedParams_();
    var viewer = this.viewer;
    var device = this.device;
    var eyeToScreenDistance = viewer.screenLensDistance;
    var screenWidth = device.widthMeters / eyeToScreenDistance;
    var screenHeight = device.heightMeters / eyeToScreenDistance;
    var xPxPerTanAngle = device.width / screenWidth;
    var yPxPerTanAngle = device.height / screenHeight;
    var x = Math.round((p.eyePosX - p.outerDist) * xPxPerTanAngle);
    var y = Math.round((p.eyePosY - p.bottomDist) * yPxPerTanAngle);
    return {
      x: x,
      y: y,
      width: Math.round((p.eyePosX + p.innerDist) * xPxPerTanAngle) - x,
      height: Math.round((p.eyePosY + p.topDist) * yPxPerTanAngle) - y
    };
  };
  DeviceInfo.prototype.getUndistortedParams_ = function () {
    var viewer = this.viewer;
    var device = this.device;
    var distortion = this.distortion;
    var eyeToScreenDistance = viewer.screenLensDistance;
    var halfLensDistance = viewer.interLensDistance / 2 / eyeToScreenDistance;
    var screenWidth = device.widthMeters / eyeToScreenDistance;
    var screenHeight = device.heightMeters / eyeToScreenDistance;
    var eyePosX = screenWidth / 2 - halfLensDistance;
    var eyePosY = (viewer.baselineLensDistance - device.bevelMeters) / eyeToScreenDistance;
    var maxFov = viewer.fov;
    var viewerMax = distortion.distortInverse(Math.tan(degToRad * maxFov));
    var outerDist = Math.min(eyePosX, viewerMax);
    var innerDist = Math.min(halfLensDistance, viewerMax);
    var bottomDist = Math.min(eyePosY, viewerMax);
    var topDist = Math.min(screenHeight - eyePosY, viewerMax);
    return {
      outerDist: outerDist,
      innerDist: innerDist,
      topDist: topDist,
      bottomDist: bottomDist,
      eyePosX: eyePosX,
      eyePosY: eyePosY
    };
  };
  function CardboardViewer(params) {
    this.id = params.id;
    this.label = params.label;
    this.fov = params.fov;
    this.interLensDistance = params.interLensDistance;
    this.baselineLensDistance = params.baselineLensDistance;
    this.screenLensDistance = params.screenLensDistance;
    this.distortionCoefficients = params.distortionCoefficients;
    this.inverseCoefficients = params.inverseCoefficients;
  }
  DeviceInfo.Viewers = Viewers;
  var format = 1;
  var last_updated = "2018-02-20T22:55:10Z";
  var devices = [{"type":"android","rules":[{"mdmh":"asus/*/Nexus 7/*"},{"ua":"Nexus 7"}],"dpi":[320.8,323],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"asus/*/ASUS_Z00AD/*"},{"ua":"ASUS_Z00AD"}],"dpi":[403,404.6],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"Google/*/Pixel XL/*"},{"ua":"Pixel XL"}],"dpi":[537.9,533],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"Google/*/Pixel/*"},{"ua":"Pixel"}],"dpi":[432.6,436.7],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"HTC/*/HTC6435LVW/*"},{"ua":"HTC6435LVW"}],"dpi":[449.7,443.3],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"HTC/*/HTC One XL/*"},{"ua":"HTC One XL"}],"dpi":[315.3,314.6],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"htc/*/Nexus 9/*"},{"ua":"Nexus 9"}],"dpi":289,"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"HTC/*/HTC One M9/*"},{"ua":"HTC One M9"}],"dpi":[442.5,443.3],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"HTC/*/HTC One_M8/*"},{"ua":"HTC One_M8"}],"dpi":[449.7,447.4],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"HTC/*/HTC One/*"},{"ua":"HTC One"}],"dpi":472.8,"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"Huawei/*/Nexus 6P/*"},{"ua":"Nexus 6P"}],"dpi":[515.1,518],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"LENOVO/*/Lenovo PB2-690Y/*"},{"ua":"Lenovo PB2-690Y"}],"dpi":[457.2,454.713],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"LGE/*/Nexus 5X/*"},{"ua":"Nexus 5X"}],"dpi":[422,419.9],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"LGE/*/LGMS345/*"},{"ua":"LGMS345"}],"dpi":[221.7,219.1],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"LGE/*/LG-D800/*"},{"ua":"LG-D800"}],"dpi":[422,424.1],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"LGE/*/LG-D850/*"},{"ua":"LG-D850"}],"dpi":[537.9,541.9],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"LGE/*/VS985 4G/*"},{"ua":"VS985 4G"}],"dpi":[537.9,535.6],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"LGE/*/Nexus 5/*"},{"ua":"Nexus 5 B"}],"dpi":[442.4,444.8],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"LGE/*/Nexus 4/*"},{"ua":"Nexus 4"}],"dpi":[319.8,318.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"LGE/*/LG-P769/*"},{"ua":"LG-P769"}],"dpi":[240.6,247.5],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"LGE/*/LGMS323/*"},{"ua":"LGMS323"}],"dpi":[206.6,204.6],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"LGE/*/LGLS996/*"},{"ua":"LGLS996"}],"dpi":[403.4,401.5],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"Micromax/*/4560MMX/*"},{"ua":"4560MMX"}],"dpi":[240,219.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"Micromax/*/A250/*"},{"ua":"Micromax A250"}],"dpi":[480,446.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"Micromax/*/Micromax AQ4501/*"},{"ua":"Micromax AQ4501"}],"dpi":240,"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"motorola/*/G5/*"},{"ua":"Moto G (5) Plus"}],"dpi":[403.4,403],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"motorola/*/DROID RAZR/*"},{"ua":"DROID RAZR"}],"dpi":[368.1,256.7],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"motorola/*/XT830C/*"},{"ua":"XT830C"}],"dpi":[254,255.9],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"motorola/*/XT1021/*"},{"ua":"XT1021"}],"dpi":[254,256.7],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"motorola/*/XT1023/*"},{"ua":"XT1023"}],"dpi":[254,256.7],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"motorola/*/XT1028/*"},{"ua":"XT1028"}],"dpi":[326.6,327.6],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"motorola/*/XT1034/*"},{"ua":"XT1034"}],"dpi":[326.6,328.4],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"motorola/*/XT1053/*"},{"ua":"XT1053"}],"dpi":[315.3,316.1],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"motorola/*/XT1562/*"},{"ua":"XT1562"}],"dpi":[403.4,402.7],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"motorola/*/Nexus 6/*"},{"ua":"Nexus 6 B"}],"dpi":[494.3,489.7],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"motorola/*/XT1063/*"},{"ua":"XT1063"}],"dpi":[295,296.6],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"motorola/*/XT1064/*"},{"ua":"XT1064"}],"dpi":[295,295.6],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"motorola/*/XT1092/*"},{"ua":"XT1092"}],"dpi":[422,424.1],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"motorola/*/XT1095/*"},{"ua":"XT1095"}],"dpi":[422,423.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"motorola/*/G4/*"},{"ua":"Moto G (4)"}],"dpi":401,"bw":4,"ac":1000},{"type":"android","rules":[{"mdmh":"OnePlus/*/A0001/*"},{"ua":"A0001"}],"dpi":[403.4,401],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"OnePlus/*/ONE E1005/*"},{"ua":"ONE E1005"}],"dpi":[442.4,441.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"OnePlus/*/ONE A2005/*"},{"ua":"ONE A2005"}],"dpi":[391.9,405.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"OnePlus/*/ONEPLUS A5000/*"},{"ua":"ONEPLUS A5000 "}],"dpi":[403.411,399.737],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"OnePlus/*/ONE A5010/*"},{"ua":"ONEPLUS A5010"}],"dpi":[403,400],"bw":2,"ac":1000},{"type":"android","rules":[{"mdmh":"OPPO/*/X909/*"},{"ua":"X909"}],"dpi":[442.4,444.1],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/GT-I9082/*"},{"ua":"GT-I9082"}],"dpi":[184.7,185.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G360P/*"},{"ua":"SM-G360P"}],"dpi":[196.7,205.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/Nexus S/*"},{"ua":"Nexus S"}],"dpi":[234.5,229.8],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/GT-I9300/*"},{"ua":"GT-I9300"}],"dpi":[304.8,303.9],"bw":5,"ac":500},{"type":"android","rules":[{"mdmh":"samsung/*/SM-T230NU/*"},{"ua":"SM-T230NU"}],"dpi":216,"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"samsung/*/SGH-T399/*"},{"ua":"SGH-T399"}],"dpi":[217.7,231.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SGH-M919/*"},{"ua":"SGH-M919"}],"dpi":[440.8,437.7],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-N9005/*"},{"ua":"SM-N9005"}],"dpi":[386.4,387],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"samsung/*/SAMSUNG-SM-N900A/*"},{"ua":"SAMSUNG-SM-N900A"}],"dpi":[386.4,387.7],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/GT-I9500/*"},{"ua":"GT-I9500"}],"dpi":[442.5,443.3],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"samsung/*/GT-I9505/*"},{"ua":"GT-I9505"}],"dpi":439.4,"bw":4,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G900F/*"},{"ua":"SM-G900F"}],"dpi":[415.6,431.6],"bw":5,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G900M/*"},{"ua":"SM-G900M"}],"dpi":[415.6,431.6],"bw":5,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G800F/*"},{"ua":"SM-G800F"}],"dpi":326.8,"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G906S/*"},{"ua":"SM-G906S"}],"dpi":[562.7,572.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/GT-I9300/*"},{"ua":"GT-I9300"}],"dpi":[306.7,304.8],"bw":5,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-T535/*"},{"ua":"SM-T535"}],"dpi":[142.6,136.4],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"samsung/*/SM-N920C/*"},{"ua":"SM-N920C"}],"dpi":[515.1,518.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-N920P/*"},{"ua":"SM-N920P"}],"dpi":[386.3655,390.144],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-N920W8/*"},{"ua":"SM-N920W8"}],"dpi":[515.1,518.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/GT-I9300I/*"},{"ua":"GT-I9300I"}],"dpi":[304.8,305.8],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/GT-I9195/*"},{"ua":"GT-I9195"}],"dpi":[249.4,256.7],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"samsung/*/SPH-L520/*"},{"ua":"SPH-L520"}],"dpi":[249.4,255.9],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SAMSUNG-SGH-I717/*"},{"ua":"SAMSUNG-SGH-I717"}],"dpi":285.8,"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SPH-D710/*"},{"ua":"SPH-D710"}],"dpi":[217.7,204.2],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/GT-N7100/*"},{"ua":"GT-N7100"}],"dpi":265.1,"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SCH-I605/*"},{"ua":"SCH-I605"}],"dpi":265.1,"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/Galaxy Nexus/*"},{"ua":"Galaxy Nexus"}],"dpi":[315.3,314.2],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-N910H/*"},{"ua":"SM-N910H"}],"dpi":[515.1,518],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-N910C/*"},{"ua":"SM-N910C"}],"dpi":[515.2,520.2],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G130M/*"},{"ua":"SM-G130M"}],"dpi":[165.9,164.8],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G928I/*"},{"ua":"SM-G928I"}],"dpi":[515.1,518.4],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G920F/*"},{"ua":"SM-G920F"}],"dpi":580.6,"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G920P/*"},{"ua":"SM-G920P"}],"dpi":[522.5,577],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G925F/*"},{"ua":"SM-G925F"}],"dpi":580.6,"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G925V/*"},{"ua":"SM-G925V"}],"dpi":[522.5,576.6],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G930F/*"},{"ua":"SM-G930F"}],"dpi":576.6,"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G935F/*"},{"ua":"SM-G935F"}],"dpi":533,"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G950F/*"},{"ua":"SM-G950F"}],"dpi":[562.707,565.293],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"samsung/*/SM-G955U/*"},{"ua":"SM-G955U"}],"dpi":[522.514,525.762],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"Sony/*/C6903/*"},{"ua":"C6903"}],"dpi":[442.5,443.3],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"Sony/*/D6653/*"},{"ua":"D6653"}],"dpi":[428.6,427.6],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"Sony/*/E6653/*"},{"ua":"E6653"}],"dpi":[428.6,425.7],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"Sony/*/E6853/*"},{"ua":"E6853"}],"dpi":[403.4,401.9],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"Sony/*/SGP321/*"},{"ua":"SGP321"}],"dpi":[224.7,224.1],"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"TCT/*/ALCATEL ONE TOUCH Fierce/*"},{"ua":"ALCATEL ONE TOUCH Fierce"}],"dpi":[240,247.5],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"THL/*/thl 5000/*"},{"ua":"thl 5000"}],"dpi":[480,443.3],"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"Fly/*/IQ4412/*"},{"ua":"IQ4412"}],"dpi":307.9,"bw":3,"ac":1000},{"type":"android","rules":[{"mdmh":"ZTE/*/ZTE Blade L2/*"},{"ua":"ZTE Blade L2"}],"dpi":240,"bw":3,"ac":500},{"type":"android","rules":[{"mdmh":"BENEVE/*/VR518/*"},{"ua":"VR518"}],"dpi":480,"bw":3,"ac":500},{"type":"ios","rules":[{"res":[640,960]}],"dpi":[325.1,328.4],"bw":4,"ac":1000},{"type":"ios","rules":[{"res":[640,1136]}],"dpi":[317.1,320.2],"bw":3,"ac":1000},{"type":"ios","rules":[{"res":[750,1334]}],"dpi":326.4,"bw":4,"ac":1000},{"type":"ios","rules":[{"res":[1242,2208]}],"dpi":[453.6,458.4],"bw":4,"ac":1000},{"type":"ios","rules":[{"res":[1125,2001]}],"dpi":[410.9,415.4],"bw":4,"ac":1000},{"type":"ios","rules":[{"res":[1125,2436]}],"dpi":458,"bw":4,"ac":1000}];
  var DPDB_CACHE = {
  	format: format,
  	last_updated: last_updated,
  	devices: devices
  };
  function Dpdb(url, onDeviceParamsUpdated) {
    this.dpdb = DPDB_CACHE;
    this.recalculateDeviceParams_();
    if (url) {
      this.onDeviceParamsUpdated = onDeviceParamsUpdated;
      var xhr = new XMLHttpRequest();
      var obj = this;
      xhr.open('GET', url, true);
      xhr.addEventListener('load', function () {
        obj.loading = false;
        if (xhr.status >= 200 && xhr.status <= 299) {
          obj.dpdb = JSON.parse(xhr.response);
          obj.recalculateDeviceParams_();
        } else {
          console.error('Error loading online DPDB!');
        }
      });
      xhr.send();
    }
  }
  Dpdb.prototype.getDeviceParams = function () {
    return this.deviceParams;
  };
  Dpdb.prototype.recalculateDeviceParams_ = function () {
    var newDeviceParams = this.calcDeviceParams_();
    if (newDeviceParams) {
      this.deviceParams = newDeviceParams;
      if (this.onDeviceParamsUpdated) {
        this.onDeviceParamsUpdated(this.deviceParams);
      }
    } else {
      console.error('Failed to recalculate device parameters.');
    }
  };
  Dpdb.prototype.calcDeviceParams_ = function () {
    var db = this.dpdb;
    if (!db) {
      console.error('DPDB not available.');
      return null;
    }
    if (db.format != 1) {
      console.error('DPDB has unexpected format version.');
      return null;
    }
    if (!db.devices || !db.devices.length) {
      console.error('DPDB does not have a devices section.');
      return null;
    }
    var userAgent = navigator.userAgent || navigator.vendor || window.opera;
    var width = getScreenWidth();
    var height = getScreenHeight();
    if (!db.devices) {
      console.error('DPDB has no devices section.');
      return null;
    }
    for (var i = 0; i < db.devices.length; i++) {
      var device = db.devices[i];
      if (!device.rules) {
        console.warn('Device[' + i + '] has no rules section.');
        continue;
      }
      if (device.type != 'ios' && device.type != 'android') {
        console.warn('Device[' + i + '] has invalid type.');
        continue;
      }
      if (isIOS() != (device.type == 'ios')) continue;
      var matched = false;
      for (var j = 0; j < device.rules.length; j++) {
        var rule = device.rules[j];
        if (this.matchRule_(rule, userAgent, width, height)) {
          matched = true;
          break;
        }
      }
      if (!matched) continue;
      var xdpi = device.dpi[0] || device.dpi;
      var ydpi = device.dpi[1] || device.dpi;
      return new DeviceParams({ xdpi: xdpi, ydpi: ydpi, bevelMm: device.bw });
    }
    console.warn('No DPDB device match.');
    return null;
  };
  Dpdb.prototype.matchRule_ = function (rule, ua, screenWidth, screenHeight) {
    if (!rule.ua && !rule.res) return false;
    if (rule.ua && ua.indexOf(rule.ua) < 0) return false;
    if (rule.res) {
      if (!rule.res[0] || !rule.res[1]) return false;
      var resX = rule.res[0];
      var resY = rule.res[1];
      if (Math.min(screenWidth, screenHeight) != Math.min(resX, resY) || Math.max(screenWidth, screenHeight) != Math.max(resX, resY)) {
        return false;
      }
    }
    return true;
  };
  function DeviceParams(params) {
    this.xdpi = params.xdpi;
    this.ydpi = params.ydpi;
    this.bevelMm = params.bevelMm;
  }
  function SensorSample(sample, timestampS) {
    this.set(sample, timestampS);
  }
  SensorSample.prototype.set = function (sample, timestampS) {
    this.sample = sample;
    this.timestampS = timestampS;
  };
  SensorSample.prototype.copy = function (sensorSample) {
    this.set(sensorSample.sample, sensorSample.timestampS);
  };
  function ComplementaryFilter(kFilter, isDebug) {
    this.kFilter = kFilter;
    this.isDebug = isDebug;
    this.currentAccelMeasurement = new SensorSample();
    this.currentGyroMeasurement = new SensorSample();
    this.previousGyroMeasurement = new SensorSample();
    if (isIOS()) {
      this.filterQ = new Quaternion(-1, 0, 0, 1);
    } else {
      this.filterQ = new Quaternion(1, 0, 0, 1);
    }
    this.previousFilterQ = new Quaternion();
    this.previousFilterQ.copy(this.filterQ);
    this.accelQ = new Quaternion();
    this.isOrientationInitialized = false;
    this.estimatedGravity = new Vector3();
    this.measuredGravity = new Vector3();
    this.gyroIntegralQ = new Quaternion();
  }
  ComplementaryFilter.prototype.addAccelMeasurement = function (vector, timestampS) {
    this.currentAccelMeasurement.set(vector, timestampS);
  };
  ComplementaryFilter.prototype.addGyroMeasurement = function (vector, timestampS) {
    this.currentGyroMeasurement.set(vector, timestampS);
    var deltaT = timestampS - this.previousGyroMeasurement.timestampS;
    if (isTimestampDeltaValid(deltaT)) {
      this.run_();
    }
    this.previousGyroMeasurement.copy(this.currentGyroMeasurement);
  };
  ComplementaryFilter.prototype.run_ = function () {
    if (!this.isOrientationInitialized) {
      this.accelQ = this.accelToQuaternion_(this.currentAccelMeasurement.sample);
      this.previousFilterQ.copy(this.accelQ);
      this.isOrientationInitialized = true;
      return;
    }
    var deltaT = this.currentGyroMeasurement.timestampS - this.previousGyroMeasurement.timestampS;
    var gyroDeltaQ = this.gyroToQuaternionDelta_(this.currentGyroMeasurement.sample, deltaT);
    this.gyroIntegralQ.multiply(gyroDeltaQ);
    this.filterQ.copy(this.previousFilterQ);
    this.filterQ.multiply(gyroDeltaQ);
    var invFilterQ = new Quaternion();
    invFilterQ.copy(this.filterQ);
    invFilterQ.inverse();
    this.estimatedGravity.set(0, 0, -1);
    this.estimatedGravity.applyQuaternion(invFilterQ);
    this.estimatedGravity.normalize();
    this.measuredGravity.copy(this.currentAccelMeasurement.sample);
    this.measuredGravity.normalize();
    var deltaQ = new Quaternion();
    deltaQ.setFromUnitVectors(this.estimatedGravity, this.measuredGravity);
    deltaQ.inverse();
    if (this.isDebug) {
      console.log('Delta: %d deg, G_est: (%s, %s, %s), G_meas: (%s, %s, %s)', radToDeg * getQuaternionAngle(deltaQ), this.estimatedGravity.x.toFixed(1), this.estimatedGravity.y.toFixed(1), this.estimatedGravity.z.toFixed(1), this.measuredGravity.x.toFixed(1), this.measuredGravity.y.toFixed(1), this.measuredGravity.z.toFixed(1));
    }
    var targetQ = new Quaternion();
    targetQ.copy(this.filterQ);
    targetQ.multiply(deltaQ);
    this.filterQ.slerp(targetQ, 1 - this.kFilter);
    this.previousFilterQ.copy(this.filterQ);
  };
  ComplementaryFilter.prototype.getOrientation = function () {
    return this.filterQ;
  };
  ComplementaryFilter.prototype.accelToQuaternion_ = function (accel) {
    var normAccel = new Vector3();
    normAccel.copy(accel);
    normAccel.normalize();
    var quat = new Quaternion();
    quat.setFromUnitVectors(new Vector3(0, 0, -1), normAccel);
    quat.inverse();
    return quat;
  };
  ComplementaryFilter.prototype.gyroToQuaternionDelta_ = function (gyro, dt) {
    var quat = new Quaternion();
    var axis = new Vector3();
    axis.copy(gyro);
    axis.normalize();
    quat.setFromAxisAngle(axis, gyro.length() * dt);
    return quat;
  };
  function PosePredictor(predictionTimeS, isDebug) {
    this.predictionTimeS = predictionTimeS;
    this.isDebug = isDebug;
    this.previousQ = new Quaternion();
    this.previousTimestampS = null;
    this.deltaQ = new Quaternion();
    this.outQ = new Quaternion();
  }
  PosePredictor.prototype.getPrediction = function (currentQ, gyro, timestampS) {
    if (!this.previousTimestampS) {
      this.previousQ.copy(currentQ);
      this.previousTimestampS = timestampS;
      return currentQ;
    }
    var axis = new Vector3();
    axis.copy(gyro);
    axis.normalize();
    var angularSpeed = gyro.length();
    if (angularSpeed < degToRad * 20) {
      if (this.isDebug) {
        console.log('Moving slowly, at %s deg/s: no prediction', (radToDeg * angularSpeed).toFixed(1));
      }
      this.outQ.copy(currentQ);
      this.previousQ.copy(currentQ);
      return this.outQ;
    }
    var predictAngle = angularSpeed * this.predictionTimeS;
    this.deltaQ.setFromAxisAngle(axis, predictAngle);
    this.outQ.copy(this.previousQ);
    this.outQ.multiply(this.deltaQ);
    this.previousQ.copy(currentQ);
    this.previousTimestampS = timestampS;
    return this.outQ;
  };
  function FusionPoseSensor(kFilter, predictionTime, yawOnly, isDebug) {
    this.yawOnly = yawOnly;
    this.accelerometer = new Vector3();
    this.gyroscope = new Vector3();
    this.filter = new ComplementaryFilter(kFilter, isDebug);
    this.posePredictor = new PosePredictor(predictionTime, isDebug);
    this.isFirefoxAndroid = isFirefoxAndroid();
    this.isIOS = isIOS();
    var chromeVersion = getChromeVersion();
    this.isDeviceMotionInRadians = !this.isIOS && chromeVersion && chromeVersion < 66;
    this.isWithoutDeviceMotion = isChromeWithoutDeviceMotion();
    this.filterToWorldQ = new Quaternion();
    if (isIOS()) {
      this.filterToWorldQ.setFromAxisAngle(new Vector3(1, 0, 0), Math.PI / 2);
    } else {
      this.filterToWorldQ.setFromAxisAngle(new Vector3(1, 0, 0), -Math.PI / 2);
    }
    this.inverseWorldToScreenQ = new Quaternion();
    this.worldToScreenQ = new Quaternion();
    this.originalPoseAdjustQ = new Quaternion();
    this.originalPoseAdjustQ.setFromAxisAngle(new Vector3(0, 0, 1), -window.orientation * Math.PI / 180);
    this.setScreenTransform_();
    if (isLandscapeMode()) {
      this.filterToWorldQ.multiply(this.inverseWorldToScreenQ);
    }
    this.resetQ = new Quaternion();
    this.orientationOut_ = new Float32Array(4);
    this.start();
  }
  FusionPoseSensor.prototype.getPosition = function () {
    return null;
  };
  FusionPoseSensor.prototype.getOrientation = function () {
    var orientation = void 0;
    if (this.isWithoutDeviceMotion && this._deviceOrientationQ) {
      this.deviceOrientationFixQ = this.deviceOrientationFixQ || function () {
        var z = new Quaternion().setFromAxisAngle(new Vector3(0, 0, -1), 0);
        var y = new Quaternion();
        if (window.orientation === -90) {
          y.setFromAxisAngle(new Vector3(0, 1, 0), Math.PI / -2);
        } else {
          y.setFromAxisAngle(new Vector3(0, 1, 0), Math.PI / 2);
        }
        return z.multiply(y);
      }();
      this.deviceOrientationFilterToWorldQ = this.deviceOrientationFilterToWorldQ || function () {
        var q = new Quaternion();
        q.setFromAxisAngle(new Vector3(1, 0, 0), -Math.PI / 2);
        return q;
      }();
      orientation = this._deviceOrientationQ;
      var out = new Quaternion();
      out.copy(orientation);
      out.multiply(this.deviceOrientationFilterToWorldQ);
      out.multiply(this.resetQ);
      out.multiply(this.worldToScreenQ);
      out.multiplyQuaternions(this.deviceOrientationFixQ, out);
      if (this.yawOnly) {
        out.x = 0;
        out.z = 0;
        out.normalize();
      }
      this.orientationOut_[0] = out.x;
      this.orientationOut_[1] = out.y;
      this.orientationOut_[2] = out.z;
      this.orientationOut_[3] = out.w;
      return this.orientationOut_;
    } else {
      var filterOrientation = this.filter.getOrientation();
      orientation = this.posePredictor.getPrediction(filterOrientation, this.gyroscope, this.previousTimestampS);
    }
    var out = new Quaternion();
    out.copy(this.filterToWorldQ);
    out.multiply(this.resetQ);
    out.multiply(orientation);
    out.multiply(this.worldToScreenQ);
    if (this.yawOnly) {
      out.x = 0;
      out.z = 0;
      out.normalize();
    }
    this.orientationOut_[0] = out.x;
    this.orientationOut_[1] = out.y;
    this.orientationOut_[2] = out.z;
    this.orientationOut_[3] = out.w;
    return this.orientationOut_;
  };
  FusionPoseSensor.prototype.resetPose = function () {
    this.resetQ.copy(this.filter.getOrientation());
    this.resetQ.x = 0;
    this.resetQ.y = 0;
    this.resetQ.z *= -1;
    this.resetQ.normalize();
    if (isLandscapeMode()) {
      this.resetQ.multiply(this.inverseWorldToScreenQ);
    }
    this.resetQ.multiply(this.originalPoseAdjustQ);
  };
  FusionPoseSensor.prototype.onDeviceOrientation_ = function (e) {
    this._deviceOrientationQ = this._deviceOrientationQ || new Quaternion();
    var alpha = e.alpha,
        beta = e.beta,
        gamma = e.gamma;
    alpha = (alpha || 0) * Math.PI / 180;
    beta = (beta || 0) * Math.PI / 180;
    gamma = (gamma || 0) * Math.PI / 180;
    this._deviceOrientationQ.setFromEulerYXZ(beta, alpha, -gamma);
  };
  FusionPoseSensor.prototype.onDeviceMotion_ = function (deviceMotion) {
    this.updateDeviceMotion_(deviceMotion);
  };
  FusionPoseSensor.prototype.updateDeviceMotion_ = function (deviceMotion) {
    var accGravity = deviceMotion.accelerationIncludingGravity;
    var rotRate = deviceMotion.rotationRate;
    var timestampS = deviceMotion.timeStamp / 1000;
    var deltaS = timestampS - this.previousTimestampS;
    if (deltaS < 0) {
      warnOnce('fusion-pose-sensor:invalid:non-monotonic', 'Invalid timestamps detected: non-monotonic timestamp from devicemotion');
      this.previousTimestampS = timestampS;
      return;
    } else if (deltaS <= MIN_TIMESTEP || deltaS > MAX_TIMESTEP) {
      warnOnce('fusion-pose-sensor:invalid:outside-threshold', 'Invalid timestamps detected: Timestamp from devicemotion outside expected range.');
      this.previousTimestampS = timestampS;
      return;
    }
    this.accelerometer.set(-accGravity.x, -accGravity.y, -accGravity.z);
    if (isR7()) {
      this.gyroscope.set(-rotRate.beta, rotRate.alpha, rotRate.gamma);
    } else {
      this.gyroscope.set(rotRate.alpha, rotRate.beta, rotRate.gamma);
    }
    if (!this.isDeviceMotionInRadians) {
      this.gyroscope.multiplyScalar(Math.PI / 180);
    }
    this.filter.addAccelMeasurement(this.accelerometer, timestampS);
    this.filter.addGyroMeasurement(this.gyroscope, timestampS);
    this.previousTimestampS = timestampS;
  };
  FusionPoseSensor.prototype.onOrientationChange_ = function (screenOrientation) {
    this.setScreenTransform_();
  };
  FusionPoseSensor.prototype.onMessage_ = function (event) {
    var message = event.data;
    if (!message || !message.type) {
      return;
    }
    var type = message.type.toLowerCase();
    if (type !== 'devicemotion') {
      return;
    }
    this.updateDeviceMotion_(message.deviceMotionEvent);
  };
  FusionPoseSensor.prototype.setScreenTransform_ = function () {
    this.worldToScreenQ.set(0, 0, 0, 1);
    switch (window.orientation) {
      case 0:
        break;
      case 90:
        this.worldToScreenQ.setFromAxisAngle(new Vector3(0, 0, 1), -Math.PI / 2);
        break;
      case -90:
        this.worldToScreenQ.setFromAxisAngle(new Vector3(0, 0, 1), Math.PI / 2);
        break;
      case 180:
        break;
    }
    this.inverseWorldToScreenQ.copy(this.worldToScreenQ);
    this.inverseWorldToScreenQ.inverse();
  };
  FusionPoseSensor.prototype.start = function () {
    this.onDeviceMotionCallback_ = this.onDeviceMotion_.bind(this);
    this.onOrientationChangeCallback_ = this.onOrientationChange_.bind(this);
    this.onMessageCallback_ = this.onMessage_.bind(this);
    this.onDeviceOrientationCallback_ = this.onDeviceOrientation_.bind(this);
    if (isIOS() && isInsideCrossOriginIFrame()) {
      window.addEventListener('message', this.onMessageCallback_);
    }
    window.addEventListener('orientationchange', this.onOrientationChangeCallback_);
    if (this.isWithoutDeviceMotion) {
      window.addEventListener('deviceorientation', this.onDeviceOrientationCallback_);
    } else {
      window.addEventListener('devicemotion', this.onDeviceMotionCallback_);
    }
  };
  FusionPoseSensor.prototype.stop = function () {
    window.removeEventListener('devicemotion', this.onDeviceMotionCallback_);
    window.removeEventListener('deviceorientation', this.onDeviceOrientationCallback_);
    window.removeEventListener('orientationchange', this.onOrientationChangeCallback_);
    window.removeEventListener('message', this.onMessageCallback_);
  };
  var SENSOR_FREQUENCY = 60;
  var X_AXIS = new Vector3(1, 0, 0);
  var Z_AXIS = new Vector3(0, 0, 1);
  var orientation = {};
  if (screen.orientation) {
    orientation = screen.orientation;
  } else if (screen.msOrientation) {
    orientation = screen.msOrientation;
  } else {
    Object.defineProperty(orientation, 'angle', {
      get: function get$$1() {
        return window.orientation || 0;
      }
    });
  }
  var SENSOR_TO_VR = new Quaternion();
  SENSOR_TO_VR.setFromAxisAngle(X_AXIS, -Math.PI / 2);
  SENSOR_TO_VR.multiply(new Quaternion().setFromAxisAngle(Z_AXIS, Math.PI / 2));
  var PoseSensor = function () {
    function PoseSensor(config) {
      classCallCheck(this, PoseSensor);
      this.config = config;
      this.sensor = null;
      this.fusionSensor = null;
      this._out = new Float32Array(4);
      this.api = null;
      this.errors = [];
      this._sensorQ = new Quaternion();
      this._worldToScreenQ = new Quaternion();
      this._outQ = new Quaternion();
      this._onSensorRead = this._onSensorRead.bind(this);
      this._onSensorError = this._onSensorError.bind(this);
      this._onOrientationChange = this._onOrientationChange.bind(this);
      this._onOrientationChange();
      this.init();
    }
    createClass(PoseSensor, [{
      key: 'init',
      value: function init() {
        var sensor = null;
        try {
          sensor = new RelativeOrientationSensor({ frequency: SENSOR_FREQUENCY });
          sensor.addEventListener('error', this._onSensorError);
        } catch (error) {
          this.errors.push(error);
          if (error.name === 'SecurityError') {
            console.error('Cannot construct sensors due to the Feature Policy');
            console.warn('Attempting to fall back using "devicemotion"; however this will ' + 'fail in the future without correct permissions.');
            this.useDeviceMotion();
          } else if (error.name === 'ReferenceError') {
            this.useDeviceMotion();
          } else {
            console.error(error);
          }
        }
        if (sensor) {
          this.api = 'sensor';
          this.sensor = sensor;
          this.sensor.addEventListener('reading', this._onSensorRead);
          this.sensor.start();
        }
        window.addEventListener('orientationchange', this._onOrientationChange);
      }
    }, {
      key: 'useDeviceMotion',
      value: function useDeviceMotion() {
        this.api = 'devicemotion';
        this.fusionSensor = new FusionPoseSensor(this.config.K_FILTER, this.config.PREDICTION_TIME_S, this.config.YAW_ONLY, this.config.DEBUG);
        if (this.sensor) {
          this.sensor.removeEventListener('reading', this._onSensorRead);
          this.sensor.removeEventListener('error', this._onSensorError);
          this.sensor = null;
        }
      }
    }, {
      key: 'getOrientation',
      value: function getOrientation() {
        if (this.fusionSensor) {
          return this.fusionSensor.getOrientation();
        }
        if (!this.sensor || !this.sensor.quaternion) {
          this._out[0] = this._out[1] = this._out[2] = 0;
          this._out[3] = 1;
          return this._out;
        }
        var q = this.sensor.quaternion;
        this._sensorQ.set(q[0], q[1], q[2], q[3]);
        var out = this._outQ;
        out.copy(SENSOR_TO_VR);
        out.multiply(this._sensorQ);
        out.multiply(this._worldToScreenQ);
        if (this.config.YAW_ONLY) {
          out.x = out.z = 0;
          out.normalize();
        }
        this._out[0] = out.x;
        this._out[1] = out.y;
        this._out[2] = out.z;
        this._out[3] = out.w;
        return this._out;
      }
    }, {
      key: '_onSensorError',
      value: function _onSensorError(event) {
        this.errors.push(event.error);
        if (event.error.name === 'NotAllowedError') {
          console.error('Permission to access sensor was denied');
        } else if (event.error.name === 'NotReadableError') {
          console.error('Sensor could not be read');
        } else {
          console.error(event.error);
        }
        this.useDeviceMotion();
      }
    }, {
      key: '_onSensorRead',
      value: function _onSensorRead() {}
    }, {
      key: '_onOrientationChange',
      value: function _onOrientationChange() {
        var angle = -orientation.angle * Math.PI / 180;
        this._worldToScreenQ.setFromAxisAngle(Z_AXIS, angle);
      }
    }]);
    return PoseSensor;
  }();
  var rotateInstructionsAsset = 'PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiIHN0YW5kYWxvbmU9Im5vIj8+Cjxzdmcgd2lkdGg9IjE5OHB4IiBoZWlnaHQ9IjI0MHB4IiB2aWV3Qm94PSIwIDAgMTk4IDI0MCIgdmVyc2lvbj0iMS4xIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHhtbG5zOnhsaW5rPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hsaW5rIiB4bWxuczpza2V0Y2g9Imh0dHA6Ly93d3cuYm9oZW1pYW5jb2RpbmcuY29tL3NrZXRjaC9ucyI+CiAgICA8IS0tIEdlbmVyYXRvcjogU2tldGNoIDMuMy4zICgxMjA4MSkgLSBodHRwOi8vd3d3LmJvaGVtaWFuY29kaW5nLmNvbS9za2V0Y2ggLS0+CiAgICA8dGl0bGU+dHJhbnNpdGlvbjwvdGl0bGU+CiAgICA8ZGVzYz5DcmVhdGVkIHdpdGggU2tldGNoLjwvZGVzYz4KICAgIDxkZWZzPjwvZGVmcz4KICAgIDxnIGlkPSJQYWdlLTEiIHN0cm9rZT0ibm9uZSIgc3Ryb2tlLXdpZHRoPSIxIiBmaWxsPSJub25lIiBmaWxsLXJ1bGU9ImV2ZW5vZGQiIHNrZXRjaDp0eXBlPSJNU1BhZ2UiPgogICAgICAgIDxnIGlkPSJ0cmFuc2l0aW9uIiBza2V0Y2g6dHlwZT0iTVNBcnRib2FyZEdyb3VwIj4KICAgICAgICAgICAgPGcgaWQ9IkltcG9ydGVkLUxheWVycy1Db3B5LTQtKy1JbXBvcnRlZC1MYXllcnMtQ29weS0rLUltcG9ydGVkLUxheWVycy1Db3B5LTItQ29weSIgc2tldGNoOnR5cGU9Ik1TTGF5ZXJHcm91cCI+CiAgICAgICAgICAgICAgICA8ZyBpZD0iSW1wb3J0ZWQtTGF5ZXJzLUNvcHktNCIgdHJhbnNmb3JtPSJ0cmFuc2xhdGUoMC4wMDAwMDAsIDEwNy4wMDAwMDApIiBza2V0Y2g6dHlwZT0iTVNTaGFwZUdyb3VwIj4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTQ5LjYyNSwyLjUyNyBDMTQ5LjYyNSwyLjUyNyAxNTUuODA1LDYuMDk2IDE1Ni4zNjIsNi40MTggTDE1Ni4zNjIsNy4zMDQgQzE1Ni4zNjIsNy40ODEgMTU2LjM3NSw3LjY2NCAxNTYuNCw3Ljg1MyBDMTU2LjQxLDcuOTM0IDE1Ni40Miw4LjAxNSAxNTYuNDI3LDguMDk1IEMxNTYuNTY3LDkuNTEgMTU3LjQwMSwxMS4wOTMgMTU4LjUzMiwxMi4wOTQgTDE2NC4yNTIsMTcuMTU2IEwxNjQuMzMzLDE3LjA2NiBDMTY0LjMzMywxNy4wNjYgMTY4LjcxNSwxNC41MzYgMTY5LjU2OCwxNC4wNDIgQzE3MS4wMjUsMTQuODgzIDE5NS41MzgsMjkuMDM1IDE5NS41MzgsMjkuMDM1IEwxOTUuNTM4LDgzLjAzNiBDMTk1LjUzOCw4My44MDcgMTk1LjE1Miw4NC4yNTMgMTk0LjU5LDg0LjI1MyBDMTk0LjM1Nyw4NC4yNTMgMTk0LjA5NSw4NC4xNzcgMTkzLjgxOCw4NC4wMTcgTDE2OS44NTEsNzAuMTc5IEwxNjkuODM3LDcwLjIwMyBMMTQyLjUxNSw4NS45NzggTDE0MS42NjUsODQuNjU1IEMxMzYuOTM0LDgzLjEyNiAxMzEuOTE3LDgxLjkxNSAxMjYuNzE0LDgxLjA0NSBDMTI2LjcwOSw4MS4wNiAxMjYuNzA3LDgxLjA2OSAxMjYuNzA3LDgxLjA2OSBMMTIxLjY0LDk4LjAzIEwxMTMuNzQ5LDEwMi41ODYgTDExMy43MTIsMTAyLjUyMyBMMTEzLjcxMiwxMzAuMTEzIEMxMTMuNzEyLDEzMC44ODUgMTEzLjMyNiwxMzEuMzMgMTEyLjc2NCwxMzEuMzMgQzExMi41MzIsMTMxLjMzIDExMi4yNjksMTMxLjI1NCAxMTEuOTkyLDEzMS4wOTQgTDY5LjUxOSwxMDYuNTcyIEM2OC41NjksMTA2LjAyMyA2Ny43OTksMTA0LjY5NSA2Ny43OTksMTAzLjYwNSBMNjcuNzk5LDEwMi41NyBMNjcuNzc4LDEwMi42MTcgQzY3LjI3LDEwMi4zOTMgNjYuNjQ4LDEwMi4yNDkgNjUuOTYyLDEwMi4yMTggQzY1Ljg3NSwxMDIuMjE0IDY1Ljc4OCwxMDIuMjEyIDY1LjcwMSwxMDIuMjEyIEM2NS42MDYsMTAyLjIxMiA2NS41MTEsMTAyLjIxNSA2NS40MTYsMTAyLjIxOSBDNjUuMTk1LDEwMi4yMjkgNjQuOTc0LDEwMi4yMzUgNjQuNzU0LDEwMi4yMzUgQzY0LjMzMSwxMDIuMjM1IDYzLjkxMSwxMDIuMjE2IDYzLjQ5OCwxMDIuMTc4IEM2MS44NDMsMTAyLjAyNSA2MC4yOTgsMTAxLjU3OCA1OS4wOTQsMTAwLjg4MiBMMTIuNTE4LDczLjk5MiBMMTIuNTIzLDc0LjAwNCBMMi4yNDUsNTUuMjU0IEMxLjI0NCw1My40MjcgMi4wMDQsNTEuMDM4IDMuOTQzLDQ5LjkxOCBMNTkuOTU0LDE3LjU3MyBDNjAuNjI2LDE3LjE4NSA2MS4zNSwxNy4wMDEgNjIuMDUzLDE3LjAwMSBDNjMuMzc5LDE3LjAwMSA2NC42MjUsMTcuNjYgNjUuMjgsMTguODU0IEw2NS4yODUsMTguODUxIEw2NS41MTIsMTkuMjY0IEw2NS41MDYsMTkuMjY4IEM2NS45MDksMjAuMDAzIDY2LjQwNSwyMC42OCA2Ni45ODMsMjEuMjg2IEw2Ny4yNiwyMS41NTYgQzY5LjE3NCwyMy40MDYgNzEuNzI4LDI0LjM1NyA3NC4zNzMsMjQuMzU3IEM3Ni4zMjIsMjQuMzU3IDc4LjMyMSwyMy44NCA4MC4xNDgsMjIuNzg1IEM4MC4xNjEsMjIuNzg1IDg3LjQ2NywxOC41NjYgODcuNDY3LDE4LjU2NiBDODguMTM5LDE4LjE3OCA4OC44NjMsMTcuOTk0IDg5LjU2NiwxNy45OTQgQzkwLjg5MiwxNy45OTQgOTIuMTM4LDE4LjY1MiA5Mi43OTIsMTkuODQ3IEw5Ni4wNDIsMjUuNzc1IEw5Ni4wNjQsMjUuNzU3IEwxMDIuODQ5LDI5LjY3NCBMMTAyLjc0NCwyOS40OTIgTDE0OS42MjUsMi41MjcgTTE0OS42MjUsMC44OTIgQzE0OS4zNDMsMC44OTIgMTQ5LjA2MiwwLjk2NSAxNDguODEsMS4xMSBMMTAyLjY0MSwyNy42NjYgTDk3LjIzMSwyNC41NDIgTDk0LjIyNiwxOS4wNjEgQzkzLjMxMywxNy4zOTQgOTEuNTI3LDE2LjM1OSA4OS41NjYsMTYuMzU4IEM4OC41NTUsMTYuMzU4IDg3LjU0NiwxNi42MzIgODYuNjQ5LDE3LjE1IEM4My44NzgsMTguNzUgNzkuNjg3LDIxLjE2OSA3OS4zNzQsMjEuMzQ1IEM3OS4zNTksMjEuMzUzIDc5LjM0NSwyMS4zNjEgNzkuMzMsMjEuMzY5IEM3Ny43OTgsMjIuMjU0IDc2LjA4NCwyMi43MjIgNzQuMzczLDIyLjcyMiBDNzIuMDgxLDIyLjcyMiA2OS45NTksMjEuODkgNjguMzk3LDIwLjM4IEw2OC4xNDUsMjAuMTM1IEM2Ny43MDYsMTkuNjcyIDY3LjMyMywxOS4xNTYgNjcuMDA2LDE4LjYwMSBDNjYuOTg4LDE4LjU1OSA2Ni45NjgsMTguNTE5IDY2Ljk0NiwxOC40NzkgTDY2LjcxOSwxOC4wNjUgQzY2LjY5LDE4LjAxMiA2Ni42NTgsMTcuOTYgNjYuNjI0LDE3LjkxMSBDNjUuNjg2LDE2LjMzNyA2My45NTEsMTUuMzY2IDYyLjA1MywxNS4zNjYgQzYxLjA0MiwxNS4zNjYgNjAuMDMzLDE1LjY0IDU5LjEzNiwxNi4xNTggTDMuMTI1LDQ4LjUwMiBDMC40MjYsNTAuMDYxIC0wLjYxMyw1My40NDIgMC44MTEsNTYuMDQgTDExLjA4OSw3NC43OSBDMTEuMjY2LDc1LjExMyAxMS41MzcsNzUuMzUzIDExLjg1LDc1LjQ5NCBMNTguMjc2LDEwMi4yOTggQzU5LjY3OSwxMDMuMTA4IDYxLjQzMywxMDMuNjMgNjMuMzQ4LDEwMy44MDYgQzYzLjgxMiwxMDMuODQ4IDY0LjI4NSwxMDMuODcgNjQuNzU0LDEwMy44NyBDNjUsMTAzLjg3IDY1LjI0OSwxMDMuODY0IDY1LjQ5NCwxMDMuODUyIEM2NS41NjMsMTAzLjg0OSA2NS42MzIsMTAzLjg0NyA2NS43MDEsMTAzLjg0NyBDNjUuNzY0LDEwMy44NDcgNjUuODI4LDEwMy44NDkgNjUuODksMTAzLjg1MiBDNjUuOTg2LDEwMy44NTYgNjYuMDgsMTAzLjg2MyA2Ni4xNzMsMTAzLjg3NCBDNjYuMjgyLDEwNS40NjcgNjcuMzMyLDEwNy4xOTcgNjguNzAyLDEwNy45ODggTDExMS4xNzQsMTMyLjUxIEMxMTEuNjk4LDEzMi44MTIgMTEyLjIzMiwxMzIuOTY1IDExMi43NjQsMTMyLjk2NSBDMTE0LjI2MSwxMzIuOTY1IDExNS4zNDcsMTMxLjc2NSAxMTUuMzQ3LDEzMC4xMTMgTDExNS4zNDcsMTAzLjU1MSBMMTIyLjQ1OCw5OS40NDYgQzEyMi44MTksOTkuMjM3IDEyMy4wODcsOTguODk4IDEyMy4yMDcsOTguNDk4IEwxMjcuODY1LDgyLjkwNSBDMTMyLjI3OSw4My43MDIgMTM2LjU1Nyw4NC43NTMgMTQwLjYwNyw4Ni4wMzMgTDE0MS4xNCw4Ni44NjIgQzE0MS40NTEsODcuMzQ2IDE0MS45NzcsODcuNjEzIDE0Mi41MTYsODcuNjEzIEMxNDIuNzk0LDg3LjYxMyAxNDMuMDc2LDg3LjU0MiAxNDMuMzMzLDg3LjM5MyBMMTY5Ljg2NSw3Mi4wNzYgTDE5Myw4NS40MzMgQzE5My41MjMsODUuNzM1IDE5NC4wNTgsODUuODg4IDE5NC41OSw4NS44ODggQzE5Ni4wODcsODUuODg4IDE5Ny4xNzMsODQuNjg5IDE5Ny4xNzMsODMuMDM2IEwxOTcuMTczLDI5LjAzNSBDMTk3LjE3MywyOC40NTEgMTk2Ljg2MSwyNy45MTEgMTk2LjM1NSwyNy42MTkgQzE5Ni4zNTUsMjcuNjE5IDE3MS44NDMsMTMuNDY3IDE3MC4zODUsMTIuNjI2IEMxNzAuMTMyLDEyLjQ4IDE2OS44NSwxMi40MDcgMTY5LjU2OCwxMi40MDcgQzE2OS4yODUsMTIuNDA3IDE2OS4wMDIsMTIuNDgxIDE2OC43NDksMTIuNjI3IEMxNjguMTQzLDEyLjk3OCAxNjUuNzU2LDE0LjM1NyAxNjQuNDI0LDE1LjEyNSBMMTU5LjYxNSwxMC44NyBDMTU4Ljc5NiwxMC4xNDUgMTU4LjE1NCw4LjkzNyAxNTguMDU0LDcuOTM0IEMxNTguMDQ1LDcuODM3IDE1OC4wMzQsNy43MzkgMTU4LjAyMSw3LjY0IEMxNTguMDA1LDcuNTIzIDE1Ny45OTgsNy40MSAxNTcuOTk4LDcuMzA0IEwxNTcuOTk4LDYuNDE4IEMxNTcuOTk4LDUuODM0IDE1Ny42ODYsNS4yOTUgMTU3LjE4MSw1LjAwMiBDMTU2LjYyNCw0LjY4IDE1MC40NDIsMS4xMTEgMTUwLjQ0MiwxLjExMSBDMTUwLjE4OSwwLjk2NSAxNDkuOTA3LDAuODkyIDE0OS42MjUsMC44OTIiIGlkPSJGaWxsLTEiIGZpbGw9IiM0NTVBNjQiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNOTYuMDI3LDI1LjYzNiBMMTQyLjYwMyw1Mi41MjcgQzE0My44MDcsNTMuMjIyIDE0NC41ODIsNTQuMTE0IDE0NC44NDUsNTUuMDY4IEwxNDQuODM1LDU1LjA3NSBMNjMuNDYxLDEwMi4wNTcgTDYzLjQ2LDEwMi4wNTcgQzYxLjgwNiwxMDEuOTA1IDYwLjI2MSwxMDEuNDU3IDU5LjA1NywxMDAuNzYyIEwxMi40ODEsNzMuODcxIEw5Ni4wMjcsMjUuNjM2IiBpZD0iRmlsbC0yIiBmaWxsPSIjRkFGQUZBIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTYzLjQ2MSwxMDIuMTc0IEM2My40NTMsMTAyLjE3NCA2My40NDYsMTAyLjE3NCA2My40MzksMTAyLjE3MiBDNjEuNzQ2LDEwMi4wMTYgNjAuMjExLDEwMS41NjMgNTguOTk4LDEwMC44NjMgTDEyLjQyMiw3My45NzMgQzEyLjM4Niw3My45NTIgMTIuMzY0LDczLjkxNCAxMi4zNjQsNzMuODcxIEMxMi4zNjQsNzMuODMgMTIuMzg2LDczLjc5MSAxMi40MjIsNzMuNzcgTDk1Ljk2OCwyNS41MzUgQzk2LjAwNCwyNS41MTQgOTYuMDQ5LDI1LjUxNCA5Ni4wODUsMjUuNTM1IEwxNDIuNjYxLDUyLjQyNiBDMTQzLjg4OCw1My4xMzQgMTQ0LjY4Miw1NC4wMzggMTQ0Ljk1Nyw1NS4wMzcgQzE0NC45Nyw1NS4wODMgMTQ0Ljk1Myw1NS4xMzMgMTQ0LjkxNSw1NS4xNjEgQzE0NC45MTEsNTUuMTY1IDE0NC44OTgsNTUuMTc0IDE0NC44OTQsNTUuMTc3IEw2My41MTksMTAyLjE1OCBDNjMuNTAxLDEwMi4xNjkgNjMuNDgxLDEwMi4xNzQgNjMuNDYxLDEwMi4xNzQgTDYzLjQ2MSwxMDIuMTc0IFogTTEyLjcxNCw3My44NzEgTDU5LjExNSwxMDAuNjYxIEM2MC4yOTMsMTAxLjM0MSA2MS43ODYsMTAxLjc4MiA2My40MzUsMTAxLjkzNyBMMTQ0LjcwNyw1NS4wMTUgQzE0NC40MjgsNTQuMTA4IDE0My42ODIsNTMuMjg1IDE0Mi41NDQsNTIuNjI4IEw5Ni4wMjcsMjUuNzcxIEwxMi43MTQsNzMuODcxIEwxMi43MTQsNzMuODcxIFoiIGlkPSJGaWxsLTMiIGZpbGw9IiM2MDdEOEIiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTQ4LjMyNyw1OC40NzEgQzE0OC4xNDUsNTguNDggMTQ3Ljk2Miw1OC40OCAxNDcuNzgxLDU4LjQ3MiBDMTQ1Ljg4Nyw1OC4zODkgMTQ0LjQ3OSw1Ny40MzQgMTQ0LjYzNiw1Ni4zNCBDMTQ0LjY4OSw1NS45NjcgMTQ0LjY2NCw1NS41OTcgMTQ0LjU2NCw1NS4yMzUgTDYzLjQ2MSwxMDIuMDU3IEM2NC4wODksMTAyLjExNSA2NC43MzMsMTAyLjEzIDY1LjM3OSwxMDIuMDk5IEM2NS41NjEsMTAyLjA5IDY1Ljc0MywxMDIuMDkgNjUuOTI1LDEwMi4wOTggQzY3LjgxOSwxMDIuMTgxIDY5LjIyNywxMDMuMTM2IDY5LjA3LDEwNC4yMyBMMTQ4LjMyNyw1OC40NzEiIGlkPSJGaWxsLTQiIGZpbGw9IiNGRkZGRkYiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNNjkuMDcsMTA0LjM0NyBDNjkuMDQ4LDEwNC4zNDcgNjkuMDI1LDEwNC4zNCA2OS4wMDUsMTA0LjMyNyBDNjguOTY4LDEwNC4zMDEgNjguOTQ4LDEwNC4yNTcgNjguOTU1LDEwNC4yMTMgQzY5LDEwMy44OTYgNjguODk4LDEwMy41NzYgNjguNjU4LDEwMy4yODggQzY4LjE1MywxMDIuNjc4IDY3LjEwMywxMDIuMjY2IDY1LjkyLDEwMi4yMTQgQzY1Ljc0MiwxMDIuMjA2IDY1LjU2MywxMDIuMjA3IDY1LjM4NSwxMDIuMjE1IEM2NC43NDIsMTAyLjI0NiA2NC4wODcsMTAyLjIzMiA2My40NSwxMDIuMTc0IEM2My4zOTksMTAyLjE2OSA2My4zNTgsMTAyLjEzMiA2My4zNDcsMTAyLjA4MiBDNjMuMzM2LDEwMi4wMzMgNjMuMzU4LDEwMS45ODEgNjMuNDAyLDEwMS45NTYgTDE0NC41MDYsNTUuMTM0IEMxNDQuNTM3LDU1LjExNiAxNDQuNTc1LDU1LjExMyAxNDQuNjA5LDU1LjEyNyBDMTQ0LjY0Miw1NS4xNDEgMTQ0LjY2OCw1NS4xNyAxNDQuNjc3LDU1LjIwNCBDMTQ0Ljc4MSw1NS41ODUgMTQ0LjgwNiw1NS45NzIgMTQ0Ljc1MSw1Ni4zNTcgQzE0NC43MDYsNTYuNjczIDE0NC44MDgsNTYuOTk0IDE0NS4wNDcsNTcuMjgyIEMxNDUuNTUzLDU3Ljg5MiAxNDYuNjAyLDU4LjMwMyAxNDcuNzg2LDU4LjM1NSBDMTQ3Ljk2NCw1OC4zNjMgMTQ4LjE0Myw1OC4zNjMgMTQ4LjMyMSw1OC4zNTQgQzE0OC4zNzcsNTguMzUyIDE0OC40MjQsNTguMzg3IDE0OC40MzksNTguNDM4IEMxNDguNDU0LDU4LjQ5IDE0OC40MzIsNTguNTQ1IDE0OC4zODUsNTguNTcyIEw2OS4xMjksMTA0LjMzMSBDNjkuMTExLDEwNC4zNDIgNjkuMDksMTA0LjM0NyA2OS4wNywxMDQuMzQ3IEw2OS4wNywxMDQuMzQ3IFogTTY1LjY2NSwxMDEuOTc1IEM2NS43NTQsMTAxLjk3NSA2NS44NDIsMTAxLjk3NyA2NS45MywxMDEuOTgxIEM2Ny4xOTYsMTAyLjAzNyA2OC4yODMsMTAyLjQ2OSA2OC44MzgsMTAzLjEzOSBDNjkuMDY1LDEwMy40MTMgNjkuMTg4LDEwMy43MTQgNjkuMTk4LDEwNC4wMjEgTDE0Ny44ODMsNTguNTkyIEMxNDcuODQ3LDU4LjU5MiAxNDcuODExLDU4LjU5MSAxNDcuNzc2LDU4LjU4OSBDMTQ2LjUwOSw1OC41MzMgMTQ1LjQyMiw1OC4xIDE0NC44NjcsNTcuNDMxIEMxNDQuNTg1LDU3LjA5MSAxNDQuNDY1LDU2LjcwNyAxNDQuNTIsNTYuMzI0IEMxNDQuNTYzLDU2LjAyMSAxNDQuNTUyLDU1LjcxNiAxNDQuNDg4LDU1LjQxNCBMNjMuODQ2LDEwMS45NyBDNjQuMzUzLDEwMi4wMDIgNjQuODY3LDEwMi4wMDYgNjUuMzc0LDEwMS45ODIgQzY1LjQ3MSwxMDEuOTc3IDY1LjU2OCwxMDEuOTc1IDY1LjY2NSwxMDEuOTc1IEw2NS42NjUsMTAxLjk3NSBaIiBpZD0iRmlsbC01IiBmaWxsPSIjNjA3RDhCIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTIuMjA4LDU1LjEzNCBDMS4yMDcsNTMuMzA3IDEuOTY3LDUwLjkxNyAzLjkwNiw0OS43OTcgTDU5LjkxNywxNy40NTMgQzYxLjg1NiwxNi4zMzMgNjQuMjQxLDE2LjkwNyA2NS4yNDMsMTguNzM0IEw2NS40NzUsMTkuMTQ0IEM2NS44NzIsMTkuODgyIDY2LjM2OCwyMC41NiA2Ni45NDUsMjEuMTY1IEw2Ny4yMjMsMjEuNDM1IEM3MC41NDgsMjQuNjQ5IDc1LjgwNiwyNS4xNTEgODAuMTExLDIyLjY2NSBMODcuNDMsMTguNDQ1IEM4OS4zNywxNy4zMjYgOTEuNzU0LDE3Ljg5OSA5Mi43NTUsMTkuNzI3IEw5Ni4wMDUsMjUuNjU1IEwxMi40ODYsNzMuODg0IEwyLjIwOCw1NS4xMzQgWiIgaWQ9IkZpbGwtNiIgZmlsbD0iI0ZBRkFGQSI+PC9wYXRoPgogICAgICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik0xMi40ODYsNzQuMDAxIEMxMi40NzYsNzQuMDAxIDEyLjQ2NSw3My45OTkgMTIuNDU1LDczLjk5NiBDMTIuNDI0LDczLjk4OCAxMi4zOTksNzMuOTY3IDEyLjM4NCw3My45NCBMMi4xMDYsNTUuMTkgQzEuMDc1LDUzLjMxIDEuODU3LDUwLjg0NSAzLjg0OCw0OS42OTYgTDU5Ljg1OCwxNy4zNTIgQzYwLjUyNSwxNi45NjcgNjEuMjcxLDE2Ljc2NCA2Mi4wMTYsMTYuNzY0IEM2My40MzEsMTYuNzY0IDY0LjY2NiwxNy40NjYgNjUuMzI3LDE4LjY0NiBDNjUuMzM3LDE4LjY1NCA2NS4zNDUsMTguNjYzIDY1LjM1MSwxOC42NzQgTDY1LjU3OCwxOS4wODggQzY1LjU4NCwxOS4xIDY1LjU4OSwxOS4xMTIgNjUuNTkxLDE5LjEyNiBDNjUuOTg1LDE5LjgzOCA2Ni40NjksMjAuNDk3IDY3LjAzLDIxLjA4NSBMNjcuMzA1LDIxLjM1MSBDNjkuMTUxLDIzLjEzNyA3MS42NDksMjQuMTIgNzQuMzM2LDI0LjEyIEM3Ni4zMTMsMjQuMTIgNzguMjksMjMuNTgyIDgwLjA1MywyMi41NjMgQzgwLjA2NCwyMi41NTcgODAuMDc2LDIyLjU1MyA4MC4wODgsMjIuNTUgTDg3LjM3MiwxOC4zNDQgQzg4LjAzOCwxNy45NTkgODguNzg0LDE3Ljc1NiA4OS41MjksMTcuNzU2IEM5MC45NTYsMTcuNzU2IDkyLjIwMSwxOC40NzIgOTIuODU4LDE5LjY3IEw5Ni4xMDcsMjUuNTk5IEM5Ni4xMzgsMjUuNjU0IDk2LjExOCwyNS43MjQgOTYuMDYzLDI1Ljc1NiBMMTIuNTQ1LDczLjk4NSBDMTIuNTI2LDczLjk5NiAxMi41MDYsNzQuMDAxIDEyLjQ4Niw3NC4wMDEgTDEyLjQ4Niw3NC4wMDEgWiBNNjIuMDE2LDE2Ljk5NyBDNjEuMzEyLDE2Ljk5NyA2MC42MDYsMTcuMTkgNTkuOTc1LDE3LjU1NCBMMy45NjUsNDkuODk5IEMyLjA4Myw1MC45ODUgMS4zNDEsNTMuMzA4IDIuMzEsNTUuMDc4IEwxMi41MzEsNzMuNzIzIEw5NS44NDgsMjUuNjExIEw5Mi42NTMsMTkuNzgyIEM5Mi4wMzgsMTguNjYgOTAuODcsMTcuOTkgODkuNTI5LDE3Ljk5IEM4OC44MjUsMTcuOTkgODguMTE5LDE4LjE4MiA4Ny40ODksMTguNTQ3IEw4MC4xNzIsMjIuNzcyIEM4MC4xNjEsMjIuNzc4IDgwLjE0OSwyMi43ODIgODAuMTM3LDIyLjc4NSBDNzguMzQ2LDIzLjgxMSA3Ni4zNDEsMjQuMzU0IDc0LjMzNiwyNC4zNTQgQzcxLjU4OCwyNC4zNTQgNjkuMDMzLDIzLjM0NyA2Ny4xNDIsMjEuNTE5IEw2Ni44NjQsMjEuMjQ5IEM2Ni4yNzcsMjAuNjM0IDY1Ljc3NCwxOS45NDcgNjUuMzY3LDE5LjIwMyBDNjUuMzYsMTkuMTkyIDY1LjM1NiwxOS4xNzkgNjUuMzU0LDE5LjE2NiBMNjUuMTYzLDE4LjgxOSBDNjUuMTU0LDE4LjgxMSA2NS4xNDYsMTguODAxIDY1LjE0LDE4Ljc5IEM2NC41MjUsMTcuNjY3IDYzLjM1NywxNi45OTcgNjIuMDE2LDE2Ljk5NyBMNjIuMDE2LDE2Ljk5NyBaIiBpZD0iRmlsbC03IiBmaWxsPSIjNjA3RDhCIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTQyLjQzNCw0OC44MDggTDQyLjQzNCw0OC44MDggQzM5LjkyNCw0OC44MDcgMzcuNzM3LDQ3LjU1IDM2LjU4Miw0NS40NDMgQzM0Ljc3MSw0Mi4xMzkgMzYuMTQ0LDM3LjgwOSAzOS42NDEsMzUuNzg5IEw1MS45MzIsMjguNjkxIEM1My4xMDMsMjguMDE1IDU0LjQxMywyNy42NTggNTUuNzIxLDI3LjY1OCBDNTguMjMxLDI3LjY1OCA2MC40MTgsMjguOTE2IDYxLjU3MywzMS4wMjMgQzYzLjM4NCwzNC4zMjcgNjIuMDEyLDM4LjY1NyA1OC41MTQsNDAuNjc3IEw0Ni4yMjMsNDcuNzc1IEM0NS4wNTMsNDguNDUgNDMuNzQyLDQ4LjgwOCA0Mi40MzQsNDguODA4IEw0Mi40MzQsNDguODA4IFogTTU1LjcyMSwyOC4xMjUgQzU0LjQ5NSwyOC4xMjUgNTMuMjY1LDI4LjQ2MSA1Mi4xNjYsMjkuMDk2IEwzOS44NzUsMzYuMTk0IEMzNi41OTYsMzguMDg3IDM1LjMwMiw0Mi4xMzYgMzYuOTkyLDQ1LjIxOCBDMzguMDYzLDQ3LjE3MyA0MC4wOTgsNDguMzQgNDIuNDM0LDQ4LjM0IEM0My42NjEsNDguMzQgNDQuODksNDguMDA1IDQ1Ljk5LDQ3LjM3IEw1OC4yODEsNDAuMjcyIEM2MS41NiwzOC4zNzkgNjIuODUzLDM0LjMzIDYxLjE2NCwzMS4yNDggQzYwLjA5MiwyOS4yOTMgNTguMDU4LDI4LjEyNSA1NS43MjEsMjguMTI1IEw1NS43MjEsMjguMTI1IFoiIGlkPSJGaWxsLTgiIGZpbGw9IiM2MDdEOEIiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTQ5LjU4OCwyLjQwNyBDMTQ5LjU4OCwyLjQwNyAxNTUuNzY4LDUuOTc1IDE1Ni4zMjUsNi4yOTcgTDE1Ni4zMjUsNy4xODQgQzE1Ni4zMjUsNy4zNiAxNTYuMzM4LDcuNTQ0IDE1Ni4zNjIsNy43MzMgQzE1Ni4zNzMsNy44MTQgMTU2LjM4Miw3Ljg5NCAxNTYuMzksNy45NzUgQzE1Ni41Myw5LjM5IDE1Ny4zNjMsMTAuOTczIDE1OC40OTUsMTEuOTc0IEwxNjUuODkxLDE4LjUxOSBDMTY2LjA2OCwxOC42NzUgMTY2LjI0OSwxOC44MTQgMTY2LjQzMiwxOC45MzQgQzE2OC4wMTEsMTkuOTc0IDE2OS4zODIsMTkuNCAxNjkuNDk0LDE3LjY1MiBDMTY5LjU0MywxNi44NjggMTY5LjU1MSwxNi4wNTcgMTY5LjUxNywxNS4yMjMgTDE2OS41MTQsMTUuMDYzIEwxNjkuNTE0LDEzLjkxMiBDMTcwLjc4LDE0LjY0MiAxOTUuNTAxLDI4LjkxNSAxOTUuNTAxLDI4LjkxNSBMMTk1LjUwMSw4Mi45MTUgQzE5NS41MDEsODQuMDA1IDE5NC43MzEsODQuNDQ1IDE5My43ODEsODMuODk3IEwxNTEuMzA4LDU5LjM3NCBDMTUwLjM1OCw1OC44MjYgMTQ5LjU4OCw1Ny40OTcgMTQ5LjU4OCw1Ni40MDggTDE0OS41ODgsMjIuMzc1IiBpZD0iRmlsbC05IiBmaWxsPSIjRkFGQUZBIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTE5NC41NTMsODQuMjUgQzE5NC4yOTYsODQuMjUgMTk0LjAxMyw4NC4xNjUgMTkzLjcyMiw4My45OTcgTDE1MS4yNSw1OS40NzYgQzE1MC4yNjksNTguOTA5IDE0OS40NzEsNTcuNTMzIDE0OS40NzEsNTYuNDA4IEwxNDkuNDcxLDIyLjM3NSBMMTQ5LjcwNSwyMi4zNzUgTDE0OS43MDUsNTYuNDA4IEMxNDkuNzA1LDU3LjQ1OSAxNTAuNDUsNTguNzQ0IDE1MS4zNjYsNTkuMjc0IEwxOTMuODM5LDgzLjc5NSBDMTk0LjI2Myw4NC4wNCAxOTQuNjU1LDg0LjA4MyAxOTQuOTQyLDgzLjkxNyBDMTk1LjIyNyw4My43NTMgMTk1LjM4NCw4My4zOTcgMTk1LjM4NCw4Mi45MTUgTDE5NS4zODQsMjguOTgyIEMxOTQuMTAyLDI4LjI0MiAxNzIuMTA0LDE1LjU0MiAxNjkuNjMxLDE0LjExNCBMMTY5LjYzNCwxNS4yMiBDMTY5LjY2OCwxNi4wNTIgMTY5LjY2LDE2Ljg3NCAxNjkuNjEsMTcuNjU5IEMxNjkuNTU2LDE4LjUwMyAxNjkuMjE0LDE5LjEyMyAxNjguNjQ3LDE5LjQwNSBDMTY4LjAyOCwxOS43MTQgMTY3LjE5NywxOS41NzggMTY2LjM2NywxOS4wMzIgQzE2Ni4xODEsMTguOTA5IDE2NS45OTUsMTguNzY2IDE2NS44MTQsMTguNjA2IEwxNTguNDE3LDEyLjA2MiBDMTU3LjI1OSwxMS4wMzYgMTU2LjQxOCw5LjQzNyAxNTYuMjc0LDcuOTg2IEMxNTYuMjY2LDcuOTA3IDE1Ni4yNTcsNy44MjcgMTU2LjI0Nyw3Ljc0OCBDMTU2LjIyMSw3LjU1NSAxNTYuMjA5LDcuMzY1IDE1Ni4yMDksNy4xODQgTDE1Ni4yMDksNi4zNjQgQzE1NS4zNzUsNS44ODMgMTQ5LjUyOSwyLjUwOCAxNDkuNTI5LDIuNTA4IEwxNDkuNjQ2LDIuMzA2IEMxNDkuNjQ2LDIuMzA2IDE1NS44MjcsNS44NzQgMTU2LjM4NCw2LjE5NiBMMTU2LjQ0Miw2LjIzIEwxNTYuNDQyLDcuMTg0IEMxNTYuNDQyLDcuMzU1IDE1Ni40NTQsNy41MzUgMTU2LjQ3OCw3LjcxNyBDMTU2LjQ4OSw3LjggMTU2LjQ5OSw3Ljg4MiAxNTYuNTA3LDcuOTYzIEMxNTYuNjQ1LDkuMzU4IDE1Ny40NTUsMTAuODk4IDE1OC41NzIsMTEuODg2IEwxNjUuOTY5LDE4LjQzMSBDMTY2LjE0MiwxOC41ODQgMTY2LjMxOSwxOC43MiAxNjYuNDk2LDE4LjgzNyBDMTY3LjI1NCwxOS4zMzYgMTY4LDE5LjQ2NyAxNjguNTQzLDE5LjE5NiBDMTY5LjAzMywxOC45NTMgMTY5LjMyOSwxOC40MDEgMTY5LjM3NywxNy42NDUgQzE2OS40MjcsMTYuODY3IDE2OS40MzQsMTYuMDU0IDE2OS40MDEsMTUuMjI4IEwxNjkuMzk3LDE1LjA2NSBMMTY5LjM5NywxMy43MSBMMTY5LjU3MiwxMy44MSBDMTcwLjgzOSwxNC41NDEgMTk1LjU1OSwyOC44MTQgMTk1LjU1OSwyOC44MTQgTDE5NS42MTgsMjguODQ3IEwxOTUuNjE4LDgyLjkxNSBDMTk1LjYxOCw4My40ODQgMTk1LjQyLDgzLjkxMSAxOTUuMDU5LDg0LjExOSBDMTk0LjkwOCw4NC4yMDYgMTk0LjczNyw4NC4yNSAxOTQuNTUzLDg0LjI1IiBpZD0iRmlsbC0xMCIgZmlsbD0iIzYwN0Q4QiI+PC9wYXRoPgogICAgICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik0xNDUuNjg1LDU2LjE2MSBMMTY5LjgsNzAuMDgzIEwxNDMuODIyLDg1LjA4MSBMMTQyLjM2LDg0Ljc3NCBDMTM1LjgyNiw4Mi42MDQgMTI4LjczMiw4MS4wNDYgMTIxLjM0MSw4MC4xNTggQzExNi45NzYsNzkuNjM0IDExMi42NzgsODEuMjU0IDExMS43NDMsODMuNzc4IEMxMTEuNTA2LDg0LjQxNCAxMTEuNTAzLDg1LjA3MSAxMTEuNzMyLDg1LjcwNiBDMTEzLjI3LDg5Ljk3MyAxMTUuOTY4LDk0LjA2OSAxMTkuNzI3LDk3Ljg0MSBMMTIwLjI1OSw5OC42ODYgQzEyMC4yNiw5OC42ODUgOTQuMjgyLDExMy42ODMgOTQuMjgyLDExMy42ODMgTDcwLjE2Nyw5OS43NjEgTDE0NS42ODUsNTYuMTYxIiBpZD0iRmlsbC0xMSIgZmlsbD0iI0ZGRkZGRiI+PC9wYXRoPgogICAgICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik05NC4yODIsMTEzLjgxOCBMOTQuMjIzLDExMy43ODUgTDY5LjkzMyw5OS43NjEgTDcwLjEwOCw5OS42NiBMMTQ1LjY4NSw1Ni4wMjYgTDE0NS43NDMsNTYuMDU5IEwxNzAuMDMzLDcwLjA4MyBMMTQzLjg0Miw4NS4yMDUgTDE0My43OTcsODUuMTk1IEMxNDMuNzcyLDg1LjE5IDE0Mi4zMzYsODQuODg4IDE0Mi4zMzYsODQuODg4IEMxMzUuNzg3LDgyLjcxNCAxMjguNzIzLDgxLjE2MyAxMjEuMzI3LDgwLjI3NCBDMTIwLjc4OCw4MC4yMDkgMTIwLjIzNiw4MC4xNzcgMTE5LjY4OSw4MC4xNzcgQzExNS45MzEsODAuMTc3IDExMi42MzUsODEuNzA4IDExMS44NTIsODMuODE5IEMxMTEuNjI0LDg0LjQzMiAxMTEuNjIxLDg1LjA1MyAxMTEuODQyLDg1LjY2NyBDMTEzLjM3Nyw4OS45MjUgMTE2LjA1OCw5My45OTMgMTE5LjgxLDk3Ljc1OCBMMTE5LjgyNiw5Ny43NzkgTDEyMC4zNTIsOTguNjE0IEMxMjAuMzU0LDk4LjYxNyAxMjAuMzU2LDk4LjYyIDEyMC4zNTgsOTguNjI0IEwxMjAuNDIyLDk4LjcyNiBMMTIwLjMxNyw5OC43ODcgQzEyMC4yNjQsOTguODE4IDk0LjU5OSwxMTMuNjM1IDk0LjM0LDExMy43ODUgTDk0LjI4MiwxMTMuODE4IEw5NC4yODIsMTEzLjgxOCBaIE03MC40MDEsOTkuNzYxIEw5NC4yODIsMTEzLjU0OSBMMTE5LjA4NCw5OS4yMjkgQzExOS42Myw5OC45MTQgMTE5LjkzLDk4Ljc0IDEyMC4xMDEsOTguNjU0IEwxMTkuNjM1LDk3LjkxNCBDMTE1Ljg2NCw5NC4xMjcgMTEzLjE2OCw5MC4wMzMgMTExLjYyMiw4NS43NDYgQzExMS4zODIsODUuMDc5IDExMS4zODYsODQuNDA0IDExMS42MzMsODMuNzM4IEMxMTIuNDQ4LDgxLjUzOSAxMTUuODM2LDc5Ljk0MyAxMTkuNjg5LDc5Ljk0MyBDMTIwLjI0Niw3OS45NDMgMTIwLjgwNiw3OS45NzYgMTIxLjM1NSw4MC4wNDIgQzEyOC43NjcsODAuOTMzIDEzNS44NDYsODIuNDg3IDE0Mi4zOTYsODQuNjYzIEMxNDMuMjMyLDg0LjgzOCAxNDMuNjExLDg0LjkxNyAxNDMuNzg2LDg0Ljk2NyBMMTY5LjU2Niw3MC4wODMgTDE0NS42ODUsNTYuMjk1IEw3MC40MDEsOTkuNzYxIEw3MC40MDEsOTkuNzYxIFoiIGlkPSJGaWxsLTEyIiBmaWxsPSIjNjA3RDhCIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTE2Ny4yMywxOC45NzkgTDE2Ny4yMyw2OS44NSBMMTM5LjkwOSw4NS42MjMgTDEzMy40NDgsNzEuNDU2IEMxMzIuNTM4LDY5LjQ2IDEzMC4wMiw2OS43MTggMTI3LjgyNCw3Mi4wMyBDMTI2Ljc2OSw3My4xNCAxMjUuOTMxLDc0LjU4NSAxMjUuNDk0LDc2LjA0OCBMMTE5LjAzNCw5Ny42NzYgTDkxLjcxMiwxMTMuNDUgTDkxLjcxMiw2Mi41NzkgTDE2Ny4yMywxOC45NzkiIGlkPSJGaWxsLTEzIiBmaWxsPSIjRkZGRkZGIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTkxLjcxMiwxMTMuNTY3IEM5MS42OTIsMTEzLjU2NyA5MS42NzIsMTEzLjU2MSA5MS42NTMsMTEzLjU1MSBDOTEuNjE4LDExMy41MyA5MS41OTUsMTEzLjQ5MiA5MS41OTUsMTEzLjQ1IEw5MS41OTUsNjIuNTc5IEM5MS41OTUsNjIuNTM3IDkxLjYxOCw2Mi40OTkgOTEuNjUzLDYyLjQ3OCBMMTY3LjE3MiwxOC44NzggQzE2Ny4yMDgsMTguODU3IDE2Ny4yNTIsMTguODU3IDE2Ny4yODgsMTguODc4IEMxNjcuMzI0LDE4Ljg5OSAxNjcuMzQ3LDE4LjkzNyAxNjcuMzQ3LDE4Ljk3OSBMMTY3LjM0Nyw2OS44NSBDMTY3LjM0Nyw2OS44OTEgMTY3LjMyNCw2OS45MyAxNjcuMjg4LDY5Ljk1IEwxMzkuOTY3LDg1LjcyNSBDMTM5LjkzOSw4NS43NDEgMTM5LjkwNSw4NS43NDUgMTM5Ljg3Myw4NS43MzUgQzEzOS44NDIsODUuNzI1IDEzOS44MTYsODUuNzAyIDEzOS44MDIsODUuNjcyIEwxMzMuMzQyLDcxLjUwNCBDMTMyLjk2Nyw3MC42ODIgMTMyLjI4LDcwLjIyOSAxMzEuNDA4LDcwLjIyOSBDMTMwLjMxOSw3MC4yMjkgMTI5LjA0NCw3MC45MTUgMTI3LjkwOCw3Mi4xMSBDMTI2Ljg3NCw3My4yIDEyNi4wMzQsNzQuNjQ3IDEyNS42MDYsNzYuMDgyIEwxMTkuMTQ2LDk3LjcwOSBDMTE5LjEzNyw5Ny43MzggMTE5LjExOCw5Ny43NjIgMTE5LjA5Miw5Ny43NzcgTDkxLjc3LDExMy41NTEgQzkxLjc1MiwxMTMuNTYxIDkxLjczMiwxMTMuNTY3IDkxLjcxMiwxMTMuNTY3IEw5MS43MTIsMTEzLjU2NyBaIE05MS44MjksNjIuNjQ3IEw5MS44MjksMTEzLjI0OCBMMTE4LjkzNSw5Ny41OTggTDEyNS4zODIsNzYuMDE1IEMxMjUuODI3LDc0LjUyNSAxMjYuNjY0LDczLjA4MSAxMjcuNzM5LDcxLjk1IEMxMjguOTE5LDcwLjcwOCAxMzAuMjU2LDY5Ljk5NiAxMzEuNDA4LDY5Ljk5NiBDMTMyLjM3Nyw2OS45OTYgMTMzLjEzOSw3MC40OTcgMTMzLjU1NCw3MS40MDcgTDEzOS45NjEsODUuNDU4IEwxNjcuMTEzLDY5Ljc4MiBMMTY3LjExMywxOS4xODEgTDkxLjgyOSw2Mi42NDcgTDkxLjgyOSw2Mi42NDcgWiIgaWQ9IkZpbGwtMTQiIGZpbGw9IiM2MDdEOEIiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTY4LjU0MywxOS4yMTMgTDE2OC41NDMsNzAuMDgzIEwxNDEuMjIxLDg1Ljg1NyBMMTM0Ljc2MSw3MS42ODkgQzEzMy44NTEsNjkuNjk0IDEzMS4zMzMsNjkuOTUxIDEyOS4xMzcsNzIuMjYzIEMxMjguMDgyLDczLjM3NCAxMjcuMjQ0LDc0LjgxOSAxMjYuODA3LDc2LjI4MiBMMTIwLjM0Niw5Ny45MDkgTDkzLjAyNSwxMTMuNjgzIEw5My4wMjUsNjIuODEzIEwxNjguNTQzLDE5LjIxMyIgaWQ9IkZpbGwtMTUiIGZpbGw9IiNGRkZGRkYiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNOTMuMDI1LDExMy44IEM5My4wMDUsMTEzLjggOTIuOTg0LDExMy43OTUgOTIuOTY2LDExMy43ODUgQzkyLjkzMSwxMTMuNzY0IDkyLjkwOCwxMTMuNzI1IDkyLjkwOCwxMTMuNjg0IEw5Mi45MDgsNjIuODEzIEM5Mi45MDgsNjIuNzcxIDkyLjkzMSw2Mi43MzMgOTIuOTY2LDYyLjcxMiBMMTY4LjQ4NCwxOS4xMTIgQzE2OC41MiwxOS4wOSAxNjguNTY1LDE5LjA5IDE2OC42MDEsMTkuMTEyIEMxNjguNjM3LDE5LjEzMiAxNjguNjYsMTkuMTcxIDE2OC42NiwxOS4yMTIgTDE2OC42Niw3MC4wODMgQzE2OC42Niw3MC4xMjUgMTY4LjYzNyw3MC4xNjQgMTY4LjYwMSw3MC4xODQgTDE0MS4yOCw4NS45NTggQzE0MS4yNTEsODUuOTc1IDE0MS4yMTcsODUuOTc5IDE0MS4xODYsODUuOTY4IEMxNDEuMTU0LDg1Ljk1OCAxNDEuMTI5LDg1LjkzNiAxNDEuMTE1LDg1LjkwNiBMMTM0LjY1NSw3MS43MzggQzEzNC4yOCw3MC45MTUgMTMzLjU5Myw3MC40NjMgMTMyLjcyLDcwLjQ2MyBDMTMxLjYzMiw3MC40NjMgMTMwLjM1Nyw3MS4xNDggMTI5LjIyMSw3Mi4zNDQgQzEyOC4xODYsNzMuNDMzIDEyNy4zNDcsNzQuODgxIDEyNi45MTksNzYuMzE1IEwxMjAuNDU4LDk3Ljk0MyBDMTIwLjQ1LDk3Ljk3MiAxMjAuNDMxLDk3Ljk5NiAxMjAuNDA1LDk4LjAxIEw5My4wODMsMTEzLjc4NSBDOTMuMDY1LDExMy43OTUgOTMuMDQ1LDExMy44IDkzLjAyNSwxMTMuOCBMOTMuMDI1LDExMy44IFogTTkzLjE0Miw2Mi44ODEgTDkzLjE0MiwxMTMuNDgxIEwxMjAuMjQ4LDk3LjgzMiBMMTI2LjY5NSw3Ni4yNDggQzEyNy4xNCw3NC43NTggMTI3Ljk3Nyw3My4zMTUgMTI5LjA1Miw3Mi4xODMgQzEzMC4yMzEsNzAuOTQyIDEzMS41NjgsNzAuMjI5IDEzMi43Miw3MC4yMjkgQzEzMy42ODksNzAuMjI5IDEzNC40NTIsNzAuNzMxIDEzNC44NjcsNzEuNjQxIEwxNDEuMjc0LDg1LjY5MiBMMTY4LjQyNiw3MC4wMTYgTDE2OC40MjYsMTkuNDE1IEw5My4xNDIsNjIuODgxIEw5My4xNDIsNjIuODgxIFoiIGlkPSJGaWxsLTE2IiBmaWxsPSIjNjA3RDhCIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTE2OS44LDcwLjA4MyBMMTQyLjQ3OCw4NS44NTcgTDEzNi4wMTgsNzEuNjg5IEMxMzUuMTA4LDY5LjY5NCAxMzIuNTksNjkuOTUxIDEzMC4zOTMsNzIuMjYzIEMxMjkuMzM5LDczLjM3NCAxMjguNSw3NC44MTkgMTI4LjA2NCw3Ni4yODIgTDEyMS42MDMsOTcuOTA5IEw5NC4yODIsMTEzLjY4MyBMOTQuMjgyLDYyLjgxMyBMMTY5LjgsMTkuMjEzIEwxNjkuOCw3MC4wODMgWiIgaWQ9IkZpbGwtMTciIGZpbGw9IiNGQUZBRkEiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNOTQuMjgyLDExMy45MTcgQzk0LjI0MSwxMTMuOTE3IDk0LjIwMSwxMTMuOTA3IDk0LjE2NSwxMTMuODg2IEM5NC4wOTMsMTEzLjg0NSA5NC4wNDgsMTEzLjc2NyA5NC4wNDgsMTEzLjY4NCBMOTQuMDQ4LDYyLjgxMyBDOTQuMDQ4LDYyLjczIDk0LjA5Myw2Mi42NTIgOTQuMTY1LDYyLjYxMSBMMTY5LjY4MywxOS4wMSBDMTY5Ljc1NSwxOC45NjkgMTY5Ljg0NCwxOC45NjkgMTY5LjkxNywxOS4wMSBDMTY5Ljk4OSwxOS4wNTIgMTcwLjAzMywxOS4xMjkgMTcwLjAzMywxOS4yMTIgTDE3MC4wMzMsNzAuMDgzIEMxNzAuMDMzLDcwLjE2NiAxNjkuOTg5LDcwLjI0NCAxNjkuOTE3LDcwLjI4NSBMMTQyLjU5NSw4Ni4wNiBDMTQyLjUzOCw4Ni4wOTIgMTQyLjQ2OSw4Ni4xIDE0Mi40MDcsODYuMDggQzE0Mi4zNDQsODYuMDYgMTQyLjI5Myw4Ni4wMTQgMTQyLjI2Niw4NS45NTQgTDEzNS44MDUsNzEuNzg2IEMxMzUuNDQ1LDcwLjk5NyAxMzQuODEzLDcwLjU4IDEzMy45NzcsNzAuNTggQzEzMi45MjEsNzAuNTggMTMxLjY3Niw3MS4yNTIgMTMwLjU2Miw3Mi40MjQgQzEyOS41NCw3My41MDEgMTI4LjcxMSw3NC45MzEgMTI4LjI4Nyw3Ni4zNDggTDEyMS44MjcsOTcuOTc2IEMxMjEuODEsOTguMDM0IDEyMS43NzEsOTguMDgyIDEyMS43Miw5OC4xMTIgTDk0LjM5OCwxMTMuODg2IEM5NC4zNjIsMTEzLjkwNyA5NC4zMjIsMTEzLjkxNyA5NC4yODIsMTEzLjkxNyBMOTQuMjgyLDExMy45MTcgWiBNOTQuNTE1LDYyLjk0OCBMOTQuNTE1LDExMy4yNzkgTDEyMS40MDYsOTcuNzU0IEwxMjcuODQsNzYuMjE1IEMxMjguMjksNzQuNzA4IDEyOS4xMzcsNzMuMjQ3IDEzMC4yMjQsNzIuMTAzIEMxMzEuNDI1LDcwLjgzOCAxMzIuNzkzLDcwLjExMiAxMzMuOTc3LDcwLjExMiBDMTM0Ljk5NSw3MC4xMTIgMTM1Ljc5NSw3MC42MzggMTM2LjIzLDcxLjU5MiBMMTQyLjU4NCw4NS41MjYgTDE2OS41NjYsNjkuOTQ4IEwxNjkuNTY2LDE5LjYxNyBMOTQuNTE1LDYyLjk0OCBMOTQuNTE1LDYyLjk0OCBaIiBpZD0iRmlsbC0xOCIgZmlsbD0iIzYwN0Q4QiI+PC9wYXRoPgogICAgICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik0xMDkuODk0LDkyLjk0MyBMMTA5Ljg5NCw5Mi45NDMgQzEwOC4xMiw5Mi45NDMgMTA2LjY1Myw5Mi4yMTggMTA1LjY1LDkwLjgyMyBDMTA1LjU4Myw5MC43MzEgMTA1LjU5Myw5MC42MSAxMDUuNjczLDkwLjUyOSBDMTA1Ljc1Myw5MC40NDggMTA1Ljg4LDkwLjQ0IDEwNS45NzQsOTAuNTA2IEMxMDYuNzU0LDkxLjA1MyAxMDcuNjc5LDkxLjMzMyAxMDguNzI0LDkxLjMzMyBDMTEwLjA0Nyw5MS4zMzMgMTExLjQ3OCw5MC44OTQgMTEyLjk4LDkwLjAyNyBDMTE4LjI5MSw4Ni45NiAxMjIuNjExLDc5LjUwOSAxMjIuNjExLDczLjQxNiBDMTIyLjYxMSw3MS40ODkgMTIyLjE2OSw2OS44NTYgMTIxLjMzMyw2OC42OTIgQzEyMS4yNjYsNjguNiAxMjEuMjc2LDY4LjQ3MyAxMjEuMzU2LDY4LjM5MiBDMTIxLjQzNiw2OC4zMTEgMTIxLjU2Myw2OC4yOTkgMTIxLjY1Niw2OC4zNjUgQzEyMy4zMjcsNjkuNTM3IDEyNC4yNDcsNzEuNzQ2IDEyNC4yNDcsNzQuNTg0IEMxMjQuMjQ3LDgwLjgyNiAxMTkuODIxLDg4LjQ0NyAxMTQuMzgyLDkxLjU4NyBDMTEyLjgwOCw5Mi40OTUgMTExLjI5OCw5Mi45NDMgMTA5Ljg5NCw5Mi45NDMgTDEwOS44OTQsOTIuOTQzIFogTTEwNi45MjUsOTEuNDAxIEMxMDcuNzM4LDkyLjA1MiAxMDguNzQ1LDkyLjI3OCAxMDkuODkzLDkyLjI3OCBMMTA5Ljg5NCw5Mi4yNzggQzExMS4yMTUsOTIuMjc4IDExMi42NDcsOTEuOTUxIDExNC4xNDgsOTEuMDg0IEMxMTkuNDU5LDg4LjAxNyAxMjMuNzgsODAuNjIxIDEyMy43OCw3NC41MjggQzEyMy43OCw3Mi41NDkgMTIzLjMxNyw3MC45MjkgMTIyLjQ1NCw2OS43NjcgQzEyMi44NjUsNzAuODAyIDEyMy4wNzksNzIuMDQyIDEyMy4wNzksNzMuNDAyIEMxMjMuMDc5LDc5LjY0NSAxMTguNjUzLDg3LjI4NSAxMTMuMjE0LDkwLjQyNSBDMTExLjY0LDkxLjMzNCAxMTAuMTMsOTEuNzQyIDEwOC43MjQsOTEuNzQyIEMxMDguMDgzLDkxLjc0MiAxMDcuNDgxLDkxLjU5MyAxMDYuOTI1LDkxLjQwMSBMMTA2LjkyNSw5MS40MDEgWiIgaWQ9IkZpbGwtMTkiIGZpbGw9IiM2MDdEOEIiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTEzLjA5Nyw5MC4yMyBDMTE4LjQ4MSw4Ny4xMjIgMTIyLjg0NSw3OS41OTQgMTIyLjg0NSw3My40MTYgQzEyMi44NDUsNzEuMzY1IDEyMi4zNjIsNjkuNzI0IDEyMS41MjIsNjguNTU2IEMxMTkuNzM4LDY3LjMwNCAxMTcuMTQ4LDY3LjM2MiAxMTQuMjY1LDY5LjAyNiBDMTA4Ljg4MSw3Mi4xMzQgMTA0LjUxNyw3OS42NjIgMTA0LjUxNyw4NS44NCBDMTA0LjUxNyw4Ny44OTEgMTA1LDg5LjUzMiAxMDUuODQsOTAuNyBDMTA3LjYyNCw5MS45NTIgMTEwLjIxNCw5MS44OTQgMTEzLjA5Nyw5MC4yMyIgaWQ9IkZpbGwtMjAiIGZpbGw9IiNGQUZBRkEiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTA4LjcyNCw5MS42MTQgTDEwOC43MjQsOTEuNjE0IEMxMDcuNTgyLDkxLjYxNCAxMDYuNTY2LDkxLjQwMSAxMDUuNzA1LDkwLjc5NyBDMTA1LjY4NCw5MC43ODMgMTA1LjY2NSw5MC44MTEgMTA1LjY1LDkwLjc5IEMxMDQuNzU2LDg5LjU0NiAxMDQuMjgzLDg3Ljg0MiAxMDQuMjgzLDg1LjgxNyBDMTA0LjI4Myw3OS41NzUgMTA4LjcwOSw3MS45NTMgMTE0LjE0OCw2OC44MTIgQzExNS43MjIsNjcuOTA0IDExNy4yMzIsNjcuNDQ5IDExOC42MzgsNjcuNDQ5IEMxMTkuNzgsNjcuNDQ5IDEyMC43OTYsNjcuNzU4IDEyMS42NTYsNjguMzYyIEMxMjEuNjc4LDY4LjM3NyAxMjEuNjk3LDY4LjM5NyAxMjEuNzEyLDY4LjQxOCBDMTIyLjYwNiw2OS42NjIgMTIzLjA3OSw3MS4zOSAxMjMuMDc5LDczLjQxNSBDMTIzLjA3OSw3OS42NTggMTE4LjY1Myw4Ny4xOTggMTEzLjIxNCw5MC4zMzggQzExMS42NCw5MS4yNDcgMTEwLjEzLDkxLjYxNCAxMDguNzI0LDkxLjYxNCBMMTA4LjcyNCw5MS42MTQgWiBNMTA2LjAwNiw5MC41MDUgQzEwNi43OCw5MS4wMzcgMTA3LjY5NCw5MS4yODEgMTA4LjcyNCw5MS4yODEgQzExMC4wNDcsOTEuMjgxIDExMS40NzgsOTAuODY4IDExMi45OCw5MC4wMDEgQzExOC4yOTEsODYuOTM1IDEyMi42MTEsNzkuNDk2IDEyMi42MTEsNzMuNDAzIEMxMjIuNjExLDcxLjQ5NCAxMjIuMTc3LDY5Ljg4IDEyMS4zNTYsNjguNzE4IEMxMjAuNTgyLDY4LjE4NSAxMTkuNjY4LDY3LjkxOSAxMTguNjM4LDY3LjkxOSBDMTE3LjMxNSw2Ny45MTkgMTE1Ljg4Myw2OC4zNiAxMTQuMzgyLDY5LjIyNyBDMTA5LjA3MSw3Mi4yOTMgMTA0Ljc1MSw3OS43MzMgMTA0Ljc1MSw4NS44MjYgQzEwNC43NTEsODcuNzM1IDEwNS4xODUsODkuMzQzIDEwNi4wMDYsOTAuNTA1IEwxMDYuMDA2LDkwLjUwNSBaIiBpZD0iRmlsbC0yMSIgZmlsbD0iIzYwN0Q4QiI+PC9wYXRoPgogICAgICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik0xNDkuMzE4LDcuMjYyIEwxMzkuMzM0LDE2LjE0IEwxNTUuMjI3LDI3LjE3MSBMMTYwLjgxNiwyMS4wNTkgTDE0OS4zMTgsNy4yNjIiIGlkPSJGaWxsLTIyIiBmaWxsPSIjRkFGQUZBIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTE2OS42NzYsMTMuODQgTDE1OS45MjgsMTkuNDY3IEMxNTYuMjg2LDIxLjU3IDE1MC40LDIxLjU4IDE0Ni43ODEsMTkuNDkxIEMxNDMuMTYxLDE3LjQwMiAxNDMuMTgsMTQuMDAzIDE0Ni44MjIsMTEuOSBMMTU2LjMxNyw2LjI5MiBMMTQ5LjU4OCwyLjQwNyBMNjcuNzUyLDQ5LjQ3OCBMMTEzLjY3NSw3NS45OTIgTDExNi43NTYsNzQuMjEzIEMxMTcuMzg3LDczLjg0OCAxMTcuNjI1LDczLjMxNSAxMTcuMzc0LDcyLjgyMyBDMTE1LjAxNyw2OC4xOTEgMTE0Ljc4MSw2My4yNzcgMTE2LjY5MSw1OC41NjEgQzEyMi4zMjksNDQuNjQxIDE0MS4yLDMzLjc0NiAxNjUuMzA5LDMwLjQ5MSBDMTczLjQ3OCwyOS4zODggMTgxLjk4OSwyOS41MjQgMTkwLjAxMywzMC44ODUgQzE5MC44NjUsMzEuMDMgMTkxLjc4OSwzMC44OTMgMTkyLjQyLDMwLjUyOCBMMTk1LjUwMSwyOC43NSBMMTY5LjY3NiwxMy44NCIgaWQ9IkZpbGwtMjMiIGZpbGw9IiNGQUZBRkEiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTEzLjY3NSw3Ni40NTkgQzExMy41OTQsNzYuNDU5IDExMy41MTQsNzYuNDM4IDExMy40NDIsNzYuMzk3IEw2Ny41MTgsNDkuODgyIEM2Ny4zNzQsNDkuNzk5IDY3LjI4NCw0OS42NDUgNjcuMjg1LDQ5LjQ3OCBDNjcuMjg1LDQ5LjMxMSA2Ny4zNzQsNDkuMTU3IDY3LjUxOSw0OS4wNzMgTDE0OS4zNTUsMi4wMDIgQzE0OS40OTksMS45MTkgMTQ5LjY3NywxLjkxOSAxNDkuODIxLDIuMDAyIEwxNTYuNTUsNS44ODcgQzE1Ni43NzQsNi4wMTcgMTU2Ljg1LDYuMzAyIDE1Ni43MjIsNi41MjYgQzE1Ni41OTIsNi43NDkgMTU2LjMwNyw2LjgyNiAxNTYuMDgzLDYuNjk2IEwxNDkuNTg3LDIuOTQ2IEw2OC42ODcsNDkuNDc5IEwxMTMuNjc1LDc1LjQ1MiBMMTE2LjUyMyw3My44MDggQzExNi43MTUsNzMuNjk3IDExNy4xNDMsNzMuMzk5IDExNi45NTgsNzMuMDM1IEMxMTQuNTQyLDY4LjI4NyAxMTQuMyw2My4yMjEgMTE2LjI1OCw1OC4zODUgQzExOS4wNjQsNTEuNDU4IDEyNS4xNDMsNDUuMTQzIDEzMy44NCw0MC4xMjIgQzE0Mi40OTcsMzUuMTI0IDE1My4zNTgsMzEuNjMzIDE2NS4yNDcsMzAuMDI4IEMxNzMuNDQ1LDI4LjkyMSAxODIuMDM3LDI5LjA1OCAxOTAuMDkxLDMwLjQyNSBDMTkwLjgzLDMwLjU1IDE5MS42NTIsMzAuNDMyIDE5Mi4xODYsMzAuMTI0IEwxOTQuNTY3LDI4Ljc1IEwxNjkuNDQyLDE0LjI0NCBDMTY5LjIxOSwxNC4xMTUgMTY5LjE0MiwxMy44MjkgMTY5LjI3MSwxMy42MDYgQzE2OS40LDEzLjM4MiAxNjkuNjg1LDEzLjMwNiAxNjkuOTA5LDEzLjQzNSBMMTk1LjczNCwyOC4zNDUgQzE5NS44NzksMjguNDI4IDE5NS45NjgsMjguNTgzIDE5NS45NjgsMjguNzUgQzE5NS45NjgsMjguOTE2IDE5NS44NzksMjkuMDcxIDE5NS43MzQsMjkuMTU0IEwxOTIuNjUzLDMwLjkzMyBDMTkxLjkzMiwzMS4zNSAxOTAuODksMzEuNTA4IDE4OS45MzUsMzEuMzQ2IEMxODEuOTcyLDI5Ljk5NSAxNzMuNDc4LDI5Ljg2IDE2NS4zNzIsMzAuOTU0IEMxNTMuNjAyLDMyLjU0MyAxNDIuODYsMzUuOTkzIDEzNC4zMDcsNDAuOTMxIEMxMjUuNzkzLDQ1Ljg0NyAxMTkuODUxLDUyLjAwNCAxMTcuMTI0LDU4LjczNiBDMTE1LjI3LDYzLjMxNCAxMTUuNTAxLDY4LjExMiAxMTcuNzksNzIuNjExIEMxMTguMTYsNzMuMzM2IDExNy44NDUsNzQuMTI0IDExNi45OSw3NC42MTcgTDExMy45MDksNzYuMzk3IEMxMTMuODM2LDc2LjQzOCAxMTMuNzU2LDc2LjQ1OSAxMTMuNjc1LDc2LjQ1OSIgaWQ9IkZpbGwtMjQiIGZpbGw9IiM0NTVBNjQiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTUzLjMxNiwyMS4yNzkgQzE1MC45MDMsMjEuMjc5IDE0OC40OTUsMjAuNzUxIDE0Ni42NjQsMTkuNjkzIEMxNDQuODQ2LDE4LjY0NCAxNDMuODQ0LDE3LjIzMiAxNDMuODQ0LDE1LjcxOCBDMTQzLjg0NCwxNC4xOTEgMTQ0Ljg2LDEyLjc2MyAxNDYuNzA1LDExLjY5OCBMMTU2LjE5OCw2LjA5MSBDMTU2LjMwOSw2LjAyNSAxNTYuNDUyLDYuMDYyIDE1Ni41MTgsNi4xNzMgQzE1Ni41ODMsNi4yODQgMTU2LjU0Nyw2LjQyNyAxNTYuNDM2LDYuNDkzIEwxNDYuOTQsMTIuMTAyIEMxNDUuMjQ0LDEzLjA4MSAxNDQuMzEyLDE0LjM2NSAxNDQuMzEyLDE1LjcxOCBDMTQ0LjMxMiwxNy4wNTggMTQ1LjIzLDE4LjMyNiAxNDYuODk3LDE5LjI4OSBDMTUwLjQ0NiwyMS4zMzggMTU2LjI0LDIxLjMyNyAxNTkuODExLDE5LjI2NSBMMTY5LjU1OSwxMy42MzcgQzE2OS42NywxMy41NzMgMTY5LjgxMywxMy42MTEgMTY5Ljg3OCwxMy43MjMgQzE2OS45NDMsMTMuODM0IDE2OS45MDQsMTMuOTc3IDE2OS43OTMsMTQuMDQyIEwxNjAuMDQ1LDE5LjY3IEMxNTguMTg3LDIwLjc0MiAxNTUuNzQ5LDIxLjI3OSAxNTMuMzE2LDIxLjI3OSIgaWQ9IkZpbGwtMjUiIGZpbGw9IiM2MDdEOEIiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTEzLjY3NSw3NS45OTIgTDY3Ljc2Miw0OS40ODQiIGlkPSJGaWxsLTI2IiBmaWxsPSIjNDU1QTY0Ij48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTExMy42NzUsNzYuMzQyIEMxMTMuNjE1LDc2LjM0MiAxMTMuNTU1LDc2LjMyNyAxMTMuNSw3Ni4yOTUgTDY3LjU4Nyw0OS43ODcgQzY3LjQxOSw0OS42OSA2Ny4zNjIsNDkuNDc2IDY3LjQ1OSw0OS4zMDkgQzY3LjU1Niw0OS4xNDEgNjcuNzcsNDkuMDgzIDY3LjkzNyw0OS4xOCBMMTEzLjg1LDc1LjY4OCBDMTE0LjAxOCw3NS43ODUgMTE0LjA3NSw3NiAxMTMuOTc4LDc2LjE2NyBDMTEzLjkxNCw3Ni4yNzkgMTEzLjc5Niw3Ni4zNDIgMTEzLjY3NSw3Ni4zNDIiIGlkPSJGaWxsLTI3IiBmaWxsPSIjNDU1QTY0Ij48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTY3Ljc2Miw0OS40ODQgTDY3Ljc2MiwxMDMuNDg1IEM2Ny43NjIsMTA0LjU3NSA2OC41MzIsMTA1LjkwMyA2OS40ODIsMTA2LjQ1MiBMMTExLjk1NSwxMzAuOTczIEMxMTIuOTA1LDEzMS41MjIgMTEzLjY3NSwxMzEuMDgzIDExMy42NzUsMTI5Ljk5MyBMMTEzLjY3NSw3NS45OTIiIGlkPSJGaWxsLTI4IiBmaWxsPSIjRkFGQUZBIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTExMi43MjcsMTMxLjU2MSBDMTEyLjQzLDEzMS41NjEgMTEyLjEwNywxMzEuNDY2IDExMS43OCwxMzEuMjc2IEw2OS4zMDcsMTA2Ljc1NSBDNjguMjQ0LDEwNi4xNDIgNjcuNDEyLDEwNC43MDUgNjcuNDEyLDEwMy40ODUgTDY3LjQxMiw0OS40ODQgQzY3LjQxMiw0OS4yOSA2Ny41NjksNDkuMTM0IDY3Ljc2Miw0OS4xMzQgQzY3Ljk1Niw0OS4xMzQgNjguMTEzLDQ5LjI5IDY4LjExMyw0OS40ODQgTDY4LjExMywxMDMuNDg1IEM2OC4xMTMsMTA0LjQ0NSA2OC44MiwxMDUuNjY1IDY5LjY1NywxMDYuMTQ4IEwxMTIuMTMsMTMwLjY3IEMxMTIuNDc0LDEzMC44NjggMTEyLjc5MSwxMzAuOTEzIDExMywxMzAuNzkyIEMxMTMuMjA2LDEzMC42NzMgMTEzLjMyNSwxMzAuMzgxIDExMy4zMjUsMTI5Ljk5MyBMMTEzLjMyNSw3NS45OTIgQzExMy4zMjUsNzUuNzk4IDExMy40ODIsNzUuNjQxIDExMy42NzUsNzUuNjQxIEMxMTMuODY5LDc1LjY0MSAxMTQuMDI1LDc1Ljc5OCAxMTQuMDI1LDc1Ljk5MiBMMTE0LjAyNSwxMjkuOTkzIEMxMTQuMDI1LDEzMC42NDggMTEzLjc4NiwxMzEuMTQ3IDExMy4zNSwxMzEuMzk5IEMxMTMuMTYyLDEzMS41MDcgMTEyLjk1MiwxMzEuNTYxIDExMi43MjcsMTMxLjU2MSIgaWQ9IkZpbGwtMjkiIGZpbGw9IiM0NTVBNjQiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTEyLjg2LDQwLjUxMiBDMTEyLjg2LDQwLjUxMiAxMTIuODYsNDAuNTEyIDExMi44NTksNDAuNTEyIEMxMTAuNTQxLDQwLjUxMiAxMDguMzYsMzkuOTkgMTA2LjcxNywzOS4wNDEgQzEwNS4wMTIsMzguMDU3IDEwNC4wNzQsMzYuNzI2IDEwNC4wNzQsMzUuMjkyIEMxMDQuMDc0LDMzLjg0NyAxMDUuMDI2LDMyLjUwMSAxMDYuNzU0LDMxLjUwNCBMMTE4Ljc5NSwyNC41NTEgQzEyMC40NjMsMjMuNTg5IDEyMi42NjksMjMuMDU4IDEyNS4wMDcsMjMuMDU4IEMxMjcuMzI1LDIzLjA1OCAxMjkuNTA2LDIzLjU4MSAxMzEuMTUsMjQuNTMgQzEzMi44NTQsMjUuNTE0IDEzMy43OTMsMjYuODQ1IDEzMy43OTMsMjguMjc4IEMxMzMuNzkzLDI5LjcyNCAxMzIuODQxLDMxLjA2OSAxMzEuMTEzLDMyLjA2NyBMMTE5LjA3MSwzOS4wMTkgQzExNy40MDMsMzkuOTgyIDExNS4xOTcsNDAuNTEyIDExMi44Niw0MC41MTIgTDExMi44Niw0MC41MTIgWiBNMTI1LjAwNywyMy43NTkgQzEyMi43OSwyMy43NTkgMTIwLjcwOSwyNC4yNTYgMTE5LjE0NiwyNS4xNTggTDEwNy4xMDQsMzIuMTEgQzEwNS42MDIsMzIuOTc4IDEwNC43NzQsMzQuMTA4IDEwNC43NzQsMzUuMjkyIEMxMDQuNzc0LDM2LjQ2NSAxMDUuNTg5LDM3LjU4MSAxMDcuMDY3LDM4LjQzNCBDMTA4LjYwNSwzOS4zMjMgMTEwLjY2MywzOS44MTIgMTEyLjg1OSwzOS44MTIgTDExMi44NiwzOS44MTIgQzExNS4wNzYsMzkuODEyIDExNy4xNTgsMzkuMzE1IDExOC43MjEsMzguNDEzIEwxMzAuNzYyLDMxLjQ2IEMxMzIuMjY0LDMwLjU5MyAxMzMuMDkyLDI5LjQ2MyAxMzMuMDkyLDI4LjI3OCBDMTMzLjA5MiwyNy4xMDYgMTMyLjI3OCwyNS45OSAxMzAuOCwyNS4xMzYgQzEyOS4yNjEsMjQuMjQ4IDEyNy4yMDQsMjMuNzU5IDEyNS4wMDcsMjMuNzU5IEwxMjUuMDA3LDIzLjc1OSBaIiBpZD0iRmlsbC0zMCIgZmlsbD0iIzYwN0Q4QiI+PC9wYXRoPgogICAgICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik0xNjUuNjMsMTYuMjE5IEwxNTkuODk2LDE5LjUzIEMxNTYuNzI5LDIxLjM1OCAxNTEuNjEsMjEuMzY3IDE0OC40NjMsMTkuNTUgQzE0NS4zMTYsMTcuNzMzIDE0NS4zMzIsMTQuNzc4IDE0OC40OTksMTIuOTQ5IEwxNTQuMjMzLDkuNjM5IEwxNjUuNjMsMTYuMjE5IiBpZD0iRmlsbC0zMSIgZmlsbD0iI0ZBRkFGQSI+PC9wYXRoPgogICAgICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik0xNTQuMjMzLDEwLjQ0OCBMMTY0LjIyOCwxNi4yMTkgTDE1OS41NDYsMTguOTIzIEMxNTguMTEyLDE5Ljc1IDE1Ni4xOTQsMjAuMjA2IDE1NC4xNDcsMjAuMjA2IEMxNTIuMTE4LDIwLjIwNiAxNTAuMjI0LDE5Ljc1NyAxNDguODE0LDE4Ljk0MyBDMTQ3LjUyNCwxOC4xOTkgMTQ2LjgxNCwxNy4yNDkgMTQ2LjgxNCwxNi4yNjkgQzE0Ni44MTQsMTUuMjc4IDE0Ny41MzcsMTQuMzE0IDE0OC44NSwxMy41NTYgTDE1NC4yMzMsMTAuNDQ4IE0xNTQuMjMzLDkuNjM5IEwxNDguNDk5LDEyLjk0OSBDMTQ1LjMzMiwxNC43NzggMTQ1LjMxNiwxNy43MzMgMTQ4LjQ2MywxOS41NSBDMTUwLjAzMSwyMC40NTUgMTUyLjA4NiwyMC45MDcgMTU0LjE0NywyMC45MDcgQzE1Ni4yMjQsMjAuOTA3IDE1OC4zMDYsMjAuNDQ3IDE1OS44OTYsMTkuNTMgTDE2NS42MywxNi4yMTkgTDE1NC4yMzMsOS42MzkiIGlkPSJGaWxsLTMyIiBmaWxsPSIjNjA3RDhCIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTE0NS40NDUsNzIuNjY3IEwxNDUuNDQ1LDcyLjY2NyBDMTQzLjY3Miw3Mi42NjcgMTQyLjIwNCw3MS44MTcgMTQxLjIwMiw3MC40MjIgQzE0MS4xMzUsNzAuMzMgMTQxLjE0NSw3MC4xNDcgMTQxLjIyNSw3MC4wNjYgQzE0MS4zMDUsNjkuOTg1IDE0MS40MzIsNjkuOTQ2IDE0MS41MjUsNzAuMDExIEMxNDIuMzA2LDcwLjU1OSAxNDMuMjMxLDcwLjgyMyAxNDQuMjc2LDcwLjgyMiBDMTQ1LjU5OCw3MC44MjIgMTQ3LjAzLDcwLjM3NiAxNDguNTMyLDY5LjUwOSBDMTUzLjg0Miw2Ni40NDMgMTU4LjE2Myw1OC45ODcgMTU4LjE2Myw1Mi44OTQgQzE1OC4xNjMsNTAuOTY3IDE1Ny43MjEsNDkuMzMyIDE1Ni44ODQsNDguMTY4IEMxNTYuODE4LDQ4LjA3NiAxNTYuODI4LDQ3Ljk0OCAxNTYuOTA4LDQ3Ljg2NyBDMTU2Ljk4OCw0Ny43ODYgMTU3LjExNCw0Ny43NzQgMTU3LjIwOCw0Ny44NCBDMTU4Ljg3OCw0OS4wMTIgMTU5Ljc5OCw1MS4yMiAxNTkuNzk4LDU0LjA1OSBDMTU5Ljc5OCw2MC4zMDEgMTU1LjM3Myw2OC4wNDYgMTQ5LjkzMyw3MS4xODYgQzE0OC4zNiw3Mi4wOTQgMTQ2Ljg1LDcyLjY2NyAxNDUuNDQ1LDcyLjY2NyBMMTQ1LjQ0NSw3Mi42NjcgWiBNMTQyLjQ3Niw3MSBDMTQzLjI5LDcxLjY1MSAxNDQuMjk2LDcyLjAwMiAxNDUuNDQ1LDcyLjAwMiBDMTQ2Ljc2Nyw3Mi4wMDIgMTQ4LjE5OCw3MS41NSAxNDkuNyw3MC42ODIgQzE1NS4wMSw2Ny42MTcgMTU5LjMzMSw2MC4xNTkgMTU5LjMzMSw1NC4wNjUgQzE1OS4zMzEsNTIuMDg1IDE1OC44NjgsNTAuNDM1IDE1OC4wMDYsNDkuMjcyIEMxNTguNDE3LDUwLjMwNyAxNTguNjMsNTEuNTMyIDE1OC42Myw1Mi44OTIgQzE1OC42Myw1OS4xMzQgMTU0LjIwNSw2Ni43NjcgMTQ4Ljc2NSw2OS45MDcgQzE0Ny4xOTIsNzAuODE2IDE0NS42ODEsNzEuMjgzIDE0NC4yNzYsNzEuMjgzIEMxNDMuNjM0LDcxLjI4MyAxNDMuMDMzLDcxLjE5MiAxNDIuNDc2LDcxIEwxNDIuNDc2LDcxIFoiIGlkPSJGaWxsLTMzIiBmaWxsPSIjNjA3RDhCIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTE0OC42NDgsNjkuNzA0IEMxNTQuMDMyLDY2LjU5NiAxNTguMzk2LDU5LjA2OCAxNTguMzk2LDUyLjg5MSBDMTU4LjM5Niw1MC44MzkgMTU3LjkxMyw0OS4xOTggMTU3LjA3NCw0OC4wMyBDMTU1LjI4OSw0Ni43NzggMTUyLjY5OSw0Ni44MzYgMTQ5LjgxNiw0OC41MDEgQzE0NC40MzMsNTEuNjA5IDE0MC4wNjgsNTkuMTM3IDE0MC4wNjgsNjUuMzE0IEMxNDAuMDY4LDY3LjM2NSAxNDAuNTUyLDY5LjAwNiAxNDEuMzkxLDcwLjE3NCBDMTQzLjE3Niw3MS40MjcgMTQ1Ljc2NSw3MS4zNjkgMTQ4LjY0OCw2OS43MDQiIGlkPSJGaWxsLTM0IiBmaWxsPSIjRkFGQUZBIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTE0NC4yNzYsNzEuMjc2IEwxNDQuMjc2LDcxLjI3NiBDMTQzLjEzMyw3MS4yNzYgMTQyLjExOCw3MC45NjkgMTQxLjI1Nyw3MC4zNjUgQzE0MS4yMzYsNzAuMzUxIDE0MS4yMTcsNzAuMzMyIDE0MS4yMDIsNzAuMzExIEMxNDAuMzA3LDY5LjA2NyAxMzkuODM1LDY3LjMzOSAxMzkuODM1LDY1LjMxNCBDMTM5LjgzNSw1OS4wNzMgMTQ0LjI2LDUxLjQzOSAxNDkuNyw0OC4yOTggQzE1MS4yNzMsNDcuMzkgMTUyLjc4NCw0Ni45MjkgMTU0LjE4OSw0Ni45MjkgQzE1NS4zMzIsNDYuOTI5IDE1Ni4zNDcsNDcuMjM2IDE1Ny4yMDgsNDcuODM5IEMxNTcuMjI5LDQ3Ljg1NCAxNTcuMjQ4LDQ3Ljg3MyAxNTcuMjYzLDQ3Ljg5NCBDMTU4LjE1Nyw0OS4xMzggMTU4LjYzLDUwLjg2NSAxNTguNjMsNTIuODkxIEMxNTguNjMsNTkuMTMyIDE1NC4yMDUsNjYuNzY2IDE0OC43NjUsNjkuOTA3IEMxNDcuMTkyLDcwLjgxNSAxNDUuNjgxLDcxLjI3NiAxNDQuMjc2LDcxLjI3NiBMMTQ0LjI3Niw3MS4yNzYgWiBNMTQxLjU1OCw3MC4xMDQgQzE0Mi4zMzEsNzAuNjM3IDE0My4yNDUsNzEuMDA1IDE0NC4yNzYsNzEuMDA1IEMxNDUuNTk4LDcxLjAwNSAxNDcuMDMsNzAuNDY3IDE0OC41MzIsNjkuNiBDMTUzLjg0Miw2Ni41MzQgMTU4LjE2Myw1OS4wMzMgMTU4LjE2Myw1Mi45MzkgQzE1OC4xNjMsNTEuMDMxIDE1Ny43MjksNDkuMzg1IDE1Ni45MDcsNDguMjIzIEMxNTYuMTMzLDQ3LjY5MSAxNTUuMjE5LDQ3LjQwOSAxNTQuMTg5LDQ3LjQwOSBDMTUyLjg2Nyw0Ny40MDkgMTUxLjQzNSw0Ny44NDIgMTQ5LjkzMyw0OC43MDkgQzE0NC42MjMsNTEuNzc1IDE0MC4zMDIsNTkuMjczIDE0MC4zMDIsNjUuMzY2IEMxNDAuMzAyLDY3LjI3NiAxNDAuNzM2LDY4Ljk0MiAxNDEuNTU4LDcwLjEwNCBMMTQxLjU1OCw3MC4xMDQgWiIgaWQ9IkZpbGwtMzUiIGZpbGw9IiM2MDdEOEIiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTUwLjcyLDY1LjM2MSBMMTUwLjM1Nyw2NS4wNjYgQzE1MS4xNDcsNjQuMDkyIDE1MS44NjksNjMuMDQgMTUyLjUwNSw2MS45MzggQzE1My4zMTMsNjAuNTM5IDE1My45NzgsNTkuMDY3IDE1NC40ODIsNTcuNTYzIEwxNTQuOTI1LDU3LjcxMiBDMTU0LjQxMiw1OS4yNDUgMTUzLjczMyw2MC43NDUgMTUyLjkxLDYyLjE3MiBDMTUyLjI2Miw2My4yOTUgMTUxLjUyNSw2NC4zNjggMTUwLjcyLDY1LjM2MSIgaWQ9IkZpbGwtMzYiIGZpbGw9IiM2MDdEOEIiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTE1LjkxNyw4NC41MTQgTDExNS41NTQsODQuMjIgQzExNi4zNDQsODMuMjQ1IDExNy4wNjYsODIuMTk0IDExNy43MDIsODEuMDkyIEMxMTguNTEsNzkuNjkyIDExOS4xNzUsNzguMjIgMTE5LjY3OCw3Ni43MTcgTDEyMC4xMjEsNzYuODY1IEMxMTkuNjA4LDc4LjM5OCAxMTguOTMsNzkuODk5IDExOC4xMDYsODEuMzI2IEMxMTcuNDU4LDgyLjQ0OCAxMTYuNzIyLDgzLjUyMSAxMTUuOTE3LDg0LjUxNCIgaWQ9IkZpbGwtMzciIGZpbGw9IiM2MDdEOEIiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTE0LDEzMC40NzYgTDExNCwxMzAuMDA4IEwxMTQsNzYuMDUyIEwxMTQsNzUuNTg0IEwxMTQsNzYuMDUyIEwxMTQsMTMwLjAwOCBMMTE0LDEzMC40NzYiIGlkPSJGaWxsLTM4IiBmaWxsPSIjNjA3RDhCIj48L3BhdGg+CiAgICAgICAgICAgICAgICA8L2c+CiAgICAgICAgICAgICAgICA8ZyBpZD0iSW1wb3J0ZWQtTGF5ZXJzLUNvcHkiIHRyYW5zZm9ybT0idHJhbnNsYXRlKDYyLjAwMDAwMCwgMC4wMDAwMDApIiBza2V0Y2g6dHlwZT0iTVNTaGFwZUdyb3VwIj4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTkuODIyLDM3LjQ3NCBDMTkuODM5LDM3LjMzOSAxOS43NDcsMzcuMTk0IDE5LjU1NSwzNy4wODIgQzE5LjIyOCwzNi44OTQgMTguNzI5LDM2Ljg3MiAxOC40NDYsMzcuMDM3IEwxMi40MzQsNDAuNTA4IEMxMi4zMDMsNDAuNTg0IDEyLjI0LDQwLjY4NiAxMi4yNDMsNDAuNzkzIEMxMi4yNDUsNDAuOTI1IDEyLjI0NSw0MS4yNTQgMTIuMjQ1LDQxLjM3MSBMMTIuMjQ1LDQxLjQxNCBMMTIuMjM4LDQxLjU0MiBDOC4xNDgsNDMuODg3IDUuNjQ3LDQ1LjMyMSA1LjY0Nyw0NS4zMjEgQzUuNjQ2LDQ1LjMyMSAzLjU3LDQ2LjM2NyAyLjg2LDUwLjUxMyBDMi44Niw1MC41MTMgMS45NDgsNTcuNDc0IDEuOTYyLDcwLjI1OCBDMS45NzcsODIuODI4IDIuNTY4LDg3LjMyOCAzLjEyOSw5MS42MDkgQzMuMzQ5LDkzLjI5MyA2LjEzLDkzLjczNCA2LjEzLDkzLjczNCBDNi40NjEsOTMuNzc0IDYuODI4LDkzLjcwNyA3LjIxLDkzLjQ4NiBMODIuNDgzLDQ5LjkzNSBDODQuMjkxLDQ4Ljg2NiA4NS4xNSw0Ni4yMTYgODUuNTM5LDQzLjY1MSBDODYuNzUyLDM1LjY2MSA4Ny4yMTQsMTAuNjczIDg1LjI2NCwzLjc3MyBDODUuMDY4LDMuMDggODQuNzU0LDIuNjkgODQuMzk2LDIuNDkxIEw4Mi4zMSwxLjcwMSBDODEuNTgzLDEuNzI5IDgwLjg5NCwyLjE2OCA4MC43NzYsMi4yMzYgQzgwLjYzNiwyLjMxNyA0MS44MDcsMjQuNTg1IDIwLjAzMiwzNy4wNzIgTDE5LjgyMiwzNy40NzQiIGlkPSJGaWxsLTEiIGZpbGw9IiNGRkZGRkYiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNODIuMzExLDEuNzAxIEw4NC4zOTYsMi40OTEgQzg0Ljc1NCwyLjY5IDg1LjA2OCwzLjA4IDg1LjI2NCwzLjc3MyBDODcuMjEzLDEwLjY3MyA4Ni43NTEsMzUuNjYgODUuNTM5LDQzLjY1MSBDODUuMTQ5LDQ2LjIxNiA4NC4yOSw0OC44NjYgODIuNDgzLDQ5LjkzNSBMNy4yMSw5My40ODYgQzYuODk3LDkzLjY2NyA2LjU5NSw5My43NDQgNi4zMTQsOTMuNzQ0IEw2LjEzMSw5My43MzMgQzYuMTMxLDkzLjczNCAzLjM0OSw5My4yOTMgMy4xMjgsOTEuNjA5IEMyLjU2OCw4Ny4zMjcgMS45NzcsODIuODI4IDEuOTYzLDcwLjI1OCBDMS45NDgsNTcuNDc0IDIuODYsNTAuNTEzIDIuODYsNTAuNTEzIEMzLjU3LDQ2LjM2NyA1LjY0Nyw0NS4zMjEgNS42NDcsNDUuMzIxIEM1LjY0Nyw0NS4zMjEgOC4xNDgsNDMuODg3IDEyLjIzOCw0MS41NDIgTDEyLjI0NSw0MS40MTQgTDEyLjI0NSw0MS4zNzEgQzEyLjI0NSw0MS4yNTQgMTIuMjQ1LDQwLjkyNSAxMi4yNDMsNDAuNzkzIEMxMi4yNCw0MC42ODYgMTIuMzAyLDQwLjU4MyAxMi40MzQsNDAuNTA4IEwxOC40NDYsMzcuMDM2IEMxOC41NzQsMzYuOTYyIDE4Ljc0NiwzNi45MjYgMTguOTI3LDM2LjkyNiBDMTkuMTQ1LDM2LjkyNiAxOS4zNzYsMzYuOTc5IDE5LjU1NCwzNy4wODIgQzE5Ljc0NywzNy4xOTQgMTkuODM5LDM3LjM0IDE5LjgyMiwzNy40NzQgTDIwLjAzMywzNy4wNzIgQzQxLjgwNiwyNC41ODUgODAuNjM2LDIuMzE4IDgwLjc3NywyLjIzNiBDODAuODk0LDIuMTY4IDgxLjU4MywxLjcyOSA4Mi4zMTEsMS43MDEgTTgyLjMxMSwwLjcwNCBMODIuMjcyLDAuNzA1IEM4MS42NTQsMC43MjggODAuOTg5LDAuOTQ5IDgwLjI5OCwxLjM2MSBMODAuMjc3LDEuMzczIEM4MC4xMjksMS40NTggNTkuNzY4LDEzLjEzNSAxOS43NTgsMzYuMDc5IEMxOS41LDM1Ljk4MSAxOS4yMTQsMzUuOTI5IDE4LjkyNywzNS45MjkgQzE4LjU2MiwzNS45MjkgMTguMjIzLDM2LjAxMyAxNy45NDcsMzYuMTczIEwxMS45MzUsMzkuNjQ0IEMxMS40OTMsMzkuODk5IDExLjIzNiw0MC4zMzQgMTEuMjQ2LDQwLjgxIEwxMS4yNDcsNDAuOTYgTDUuMTY3LDQ0LjQ0NyBDNC43OTQsNDQuNjQ2IDIuNjI1LDQ1Ljk3OCAxLjg3Nyw1MC4zNDUgTDEuODcxLDUwLjM4NCBDMS44NjIsNTAuNDU0IDAuOTUxLDU3LjU1NyAwLjk2NSw3MC4yNTkgQzAuOTc5LDgyLjg3OSAxLjU2OCw4Ny4zNzUgMi4xMzcsOTEuNzI0IEwyLjEzOSw5MS43MzkgQzIuNDQ3LDk0LjA5NCA1LjYxNCw5NC42NjIgNS45NzUsOTQuNzE5IEw2LjAwOSw5NC43MjMgQzYuMTEsOTQuNzM2IDYuMjEzLDk0Ljc0MiA2LjMxNCw5NC43NDIgQzYuNzksOTQuNzQyIDcuMjYsOTQuNjEgNy43MSw5NC4zNSBMODIuOTgzLDUwLjc5OCBDODQuNzk0LDQ5LjcyNyA4NS45ODIsNDcuMzc1IDg2LjUyNSw0My44MDEgQzg3LjcxMSwzNS45ODcgODguMjU5LDEwLjcwNSA4Ni4yMjQsMy41MDIgQzg1Ljk3MSwyLjYwOSA4NS41MiwxLjk3NSA4NC44ODEsMS42MiBMODQuNzQ5LDEuNTU4IEw4Mi42NjQsMC43NjkgQzgyLjU1MSwwLjcyNSA4Mi40MzEsMC43MDQgODIuMzExLDAuNzA0IiBpZD0iRmlsbC0yIiBmaWxsPSIjNDU1QTY0Ij48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTY2LjI2NywxMS41NjUgTDY3Ljc2MiwxMS45OTkgTDExLjQyMyw0NC4zMjUiIGlkPSJGaWxsLTMiIGZpbGw9IiNGRkZGRkYiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTIuMjAyLDkwLjU0NSBDMTIuMDI5LDkwLjU0NSAxMS44NjIsOTAuNDU1IDExLjc2OSw5MC4yOTUgQzExLjYzMiw5MC4wNTcgMTEuNzEzLDg5Ljc1MiAxMS45NTIsODkuNjE0IEwzMC4zODksNzguOTY5IEMzMC42MjgsNzguODMxIDMwLjkzMyw3OC45MTMgMzEuMDcxLDc5LjE1MiBDMzEuMjA4LDc5LjM5IDMxLjEyNyw3OS42OTYgMzAuODg4LDc5LjgzMyBMMTIuNDUxLDkwLjQ3OCBMMTIuMjAyLDkwLjU0NSIgaWQ9IkZpbGwtNCIgZmlsbD0iIzYwN0Q4QiI+PC9wYXRoPgogICAgICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik0xMy43NjQsNDIuNjU0IEwxMy42NTYsNDIuNTkyIEwxMy43MDIsNDIuNDIxIEwxOC44MzcsMzkuNDU3IEwxOS4wMDcsMzkuNTAyIEwxOC45NjIsMzkuNjczIEwxMy44MjcsNDIuNjM3IEwxMy43NjQsNDIuNjU0IiBpZD0iRmlsbC01IiBmaWxsPSIjNjA3RDhCIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTguNTIsOTAuMzc1IEw4LjUyLDQ2LjQyMSBMOC41ODMsNDYuMzg1IEw3NS44NCw3LjU1NCBMNzUuODQsNTEuNTA4IEw3NS43NzgsNTEuNTQ0IEw4LjUyLDkwLjM3NSBMOC41Miw5MC4zNzUgWiBNOC43Nyw0Ni41NjQgTDguNzcsODkuOTQ0IEw3NS41OTEsNTEuMzY1IEw3NS41OTEsNy45ODUgTDguNzcsNDYuNTY0IEw4Ljc3LDQ2LjU2NCBaIiBpZD0iRmlsbC02IiBmaWxsPSIjNjA3RDhCIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTI0Ljk4Niw4My4xODIgQzI0Ljc1Niw4My4zMzEgMjQuMzc0LDgzLjU2NiAyNC4xMzcsODMuNzA1IEwxMi42MzIsOTAuNDA2IEMxMi4zOTUsOTAuNTQ1IDEyLjQyNiw5MC42NTggMTIuNyw5MC42NTggTDEzLjI2NSw5MC42NTggQzEzLjU0LDkwLjY1OCAxMy45NTgsOTAuNTQ1IDE0LjE5NSw5MC40MDYgTDI1LjcsODMuNzA1IEMyNS45MzcsODMuNTY2IDI2LjEyOCw4My40NTIgMjYuMTI1LDgzLjQ0OSBDMjYuMTIyLDgzLjQ0NyAyNi4xMTksODMuMjIgMjYuMTE5LDgyLjk0NiBDMjYuMTE5LDgyLjY3MiAyNS45MzEsODIuNTY5IDI1LjcwMSw4Mi43MTkgTDI0Ljk4Niw4My4xODIiIGlkPSJGaWxsLTciIGZpbGw9IiM2MDdEOEIiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTMuMjY2LDkwLjc4MiBMMTIuNyw5MC43ODIgQzEyLjUsOTAuNzgyIDEyLjM4NCw5MC43MjYgMTIuMzU0LDkwLjYxNiBDMTIuMzI0LDkwLjUwNiAxMi4zOTcsOTAuMzk5IDEyLjU2OSw5MC4yOTkgTDI0LjA3NCw4My41OTcgQzI0LjMxLDgzLjQ1OSAyNC42ODksODMuMjI2IDI0LjkxOCw4My4wNzggTDI1LjYzMyw4Mi42MTQgQzI1LjcyMyw4Mi41NTUgMjUuODEzLDgyLjUyNSAyNS44OTksODIuNTI1IEMyNi4wNzEsODIuNTI1IDI2LjI0NCw4Mi42NTUgMjYuMjQ0LDgyLjk0NiBDMjYuMjQ0LDgzLjE2IDI2LjI0NSw4My4zMDkgMjYuMjQ3LDgzLjM4MyBMMjYuMjUzLDgzLjM4NyBMMjYuMjQ5LDgzLjQ1NiBDMjYuMjQ2LDgzLjUzMSAyNi4yNDYsODMuNTMxIDI1Ljc2Myw4My44MTIgTDE0LjI1OCw5MC41MTQgQzE0LDkwLjY2NSAxMy41NjQsOTAuNzgyIDEzLjI2Niw5MC43ODIgTDEzLjI2Niw5MC43ODIgWiBNMTIuNjY2LDkwLjUzMiBMMTIuNyw5MC41MzMgTDEzLjI2Niw5MC41MzMgQzEzLjUxOCw5MC41MzMgMTMuOTE1LDkwLjQyNSAxNC4xMzIsOTAuMjk5IEwyNS42MzcsODMuNTk3IEMyNS44MDUsODMuNDk5IDI1LjkzMSw4My40MjQgMjUuOTk4LDgzLjM4MyBDMjUuOTk0LDgzLjI5OSAyNS45OTQsODMuMTY1IDI1Ljk5NCw4Mi45NDYgTDI1Ljg5OSw4Mi43NzUgTDI1Ljc2OCw4Mi44MjQgTDI1LjA1NCw4My4yODcgQzI0LjgyMiw4My40MzcgMjQuNDM4LDgzLjY3MyAyNC4yLDgzLjgxMiBMMTIuNjk1LDkwLjUxNCBMMTIuNjY2LDkwLjUzMiBMMTIuNjY2LDkwLjUzMiBaIiBpZD0iRmlsbC04IiBmaWxsPSIjNjA3RDhCIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTEzLjI2Niw4OS44NzEgTDEyLjcsODkuODcxIEMxMi41LDg5Ljg3MSAxMi4zODQsODkuODE1IDEyLjM1NCw4OS43MDUgQzEyLjMyNCw4OS41OTUgMTIuMzk3LDg5LjQ4OCAxMi41NjksODkuMzg4IEwyNC4wNzQsODIuNjg2IEMyNC4zMzIsODIuNTM1IDI0Ljc2OCw4Mi40MTggMjUuMDY3LDgyLjQxOCBMMjUuNjMyLDgyLjQxOCBDMjUuODMyLDgyLjQxOCAyNS45NDgsODIuNDc0IDI1Ljk3OCw4Mi41ODQgQzI2LjAwOCw4Mi42OTQgMjUuOTM1LDgyLjgwMSAyNS43NjMsODIuOTAxIEwxNC4yNTgsODkuNjAzIEMxNCw4OS43NTQgMTMuNTY0LDg5Ljg3MSAxMy4yNjYsODkuODcxIEwxMy4yNjYsODkuODcxIFogTTEyLjY2Niw4OS42MjEgTDEyLjcsODkuNjIyIEwxMy4yNjYsODkuNjIyIEMxMy41MTgsODkuNjIyIDEzLjkxNSw4OS41MTUgMTQuMTMyLDg5LjM4OCBMMjUuNjM3LDgyLjY4NiBMMjUuNjY3LDgyLjY2OCBMMjUuNjMyLDgyLjY2NyBMMjUuMDY3LDgyLjY2NyBDMjQuODE1LDgyLjY2NyAyNC40MTgsODIuNzc1IDI0LjIsODIuOTAxIEwxMi42OTUsODkuNjAzIEwxMi42NjYsODkuNjIxIEwxMi42NjYsODkuNjIxIFoiIGlkPSJGaWxsLTkiIGZpbGw9IiM2MDdEOEIiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNMTIuMzcsOTAuODAxIEwxMi4zNyw4OS41NTQgTDEyLjM3LDkwLjgwMSIgaWQ9IkZpbGwtMTAiIGZpbGw9IiM2MDdEOEIiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNNi4xMyw5My45MDEgQzUuMzc5LDkzLjgwOCA0LjgxNiw5My4xNjQgNC42OTEsOTIuNTI1IEMzLjg2LDg4LjI4NyAzLjU0LDgzLjc0MyAzLjUyNiw3MS4xNzMgQzMuNTExLDU4LjM4OSA0LjQyMyw1MS40MjggNC40MjMsNTEuNDI4IEM1LjEzNCw0Ny4yODIgNy4yMSw0Ni4yMzYgNy4yMSw0Ni4yMzYgQzcuMjEsNDYuMjM2IDgxLjY2NywzLjI1IDgyLjA2OSwzLjAxNyBDODIuMjkyLDIuODg4IDg0LjU1NiwxLjQzMyA4NS4yNjQsMy45NCBDODcuMjE0LDEwLjg0IDg2Ljc1MiwzNS44MjcgODUuNTM5LDQzLjgxOCBDODUuMTUsNDYuMzgzIDg0LjI5MSw0OS4wMzMgODIuNDgzLDUwLjEwMSBMNy4yMSw5My42NTMgQzYuODI4LDkzLjg3NCA2LjQ2MSw5My45NDEgNi4xMyw5My45MDEgQzYuMTMsOTMuOTAxIDMuMzQ5LDkzLjQ2IDMuMTI5LDkxLjc3NiBDMi41NjgsODcuNDk1IDEuOTc3LDgyLjk5NSAxLjk2Miw3MC40MjUgQzEuOTQ4LDU3LjY0MSAyLjg2LDUwLjY4IDIuODYsNTAuNjggQzMuNTcsNDYuNTM0IDUuNjQ3LDQ1LjQ4OSA1LjY0Nyw0NS40ODkgQzUuNjQ2LDQ1LjQ4OSA4LjA2NSw0NC4wOTIgMTIuMjQ1LDQxLjY3OSBMMTMuMTE2LDQxLjU2IEwxOS43MTUsMzcuNzMgTDE5Ljc2MSwzNy4yNjkgTDYuMTMsOTMuOTAxIiBpZD0iRmlsbC0xMSIgZmlsbD0iI0ZBRkFGQSI+PC9wYXRoPgogICAgICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik02LjMxNyw5NC4xNjEgTDYuMTAyLDk0LjE0OCBMNi4xMDEsOTQuMTQ4IEw1Ljg1Nyw5NC4xMDEgQzUuMTM4LDkzLjk0NSAzLjA4NSw5My4zNjUgMi44ODEsOTEuODA5IEMyLjMxMyw4Ny40NjkgMS43MjcsODIuOTk2IDEuNzEzLDcwLjQyNSBDMS42OTksNTcuNzcxIDIuNjA0LDUwLjcxOCAyLjYxMyw1MC42NDggQzMuMzM4LDQ2LjQxNyA1LjQ0NSw0NS4zMSA1LjUzNSw0NS4yNjYgTDEyLjE2Myw0MS40MzkgTDEzLjAzMyw0MS4zMiBMMTkuNDc5LDM3LjU3OCBMMTkuNTEzLDM3LjI0NCBDMTkuNTI2LDM3LjEwNyAxOS42NDcsMzcuMDA4IDE5Ljc4NiwzNy4wMjEgQzE5LjkyMiwzNy4wMzQgMjAuMDIzLDM3LjE1NiAyMC4wMDksMzcuMjkzIEwxOS45NSwzNy44ODIgTDEzLjE5OCw0MS44MDEgTDEyLjMyOCw0MS45MTkgTDUuNzcyLDQ1LjcwNCBDNS43NDEsNDUuNzIgMy43ODIsNDYuNzcyIDMuMTA2LDUwLjcyMiBDMy4wOTksNTAuNzgyIDIuMTk4LDU3LjgwOCAyLjIxMiw3MC40MjQgQzIuMjI2LDgyLjk2MyAyLjgwOSw4Ny40MiAzLjM3Myw5MS43MjkgQzMuNDY0LDkyLjQyIDQuMDYyLDkyLjg4MyA0LjY4Miw5My4xODEgQzQuNTY2LDkyLjk4NCA0LjQ4Niw5Mi43NzYgNC40NDYsOTIuNTcyIEMzLjY2NSw4OC41ODggMy4yOTEsODQuMzcgMy4yNzYsNzEuMTczIEMzLjI2Miw1OC41MiA0LjE2Nyw1MS40NjYgNC4xNzYsNTEuMzk2IEM0LjkwMSw0Ny4xNjUgNy4wMDgsNDYuMDU5IDcuMDk4LDQ2LjAxNCBDNy4wOTQsNDYuMDE1IDgxLjU0MiwzLjAzNCA4MS45NDQsMi44MDIgTDgxLjk3MiwyLjc4NSBDODIuODc2LDIuMjQ3IDgzLjY5MiwyLjA5NyA4NC4zMzIsMi4zNTIgQzg0Ljg4NywyLjU3MyA4NS4yODEsMy4wODUgODUuNTA0LDMuODcyIEM4Ny41MTgsMTEgODYuOTY0LDM2LjA5MSA4NS43ODUsNDMuODU1IEM4NS4yNzgsNDcuMTk2IDg0LjIxLDQ5LjM3IDgyLjYxLDUwLjMxNyBMNy4zMzUsOTMuODY5IEM2Ljk5OSw5NC4wNjMgNi42NTgsOTQuMTYxIDYuMzE3LDk0LjE2MSBMNi4zMTcsOTQuMTYxIFogTTYuMTcsOTMuNjU0IEM2LjQ2Myw5My42OSA2Ljc3NCw5My42MTcgNy4wODUsOTMuNDM3IEw4Mi4zNTgsNDkuODg2IEM4NC4xODEsNDguODA4IDg0Ljk2LDQ1Ljk3MSA4NS4yOTIsNDMuNzggQzg2LjQ2NiwzNi4wNDkgODcuMDIzLDExLjA4NSA4NS4wMjQsNC4wMDggQzg0Ljg0NiwzLjM3NyA4NC41NTEsMi45NzYgODQuMTQ4LDIuODE2IEM4My42NjQsMi42MjMgODIuOTgyLDIuNzY0IDgyLjIyNywzLjIxMyBMODIuMTkzLDMuMjM0IEM4MS43OTEsMy40NjYgNy4zMzUsNDYuNDUyIDcuMzM1LDQ2LjQ1MiBDNy4zMDQsNDYuNDY5IDUuMzQ2LDQ3LjUyMSA0LjY2OSw1MS40NzEgQzQuNjYyLDUxLjUzIDMuNzYxLDU4LjU1NiAzLjc3NSw3MS4xNzMgQzMuNzksODQuMzI4IDQuMTYxLDg4LjUyNCA0LjkzNiw5Mi40NzYgQzUuMDI2LDkyLjkzNyA1LjQxMiw5My40NTkgNS45NzMsOTMuNjE1IEM2LjA4Nyw5My42NCA2LjE1OCw5My42NTIgNi4xNjksOTMuNjU0IEw2LjE3LDkzLjY1NCBMNi4xNyw5My42NTQgWiIgaWQ9IkZpbGwtMTIiIGZpbGw9IiM0NTVBNjQiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNNy4zMTcsNjguOTgyIEM3LjgwNiw2OC43MDEgOC4yMDIsNjguOTI2IDguMjAyLDY5LjQ4NyBDOC4yMDIsNzAuMDQ3IDcuODA2LDcwLjczIDcuMzE3LDcxLjAxMiBDNi44MjksNzEuMjk0IDYuNDMzLDcxLjA2OSA2LjQzMyw3MC41MDggQzYuNDMzLDY5Ljk0OCA2LjgyOSw2OS4yNjUgNy4zMTcsNjguOTgyIiBpZD0iRmlsbC0xMyIgZmlsbD0iI0ZGRkZGRiI+PC9wYXRoPgogICAgICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik02LjkyLDcxLjEzMyBDNi42MzEsNzEuMTMzIDYuNDMzLDcwLjkwNSA2LjQzMyw3MC41MDggQzYuNDMzLDY5Ljk0OCA2LjgyOSw2OS4yNjUgNy4zMTcsNjguOTgyIEM3LjQ2LDY4LjkgNy41OTUsNjguODYxIDcuNzE0LDY4Ljg2MSBDOC4wMDMsNjguODYxIDguMjAyLDY5LjA5IDguMjAyLDY5LjQ4NyBDOC4yMDIsNzAuMDQ3IDcuODA2LDcwLjczIDcuMzE3LDcxLjAxMiBDNy4xNzQsNzEuMDk0IDcuMDM5LDcxLjEzMyA2LjkyLDcxLjEzMyBNNy43MTQsNjguNjc0IEM3LjU1Nyw2OC42NzQgNy4zOTIsNjguNzIzIDcuMjI0LDY4LjgyMSBDNi42NzYsNjkuMTM4IDYuMjQ2LDY5Ljg3OSA2LjI0Niw3MC41MDggQzYuMjQ2LDcwLjk5NCA2LjUxNyw3MS4zMiA2LjkyLDcxLjMyIEM3LjA3OCw3MS4zMiA3LjI0Myw3MS4yNzEgNy40MTEsNzEuMTc0IEM3Ljk1OSw3MC44NTcgOC4zODksNzAuMTE3IDguMzg5LDY5LjQ4NyBDOC4zODksNjkuMDAxIDguMTE3LDY4LjY3NCA3LjcxNCw2OC42NzQiIGlkPSJGaWxsLTE0IiBmaWxsPSIjODA5N0EyIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTYuOTIsNzAuOTQ3IEM2LjY0OSw3MC45NDcgNi42MjEsNzAuNjQgNi42MjEsNzAuNTA4IEM2LjYyMSw3MC4wMTcgNi45ODIsNjkuMzkyIDcuNDExLDY5LjE0NSBDNy41MjEsNjkuMDgyIDcuNjI1LDY5LjA0OSA3LjcxNCw2OS4wNDkgQzcuOTg2LDY5LjA0OSA4LjAxNSw2OS4zNTUgOC4wMTUsNjkuNDg3IEM4LjAxNSw2OS45NzggNy42NTIsNzAuNjAzIDcuMjI0LDcwLjg1MSBDNy4xMTUsNzAuOTE0IDcuMDEsNzAuOTQ3IDYuOTIsNzAuOTQ3IE03LjcxNCw2OC44NjEgQzcuNTk1LDY4Ljg2MSA3LjQ2LDY4LjkgNy4zMTcsNjguOTgyIEM2LjgyOSw2OS4yNjUgNi40MzMsNjkuOTQ4IDYuNDMzLDcwLjUwOCBDNi40MzMsNzAuOTA1IDYuNjMxLDcxLjEzMyA2LjkyLDcxLjEzMyBDNy4wMzksNzEuMTMzIDcuMTc0LDcxLjA5NCA3LjMxNyw3MS4wMTIgQzcuODA2LDcwLjczIDguMjAyLDcwLjA0NyA4LjIwMiw2OS40ODcgQzguMjAyLDY5LjA5IDguMDAzLDY4Ljg2MSA3LjcxNCw2OC44NjEiIGlkPSJGaWxsLTE1IiBmaWxsPSIjODA5N0EyIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTcuNDQ0LDg1LjM1IEM3LjcwOCw4NS4xOTggNy45MjEsODUuMzE5IDcuOTIxLDg1LjYyMiBDNy45MjEsODUuOTI1IDcuNzA4LDg2LjI5MiA3LjQ0NCw4Ni40NDQgQzcuMTgxLDg2LjU5NyA2Ljk2Nyw4Ni40NzUgNi45NjcsODYuMTczIEM2Ljk2Nyw4NS44NzEgNy4xODEsODUuNTAyIDcuNDQ0LDg1LjM1IiBpZD0iRmlsbC0xNiIgZmlsbD0iI0ZGRkZGRiI+PC9wYXRoPgogICAgICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik03LjIzLDg2LjUxIEM3LjA3NCw4Ni41MSA2Ljk2Nyw4Ni4zODcgNi45NjcsODYuMTczIEM2Ljk2Nyw4NS44NzEgNy4xODEsODUuNTAyIDcuNDQ0LDg1LjM1IEM3LjUyMSw4NS4zMDUgNy41OTQsODUuMjg0IDcuNjU4LDg1LjI4NCBDNy44MTQsODUuMjg0IDcuOTIxLDg1LjQwOCA3LjkyMSw4NS42MjIgQzcuOTIxLDg1LjkyNSA3LjcwOCw4Ni4yOTIgNy40NDQsODYuNDQ0IEM3LjM2Nyw4Ni40ODkgNy4yOTQsODYuNTEgNy4yMyw4Ni41MSBNNy42NTgsODUuMDk4IEM3LjU1OCw4NS4wOTggNy40NTUsODUuMTI3IDcuMzUxLDg1LjE4OCBDNy4wMzEsODUuMzczIDYuNzgxLDg1LjgwNiA2Ljc4MSw4Ni4xNzMgQzYuNzgxLDg2LjQ4MiA2Ljk2Niw4Ni42OTcgNy4yMyw4Ni42OTcgQzcuMzMsODYuNjk3IDcuNDMzLDg2LjY2NiA3LjUzOCw4Ni42MDcgQzcuODU4LDg2LjQyMiA4LjEwOCw4NS45ODkgOC4xMDgsODUuNjIyIEM4LjEwOCw4NS4zMTMgNy45MjMsODUuMDk4IDcuNjU4LDg1LjA5OCIgaWQ9IkZpbGwtMTciIGZpbGw9IiM4MDk3QTIiPjwvcGF0aD4KICAgICAgICAgICAgICAgICAgICA8cGF0aCBkPSJNNy4yMyw4Ni4zMjIgTDcuMTU0LDg2LjE3MyBDNy4xNTQsODUuOTM4IDcuMzMzLDg1LjYyOSA3LjUzOCw4NS41MTIgTDcuNjU4LDg1LjQ3MSBMNy43MzQsODUuNjIyIEM3LjczNCw4NS44NTYgNy41NTUsODYuMTY0IDcuMzUxLDg2LjI4MiBMNy4yMyw4Ni4zMjIgTTcuNjU4LDg1LjI4NCBDNy41OTQsODUuMjg0IDcuNTIxLDg1LjMwNSA3LjQ0NCw4NS4zNSBDNy4xODEsODUuNTAyIDYuOTY3LDg1Ljg3MSA2Ljk2Nyw4Ni4xNzMgQzYuOTY3LDg2LjM4NyA3LjA3NCw4Ni41MSA3LjIzLDg2LjUxIEM3LjI5NCw4Ni41MSA3LjM2Nyw4Ni40ODkgNy40NDQsODYuNDQ0IEM3LjcwOCw4Ni4yOTIgNy45MjEsODUuOTI1IDcuOTIxLDg1LjYyMiBDNy45MjEsODUuNDA4IDcuODE0LDg1LjI4NCA3LjY1OCw4NS4yODQiIGlkPSJGaWxsLTE4IiBmaWxsPSIjODA5N0EyIj48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTc3LjI3OCw3Ljc2OSBMNzcuMjc4LDUxLjQzNiBMMTAuMjA4LDkwLjE2IEwxMC4yMDgsNDYuNDkzIEw3Ny4yNzgsNy43NjkiIGlkPSJGaWxsLTE5IiBmaWxsPSIjNDU1QTY0Ij48L3BhdGg+CiAgICAgICAgICAgICAgICAgICAgPHBhdGggZD0iTTEwLjA4Myw5MC4zNzUgTDEwLjA4Myw0Ni40MjEgTDEwLjE0Niw0Ni4zODUgTDc3LjQwMyw3LjU1NCBMNzcuNDAzLDUxLjUwOCBMNzcuMzQxLDUxLjU0NCBMMTAuMDgzLDkwLjM3NSBMMTAuMDgzLDkwLjM3NSBaIE0xMC4zMzMsNDYuNTY0IEwxMC4zMzMsODkuOTQ0IEw3Ny4xNTQsNTEuMzY1IEw3Ny4xNTQsNy45ODUgTDEwLjMzMyw0Ni41NjQgTDEwLjMzMyw0Ni41NjQgWiIgaWQ9IkZpbGwtMjAiIGZpbGw9IiM2MDdEOEIiPjwvcGF0aD4KICAgICAgICAgICAgICAgIDwvZz4KICAgICAgICAgICAgICAgIDxwYXRoIGQ9Ik0xMjUuNzM3LDg4LjY0NyBMMTE4LjA5OCw5MS45ODEgTDExOC4wOTgsODQgTDEwNi42MzksODguNzEzIEwxMDYuNjM5LDk2Ljk4MiBMOTksMTAwLjMxNSBMMTEyLjM2OSwxMDMuOTYxIEwxMjUuNzM3LDg4LjY0NyIgaWQ9IkltcG9ydGVkLUxheWVycy1Db3B5LTIiIGZpbGw9IiM0NTVBNjQiIHNrZXRjaDp0eXBlPSJNU1NoYXBlR3JvdXAiPjwvcGF0aD4KICAgICAgICAgICAgPC9nPgogICAgICAgIDwvZz4KICAgIDwvZz4KPC9zdmc+';
  function RotateInstructions() {
    this.loadIcon_();
    var overlay = document.createElement('div');
    var s = overlay.style;
    s.position = 'fixed';
    s.top = 0;
    s.right = 0;
    s.bottom = 0;
    s.left = 0;
    s.backgroundColor = 'gray';
    s.fontFamily = 'sans-serif';
    s.zIndex = 1000000;
    var img = document.createElement('img');
    img.src = this.icon;
    var s = img.style;
    s.marginLeft = '25%';
    s.marginTop = '25%';
    s.width = '50%';
    overlay.appendChild(img);
    var text = document.createElement('div');
    var s = text.style;
    s.textAlign = 'center';
    s.fontSize = '16px';
    s.lineHeight = '24px';
    s.margin = '24px 25%';
    s.width = '50%';
    text.innerHTML = 'Place your phone into your Cardboard viewer.';
    overlay.appendChild(text);
    var snackbar = document.createElement('div');
    var s = snackbar.style;
    s.backgroundColor = '#CFD8DC';
    s.position = 'fixed';
    s.bottom = 0;
    s.width = '100%';
    s.height = '48px';
    s.padding = '14px 24px';
    s.boxSizing = 'border-box';
    s.color = '#656A6B';
    overlay.appendChild(snackbar);
    var snackbarText = document.createElement('div');
    snackbarText.style.float = 'left';
    snackbarText.innerHTML = 'No Cardboard viewer?';
    var snackbarButton = document.createElement('a');
    snackbarButton.href = 'https://www.google.com/get/cardboard/get-cardboard/';
    snackbarButton.innerHTML = 'get one';
    snackbarButton.target = '_blank';
    var s = snackbarButton.style;
    s.float = 'right';
    s.fontWeight = 600;
    s.textTransform = 'uppercase';
    s.borderLeft = '1px solid gray';
    s.paddingLeft = '24px';
    s.textDecoration = 'none';
    s.color = '#656A6B';
    snackbar.appendChild(snackbarText);
    snackbar.appendChild(snackbarButton);
    this.overlay = overlay;
    this.text = text;
    this.hide();
  }
  RotateInstructions.prototype.show = function (parent) {
    if (!parent && !this.overlay.parentElement) {
      document.body.appendChild(this.overlay);
    } else if (parent) {
      if (this.overlay.parentElement && this.overlay.parentElement != parent) this.overlay.parentElement.removeChild(this.overlay);
      parent.appendChild(this.overlay);
    }
    this.overlay.style.display = 'block';
    var img = this.overlay.querySelector('img');
    var s = img.style;
    if (isLandscapeMode()) {
      s.width = '20%';
      s.marginLeft = '40%';
      s.marginTop = '3%';
    } else {
      s.width = '50%';
      s.marginLeft = '25%';
      s.marginTop = '25%';
    }
  };
  RotateInstructions.prototype.hide = function () {
    this.overlay.style.display = 'none';
  };
  RotateInstructions.prototype.showTemporarily = function (ms, parent) {
    this.show(parent);
    this.timer = setTimeout(this.hide.bind(this), ms);
  };
  RotateInstructions.prototype.disableShowTemporarily = function () {
    clearTimeout(this.timer);
  };
  RotateInstructions.prototype.update = function () {
    this.disableShowTemporarily();
    if (!isLandscapeMode() && isMobile()) {
      this.show();
    } else {
      this.hide();
    }
  };
  RotateInstructions.prototype.loadIcon_ = function () {
    this.icon = base64('image/svg+xml', rotateInstructionsAsset);
  };
  var DEFAULT_VIEWER = 'CardboardV1';
  var VIEWER_KEY = 'WEBVR_CARDBOARD_VIEWER';
  var CLASS_NAME = 'webvr-polyfill-viewer-selector';
  function ViewerSelector(defaultViewer) {
    try {
      this.selectedKey = localStorage.getItem(VIEWER_KEY);
    } catch (error) {
      console.error('Failed to load viewer profile: %s', error);
    }
    if (!this.selectedKey) {
      this.selectedKey = defaultViewer || DEFAULT_VIEWER;
    }
    this.dialog = this.createDialog_(DeviceInfo.Viewers);
    this.root = null;
    this.onChangeCallbacks_ = [];
  }
  ViewerSelector.prototype.show = function (root) {
    this.root = root;
    root.appendChild(this.dialog);
    var selected = this.dialog.querySelector('#' + this.selectedKey);
    selected.checked = true;
    this.dialog.style.display = 'block';
  };
  ViewerSelector.prototype.hide = function () {
    if (this.root && this.root.contains(this.dialog)) {
      this.root.removeChild(this.dialog);
    }
    this.dialog.style.display = 'none';
  };
  ViewerSelector.prototype.getCurrentViewer = function () {
    return DeviceInfo.Viewers[this.selectedKey];
  };
  ViewerSelector.prototype.getSelectedKey_ = function () {
    var input = this.dialog.querySelector('input[name=field]:checked');
    if (input) {
      return input.id;
    }
    return null;
  };
  ViewerSelector.prototype.onChange = function (cb) {
    this.onChangeCallbacks_.push(cb);
  };
  ViewerSelector.prototype.fireOnChange_ = function (viewer) {
    for (var i = 0; i < this.onChangeCallbacks_.length; i++) {
      this.onChangeCallbacks_[i](viewer);
    }
  };
  ViewerSelector.prototype.onSave_ = function () {
    this.selectedKey = this.getSelectedKey_();
    if (!this.selectedKey || !DeviceInfo.Viewers[this.selectedKey]) {
      console.error('ViewerSelector.onSave_: this should never happen!');
      return;
    }
    this.fireOnChange_(DeviceInfo.Viewers[this.selectedKey]);
    try {
      localStorage.setItem(VIEWER_KEY, this.selectedKey);
    } catch (error) {
      console.error('Failed to save viewer profile: %s', error);
    }
    this.hide();
  };
  ViewerSelector.prototype.createDialog_ = function (options) {
    var container = document.createElement('div');
    container.classList.add(CLASS_NAME);
    container.style.display = 'none';
    var overlay = document.createElement('div');
    var s = overlay.style;
    s.position = 'fixed';
    s.left = 0;
    s.top = 0;
    s.width = '100%';
    s.height = '100%';
    s.background = 'rgba(0, 0, 0, 0.3)';
    overlay.addEventListener('click', this.hide.bind(this));
    var width = 280;
    var dialog = document.createElement('div');
    var s = dialog.style;
    s.boxSizing = 'border-box';
    s.position = 'fixed';
    s.top = '24px';
    s.left = '50%';
    s.marginLeft = -width / 2 + 'px';
    s.width = width + 'px';
    s.padding = '24px';
    s.overflow = 'hidden';
    s.background = '#fafafa';
    s.fontFamily = "'Roboto', sans-serif";
    s.boxShadow = '0px 5px 20px #666';
    dialog.appendChild(this.createH1_('Select your viewer'));
    for (var id in options) {
      dialog.appendChild(this.createChoice_(id, options[id].label));
    }
    dialog.appendChild(this.createButton_('Save', this.onSave_.bind(this)));
    container.appendChild(overlay);
    container.appendChild(dialog);
    return container;
  };
  ViewerSelector.prototype.createH1_ = function (name) {
    var h1 = document.createElement('h1');
    var s = h1.style;
    s.color = 'black';
    s.fontSize = '20px';
    s.fontWeight = 'bold';
    s.marginTop = 0;
    s.marginBottom = '24px';
    h1.innerHTML = name;
    return h1;
  };
  ViewerSelector.prototype.createChoice_ = function (id, name) {
    var div = document.createElement('div');
    div.style.marginTop = '8px';
    div.style.color = 'black';
    var input = document.createElement('input');
    input.style.fontSize = '30px';
    input.setAttribute('id', id);
    input.setAttribute('type', 'radio');
    input.setAttribute('value', id);
    input.setAttribute('name', 'field');
    var label = document.createElement('label');
    label.style.marginLeft = '4px';
    label.setAttribute('for', id);
    label.innerHTML = name;
    div.appendChild(input);
    div.appendChild(label);
    return div;
  };
  ViewerSelector.prototype.createButton_ = function (label, onclick) {
    var button = document.createElement('button');
    button.innerHTML = label;
    var s = button.style;
    s.float = 'right';
    s.textTransform = 'uppercase';
    s.color = '#1094f7';
    s.fontSize = '14px';
    s.letterSpacing = 0;
    s.border = 0;
    s.background = 'none';
    s.marginTop = '16px';
    button.addEventListener('click', onclick);
    return button;
  };
  var commonjsGlobal$$1 = typeof window !== 'undefined' ? window : typeof commonjsGlobal$1 !== 'undefined' ? commonjsGlobal$1 : typeof self !== 'undefined' ? self : {};
  function unwrapExports$$1 (x) {
  	return x && x.__esModule ? x['default'] : x;
  }
  function createCommonjsModule$$1(fn, module) {
  	return module = { exports: {} }, fn(module, module.exports), module.exports;
  }
  var NoSleep = createCommonjsModule$$1(function (module, exports) {
  (function webpackUniversalModuleDefinition(root, factory) {
  	module.exports = factory();
  })(commonjsGlobal$$1, function() {
  return          (function(modules) {
           	var installedModules = {};
           	function __webpack_require__(moduleId) {
           		if(installedModules[moduleId]) {
           			return installedModules[moduleId].exports;
           		}
           		var module = installedModules[moduleId] = {
           			i: moduleId,
           			l: false,
           			exports: {}
           		};
           		modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
           		module.l = true;
           		return module.exports;
           	}
           	__webpack_require__.m = modules;
           	__webpack_require__.c = installedModules;
           	__webpack_require__.d = function(exports, name, getter) {
           		if(!__webpack_require__.o(exports, name)) {
           			Object.defineProperty(exports, name, {
           				configurable: false,
           				enumerable: true,
           				get: getter
           			});
           		}
           	};
           	__webpack_require__.n = function(module) {
           		var getter = module && module.__esModule ?
           			function getDefault() { return module['default']; } :
           			function getModuleExports() { return module; };
           		__webpack_require__.d(getter, 'a', getter);
           		return getter;
           	};
           	__webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
           	__webpack_require__.p = "";
           	return __webpack_require__(__webpack_require__.s = 0);
           })
           ([
        (function(module, exports, __webpack_require__) {
  var _createClass = function () { function defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } return function (Constructor, protoProps, staticProps) { if (protoProps) defineProperties(Constructor.prototype, protoProps); if (staticProps) defineProperties(Constructor, staticProps); return Constructor; }; }();
  function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } }
  var mediaFile = __webpack_require__(1);
  var oldIOS = typeof navigator !== 'undefined' && parseFloat(('' + (/CPU.*OS ([0-9_]{3,4})[0-9_]{0,1}|(CPU like).*AppleWebKit.*Mobile/i.exec(navigator.userAgent) || [0, ''])[1]).replace('undefined', '3_2').replace('_', '.').replace('_', '')) < 10 && !window.MSStream;
  var NoSleep = function () {
    function NoSleep() {
      _classCallCheck(this, NoSleep);
      if (oldIOS) {
        this.noSleepTimer = null;
      } else {
        this.noSleepVideo = document.createElement('video');
        this.noSleepVideo.setAttribute('playsinline', '');
        this.noSleepVideo.setAttribute('src', mediaFile);
        this.noSleepVideo.addEventListener('timeupdate', function (e) {
          if (this.noSleepVideo.currentTime > 0.5) {
            this.noSleepVideo.currentTime = Math.random();
          }
        }.bind(this));
      }
    }
    _createClass(NoSleep, [{
      key: 'enable',
      value: function enable() {
        if (oldIOS) {
          this.disable();
          this.noSleepTimer = window.setInterval(function () {
            window.location.href = '/';
            window.setTimeout(window.stop, 0);
          }, 15000);
        } else {
          this.noSleepVideo.play();
        }
      }
    }, {
      key: 'disable',
      value: function disable() {
        if (oldIOS) {
          if (this.noSleepTimer) {
            window.clearInterval(this.noSleepTimer);
            this.noSleepTimer = null;
          }
        } else {
          this.noSleepVideo.pause();
        }
      }
    }]);
    return NoSleep;
  }();
  module.exports = NoSleep;
        }),
        (function(module, exports, __webpack_require__) {
  module.exports = 'data:video/mp4;base64,AAAAIGZ0eXBtcDQyAAACAGlzb21pc28yYXZjMW1wNDEAAAAIZnJlZQAACKBtZGF0AAAC8wYF///v3EXpvebZSLeWLNgg2SPu73gyNjQgLSBjb3JlIDE0MiByMjQ3OSBkZDc5YTYxIC0gSC4yNjQvTVBFRy00IEFWQyBjb2RlYyAtIENvcHlsZWZ0IDIwMDMtMjAxNCAtIGh0dHA6Ly93d3cudmlkZW9sYW4ub3JnL3gyNjQuaHRtbCAtIG9wdGlvbnM6IGNhYmFjPTEgcmVmPTEgZGVibG9jaz0xOjA6MCBhbmFseXNlPTB4MToweDExMSBtZT1oZXggc3VibWU9MiBwc3k9MSBwc3lfcmQ9MS4wMDowLjAwIG1peGVkX3JlZj0wIG1lX3JhbmdlPTE2IGNocm9tYV9tZT0xIHRyZWxsaXM9MCA4eDhkY3Q9MCBjcW09MCBkZWFkem9uZT0yMSwxMSBmYXN0X3Bza2lwPTEgY2hyb21hX3FwX29mZnNldD0wIHRocmVhZHM9NiBsb29rYWhlYWRfdGhyZWFkcz0xIHNsaWNlZF90aHJlYWRzPTAgbnI9MCBkZWNpbWF0ZT0xIGludGVybGFjZWQ9MCBibHVyYXlfY29tcGF0PTAgY29uc3RyYWluZWRfaW50cmE9MCBiZnJhbWVzPTMgYl9weXJhbWlkPTIgYl9hZGFwdD0xIGJfYmlhcz0wIGRpcmVjdD0xIHdlaWdodGI9MSBvcGVuX2dvcD0wIHdlaWdodHA9MSBrZXlpbnQ9MzAwIGtleWludF9taW49MzAgc2NlbmVjdXQ9NDAgaW50cmFfcmVmcmVzaD0wIHJjX2xvb2thaGVhZD0xMCByYz1jcmYgbWJ0cmVlPTEgY3JmPTIwLjAgcWNvbXA9MC42MCBxcG1pbj0wIHFwbWF4PTY5IHFwc3RlcD00IHZidl9tYXhyYXRlPTIwMDAwIHZidl9idWZzaXplPTI1MDAwIGNyZl9tYXg9MC4wIG5hbF9ocmQ9bm9uZSBmaWxsZXI9MCBpcF9yYXRpbz0xLjQwIGFxPTE6MS4wMACAAAAAOWWIhAA3//p+C7v8tDDSTjf97w55i3SbRPO4ZY+hkjD5hbkAkL3zpJ6h/LR1CAABzgB1kqqzUorlhQAAAAxBmiQYhn/+qZYADLgAAAAJQZ5CQhX/AAj5IQADQGgcIQADQGgcAAAACQGeYUQn/wALKCEAA0BoHAAAAAkBnmNEJ/8ACykhAANAaBwhAANAaBwAAAANQZpoNExDP/6plgAMuSEAA0BoHAAAAAtBnoZFESwr/wAI+SEAA0BoHCEAA0BoHAAAAAkBnqVEJ/8ACykhAANAaBwAAAAJAZ6nRCf/AAsoIQADQGgcIQADQGgcAAAADUGarDRMQz/+qZYADLghAANAaBwAAAALQZ7KRRUsK/8ACPkhAANAaBwAAAAJAZ7pRCf/AAsoIQADQGgcIQADQGgcAAAACQGe60Qn/wALKCEAA0BoHAAAAA1BmvA0TEM//qmWAAy5IQADQGgcIQADQGgcAAAAC0GfDkUVLCv/AAj5IQADQGgcAAAACQGfLUQn/wALKSEAA0BoHCEAA0BoHAAAAAkBny9EJ/8ACyghAANAaBwAAAANQZs0NExDP/6plgAMuCEAA0BoHAAAAAtBn1JFFSwr/wAI+SEAA0BoHCEAA0BoHAAAAAkBn3FEJ/8ACyghAANAaBwAAAAJAZ9zRCf/AAsoIQADQGgcIQADQGgcAAAADUGbeDRMQz/+qZYADLkhAANAaBwAAAALQZ+WRRUsK/8ACPghAANAaBwhAANAaBwAAAAJAZ+1RCf/AAspIQADQGgcAAAACQGft0Qn/wALKSEAA0BoHCEAA0BoHAAAAA1Bm7w0TEM//qmWAAy4IQADQGgcAAAAC0Gf2kUVLCv/AAj5IQADQGgcAAAACQGf+UQn/wALKCEAA0BoHCEAA0BoHAAAAAkBn/tEJ/8ACykhAANAaBwAAAANQZvgNExDP/6plgAMuSEAA0BoHCEAA0BoHAAAAAtBnh5FFSwr/wAI+CEAA0BoHAAAAAkBnj1EJ/8ACyghAANAaBwhAANAaBwAAAAJAZ4/RCf/AAspIQADQGgcAAAADUGaJDRMQz/+qZYADLghAANAaBwAAAALQZ5CRRUsK/8ACPkhAANAaBwhAANAaBwAAAAJAZ5hRCf/AAsoIQADQGgcAAAACQGeY0Qn/wALKSEAA0BoHCEAA0BoHAAAAA1Bmmg0TEM//qmWAAy5IQADQGgcAAAAC0GehkUVLCv/AAj5IQADQGgcIQADQGgcAAAACQGepUQn/wALKSEAA0BoHAAAAAkBnqdEJ/8ACyghAANAaBwAAAANQZqsNExDP/6plgAMuCEAA0BoHCEAA0BoHAAAAAtBnspFFSwr/wAI+SEAA0BoHAAAAAkBnulEJ/8ACyghAANAaBwhAANAaBwAAAAJAZ7rRCf/AAsoIQADQGgcAAAADUGa8DRMQz/+qZYADLkhAANAaBwhAANAaBwAAAALQZ8ORRUsK/8ACPkhAANAaBwAAAAJAZ8tRCf/AAspIQADQGgcIQADQGgcAAAACQGfL0Qn/wALKCEAA0BoHAAAAA1BmzQ0TEM//qmWAAy4IQADQGgcAAAAC0GfUkUVLCv/AAj5IQADQGgcIQADQGgcAAAACQGfcUQn/wALKCEAA0BoHAAAAAkBn3NEJ/8ACyghAANAaBwhAANAaBwAAAANQZt4NExC//6plgAMuSEAA0BoHAAAAAtBn5ZFFSwr/wAI+CEAA0BoHCEAA0BoHAAAAAkBn7VEJ/8ACykhAANAaBwAAAAJAZ+3RCf/AAspIQADQGgcAAAADUGbuzRMQn/+nhAAYsAhAANAaBwhAANAaBwAAAAJQZ/aQhP/AAspIQADQGgcAAAACQGf+UQn/wALKCEAA0BoHCEAA0BoHCEAA0BoHCEAA0BoHCEAA0BoHCEAA0BoHAAACiFtb292AAAAbG12aGQAAAAA1YCCX9WAgl8AAAPoAAAH/AABAAABAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAAAAGGlvZHMAAAAAEICAgAcAT////v7/AAAF+XRyYWsAAABcdGtoZAAAAAPVgIJf1YCCXwAAAAEAAAAAAAAH0AAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAEAAAAAAygAAAMoAAAAAACRlZHRzAAAAHGVsc3QAAAAAAAAAAQAAB9AAABdwAAEAAAAABXFtZGlhAAAAIG1kaGQAAAAA1YCCX9WAgl8AAV+QAAK/IFXEAAAAAAAtaGRscgAAAAAAAAAAdmlkZQAAAAAAAAAAAAAAAFZpZGVvSGFuZGxlcgAAAAUcbWluZgAAABR2bWhkAAAAAQAAAAAAAAAAAAAAJGRpbmYAAAAcZHJlZgAAAAAAAAABAAAADHVybCAAAAABAAAE3HN0YmwAAACYc3RzZAAAAAAAAAABAAAAiGF2YzEAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAygDKAEgAAABIAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY//8AAAAyYXZjQwFNQCj/4QAbZ01AKOyho3ySTUBAQFAAAAMAEAAr8gDxgxlgAQAEaO+G8gAAABhzdHRzAAAAAAAAAAEAAAA8AAALuAAAABRzdHNzAAAAAAAAAAEAAAABAAAB8GN0dHMAAAAAAAAAPAAAAAEAABdwAAAAAQAAOpgAAAABAAAXcAAAAAEAAAAAAAAAAQAAC7gAAAABAAA6mAAAAAEAABdwAAAAAQAAAAAAAAABAAALuAAAAAEAADqYAAAAAQAAF3AAAAABAAAAAAAAAAEAAAu4AAAAAQAAOpgAAAABAAAXcAAAAAEAAAAAAAAAAQAAC7gAAAABAAA6mAAAAAEAABdwAAAAAQAAAAAAAAABAAALuAAAAAEAADqYAAAAAQAAF3AAAAABAAAAAAAAAAEAAAu4AAAAAQAAOpgAAAABAAAXcAAAAAEAAAAAAAAAAQAAC7gAAAABAAA6mAAAAAEAABdwAAAAAQAAAAAAAAABAAALuAAAAAEAADqYAAAAAQAAF3AAAAABAAAAAAAAAAEAAAu4AAAAAQAAOpgAAAABAAAXcAAAAAEAAAAAAAAAAQAAC7gAAAABAAA6mAAAAAEAABdwAAAAAQAAAAAAAAABAAALuAAAAAEAADqYAAAAAQAAF3AAAAABAAAAAAAAAAEAAAu4AAAAAQAAOpgAAAABAAAXcAAAAAEAAAAAAAAAAQAAC7gAAAABAAA6mAAAAAEAABdwAAAAAQAAAAAAAAABAAALuAAAAAEAAC7gAAAAAQAAF3AAAAABAAAAAAAAABxzdHNjAAAAAAAAAAEAAAABAAAAAQAAAAEAAAEEc3RzegAAAAAAAAAAAAAAPAAAAzQAAAAQAAAADQAAAA0AAAANAAAAEQAAAA8AAAANAAAADQAAABEAAAAPAAAADQAAAA0AAAARAAAADwAAAA0AAAANAAAAEQAAAA8AAAANAAAADQAAABEAAAAPAAAADQAAAA0AAAARAAAADwAAAA0AAAANAAAAEQAAAA8AAAANAAAADQAAABEAAAAPAAAADQAAAA0AAAARAAAADwAAAA0AAAANAAAAEQAAAA8AAAANAAAADQAAABEAAAAPAAAADQAAAA0AAAARAAAADwAAAA0AAAANAAAAEQAAAA8AAAANAAAADQAAABEAAAANAAAADQAAAQBzdGNvAAAAAAAAADwAAAAwAAADZAAAA3QAAAONAAADoAAAA7kAAAPQAAAD6wAAA/4AAAQXAAAELgAABEMAAARcAAAEbwAABIwAAAShAAAEugAABM0AAATkAAAE/wAABRIAAAUrAAAFQgAABV0AAAVwAAAFiQAABaAAAAW1AAAFzgAABeEAAAX+AAAGEwAABiwAAAY/AAAGVgAABnEAAAaEAAAGnQAABrQAAAbPAAAG4gAABvUAAAcSAAAHJwAAB0AAAAdTAAAHcAAAB4UAAAeeAAAHsQAAB8gAAAfjAAAH9gAACA8AAAgmAAAIQQAACFQAAAhnAAAIhAAACJcAAAMsdHJhawAAAFx0a2hkAAAAA9WAgl/VgIJfAAAAAgAAAAAAAAf8AAAAAAAAAAAAAAABAQAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAACsm1kaWEAAAAgbWRoZAAAAADVgIJf1YCCXwAArEQAAWAAVcQAAAAAACdoZGxyAAAAAAAAAABzb3VuAAAAAAAAAAAAAAAAU3RlcmVvAAAAAmNtaW5mAAAAEHNtaGQAAAAAAAAAAAAAACRkaW5mAAAAHGRyZWYAAAAAAAAAAQAAAAx1cmwgAAAAAQAAAidzdGJsAAAAZ3N0c2QAAAAAAAAAAQAAAFdtcDRhAAAAAAAAAAEAAAAAAAAAAAACABAAAAAArEQAAAAAADNlc2RzAAAAAAOAgIAiAAIABICAgBRAFQAAAAADDUAAAAAABYCAgAISEAaAgIABAgAAABhzdHRzAAAAAAAAAAEAAABYAAAEAAAAABxzdHNjAAAAAAAAAAEAAAABAAAAAQAAAAEAAAAUc3RzegAAAAAAAAAGAAAAWAAAAXBzdGNvAAAAAAAAAFgAAAOBAAADhwAAA5oAAAOtAAADswAAA8oAAAPfAAAD5QAAA/gAAAQLAAAEEQAABCgAAAQ9AAAEUAAABFYAAARpAAAEgAAABIYAAASbAAAErgAABLQAAATHAAAE3gAABPMAAAT5AAAFDAAABR8AAAUlAAAFPAAABVEAAAVXAAAFagAABX0AAAWDAAAFmgAABa8AAAXCAAAFyAAABdsAAAXyAAAF+AAABg0AAAYgAAAGJgAABjkAAAZQAAAGZQAABmsAAAZ+AAAGkQAABpcAAAauAAAGwwAABskAAAbcAAAG7wAABwYAAAcMAAAHIQAABzQAAAc6AAAHTQAAB2QAAAdqAAAHfwAAB5IAAAeYAAAHqwAAB8IAAAfXAAAH3QAAB/AAAAgDAAAICQAACCAAAAg1AAAIOwAACE4AAAhhAAAIeAAACH4AAAiRAAAIpAAACKoAAAiwAAAItgAACLwAAAjCAAAAFnVkdGEAAAAObmFtZVN0ZXJlbwAAAHB1ZHRhAAAAaG1ldGEAAAAAAAAAIWhkbHIAAAAAAAAAAG1kaXJhcHBsAAAAAAAAAAAAAAAAO2lsc3QAAAAzqXRvbwAAACtkYXRhAAAAAQAAAABIYW5kQnJha2UgMC4xMC4yIDIwMTUwNjExMDA=';
        })
           ]);
  });
  });
  var NoSleep$1 = unwrapExports$$1(NoSleep);
  var nextDisplayId = 1000;
  var defaultLeftBounds = [0, 0, 0.5, 1];
  var defaultRightBounds = [0.5, 0, 0.5, 1];
  var raf = window.requestAnimationFrame;
  var caf = window.cancelAnimationFrame;
  function VRFrameData() {
    this.leftProjectionMatrix = new Float32Array(16);
    this.leftViewMatrix = new Float32Array(16);
    this.rightProjectionMatrix = new Float32Array(16);
    this.rightViewMatrix = new Float32Array(16);
    this.pose = null;
  }
  function VRDisplayCapabilities(config) {
    Object.defineProperties(this, {
      hasPosition: {
        writable: false, enumerable: true, value: config.hasPosition
      },
      hasExternalDisplay: {
        writable: false, enumerable: true, value: config.hasExternalDisplay
      },
      canPresent: {
        writable: false, enumerable: true, value: config.canPresent
      },
      maxLayers: {
        writable: false, enumerable: true, value: config.maxLayers
      },
      hasOrientation: {
        enumerable: true, get: function get() {
          deprecateWarning('VRDisplayCapabilities.prototype.hasOrientation', 'VRDisplay.prototype.getFrameData');
          return config.hasOrientation;
        }
      }
    });
  }
  function VRDisplay(config) {
    config = config || {};
    var USE_WAKELOCK = 'wakelock' in config ? config.wakelock : true;
    this.isPolyfilled = true;
    this.displayId = nextDisplayId++;
    this.displayName = '';
    this.depthNear = 0.01;
    this.depthFar = 10000.0;
    this.isPresenting = false;
    Object.defineProperty(this, 'isConnected', {
      get: function get() {
        deprecateWarning('VRDisplay.prototype.isConnected', 'VRDisplayCapabilities.prototype.hasExternalDisplay');
        return false;
      }
    });
    this.capabilities = new VRDisplayCapabilities({
      hasPosition: false,
      hasOrientation: false,
      hasExternalDisplay: false,
      canPresent: false,
      maxLayers: 1
    });
    this.stageParameters = null;
    this.waitingForPresent_ = false;
    this.layer_ = null;
    this.originalParent_ = null;
    this.fullscreenElement_ = null;
    this.fullscreenWrapper_ = null;
    this.fullscreenElementCachedStyle_ = null;
    this.fullscreenEventTarget_ = null;
    this.fullscreenChangeHandler_ = null;
    this.fullscreenErrorHandler_ = null;
    if (USE_WAKELOCK && isMobile()) {
      this.wakelock_ = new NoSleep$1();
    }
  }
  VRDisplay.prototype.getFrameData = function (frameData) {
    return frameDataFromPose(frameData, this._getPose(), this);
  };
  VRDisplay.prototype.getPose = function () {
    deprecateWarning('VRDisplay.prototype.getPose', 'VRDisplay.prototype.getFrameData');
    return this._getPose();
  };
  VRDisplay.prototype.resetPose = function () {
    deprecateWarning('VRDisplay.prototype.resetPose');
    return this._resetPose();
  };
  VRDisplay.prototype.getImmediatePose = function () {
    deprecateWarning('VRDisplay.prototype.getImmediatePose', 'VRDisplay.prototype.getFrameData');
    return this._getPose();
  };
  VRDisplay.prototype.requestAnimationFrame = function (callback) {
    return raf(callback);
  };
  VRDisplay.prototype.cancelAnimationFrame = function (id) {
    return caf(id);
  };
  VRDisplay.prototype.wrapForFullscreen = function (element) {
    if (isIOS()) {
      return element;
    }
    if (!this.fullscreenWrapper_) {
      this.fullscreenWrapper_ = document.createElement('div');
      var cssProperties = ['height: ' + Math.min(screen.height, screen.width) + 'px !important', 'top: 0 !important', 'left: 0 !important', 'right: 0 !important', 'border: 0', 'margin: 0', 'padding: 0', 'z-index: 999999 !important', 'position: fixed'];
      this.fullscreenWrapper_.setAttribute('style', cssProperties.join('; ') + ';');
      this.fullscreenWrapper_.classList.add('webvr-polyfill-fullscreen-wrapper');
    }
    if (this.fullscreenElement_ == element) {
      return this.fullscreenWrapper_;
    }
    if (this.fullscreenElement_) {
      if (this.originalParent_) {
        this.originalParent_.appendChild(this.fullscreenElement_);
      } else {
        this.fullscreenElement_.parentElement.removeChild(this.fullscreenElement_);
      }
    }
    this.fullscreenElement_ = element;
    this.originalParent_ = element.parentElement;
    if (!this.originalParent_) {
      document.body.appendChild(element);
    }
    if (!this.fullscreenWrapper_.parentElement) {
      var parent = this.fullscreenElement_.parentElement;
      parent.insertBefore(this.fullscreenWrapper_, this.fullscreenElement_);
      parent.removeChild(this.fullscreenElement_);
    }
    this.fullscreenWrapper_.insertBefore(this.fullscreenElement_, this.fullscreenWrapper_.firstChild);
    this.fullscreenElementCachedStyle_ = this.fullscreenElement_.getAttribute('style');
    var self = this;
    function applyFullscreenElementStyle() {
      if (!self.fullscreenElement_) {
        return;
      }
      var cssProperties = ['position: absolute', 'top: 0', 'left: 0', 'width: ' + Math.max(screen.width, screen.height) + 'px', 'height: ' + Math.min(screen.height, screen.width) + 'px', 'border: 0', 'margin: 0', 'padding: 0'];
      self.fullscreenElement_.setAttribute('style', cssProperties.join('; ') + ';');
    }
    applyFullscreenElementStyle();
    return this.fullscreenWrapper_;
  };
  VRDisplay.prototype.removeFullscreenWrapper = function () {
    if (!this.fullscreenElement_) {
      return;
    }
    var element = this.fullscreenElement_;
    if (this.fullscreenElementCachedStyle_) {
      element.setAttribute('style', this.fullscreenElementCachedStyle_);
    } else {
      element.removeAttribute('style');
    }
    this.fullscreenElement_ = null;
    this.fullscreenElementCachedStyle_ = null;
    var parent = this.fullscreenWrapper_.parentElement;
    this.fullscreenWrapper_.removeChild(element);
    if (this.originalParent_ === parent) {
      parent.insertBefore(element, this.fullscreenWrapper_);
    }
    else if (this.originalParent_) {
        this.originalParent_.appendChild(element);
      }
    parent.removeChild(this.fullscreenWrapper_);
    return element;
  };
  VRDisplay.prototype.requestPresent = function (layers) {
    var wasPresenting = this.isPresenting;
    var self = this;
    if (!(layers instanceof Array)) {
      deprecateWarning('VRDisplay.prototype.requestPresent with non-array argument', 'an array of VRLayers as the first argument');
      layers = [layers];
    }
    return new Promise(function (resolve, reject) {
      if (!self.capabilities.canPresent) {
        reject(new Error('VRDisplay is not capable of presenting.'));
        return;
      }
      if (layers.length == 0 || layers.length > self.capabilities.maxLayers) {
        reject(new Error('Invalid number of layers.'));
        return;
      }
      var incomingLayer = layers[0];
      if (!incomingLayer.source) {
        resolve();
        return;
      }
      var leftBounds = incomingLayer.leftBounds || defaultLeftBounds;
      var rightBounds = incomingLayer.rightBounds || defaultRightBounds;
      if (wasPresenting) {
        var layer = self.layer_;
        if (layer.source !== incomingLayer.source) {
          layer.source = incomingLayer.source;
        }
        for (var i = 0; i < 4; i++) {
          layer.leftBounds[i] = leftBounds[i];
          layer.rightBounds[i] = rightBounds[i];
        }
        self.wrapForFullscreen(self.layer_.source);
        self.updatePresent_();
        resolve();
        return;
      }
      self.layer_ = {
        predistorted: incomingLayer.predistorted,
        source: incomingLayer.source,
        leftBounds: leftBounds.slice(0),
        rightBounds: rightBounds.slice(0)
      };
      self.waitingForPresent_ = false;
      if (self.layer_ && self.layer_.source) {
        var fullscreenElement = self.wrapForFullscreen(self.layer_.source);
        var onFullscreenChange = function onFullscreenChange() {
          var actualFullscreenElement = getFullscreenElement();
          self.isPresenting = fullscreenElement === actualFullscreenElement;
          if (self.isPresenting) {
            if (screen.orientation && screen.orientation.lock) {
              screen.orientation.lock('landscape-primary').catch(function (error) {
                console.error('screen.orientation.lock() failed due to', error.message);
              });
            }
            self.waitingForPresent_ = false;
            self.beginPresent_();
            resolve();
          } else {
            if (screen.orientation && screen.orientation.unlock) {
              screen.orientation.unlock();
            }
            self.removeFullscreenWrapper();
            self.disableWakeLock();
            self.endPresent_();
            self.removeFullscreenListeners_();
          }
          self.fireVRDisplayPresentChange_();
        };
        var onFullscreenError = function onFullscreenError() {
          if (!self.waitingForPresent_) {
            return;
          }
          self.removeFullscreenWrapper();
          self.removeFullscreenListeners_();
          self.disableWakeLock();
          self.waitingForPresent_ = false;
          self.isPresenting = false;
          reject(new Error('Unable to present.'));
        };
        self.addFullscreenListeners_(fullscreenElement, onFullscreenChange, onFullscreenError);
        if (requestFullscreen(fullscreenElement)) {
          self.enableWakeLock();
          self.waitingForPresent_ = true;
        } else if (isIOS() || isWebViewAndroid()) {
          self.enableWakeLock();
          self.isPresenting = true;
          self.beginPresent_();
          self.fireVRDisplayPresentChange_();
          resolve();
        }
      }
      if (!self.waitingForPresent_ && !isIOS()) {
        exitFullscreen();
        reject(new Error('Unable to present.'));
      }
    });
  };
  VRDisplay.prototype.exitPresent = function () {
    var wasPresenting = this.isPresenting;
    var self = this;
    this.isPresenting = false;
    this.layer_ = null;
    this.disableWakeLock();
    return new Promise(function (resolve, reject) {
      if (wasPresenting) {
        if (!exitFullscreen() && isIOS()) {
          self.endPresent_();
          self.fireVRDisplayPresentChange_();
        }
        if (isWebViewAndroid()) {
          self.removeFullscreenWrapper();
          self.removeFullscreenListeners_();
          self.endPresent_();
          self.fireVRDisplayPresentChange_();
        }
        resolve();
      } else {
        reject(new Error('Was not presenting to VRDisplay.'));
      }
    });
  };
  VRDisplay.prototype.getLayers = function () {
    if (this.layer_) {
      return [this.layer_];
    }
    return [];
  };
  VRDisplay.prototype.fireVRDisplayPresentChange_ = function () {
    var event = new CustomEvent('vrdisplaypresentchange', { detail: { display: this } });
    window.dispatchEvent(event);
  };
  VRDisplay.prototype.fireVRDisplayConnect_ = function () {
    var event = new CustomEvent('vrdisplayconnect', { detail: { display: this } });
    window.dispatchEvent(event);
  };
  VRDisplay.prototype.addFullscreenListeners_ = function (element, changeHandler, errorHandler) {
    this.removeFullscreenListeners_();
    this.fullscreenEventTarget_ = element;
    this.fullscreenChangeHandler_ = changeHandler;
    this.fullscreenErrorHandler_ = errorHandler;
    if (changeHandler) {
      if (document.fullscreenEnabled) {
        element.addEventListener('fullscreenchange', changeHandler, false);
      } else if (document.webkitFullscreenEnabled) {
        element.addEventListener('webkitfullscreenchange', changeHandler, false);
      } else if (document.mozFullScreenEnabled) {
        document.addEventListener('mozfullscreenchange', changeHandler, false);
      } else if (document.msFullscreenEnabled) {
        element.addEventListener('msfullscreenchange', changeHandler, false);
      }
    }
    if (errorHandler) {
      if (document.fullscreenEnabled) {
        element.addEventListener('fullscreenerror', errorHandler, false);
      } else if (document.webkitFullscreenEnabled) {
        element.addEventListener('webkitfullscreenerror', errorHandler, false);
      } else if (document.mozFullScreenEnabled) {
        document.addEventListener('mozfullscreenerror', errorHandler, false);
      } else if (document.msFullscreenEnabled) {
        element.addEventListener('msfullscreenerror', errorHandler, false);
      }
    }
  };
  VRDisplay.prototype.removeFullscreenListeners_ = function () {
    if (!this.fullscreenEventTarget_) return;
    var element = this.fullscreenEventTarget_;
    if (this.fullscreenChangeHandler_) {
      var changeHandler = this.fullscreenChangeHandler_;
      element.removeEventListener('fullscreenchange', changeHandler, false);
      element.removeEventListener('webkitfullscreenchange', changeHandler, false);
      document.removeEventListener('mozfullscreenchange', changeHandler, false);
      element.removeEventListener('msfullscreenchange', changeHandler, false);
    }
    if (this.fullscreenErrorHandler_) {
      var errorHandler = this.fullscreenErrorHandler_;
      element.removeEventListener('fullscreenerror', errorHandler, false);
      element.removeEventListener('webkitfullscreenerror', errorHandler, false);
      document.removeEventListener('mozfullscreenerror', errorHandler, false);
      element.removeEventListener('msfullscreenerror', errorHandler, false);
    }
    this.fullscreenEventTarget_ = null;
    this.fullscreenChangeHandler_ = null;
    this.fullscreenErrorHandler_ = null;
  };
  VRDisplay.prototype.enableWakeLock = function () {
    if (this.wakelock_) {
      this.wakelock_.enable();
    }
  };
  VRDisplay.prototype.disableWakeLock = function () {
    if (this.wakelock_) {
      this.wakelock_.disable();
    }
  };
  VRDisplay.prototype.beginPresent_ = function () {
  };
  VRDisplay.prototype.endPresent_ = function () {
  };
  VRDisplay.prototype.submitFrame = function (pose) {
  };
  VRDisplay.prototype.getEyeParameters = function (whichEye) {
    return null;
  };
  var config = {
    ADDITIONAL_VIEWERS: [],
    DEFAULT_VIEWER: '',
    MOBILE_WAKE_LOCK: true,
    DEBUG: false,
    DPDB_URL: 'https://dpdb.webvr.rocks/dpdb.json',
    K_FILTER: 0.98,
    PREDICTION_TIME_S: 0.040,
    CARDBOARD_UI_DISABLED: false,
    ROTATE_INSTRUCTIONS_DISABLED: false,
    YAW_ONLY: false,
    BUFFER_SCALE: 0.5,
    DIRTY_SUBMIT_FRAME_BINDINGS: false
  };
  var Eye = {
    LEFT: 'left',
    RIGHT: 'right'
  };
  function CardboardVRDisplay(config$$1) {
    var defaults = extend({}, config);
    config$$1 = extend(defaults, config$$1 || {});
    VRDisplay.call(this, {
      wakelock: config$$1.MOBILE_WAKE_LOCK
    });
    this.config = config$$1;
    this.displayName = 'Cardboard VRDisplay';
    this.capabilities = new VRDisplayCapabilities({
      hasPosition: false,
      hasOrientation: true,
      hasExternalDisplay: false,
      canPresent: true,
      maxLayers: 1
    });
    this.stageParameters = null;
    this.bufferScale_ = this.config.BUFFER_SCALE;
    this.poseSensor_ = new PoseSensor(this.config);
    this.distorter_ = null;
    this.cardboardUI_ = null;
    this.dpdb_ = new Dpdb(this.config.DPDB_URL, this.onDeviceParamsUpdated_.bind(this));
    this.deviceInfo_ = new DeviceInfo(this.dpdb_.getDeviceParams(), config$$1.ADDITIONAL_VIEWERS);
    this.viewerSelector_ = new ViewerSelector(config$$1.DEFAULT_VIEWER);
    this.viewerSelector_.onChange(this.onViewerChanged_.bind(this));
    this.deviceInfo_.setViewer(this.viewerSelector_.getCurrentViewer());
    if (!this.config.ROTATE_INSTRUCTIONS_DISABLED) {
      this.rotateInstructions_ = new RotateInstructions();
    }
    if (isIOS()) {
      window.addEventListener('resize', this.onResize_.bind(this));
    }
  }
  CardboardVRDisplay.prototype = Object.create(VRDisplay.prototype);
  CardboardVRDisplay.prototype._getPose = function () {
    return {
      position: null,
      orientation: this.poseSensor_.getOrientation(),
      linearVelocity: null,
      linearAcceleration: null,
      angularVelocity: null,
      angularAcceleration: null
    };
  };
  CardboardVRDisplay.prototype._resetPose = function () {
    if (this.poseSensor_.resetPose) {
      this.poseSensor_.resetPose();
    }
  };
  CardboardVRDisplay.prototype._getFieldOfView = function (whichEye) {
    var fieldOfView;
    if (whichEye == Eye.LEFT) {
      fieldOfView = this.deviceInfo_.getFieldOfViewLeftEye();
    } else if (whichEye == Eye.RIGHT) {
      fieldOfView = this.deviceInfo_.getFieldOfViewRightEye();
    } else {
      console.error('Invalid eye provided: %s', whichEye);
      return null;
    }
    return fieldOfView;
  };
  CardboardVRDisplay.prototype._getEyeOffset = function (whichEye) {
    var offset;
    if (whichEye == Eye.LEFT) {
      offset = [-this.deviceInfo_.viewer.interLensDistance * 0.5, 0.0, 0.0];
    } else if (whichEye == Eye.RIGHT) {
      offset = [this.deviceInfo_.viewer.interLensDistance * 0.5, 0.0, 0.0];
    } else {
      console.error('Invalid eye provided: %s', whichEye);
      return null;
    }
    return offset;
  };
  CardboardVRDisplay.prototype.getEyeParameters = function (whichEye) {
    var offset = this._getEyeOffset(whichEye);
    var fieldOfView = this._getFieldOfView(whichEye);
    var eyeParams = {
      offset: offset,
      renderWidth: this.deviceInfo_.device.width * 0.5 * this.bufferScale_,
      renderHeight: this.deviceInfo_.device.height * this.bufferScale_
    };
    Object.defineProperty(eyeParams, 'fieldOfView', {
      enumerable: true,
      get: function get() {
        deprecateWarning('VRFieldOfView', 'VRFrameData\'s projection matrices');
        return fieldOfView;
      }
    });
    return eyeParams;
  };
  CardboardVRDisplay.prototype.onDeviceParamsUpdated_ = function (newParams) {
    if (this.config.DEBUG) {
      console.log('DPDB reported that device params were updated.');
    }
    this.deviceInfo_.updateDeviceParams(newParams);
    if (this.distorter_) {
      this.distorter_.updateDeviceInfo(this.deviceInfo_);
    }
  };
  CardboardVRDisplay.prototype.updateBounds_ = function () {
    if (this.layer_ && this.distorter_ && (this.layer_.leftBounds || this.layer_.rightBounds)) {
      this.distorter_.setTextureBounds(this.layer_.leftBounds, this.layer_.rightBounds);
    }
  };
  CardboardVRDisplay.prototype.beginPresent_ = function () {
    var gl = this.layer_.source.getContext('webgl');
    if (!gl) gl = this.layer_.source.getContext('experimental-webgl');
    if (!gl) gl = this.layer_.source.getContext('webgl2');
    if (!gl) return;
    if (this.layer_.predistorted) {
      if (!this.config.CARDBOARD_UI_DISABLED) {
        gl.canvas.width = getScreenWidth() * this.bufferScale_;
        gl.canvas.height = getScreenHeight() * this.bufferScale_;
        this.cardboardUI_ = new CardboardUI(gl);
      }
    } else {
      if (!this.config.CARDBOARD_UI_DISABLED) {
        this.cardboardUI_ = new CardboardUI(gl);
      }
      this.distorter_ = new CardboardDistorter(gl, this.cardboardUI_, this.config.BUFFER_SCALE, this.config.DIRTY_SUBMIT_FRAME_BINDINGS);
      this.distorter_.updateDeviceInfo(this.deviceInfo_);
    }
    if (this.cardboardUI_) {
      this.cardboardUI_.listen(function (e) {
        this.viewerSelector_.show(this.layer_.source.parentElement);
        e.stopPropagation();
        e.preventDefault();
      }.bind(this), function (e) {
        this.exitPresent();
        e.stopPropagation();
        e.preventDefault();
      }.bind(this));
    }
    if (this.rotateInstructions_) {
      if (isLandscapeMode() && isMobile()) {
        this.rotateInstructions_.showTemporarily(3000, this.layer_.source.parentElement);
      } else {
        this.rotateInstructions_.update();
      }
    }
    this.orientationHandler = this.onOrientationChange_.bind(this);
    window.addEventListener('orientationchange', this.orientationHandler);
    this.vrdisplaypresentchangeHandler = this.updateBounds_.bind(this);
    window.addEventListener('vrdisplaypresentchange', this.vrdisplaypresentchangeHandler);
    this.fireVRDisplayDeviceParamsChange_();
  };
  CardboardVRDisplay.prototype.endPresent_ = function () {
    if (this.distorter_) {
      this.distorter_.destroy();
      this.distorter_ = null;
    }
    if (this.cardboardUI_) {
      this.cardboardUI_.destroy();
      this.cardboardUI_ = null;
    }
    if (this.rotateInstructions_) {
      this.rotateInstructions_.hide();
    }
    this.viewerSelector_.hide();
    window.removeEventListener('orientationchange', this.orientationHandler);
    window.removeEventListener('vrdisplaypresentchange', this.vrdisplaypresentchangeHandler);
  };
  CardboardVRDisplay.prototype.updatePresent_ = function () {
    this.endPresent_();
    this.beginPresent_();
  };
  CardboardVRDisplay.prototype.submitFrame = function (pose) {
    if (this.distorter_) {
      this.updateBounds_();
      this.distorter_.submitFrame();
    } else if (this.cardboardUI_ && this.layer_) {
      var canvas = this.layer_.source.getContext('webgl').canvas;
      if (canvas.width != this.lastWidth || canvas.height != this.lastHeight) {
        this.cardboardUI_.onResize();
      }
      this.lastWidth = canvas.width;
      this.lastHeight = canvas.height;
      this.cardboardUI_.render();
    }
  };
  CardboardVRDisplay.prototype.onOrientationChange_ = function (e) {
    this.viewerSelector_.hide();
    if (this.rotateInstructions_) {
      this.rotateInstructions_.update();
    }
    this.onResize_();
  };
  CardboardVRDisplay.prototype.onResize_ = function (e) {
    if (this.layer_) {
      var gl = this.layer_.source.getContext('webgl');
      var cssProperties = ['position: absolute', 'top: 0', 'left: 0',
      'width: 100vw', 'height: 100vh', 'border: 0', 'margin: 0',
      'padding: 0px', 'box-sizing: content-box'];
      gl.canvas.setAttribute('style', cssProperties.join('; ') + ';');
      safariCssSizeWorkaround(gl.canvas);
    }
  };
  CardboardVRDisplay.prototype.onViewerChanged_ = function (viewer) {
    this.deviceInfo_.setViewer(viewer);
    if (this.distorter_) {
      this.distorter_.updateDeviceInfo(this.deviceInfo_);
    }
    this.fireVRDisplayDeviceParamsChange_();
  };
  CardboardVRDisplay.prototype.fireVRDisplayDeviceParamsChange_ = function () {
    var event = new CustomEvent('vrdisplaydeviceparamschange', {
      detail: {
        vrdisplay: this,
        deviceInfo: this.deviceInfo_
      }
    });
    window.dispatchEvent(event);
  };
  CardboardVRDisplay.VRFrameData = VRFrameData;
  CardboardVRDisplay.VRDisplay = VRDisplay;
  return CardboardVRDisplay;
  })));
  });
  var CardboardVRDisplay = unwrapExports(cardboardVrDisplay);

  var version = "0.10.6";

  var DefaultConfig = {
    ADDITIONAL_VIEWERS: [],
    DEFAULT_VIEWER: '',
    PROVIDE_MOBILE_VRDISPLAY: true,
    GET_VR_DISPLAYS_TIMEOUT: 1000,
    MOBILE_WAKE_LOCK: true,
    DEBUG: false,
    DPDB_URL: 'https://dpdb.webvr.rocks/dpdb.json',
    K_FILTER: 0.98,
    PREDICTION_TIME_S: 0.040,
    TOUCH_PANNER_DISABLED: true,
    CARDBOARD_UI_DISABLED: false,
    ROTATE_INSTRUCTIONS_DISABLED: false,
    YAW_ONLY: false,
    BUFFER_SCALE: 0.5,
    DIRTY_SUBMIT_FRAME_BINDINGS: false
  };

  function WebVRPolyfill(config) {
    this.config = extend(extend({}, DefaultConfig), config);
    this.polyfillDisplays = [];
    this.enabled = false;
    this.hasNative = 'getVRDisplays' in navigator;
    this.native = {};
    this.native.getVRDisplays = navigator.getVRDisplays;
    this.native.VRFrameData = window.VRFrameData;
    this.native.VRDisplay = window.VRDisplay;
    if (!this.hasNative || this.config.PROVIDE_MOBILE_VRDISPLAY && isMobile()) {
      this.enable();
      this.getVRDisplays().then(function (displays) {
        if (displays && displays[0] && displays[0].fireVRDisplayConnect_) {
          displays[0].fireVRDisplayConnect_();
        }
      });
    }
  }
  WebVRPolyfill.prototype.getPolyfillDisplays = function () {
    if (this._polyfillDisplaysPopulated) {
      return this.polyfillDisplays;
    }
    if (isMobile()) {
      var vrDisplay = new CardboardVRDisplay({
        ADDITIONAL_VIEWERS: this.config.ADDITIONAL_VIEWERS,
        DEFAULT_VIEWER: this.config.DEFAULT_VIEWER,
        MOBILE_WAKE_LOCK: this.config.MOBILE_WAKE_LOCK,
        DEBUG: this.config.DEBUG,
        DPDB_URL: this.config.DPDB_URL,
        CARDBOARD_UI_DISABLED: this.config.CARDBOARD_UI_DISABLED,
        K_FILTER: this.config.K_FILTER,
        PREDICTION_TIME_S: this.config.PREDICTION_TIME_S,
        TOUCH_PANNER_DISABLED: this.config.TOUCH_PANNER_DISABLED,
        ROTATE_INSTRUCTIONS_DISABLED: this.config.ROTATE_INSTRUCTIONS_DISABLED,
        YAW_ONLY: this.config.YAW_ONLY,
        BUFFER_SCALE: this.config.BUFFER_SCALE,
        DIRTY_SUBMIT_FRAME_BINDINGS: this.config.DIRTY_SUBMIT_FRAME_BINDINGS
      });
      this.polyfillDisplays.push(vrDisplay);
    }
    this._polyfillDisplaysPopulated = true;
    return this.polyfillDisplays;
  };
  WebVRPolyfill.prototype.enable = function () {
    this.enabled = true;
    if (this.hasNative && this.native.VRFrameData) {
      var NativeVRFrameData = this.native.VRFrameData;
      var nativeFrameData = new this.native.VRFrameData();
      var nativeGetFrameData = this.native.VRDisplay.prototype.getFrameData;
      window.VRDisplay.prototype.getFrameData = function (frameData) {
        if (frameData instanceof NativeVRFrameData) {
          nativeGetFrameData.call(this, frameData);
          return;
        }
        nativeGetFrameData.call(this, nativeFrameData);
        frameData.pose = nativeFrameData.pose;
        copyArray(nativeFrameData.leftProjectionMatrix, frameData.leftProjectionMatrix);
        copyArray(nativeFrameData.rightProjectionMatrix, frameData.rightProjectionMatrix);
        copyArray(nativeFrameData.leftViewMatrix, frameData.leftViewMatrix);
        copyArray(nativeFrameData.rightViewMatrix, frameData.rightViewMatrix);
      };
    }
    navigator.getVRDisplays = this.getVRDisplays.bind(this);
    window.VRDisplay = CardboardVRDisplay.VRDisplay;
    window.VRFrameData = CardboardVRDisplay.VRFrameData;
  };
  WebVRPolyfill.prototype.getVRDisplays = function () {
    var _this = this;
    var config = this.config;
    if (!this.hasNative) {
      return Promise.resolve(this.getPolyfillDisplays());
    }
    var timeoutId;
    var vrDisplaysNative = this.native.getVRDisplays.call(navigator);
    var timeoutPromise = new Promise(function (resolve) {
      timeoutId = setTimeout(function () {
        console.warn('Native WebVR implementation detected, but `getVRDisplays()` failed to resolve. Falling back to polyfill.');
        resolve([]);
      }, config.GET_VR_DISPLAYS_TIMEOUT);
    });
    return race([vrDisplaysNative, timeoutPromise]).then(function (nativeDisplays) {
      clearTimeout(timeoutId);
      return nativeDisplays.length > 0 ? nativeDisplays : _this.getPolyfillDisplays();
    });
  };
  WebVRPolyfill.version = version;
  WebVRPolyfill.VRFrameData = CardboardVRDisplay.VRFrameData;
  WebVRPolyfill.VRDisplay = CardboardVRDisplay.VRDisplay;


  var webvrPolyfill = Object.freeze({
  	default: WebVRPolyfill
  });

  var require$$0 = ( webvrPolyfill && WebVRPolyfill ) || webvrPolyfill;

  if (typeof commonjsGlobal$1 !== 'undefined' && commonjsGlobal$1.window) {
    if (!commonjsGlobal$1.document) {
      commonjsGlobal$1.document = commonjsGlobal$1.window.document;
    }
    if (!commonjsGlobal$1.navigator) {
      commonjsGlobal$1.navigator = commonjsGlobal$1.window.navigator;
    }
  }
  var src = require$$0;

  return src;

  })));
  });

  var WebVRPolyfill = unwrapExports(webvrPolyfill);

  // Polyfills

  if ( Number.EPSILON === undefined ) {

  	Number.EPSILON = Math.pow( 2, - 52 );

  }

  if ( Number.isInteger === undefined ) {

  	// Missing in IE
  	// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger

  	Number.isInteger = function ( value ) {

  		return typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value;

  	};

  }

  //

  if ( Math.sign === undefined ) {

  	// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign

  	Math.sign = function ( x ) {

  		return ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;

  	};

  }

  if ( 'name' in Function.prototype === false ) {

  	// Missing in IE
  	// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name

  	Object.defineProperty( Function.prototype, 'name', {

  		get: function () {

  			return this.toString().match( /^\s*function\s*([^\(\s]*)/ )[ 1 ];

  		}

  	} );

  }

  if ( Object.assign === undefined ) {

  	// Missing in IE
  	// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

  	( function () {

  		Object.assign = function ( target ) {

  			if ( target === undefined || target === null ) {

  				throw new TypeError( 'Cannot convert undefined or null to object' );

  			}

  			var output = Object( target );

  			for ( var index = 1; index < arguments.length; index ++ ) {

  				var source = arguments[ index ];

  				if ( source !== undefined && source !== null ) {

  					for ( var nextKey in source ) {

  						if ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) {

  							output[ nextKey ] = source[ nextKey ];

  						}

  					}

  				}

  			}

  			return output;

  		};

  	} )();

  }

  /**
   * https://github.com/mrdoob/eventdispatcher.js/
   */

  function EventDispatcher() {}

  Object.assign( EventDispatcher.prototype, {

  	addEventListener: function ( type, listener ) {

  		if ( this._listeners === undefined ) this._listeners = {};

  		var listeners = this._listeners;

  		if ( listeners[ type ] === undefined ) {

  			listeners[ type ] = [];

  		}

  		if ( listeners[ type ].indexOf( listener ) === - 1 ) {

  			listeners[ type ].push( listener );

  		}

  	},

  	hasEventListener: function ( type, listener ) {

  		if ( this._listeners === undefined ) return false;

  		var listeners = this._listeners;

  		return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;

  	},

  	removeEventListener: function ( type, listener ) {

  		if ( this._listeners === undefined ) return;

  		var listeners = this._listeners;
  		var listenerArray = listeners[ type ];

  		if ( listenerArray !== undefined ) {

  			var index = listenerArray.indexOf( listener );

  			if ( index !== - 1 ) {

  				listenerArray.splice( index, 1 );

  			}

  		}

  	},

  	dispatchEvent: function ( event ) {

  		if ( this._listeners === undefined ) return;

  		var listeners = this._listeners;
  		var listenerArray = listeners[ event.type ];

  		if ( listenerArray !== undefined ) {

  			event.target = this;

  			var array = listenerArray.slice( 0 );

  			for ( var i = 0, l = array.length; i < l; i ++ ) {

  				array[ i ].call( this, event );

  			}

  		}

  	}

  } );

  var REVISION = '93';
  var MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2 };
  var CullFaceNone = 0;
  var CullFaceBack = 1;
  var CullFaceFront = 2;
  var PCFShadowMap = 1;
  var PCFSoftShadowMap = 2;
  var FrontSide = 0;
  var BackSide = 1;
  var DoubleSide = 2;
  var FlatShading = 1;
  var NoColors = 0;
  var FaceColors = 1;
  var VertexColors = 2;
  var NoBlending = 0;
  var NormalBlending = 1;
  var AdditiveBlending = 2;
  var SubtractiveBlending = 3;
  var MultiplyBlending = 4;
  var CustomBlending = 5;
  var AddEquation = 100;
  var SubtractEquation = 101;
  var ReverseSubtractEquation = 102;
  var MinEquation = 103;
  var MaxEquation = 104;
  var ZeroFactor = 200;
  var OneFactor = 201;
  var SrcColorFactor = 202;
  var OneMinusSrcColorFactor = 203;
  var SrcAlphaFactor = 204;
  var OneMinusSrcAlphaFactor = 205;
  var DstAlphaFactor = 206;
  var OneMinusDstAlphaFactor = 207;
  var DstColorFactor = 208;
  var OneMinusDstColorFactor = 209;
  var SrcAlphaSaturateFactor = 210;
  var NeverDepth = 0;
  var AlwaysDepth = 1;
  var LessDepth = 2;
  var LessEqualDepth = 3;
  var EqualDepth = 4;
  var GreaterEqualDepth = 5;
  var GreaterDepth = 6;
  var NotEqualDepth = 7;
  var MultiplyOperation = 0;
  var MixOperation = 1;
  var AddOperation = 2;
  var NoToneMapping = 0;
  var LinearToneMapping = 1;
  var ReinhardToneMapping = 2;
  var Uncharted2ToneMapping = 3;
  var CineonToneMapping = 4;
  var UVMapping = 300;
  var CubeReflectionMapping = 301;
  var CubeRefractionMapping = 302;
  var EquirectangularReflectionMapping = 303;
  var EquirectangularRefractionMapping = 304;
  var SphericalReflectionMapping = 305;
  var CubeUVReflectionMapping = 306;
  var CubeUVRefractionMapping = 307;
  var RepeatWrapping = 1000;
  var ClampToEdgeWrapping = 1001;
  var MirroredRepeatWrapping = 1002;
  var NearestFilter = 1003;
  var NearestMipMapNearestFilter = 1004;
  var NearestMipMapLinearFilter = 1005;
  var LinearFilter = 1006;
  var LinearMipMapNearestFilter = 1007;
  var LinearMipMapLinearFilter = 1008;
  var UnsignedByteType = 1009;
  var ByteType = 1010;
  var ShortType = 1011;
  var UnsignedShortType = 1012;
  var IntType = 1013;
  var UnsignedIntType = 1014;
  var FloatType = 1015;
  var HalfFloatType = 1016;
  var UnsignedShort4444Type = 1017;
  var UnsignedShort5551Type = 1018;
  var UnsignedShort565Type = 1019;
  var UnsignedInt248Type = 1020;
  var AlphaFormat = 1021;
  var RGBFormat = 1022;
  var RGBAFormat = 1023;
  var LuminanceFormat = 1024;
  var LuminanceAlphaFormat = 1025;
  var DepthFormat = 1026;
  var DepthStencilFormat = 1027;
  var RGB_S3TC_DXT1_Format = 33776;
  var RGBA_S3TC_DXT1_Format = 33777;
  var RGBA_S3TC_DXT3_Format = 33778;
  var RGBA_S3TC_DXT5_Format = 33779;
  var RGB_PVRTC_4BPPV1_Format = 35840;
  var RGB_PVRTC_2BPPV1_Format = 35841;
  var RGBA_PVRTC_4BPPV1_Format = 35842;
  var RGBA_PVRTC_2BPPV1_Format = 35843;
  var RGB_ETC1_Format = 36196;
  var RGBA_ASTC_4x4_Format = 37808;
  var RGBA_ASTC_5x4_Format = 37809;
  var RGBA_ASTC_5x5_Format = 37810;
  var RGBA_ASTC_6x5_Format = 37811;
  var RGBA_ASTC_6x6_Format = 37812;
  var RGBA_ASTC_8x5_Format = 37813;
  var RGBA_ASTC_8x6_Format = 37814;
  var RGBA_ASTC_8x8_Format = 37815;
  var RGBA_ASTC_10x5_Format = 37816;
  var RGBA_ASTC_10x6_Format = 37817;
  var RGBA_ASTC_10x8_Format = 37818;
  var RGBA_ASTC_10x10_Format = 37819;
  var RGBA_ASTC_12x10_Format = 37820;
  var RGBA_ASTC_12x12_Format = 37821;
  var LoopOnce = 2200;
  var LoopRepeat = 2201;
  var LoopPingPong = 2202;
  var InterpolateDiscrete = 2300;
  var InterpolateLinear = 2301;
  var InterpolateSmooth = 2302;
  var ZeroCurvatureEnding = 2400;
  var ZeroSlopeEnding = 2401;
  var WrapAroundEnding = 2402;
  var TrianglesDrawMode = 0;
  var TriangleStripDrawMode = 1;
  var TriangleFanDrawMode = 2;
  var LinearEncoding = 3000;
  var sRGBEncoding = 3001;
  var GammaEncoding = 3007;
  var RGBEEncoding = 3002;
  var RGBM7Encoding = 3004;
  var RGBM16Encoding = 3005;
  var RGBDEncoding = 3006;
  var BasicDepthPacking = 3200;
  var RGBADepthPacking = 3201;

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   */

  var _Math = {

  	DEG2RAD: Math.PI / 180,
  	RAD2DEG: 180 / Math.PI,

  	generateUUID: ( function () {

  		// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136

  		var lut = [];

  		for ( var i = 0; i < 256; i ++ ) {

  			lut[ i ] = ( i < 16 ? '0' : '' ) + ( i ).toString( 16 );

  		}

  		return function generateUUID() {

  			var d0 = Math.random() * 0xffffffff | 0;
  			var d1 = Math.random() * 0xffffffff | 0;
  			var d2 = Math.random() * 0xffffffff | 0;
  			var d3 = Math.random() * 0xffffffff | 0;
  			var uuid = lut[ d0 & 0xff ] + lut[ d0 >> 8 & 0xff ] + lut[ d0 >> 16 & 0xff ] + lut[ d0 >> 24 & 0xff ] + '-' +
  				lut[ d1 & 0xff ] + lut[ d1 >> 8 & 0xff ] + '-' + lut[ d1 >> 16 & 0x0f | 0x40 ] + lut[ d1 >> 24 & 0xff ] + '-' +
  				lut[ d2 & 0x3f | 0x80 ] + lut[ d2 >> 8 & 0xff ] + '-' + lut[ d2 >> 16 & 0xff ] + lut[ d2 >> 24 & 0xff ] +
  				lut[ d3 & 0xff ] + lut[ d3 >> 8 & 0xff ] + lut[ d3 >> 16 & 0xff ] + lut[ d3 >> 24 & 0xff ];

  			// .toUpperCase() here flattens concatenated strings to save heap memory space.
  			return uuid.toUpperCase();

  		};

  	} )(),

  	clamp: function ( value, min, max ) {

  		return Math.max( min, Math.min( max, value ) );

  	},

  	// compute euclidian modulo of m % n
  	// https://en.wikipedia.org/wiki/Modulo_operation

  	euclideanModulo: function ( n, m ) {

  		return ( ( n % m ) + m ) % m;

  	},

  	// Linear mapping from range <a1, a2> to range <b1, b2>

  	mapLinear: function ( x, a1, a2, b1, b2 ) {

  		return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );

  	},

  	// https://en.wikipedia.org/wiki/Linear_interpolation

  	lerp: function ( x, y, t ) {

  		return ( 1 - t ) * x + t * y;

  	},

  	// http://en.wikipedia.org/wiki/Smoothstep

  	smoothstep: function ( x, min, max ) {

  		if ( x <= min ) return 0;
  		if ( x >= max ) return 1;

  		x = ( x - min ) / ( max - min );

  		return x * x * ( 3 - 2 * x );

  	},

  	smootherstep: function ( x, min, max ) {

  		if ( x <= min ) return 0;
  		if ( x >= max ) return 1;

  		x = ( x - min ) / ( max - min );

  		return x * x * x * ( x * ( x * 6 - 15 ) + 10 );

  	},

  	// Random integer from <low, high> interval

  	randInt: function ( low, high ) {

  		return low + Math.floor( Math.random() * ( high - low + 1 ) );

  	},

  	// Random float from <low, high> interval

  	randFloat: function ( low, high ) {

  		return low + Math.random() * ( high - low );

  	},

  	// Random float from <-range/2, range/2> interval

  	randFloatSpread: function ( range ) {

  		return range * ( 0.5 - Math.random() );

  	},

  	degToRad: function ( degrees ) {

  		return degrees * _Math.DEG2RAD;

  	},

  	radToDeg: function ( radians ) {

  		return radians * _Math.RAD2DEG;

  	},

  	isPowerOfTwo: function ( value ) {

  		return ( value & ( value - 1 ) ) === 0 && value !== 0;

  	},

  	ceilPowerOfTwo: function ( value ) {

  		return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) );

  	},

  	floorPowerOfTwo: function ( value ) {

  		return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) );

  	}

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author philogb / http://blog.thejit.org/
   * @author egraether / http://egraether.com/
   * @author zz85 / http://www.lab4games.net/zz85/blog
   */

  function Vector2( x, y ) {

  	this.x = x || 0;
  	this.y = y || 0;

  }

  Object.defineProperties( Vector2.prototype, {

  	"width": {

  		get: function () {

  			return this.x;

  		},

  		set: function ( value ) {

  			this.x = value;

  		}

  	},

  	"height": {

  		get: function () {

  			return this.y;

  		},

  		set: function ( value ) {

  			this.y = value;

  		}

  	}

  } );

  Object.assign( Vector2.prototype, {

  	isVector2: true,

  	set: function ( x, y ) {

  		this.x = x;
  		this.y = y;

  		return this;

  	},

  	setScalar: function ( scalar ) {

  		this.x = scalar;
  		this.y = scalar;

  		return this;

  	},

  	setX: function ( x ) {

  		this.x = x;

  		return this;

  	},

  	setY: function ( y ) {

  		this.y = y;

  		return this;

  	},

  	setComponent: function ( index, value ) {

  		switch ( index ) {

  			case 0: this.x = value; break;
  			case 1: this.y = value; break;
  			default: throw new Error( 'index is out of range: ' + index );

  		}

  		return this;

  	},

  	getComponent: function ( index ) {

  		switch ( index ) {

  			case 0: return this.x;
  			case 1: return this.y;
  			default: throw new Error( 'index is out of range: ' + index );

  		}

  	},

  	clone: function () {

  		return new this.constructor( this.x, this.y );

  	},

  	copy: function ( v ) {

  		this.x = v.x;
  		this.y = v.y;

  		return this;

  	},

  	add: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
  			return this.addVectors( v, w );

  		}

  		this.x += v.x;
  		this.y += v.y;

  		return this;

  	},

  	addScalar: function ( s ) {

  		this.x += s;
  		this.y += s;

  		return this;

  	},

  	addVectors: function ( a, b ) {

  		this.x = a.x + b.x;
  		this.y = a.y + b.y;

  		return this;

  	},

  	addScaledVector: function ( v, s ) {

  		this.x += v.x * s;
  		this.y += v.y * s;

  		return this;

  	},

  	sub: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
  			return this.subVectors( v, w );

  		}

  		this.x -= v.x;
  		this.y -= v.y;

  		return this;

  	},

  	subScalar: function ( s ) {

  		this.x -= s;
  		this.y -= s;

  		return this;

  	},

  	subVectors: function ( a, b ) {

  		this.x = a.x - b.x;
  		this.y = a.y - b.y;

  		return this;

  	},

  	multiply: function ( v ) {

  		this.x *= v.x;
  		this.y *= v.y;

  		return this;

  	},

  	multiplyScalar: function ( scalar ) {

  		this.x *= scalar;
  		this.y *= scalar;

  		return this;

  	},

  	divide: function ( v ) {

  		this.x /= v.x;
  		this.y /= v.y;

  		return this;

  	},

  	divideScalar: function ( scalar ) {

  		return this.multiplyScalar( 1 / scalar );

  	},

  	applyMatrix3: function ( m ) {

  		var x = this.x, y = this.y;
  		var e = m.elements;

  		this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ];
  		this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ];

  		return this;

  	},

  	min: function ( v ) {

  		this.x = Math.min( this.x, v.x );
  		this.y = Math.min( this.y, v.y );

  		return this;

  	},

  	max: function ( v ) {

  		this.x = Math.max( this.x, v.x );
  		this.y = Math.max( this.y, v.y );

  		return this;

  	},

  	clamp: function ( min, max ) {

  		// assumes min < max, componentwise

  		this.x = Math.max( min.x, Math.min( max.x, this.x ) );
  		this.y = Math.max( min.y, Math.min( max.y, this.y ) );

  		return this;

  	},

  	clampScalar: function () {

  		var min = new Vector2();
  		var max = new Vector2();

  		return function clampScalar( minVal, maxVal ) {

  			min.set( minVal, minVal );
  			max.set( maxVal, maxVal );

  			return this.clamp( min, max );

  		};

  	}(),

  	clampLength: function ( min, max ) {

  		var length = this.length();

  		return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

  	},

  	floor: function () {

  		this.x = Math.floor( this.x );
  		this.y = Math.floor( this.y );

  		return this;

  	},

  	ceil: function () {

  		this.x = Math.ceil( this.x );
  		this.y = Math.ceil( this.y );

  		return this;

  	},

  	round: function () {

  		this.x = Math.round( this.x );
  		this.y = Math.round( this.y );

  		return this;

  	},

  	roundToZero: function () {

  		this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
  		this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );

  		return this;

  	},

  	negate: function () {

  		this.x = - this.x;
  		this.y = - this.y;

  		return this;

  	},

  	dot: function ( v ) {

  		return this.x * v.x + this.y * v.y;

  	},

  	lengthSq: function () {

  		return this.x * this.x + this.y * this.y;

  	},

  	length: function () {

  		return Math.sqrt( this.x * this.x + this.y * this.y );

  	},

  	manhattanLength: function () {

  		return Math.abs( this.x ) + Math.abs( this.y );

  	},

  	normalize: function () {

  		return this.divideScalar( this.length() || 1 );

  	},

  	angle: function () {

  		// computes the angle in radians with respect to the positive x-axis

  		var angle = Math.atan2( this.y, this.x );

  		if ( angle < 0 ) angle += 2 * Math.PI;

  		return angle;

  	},

  	distanceTo: function ( v ) {

  		return Math.sqrt( this.distanceToSquared( v ) );

  	},

  	distanceToSquared: function ( v ) {

  		var dx = this.x - v.x, dy = this.y - v.y;
  		return dx * dx + dy * dy;

  	},

  	manhattanDistanceTo: function ( v ) {

  		return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );

  	},

  	setLength: function ( length ) {

  		return this.normalize().multiplyScalar( length );

  	},

  	lerp: function ( v, alpha ) {

  		this.x += ( v.x - this.x ) * alpha;
  		this.y += ( v.y - this.y ) * alpha;

  		return this;

  	},

  	lerpVectors: function ( v1, v2, alpha ) {

  		return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );

  	},

  	equals: function ( v ) {

  		return ( ( v.x === this.x ) && ( v.y === this.y ) );

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this.x = array[ offset ];
  		this.y = array[ offset + 1 ];

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		array[ offset ] = this.x;
  		array[ offset + 1 ] = this.y;

  		return array;

  	},

  	fromBufferAttribute: function ( attribute, index, offset ) {

  		if ( offset !== undefined ) {

  			console.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' );

  		}

  		this.x = attribute.getX( index );
  		this.y = attribute.getY( index );

  		return this;

  	},

  	rotateAround: function ( center, angle ) {

  		var c = Math.cos( angle ), s = Math.sin( angle );

  		var x = this.x - center.x;
  		var y = this.y - center.y;

  		this.x = x * c - y * s + center.x;
  		this.y = x * s + y * c + center.y;

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author supereggbert / http://www.paulbrunt.co.uk/
   * @author philogb / http://blog.thejit.org/
   * @author jordi_ros / http://plattsoft.com
   * @author D1plo1d / http://github.com/D1plo1d
   * @author alteredq / http://alteredqualia.com/
   * @author mikael emtinger / http://gomo.se/
   * @author timknip / http://www.floorplanner.com/
   * @author bhouston / http://clara.io
   * @author WestLangley / http://github.com/WestLangley
   */

  function Matrix4() {

  	this.elements = [

  		1, 0, 0, 0,
  		0, 1, 0, 0,
  		0, 0, 1, 0,
  		0, 0, 0, 1

  	];

  	if ( arguments.length > 0 ) {

  		console.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );

  	}

  }

  Object.assign( Matrix4.prototype, {

  	isMatrix4: true,

  	set: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {

  		var te = this.elements;

  		te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;
  		te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;
  		te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;
  		te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;

  		return this;

  	},

  	identity: function () {

  		this.set(

  			1, 0, 0, 0,
  			0, 1, 0, 0,
  			0, 0, 1, 0,
  			0, 0, 0, 1

  		);

  		return this;

  	},

  	clone: function () {

  		return new Matrix4().fromArray( this.elements );

  	},

  	copy: function ( m ) {

  		var te = this.elements;
  		var me = m.elements;

  		te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];
  		te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];
  		te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];
  		te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];

  		return this;

  	},

  	copyPosition: function ( m ) {

  		var te = this.elements, me = m.elements;

  		te[ 12 ] = me[ 12 ];
  		te[ 13 ] = me[ 13 ];
  		te[ 14 ] = me[ 14 ];

  		return this;

  	},

  	extractBasis: function ( xAxis, yAxis, zAxis ) {

  		xAxis.setFromMatrixColumn( this, 0 );
  		yAxis.setFromMatrixColumn( this, 1 );
  		zAxis.setFromMatrixColumn( this, 2 );

  		return this;

  	},

  	makeBasis: function ( xAxis, yAxis, zAxis ) {

  		this.set(
  			xAxis.x, yAxis.x, zAxis.x, 0,
  			xAxis.y, yAxis.y, zAxis.y, 0,
  			xAxis.z, yAxis.z, zAxis.z, 0,
  			0, 0, 0, 1
  		);

  		return this;

  	},

  	extractRotation: function () {

  		var v1 = new Vector3();

  		return function extractRotation( m ) {

  			// this method does not support reflection matrices

  			var te = this.elements;
  			var me = m.elements;

  			var scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length();
  			var scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length();
  			var scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length();

  			te[ 0 ] = me[ 0 ] * scaleX;
  			te[ 1 ] = me[ 1 ] * scaleX;
  			te[ 2 ] = me[ 2 ] * scaleX;
  			te[ 3 ] = 0;

  			te[ 4 ] = me[ 4 ] * scaleY;
  			te[ 5 ] = me[ 5 ] * scaleY;
  			te[ 6 ] = me[ 6 ] * scaleY;
  			te[ 7 ] = 0;

  			te[ 8 ] = me[ 8 ] * scaleZ;
  			te[ 9 ] = me[ 9 ] * scaleZ;
  			te[ 10 ] = me[ 10 ] * scaleZ;
  			te[ 11 ] = 0;

  			te[ 12 ] = 0;
  			te[ 13 ] = 0;
  			te[ 14 ] = 0;
  			te[ 15 ] = 1;

  			return this;

  		};

  	}(),

  	makeRotationFromEuler: function ( euler ) {

  		if ( ! ( euler && euler.isEuler ) ) {

  			console.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );

  		}

  		var te = this.elements;

  		var x = euler.x, y = euler.y, z = euler.z;
  		var a = Math.cos( x ), b = Math.sin( x );
  		var c = Math.cos( y ), d = Math.sin( y );
  		var e = Math.cos( z ), f = Math.sin( z );

  		if ( euler.order === 'XYZ' ) {

  			var ae = a * e, af = a * f, be = b * e, bf = b * f;

  			te[ 0 ] = c * e;
  			te[ 4 ] = - c * f;
  			te[ 8 ] = d;

  			te[ 1 ] = af + be * d;
  			te[ 5 ] = ae - bf * d;
  			te[ 9 ] = - b * c;

  			te[ 2 ] = bf - ae * d;
  			te[ 6 ] = be + af * d;
  			te[ 10 ] = a * c;

  		} else if ( euler.order === 'YXZ' ) {

  			var ce = c * e, cf = c * f, de = d * e, df = d * f;

  			te[ 0 ] = ce + df * b;
  			te[ 4 ] = de * b - cf;
  			te[ 8 ] = a * d;

  			te[ 1 ] = a * f;
  			te[ 5 ] = a * e;
  			te[ 9 ] = - b;

  			te[ 2 ] = cf * b - de;
  			te[ 6 ] = df + ce * b;
  			te[ 10 ] = a * c;

  		} else if ( euler.order === 'ZXY' ) {

  			var ce = c * e, cf = c * f, de = d * e, df = d * f;

  			te[ 0 ] = ce - df * b;
  			te[ 4 ] = - a * f;
  			te[ 8 ] = de + cf * b;

  			te[ 1 ] = cf + de * b;
  			te[ 5 ] = a * e;
  			te[ 9 ] = df - ce * b;

  			te[ 2 ] = - a * d;
  			te[ 6 ] = b;
  			te[ 10 ] = a * c;

  		} else if ( euler.order === 'ZYX' ) {

  			var ae = a * e, af = a * f, be = b * e, bf = b * f;

  			te[ 0 ] = c * e;
  			te[ 4 ] = be * d - af;
  			te[ 8 ] = ae * d + bf;

  			te[ 1 ] = c * f;
  			te[ 5 ] = bf * d + ae;
  			te[ 9 ] = af * d - be;

  			te[ 2 ] = - d;
  			te[ 6 ] = b * c;
  			te[ 10 ] = a * c;

  		} else if ( euler.order === 'YZX' ) {

  			var ac = a * c, ad = a * d, bc = b * c, bd = b * d;

  			te[ 0 ] = c * e;
  			te[ 4 ] = bd - ac * f;
  			te[ 8 ] = bc * f + ad;

  			te[ 1 ] = f;
  			te[ 5 ] = a * e;
  			te[ 9 ] = - b * e;

  			te[ 2 ] = - d * e;
  			te[ 6 ] = ad * f + bc;
  			te[ 10 ] = ac - bd * f;

  		} else if ( euler.order === 'XZY' ) {

  			var ac = a * c, ad = a * d, bc = b * c, bd = b * d;

  			te[ 0 ] = c * e;
  			te[ 4 ] = - f;
  			te[ 8 ] = d * e;

  			te[ 1 ] = ac * f + bd;
  			te[ 5 ] = a * e;
  			te[ 9 ] = ad * f - bc;

  			te[ 2 ] = bc * f - ad;
  			te[ 6 ] = b * e;
  			te[ 10 ] = bd * f + ac;

  		}

  		// bottom row
  		te[ 3 ] = 0;
  		te[ 7 ] = 0;
  		te[ 11 ] = 0;

  		// last column
  		te[ 12 ] = 0;
  		te[ 13 ] = 0;
  		te[ 14 ] = 0;
  		te[ 15 ] = 1;

  		return this;

  	},

  	makeRotationFromQuaternion: function () {

  		var zero = new Vector3( 0, 0, 0 );
  		var one = new Vector3( 1, 1, 1 );

  		return function makeRotationFromQuaternion( q ) {

  			return this.compose( zero, q, one );

  		};

  	}(),

  	lookAt: function () {

  		var x = new Vector3();
  		var y = new Vector3();
  		var z = new Vector3();

  		return function lookAt( eye, target, up ) {

  			var te = this.elements;

  			z.subVectors( eye, target );

  			if ( z.lengthSq() === 0 ) {

  				// eye and target are in the same position

  				z.z = 1;

  			}

  			z.normalize();
  			x.crossVectors( up, z );

  			if ( x.lengthSq() === 0 ) {

  				// up and z are parallel

  				if ( Math.abs( up.z ) === 1 ) {

  					z.x += 0.0001;

  				} else {

  					z.z += 0.0001;

  				}

  				z.normalize();
  				x.crossVectors( up, z );

  			}

  			x.normalize();
  			y.crossVectors( z, x );

  			te[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x;
  			te[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y;
  			te[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z;

  			return this;

  		};

  	}(),

  	multiply: function ( m, n ) {

  		if ( n !== undefined ) {

  			console.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );
  			return this.multiplyMatrices( m, n );

  		}

  		return this.multiplyMatrices( this, m );

  	},

  	premultiply: function ( m ) {

  		return this.multiplyMatrices( m, this );

  	},

  	multiplyMatrices: function ( a, b ) {

  		var ae = a.elements;
  		var be = b.elements;
  		var te = this.elements;

  		var a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];
  		var a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];
  		var a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];
  		var a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];

  		var b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];
  		var b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];
  		var b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];
  		var b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];

  		te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
  		te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
  		te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
  		te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;

  		te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
  		te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
  		te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
  		te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;

  		te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
  		te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
  		te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
  		te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;

  		te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
  		te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
  		te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
  		te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;

  		return this;

  	},

  	multiplyScalar: function ( s ) {

  		var te = this.elements;

  		te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;
  		te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;
  		te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;
  		te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;

  		return this;

  	},

  	applyToBufferAttribute: function () {

  		var v1 = new Vector3();

  		return function applyToBufferAttribute( attribute ) {

  			for ( var i = 0, l = attribute.count; i < l; i ++ ) {

  				v1.x = attribute.getX( i );
  				v1.y = attribute.getY( i );
  				v1.z = attribute.getZ( i );

  				v1.applyMatrix4( this );

  				attribute.setXYZ( i, v1.x, v1.y, v1.z );

  			}

  			return attribute;

  		};

  	}(),

  	determinant: function () {

  		var te = this.elements;

  		var n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];
  		var n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];
  		var n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];
  		var n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];

  		//TODO: make this more efficient
  		//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )

  		return (
  			n41 * (
  				+ n14 * n23 * n32
  				 - n13 * n24 * n32
  				 - n14 * n22 * n33
  				 + n12 * n24 * n33
  				 + n13 * n22 * n34
  				 - n12 * n23 * n34
  			) +
  			n42 * (
  				+ n11 * n23 * n34
  				 - n11 * n24 * n33
  				 + n14 * n21 * n33
  				 - n13 * n21 * n34
  				 + n13 * n24 * n31
  				 - n14 * n23 * n31
  			) +
  			n43 * (
  				+ n11 * n24 * n32
  				 - n11 * n22 * n34
  				 - n14 * n21 * n32
  				 + n12 * n21 * n34
  				 + n14 * n22 * n31
  				 - n12 * n24 * n31
  			) +
  			n44 * (
  				- n13 * n22 * n31
  				 - n11 * n23 * n32
  				 + n11 * n22 * n33
  				 + n13 * n21 * n32
  				 - n12 * n21 * n33
  				 + n12 * n23 * n31
  			)

  		);

  	},

  	transpose: function () {

  		var te = this.elements;
  		var tmp;

  		tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;
  		tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;
  		tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;

  		tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;
  		tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;
  		tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;

  		return this;

  	},

  	setPosition: function ( v ) {

  		var te = this.elements;

  		te[ 12 ] = v.x;
  		te[ 13 ] = v.y;
  		te[ 14 ] = v.z;

  		return this;

  	},

  	getInverse: function ( m, throwOnDegenerate ) {

  		// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
  		var te = this.elements,
  			me = m.elements,

  			n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],
  			n12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],
  			n13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],
  			n14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],

  			t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
  			t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
  			t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
  			t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;

  		var det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;

  		if ( det === 0 ) {

  			var msg = "THREE.Matrix4: .getInverse() can't invert matrix, determinant is 0";

  			if ( throwOnDegenerate === true ) {

  				throw new Error( msg );

  			} else {

  				console.warn( msg );

  			}

  			return this.identity();

  		}

  		var detInv = 1 / det;

  		te[ 0 ] = t11 * detInv;
  		te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;
  		te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;
  		te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;

  		te[ 4 ] = t12 * detInv;
  		te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;
  		te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;
  		te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;

  		te[ 8 ] = t13 * detInv;
  		te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;
  		te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;
  		te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;

  		te[ 12 ] = t14 * detInv;
  		te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;
  		te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;
  		te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;

  		return this;

  	},

  	scale: function ( v ) {

  		var te = this.elements;
  		var x = v.x, y = v.y, z = v.z;

  		te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;
  		te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;
  		te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;
  		te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;

  		return this;

  	},

  	getMaxScaleOnAxis: function () {

  		var te = this.elements;

  		var scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];
  		var scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];
  		var scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];

  		return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );

  	},

  	makeTranslation: function ( x, y, z ) {

  		this.set(

  			1, 0, 0, x,
  			0, 1, 0, y,
  			0, 0, 1, z,
  			0, 0, 0, 1

  		);

  		return this;

  	},

  	makeRotationX: function ( theta ) {

  		var c = Math.cos( theta ), s = Math.sin( theta );

  		this.set(

  			1, 0, 0, 0,
  			0, c, - s, 0,
  			0, s, c, 0,
  			0, 0, 0, 1

  		);

  		return this;

  	},

  	makeRotationY: function ( theta ) {

  		var c = Math.cos( theta ), s = Math.sin( theta );

  		this.set(

  			 c, 0, s, 0,
  			 0, 1, 0, 0,
  			- s, 0, c, 0,
  			 0, 0, 0, 1

  		);

  		return this;

  	},

  	makeRotationZ: function ( theta ) {

  		var c = Math.cos( theta ), s = Math.sin( theta );

  		this.set(

  			c, - s, 0, 0,
  			s, c, 0, 0,
  			0, 0, 1, 0,
  			0, 0, 0, 1

  		);

  		return this;

  	},

  	makeRotationAxis: function ( axis, angle ) {

  		// Based on http://www.gamedev.net/reference/articles/article1199.asp

  		var c = Math.cos( angle );
  		var s = Math.sin( angle );
  		var t = 1 - c;
  		var x = axis.x, y = axis.y, z = axis.z;
  		var tx = t * x, ty = t * y;

  		this.set(

  			tx * x + c, tx * y - s * z, tx * z + s * y, 0,
  			tx * y + s * z, ty * y + c, ty * z - s * x, 0,
  			tx * z - s * y, ty * z + s * x, t * z * z + c, 0,
  			0, 0, 0, 1

  		);

  		 return this;

  	},

  	makeScale: function ( x, y, z ) {

  		this.set(

  			x, 0, 0, 0,
  			0, y, 0, 0,
  			0, 0, z, 0,
  			0, 0, 0, 1

  		);

  		return this;

  	},

  	makeShear: function ( x, y, z ) {

  		this.set(

  			1, y, z, 0,
  			x, 1, z, 0,
  			x, y, 1, 0,
  			0, 0, 0, 1

  		);

  		return this;

  	},

  	compose: function ( position, quaternion, scale ) {

  		var te = this.elements;

  		var x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w;
  		var x2 = x + x,	y2 = y + y, z2 = z + z;
  		var xx = x * x2, xy = x * y2, xz = x * z2;
  		var yy = y * y2, yz = y * z2, zz = z * z2;
  		var wx = w * x2, wy = w * y2, wz = w * z2;

  		var sx = scale.x, sy = scale.y, sz = scale.z;

  	        te[ 0 ] = ( 1 - ( yy + zz ) ) * sx;
  	        te[ 1 ] = ( xy + wz ) * sx;
  	        te[ 2 ] = ( xz - wy ) * sx;
  	        te[ 3 ] = 0;

  	        te[ 4 ] = ( xy - wz ) * sy;
  	        te[ 5 ] = ( 1 - ( xx + zz ) ) * sy;
  	        te[ 6 ] = ( yz + wx ) * sy;
  	        te[ 7 ] = 0;

  	        te[ 8 ] = ( xz + wy ) * sz;
  	        te[ 9 ] = ( yz - wx ) * sz;
  	        te[ 10 ] = ( 1 - ( xx + yy ) ) * sz;
  	        te[ 11 ] = 0;

  	        te[ 12 ] = position.x;
  	        te[ 13 ] = position.y;
  	        te[ 14 ] = position.z;
  	        te[ 15 ] = 1;

  	        return this;

  	},

  	decompose: function () {

  		var vector = new Vector3();
  		var matrix = new Matrix4();

  		return function decompose( position, quaternion, scale ) {

  			var te = this.elements;

  			var sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();
  			var sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();
  			var sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();

  			// if determine is negative, we need to invert one scale
  			var det = this.determinant();
  			if ( det < 0 ) sx = - sx;

  			position.x = te[ 12 ];
  			position.y = te[ 13 ];
  			position.z = te[ 14 ];

  			// scale the rotation part
  			matrix.copy( this );

  			var invSX = 1 / sx;
  			var invSY = 1 / sy;
  			var invSZ = 1 / sz;

  			matrix.elements[ 0 ] *= invSX;
  			matrix.elements[ 1 ] *= invSX;
  			matrix.elements[ 2 ] *= invSX;

  			matrix.elements[ 4 ] *= invSY;
  			matrix.elements[ 5 ] *= invSY;
  			matrix.elements[ 6 ] *= invSY;

  			matrix.elements[ 8 ] *= invSZ;
  			matrix.elements[ 9 ] *= invSZ;
  			matrix.elements[ 10 ] *= invSZ;

  			quaternion.setFromRotationMatrix( matrix );

  			scale.x = sx;
  			scale.y = sy;
  			scale.z = sz;

  			return this;

  		};

  	}(),

  	makePerspective: function ( left, right, top, bottom, near, far ) {

  		if ( far === undefined ) {

  			console.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );

  		}

  		var te = this.elements;
  		var x = 2 * near / ( right - left );
  		var y = 2 * near / ( top - bottom );

  		var a = ( right + left ) / ( right - left );
  		var b = ( top + bottom ) / ( top - bottom );
  		var c = - ( far + near ) / ( far - near );
  		var d = - 2 * far * near / ( far - near );

  		te[ 0 ] = x;	te[ 4 ] = 0;	te[ 8 ] = a;	te[ 12 ] = 0;
  		te[ 1 ] = 0;	te[ 5 ] = y;	te[ 9 ] = b;	te[ 13 ] = 0;
  		te[ 2 ] = 0;	te[ 6 ] = 0;	te[ 10 ] = c;	te[ 14 ] = d;
  		te[ 3 ] = 0;	te[ 7 ] = 0;	te[ 11 ] = - 1;	te[ 15 ] = 0;

  		return this;

  	},

  	makeOrthographic: function ( left, right, top, bottom, near, far ) {

  		var te = this.elements;
  		var w = 1.0 / ( right - left );
  		var h = 1.0 / ( top - bottom );
  		var p = 1.0 / ( far - near );

  		var x = ( right + left ) * w;
  		var y = ( top + bottom ) * h;
  		var z = ( far + near ) * p;

  		te[ 0 ] = 2 * w;	te[ 4 ] = 0;	te[ 8 ] = 0;	te[ 12 ] = - x;
  		te[ 1 ] = 0;	te[ 5 ] = 2 * h;	te[ 9 ] = 0;	te[ 13 ] = - y;
  		te[ 2 ] = 0;	te[ 6 ] = 0;	te[ 10 ] = - 2 * p;	te[ 14 ] = - z;
  		te[ 3 ] = 0;	te[ 7 ] = 0;	te[ 11 ] = 0;	te[ 15 ] = 1;

  		return this;

  	},

  	equals: function ( matrix ) {

  		var te = this.elements;
  		var me = matrix.elements;

  		for ( var i = 0; i < 16; i ++ ) {

  			if ( te[ i ] !== me[ i ] ) return false;

  		}

  		return true;

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		for ( var i = 0; i < 16; i ++ ) {

  			this.elements[ i ] = array[ i + offset ];

  		}

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		var te = this.elements;

  		array[ offset ] = te[ 0 ];
  		array[ offset + 1 ] = te[ 1 ];
  		array[ offset + 2 ] = te[ 2 ];
  		array[ offset + 3 ] = te[ 3 ];

  		array[ offset + 4 ] = te[ 4 ];
  		array[ offset + 5 ] = te[ 5 ];
  		array[ offset + 6 ] = te[ 6 ];
  		array[ offset + 7 ] = te[ 7 ];

  		array[ offset + 8 ] = te[ 8 ];
  		array[ offset + 9 ] = te[ 9 ];
  		array[ offset + 10 ] = te[ 10 ];
  		array[ offset + 11 ] = te[ 11 ];

  		array[ offset + 12 ] = te[ 12 ];
  		array[ offset + 13 ] = te[ 13 ];
  		array[ offset + 14 ] = te[ 14 ];
  		array[ offset + 15 ] = te[ 15 ];

  		return array;

  	}

  } );

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   * @author WestLangley / http://github.com/WestLangley
   * @author bhouston / http://clara.io
   */

  function Quaternion( x, y, z, w ) {

  	this._x = x || 0;
  	this._y = y || 0;
  	this._z = z || 0;
  	this._w = ( w !== undefined ) ? w : 1;

  }

  Object.assign( Quaternion, {

  	slerp: function ( qa, qb, qm, t ) {

  		return qm.copy( qa ).slerp( qb, t );

  	},

  	slerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {

  		// fuzz-free, array-based Quaternion SLERP operation

  		var x0 = src0[ srcOffset0 + 0 ],
  			y0 = src0[ srcOffset0 + 1 ],
  			z0 = src0[ srcOffset0 + 2 ],
  			w0 = src0[ srcOffset0 + 3 ],

  			x1 = src1[ srcOffset1 + 0 ],
  			y1 = src1[ srcOffset1 + 1 ],
  			z1 = src1[ srcOffset1 + 2 ],
  			w1 = src1[ srcOffset1 + 3 ];

  		if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {

  			var s = 1 - t,

  				cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,

  				dir = ( cos >= 0 ? 1 : - 1 ),
  				sqrSin = 1 - cos * cos;

  			// Skip the Slerp for tiny steps to avoid numeric problems:
  			if ( sqrSin > Number.EPSILON ) {

  				var sin = Math.sqrt( sqrSin ),
  					len = Math.atan2( sin, cos * dir );

  				s = Math.sin( s * len ) / sin;
  				t = Math.sin( t * len ) / sin;

  			}

  			var tDir = t * dir;

  			x0 = x0 * s + x1 * tDir;
  			y0 = y0 * s + y1 * tDir;
  			z0 = z0 * s + z1 * tDir;
  			w0 = w0 * s + w1 * tDir;

  			// Normalize in case we just did a lerp:
  			if ( s === 1 - t ) {

  				var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );

  				x0 *= f;
  				y0 *= f;
  				z0 *= f;
  				w0 *= f;

  			}

  		}

  		dst[ dstOffset ] = x0;
  		dst[ dstOffset + 1 ] = y0;
  		dst[ dstOffset + 2 ] = z0;
  		dst[ dstOffset + 3 ] = w0;

  	}

  } );

  Object.defineProperties( Quaternion.prototype, {

  	x: {

  		get: function () {

  			return this._x;

  		},

  		set: function ( value ) {

  			this._x = value;
  			this.onChangeCallback();

  		}

  	},

  	y: {

  		get: function () {

  			return this._y;

  		},

  		set: function ( value ) {

  			this._y = value;
  			this.onChangeCallback();

  		}

  	},

  	z: {

  		get: function () {

  			return this._z;

  		},

  		set: function ( value ) {

  			this._z = value;
  			this.onChangeCallback();

  		}

  	},

  	w: {

  		get: function () {

  			return this._w;

  		},

  		set: function ( value ) {

  			this._w = value;
  			this.onChangeCallback();

  		}

  	}

  } );

  Object.assign( Quaternion.prototype, {

  	set: function ( x, y, z, w ) {

  		this._x = x;
  		this._y = y;
  		this._z = z;
  		this._w = w;

  		this.onChangeCallback();

  		return this;

  	},

  	clone: function () {

  		return new this.constructor( this._x, this._y, this._z, this._w );

  	},

  	copy: function ( quaternion ) {

  		this._x = quaternion.x;
  		this._y = quaternion.y;
  		this._z = quaternion.z;
  		this._w = quaternion.w;

  		this.onChangeCallback();

  		return this;

  	},

  	setFromEuler: function ( euler, update ) {

  		if ( ! ( euler && euler.isEuler ) ) {

  			throw new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );

  		}

  		var x = euler._x, y = euler._y, z = euler._z, order = euler.order;

  		// http://www.mathworks.com/matlabcentral/fileexchange/
  		// 	20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
  		//	content/SpinCalc.m

  		var cos = Math.cos;
  		var sin = Math.sin;

  		var c1 = cos( x / 2 );
  		var c2 = cos( y / 2 );
  		var c3 = cos( z / 2 );

  		var s1 = sin( x / 2 );
  		var s2 = sin( y / 2 );
  		var s3 = sin( z / 2 );

  		if ( order === 'XYZ' ) {

  			this._x = s1 * c2 * c3 + c1 * s2 * s3;
  			this._y = c1 * s2 * c3 - s1 * c2 * s3;
  			this._z = c1 * c2 * s3 + s1 * s2 * c3;
  			this._w = c1 * c2 * c3 - s1 * s2 * s3;

  		} else if ( order === 'YXZ' ) {

  			this._x = s1 * c2 * c3 + c1 * s2 * s3;
  			this._y = c1 * s2 * c3 - s1 * c2 * s3;
  			this._z = c1 * c2 * s3 - s1 * s2 * c3;
  			this._w = c1 * c2 * c3 + s1 * s2 * s3;

  		} else if ( order === 'ZXY' ) {

  			this._x = s1 * c2 * c3 - c1 * s2 * s3;
  			this._y = c1 * s2 * c3 + s1 * c2 * s3;
  			this._z = c1 * c2 * s3 + s1 * s2 * c3;
  			this._w = c1 * c2 * c3 - s1 * s2 * s3;

  		} else if ( order === 'ZYX' ) {

  			this._x = s1 * c2 * c3 - c1 * s2 * s3;
  			this._y = c1 * s2 * c3 + s1 * c2 * s3;
  			this._z = c1 * c2 * s3 - s1 * s2 * c3;
  			this._w = c1 * c2 * c3 + s1 * s2 * s3;

  		} else if ( order === 'YZX' ) {

  			this._x = s1 * c2 * c3 + c1 * s2 * s3;
  			this._y = c1 * s2 * c3 + s1 * c2 * s3;
  			this._z = c1 * c2 * s3 - s1 * s2 * c3;
  			this._w = c1 * c2 * c3 - s1 * s2 * s3;

  		} else if ( order === 'XZY' ) {

  			this._x = s1 * c2 * c3 - c1 * s2 * s3;
  			this._y = c1 * s2 * c3 - s1 * c2 * s3;
  			this._z = c1 * c2 * s3 + s1 * s2 * c3;
  			this._w = c1 * c2 * c3 + s1 * s2 * s3;

  		}

  		if ( update !== false ) this.onChangeCallback();

  		return this;

  	},

  	setFromAxisAngle: function ( axis, angle ) {

  		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm

  		// assumes axis is normalized

  		var halfAngle = angle / 2, s = Math.sin( halfAngle );

  		this._x = axis.x * s;
  		this._y = axis.y * s;
  		this._z = axis.z * s;
  		this._w = Math.cos( halfAngle );

  		this.onChangeCallback();

  		return this;

  	},

  	setFromRotationMatrix: function ( m ) {

  		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm

  		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

  		var te = m.elements,

  			m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
  			m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
  			m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],

  			trace = m11 + m22 + m33,
  			s;

  		if ( trace > 0 ) {

  			s = 0.5 / Math.sqrt( trace + 1.0 );

  			this._w = 0.25 / s;
  			this._x = ( m32 - m23 ) * s;
  			this._y = ( m13 - m31 ) * s;
  			this._z = ( m21 - m12 ) * s;

  		} else if ( m11 > m22 && m11 > m33 ) {

  			s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );

  			this._w = ( m32 - m23 ) / s;
  			this._x = 0.25 * s;
  			this._y = ( m12 + m21 ) / s;
  			this._z = ( m13 + m31 ) / s;

  		} else if ( m22 > m33 ) {

  			s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );

  			this._w = ( m13 - m31 ) / s;
  			this._x = ( m12 + m21 ) / s;
  			this._y = 0.25 * s;
  			this._z = ( m23 + m32 ) / s;

  		} else {

  			s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );

  			this._w = ( m21 - m12 ) / s;
  			this._x = ( m13 + m31 ) / s;
  			this._y = ( m23 + m32 ) / s;
  			this._z = 0.25 * s;

  		}

  		this.onChangeCallback();

  		return this;

  	},

  	setFromUnitVectors: function () {

  		// assumes direction vectors vFrom and vTo are normalized

  		var v1 = new Vector3();
  		var r;

  		var EPS = 0.000001;

  		return function setFromUnitVectors( vFrom, vTo ) {

  			if ( v1 === undefined ) v1 = new Vector3();

  			r = vFrom.dot( vTo ) + 1;

  			if ( r < EPS ) {

  				r = 0;

  				if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {

  					v1.set( - vFrom.y, vFrom.x, 0 );

  				} else {

  					v1.set( 0, - vFrom.z, vFrom.y );

  				}

  			} else {

  				v1.crossVectors( vFrom, vTo );

  			}

  			this._x = v1.x;
  			this._y = v1.y;
  			this._z = v1.z;
  			this._w = r;

  			return this.normalize();

  		};

  	}(),

  	inverse: function () {

  		// quaternion is assumed to have unit length

  		return this.conjugate();

  	},

  	conjugate: function () {

  		this._x *= - 1;
  		this._y *= - 1;
  		this._z *= - 1;

  		this.onChangeCallback();

  		return this;

  	},

  	dot: function ( v ) {

  		return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;

  	},

  	lengthSq: function () {

  		return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;

  	},

  	length: function () {

  		return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );

  	},

  	normalize: function () {

  		var l = this.length();

  		if ( l === 0 ) {

  			this._x = 0;
  			this._y = 0;
  			this._z = 0;
  			this._w = 1;

  		} else {

  			l = 1 / l;

  			this._x = this._x * l;
  			this._y = this._y * l;
  			this._z = this._z * l;
  			this._w = this._w * l;

  		}

  		this.onChangeCallback();

  		return this;

  	},

  	multiply: function ( q, p ) {

  		if ( p !== undefined ) {

  			console.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
  			return this.multiplyQuaternions( q, p );

  		}

  		return this.multiplyQuaternions( this, q );

  	},

  	premultiply: function ( q ) {

  		return this.multiplyQuaternions( q, this );

  	},

  	multiplyQuaternions: function ( a, b ) {

  		// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm

  		var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
  		var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;

  		this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
  		this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
  		this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
  		this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;

  		this.onChangeCallback();

  		return this;

  	},

  	slerp: function ( qb, t ) {

  		if ( t === 0 ) return this;
  		if ( t === 1 ) return this.copy( qb );

  		var x = this._x, y = this._y, z = this._z, w = this._w;

  		// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/

  		var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;

  		if ( cosHalfTheta < 0 ) {

  			this._w = - qb._w;
  			this._x = - qb._x;
  			this._y = - qb._y;
  			this._z = - qb._z;

  			cosHalfTheta = - cosHalfTheta;

  		} else {

  			this.copy( qb );

  		}

  		if ( cosHalfTheta >= 1.0 ) {

  			this._w = w;
  			this._x = x;
  			this._y = y;
  			this._z = z;

  			return this;

  		}

  		var sinHalfTheta = Math.sqrt( 1.0 - cosHalfTheta * cosHalfTheta );

  		if ( Math.abs( sinHalfTheta ) < 0.001 ) {

  			this._w = 0.5 * ( w + this._w );
  			this._x = 0.5 * ( x + this._x );
  			this._y = 0.5 * ( y + this._y );
  			this._z = 0.5 * ( z + this._z );

  			return this;

  		}

  		var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
  		var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
  			ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;

  		this._w = ( w * ratioA + this._w * ratioB );
  		this._x = ( x * ratioA + this._x * ratioB );
  		this._y = ( y * ratioA + this._y * ratioB );
  		this._z = ( z * ratioA + this._z * ratioB );

  		this.onChangeCallback();

  		return this;

  	},

  	equals: function ( quaternion ) {

  		return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this._x = array[ offset ];
  		this._y = array[ offset + 1 ];
  		this._z = array[ offset + 2 ];
  		this._w = array[ offset + 3 ];

  		this.onChangeCallback();

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		array[ offset ] = this._x;
  		array[ offset + 1 ] = this._y;
  		array[ offset + 2 ] = this._z;
  		array[ offset + 3 ] = this._w;

  		return array;

  	},

  	onChange: function ( callback ) {

  		this.onChangeCallback = callback;

  		return this;

  	},

  	onChangeCallback: function () {}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author kile / http://kile.stravaganza.org/
   * @author philogb / http://blog.thejit.org/
   * @author mikael emtinger / http://gomo.se/
   * @author egraether / http://egraether.com/
   * @author WestLangley / http://github.com/WestLangley
   */

  function Vector3( x, y, z ) {

  	this.x = x || 0;
  	this.y = y || 0;
  	this.z = z || 0;

  }

  Object.assign( Vector3.prototype, {

  	isVector3: true,

  	set: function ( x, y, z ) {

  		this.x = x;
  		this.y = y;
  		this.z = z;

  		return this;

  	},

  	setScalar: function ( scalar ) {

  		this.x = scalar;
  		this.y = scalar;
  		this.z = scalar;

  		return this;

  	},

  	setX: function ( x ) {

  		this.x = x;

  		return this;

  	},

  	setY: function ( y ) {

  		this.y = y;

  		return this;

  	},

  	setZ: function ( z ) {

  		this.z = z;

  		return this;

  	},

  	setComponent: function ( index, value ) {

  		switch ( index ) {

  			case 0: this.x = value; break;
  			case 1: this.y = value; break;
  			case 2: this.z = value; break;
  			default: throw new Error( 'index is out of range: ' + index );

  		}

  		return this;

  	},

  	getComponent: function ( index ) {

  		switch ( index ) {

  			case 0: return this.x;
  			case 1: return this.y;
  			case 2: return this.z;
  			default: throw new Error( 'index is out of range: ' + index );

  		}

  	},

  	clone: function () {

  		return new this.constructor( this.x, this.y, this.z );

  	},

  	copy: function ( v ) {

  		this.x = v.x;
  		this.y = v.y;
  		this.z = v.z;

  		return this;

  	},

  	add: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
  			return this.addVectors( v, w );

  		}

  		this.x += v.x;
  		this.y += v.y;
  		this.z += v.z;

  		return this;

  	},

  	addScalar: function ( s ) {

  		this.x += s;
  		this.y += s;
  		this.z += s;

  		return this;

  	},

  	addVectors: function ( a, b ) {

  		this.x = a.x + b.x;
  		this.y = a.y + b.y;
  		this.z = a.z + b.z;

  		return this;

  	},

  	addScaledVector: function ( v, s ) {

  		this.x += v.x * s;
  		this.y += v.y * s;
  		this.z += v.z * s;

  		return this;

  	},

  	sub: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
  			return this.subVectors( v, w );

  		}

  		this.x -= v.x;
  		this.y -= v.y;
  		this.z -= v.z;

  		return this;

  	},

  	subScalar: function ( s ) {

  		this.x -= s;
  		this.y -= s;
  		this.z -= s;

  		return this;

  	},

  	subVectors: function ( a, b ) {

  		this.x = a.x - b.x;
  		this.y = a.y - b.y;
  		this.z = a.z - b.z;

  		return this;

  	},

  	multiply: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
  			return this.multiplyVectors( v, w );

  		}

  		this.x *= v.x;
  		this.y *= v.y;
  		this.z *= v.z;

  		return this;

  	},

  	multiplyScalar: function ( scalar ) {

  		this.x *= scalar;
  		this.y *= scalar;
  		this.z *= scalar;

  		return this;

  	},

  	multiplyVectors: function ( a, b ) {

  		this.x = a.x * b.x;
  		this.y = a.y * b.y;
  		this.z = a.z * b.z;

  		return this;

  	},

  	applyEuler: function () {

  		var quaternion = new Quaternion();

  		return function applyEuler( euler ) {

  			if ( ! ( euler && euler.isEuler ) ) {

  				console.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );

  			}

  			return this.applyQuaternion( quaternion.setFromEuler( euler ) );

  		};

  	}(),

  	applyAxisAngle: function () {

  		var quaternion = new Quaternion();

  		return function applyAxisAngle( axis, angle ) {

  			return this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) );

  		};

  	}(),

  	applyMatrix3: function ( m ) {

  		var x = this.x, y = this.y, z = this.z;
  		var e = m.elements;

  		this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
  		this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
  		this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;

  		return this;

  	},

  	applyMatrix4: function ( m ) {

  		var x = this.x, y = this.y, z = this.z;
  		var e = m.elements;

  		var w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );

  		this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;
  		this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;
  		this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;

  		return this;

  	},

  	applyQuaternion: function ( q ) {

  		var x = this.x, y = this.y, z = this.z;
  		var qx = q.x, qy = q.y, qz = q.z, qw = q.w;

  		// calculate quat * vector

  		var ix = qw * x + qy * z - qz * y;
  		var iy = qw * y + qz * x - qx * z;
  		var iz = qw * z + qx * y - qy * x;
  		var iw = - qx * x - qy * y - qz * z;

  		// calculate result * inverse quat

  		this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
  		this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
  		this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;

  		return this;

  	},

  	project: function () {

  		var matrix = new Matrix4();

  		return function project( camera ) {

  			matrix.multiplyMatrices( camera.projectionMatrix, matrix.getInverse( camera.matrixWorld ) );
  			return this.applyMatrix4( matrix );

  		};

  	}(),

  	unproject: function () {

  		var matrix = new Matrix4();

  		return function unproject( camera ) {

  			matrix.multiplyMatrices( camera.matrixWorld, matrix.getInverse( camera.projectionMatrix ) );
  			return this.applyMatrix4( matrix );

  		};

  	}(),

  	transformDirection: function ( m ) {

  		// input: THREE.Matrix4 affine matrix
  		// vector interpreted as a direction

  		var x = this.x, y = this.y, z = this.z;
  		var e = m.elements;

  		this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
  		this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
  		this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;

  		return this.normalize();

  	},

  	divide: function ( v ) {

  		this.x /= v.x;
  		this.y /= v.y;
  		this.z /= v.z;

  		return this;

  	},

  	divideScalar: function ( scalar ) {

  		return this.multiplyScalar( 1 / scalar );

  	},

  	min: function ( v ) {

  		this.x = Math.min( this.x, v.x );
  		this.y = Math.min( this.y, v.y );
  		this.z = Math.min( this.z, v.z );

  		return this;

  	},

  	max: function ( v ) {

  		this.x = Math.max( this.x, v.x );
  		this.y = Math.max( this.y, v.y );
  		this.z = Math.max( this.z, v.z );

  		return this;

  	},

  	clamp: function ( min, max ) {

  		// assumes min < max, componentwise

  		this.x = Math.max( min.x, Math.min( max.x, this.x ) );
  		this.y = Math.max( min.y, Math.min( max.y, this.y ) );
  		this.z = Math.max( min.z, Math.min( max.z, this.z ) );

  		return this;

  	},

  	clampScalar: function () {

  		var min = new Vector3();
  		var max = new Vector3();

  		return function clampScalar( minVal, maxVal ) {

  			min.set( minVal, minVal, minVal );
  			max.set( maxVal, maxVal, maxVal );

  			return this.clamp( min, max );

  		};

  	}(),

  	clampLength: function ( min, max ) {

  		var length = this.length();

  		return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

  	},

  	floor: function () {

  		this.x = Math.floor( this.x );
  		this.y = Math.floor( this.y );
  		this.z = Math.floor( this.z );

  		return this;

  	},

  	ceil: function () {

  		this.x = Math.ceil( this.x );
  		this.y = Math.ceil( this.y );
  		this.z = Math.ceil( this.z );

  		return this;

  	},

  	round: function () {

  		this.x = Math.round( this.x );
  		this.y = Math.round( this.y );
  		this.z = Math.round( this.z );

  		return this;

  	},

  	roundToZero: function () {

  		this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
  		this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
  		this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );

  		return this;

  	},

  	negate: function () {

  		this.x = - this.x;
  		this.y = - this.y;
  		this.z = - this.z;

  		return this;

  	},

  	dot: function ( v ) {

  		return this.x * v.x + this.y * v.y + this.z * v.z;

  	},

  	// TODO lengthSquared?

  	lengthSq: function () {

  		return this.x * this.x + this.y * this.y + this.z * this.z;

  	},

  	length: function () {

  		return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );

  	},

  	manhattanLength: function () {

  		return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );

  	},

  	normalize: function () {

  		return this.divideScalar( this.length() || 1 );

  	},

  	setLength: function ( length ) {

  		return this.normalize().multiplyScalar( length );

  	},

  	lerp: function ( v, alpha ) {

  		this.x += ( v.x - this.x ) * alpha;
  		this.y += ( v.y - this.y ) * alpha;
  		this.z += ( v.z - this.z ) * alpha;

  		return this;

  	},

  	lerpVectors: function ( v1, v2, alpha ) {

  		return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );

  	},

  	cross: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
  			return this.crossVectors( v, w );

  		}

  		return this.crossVectors( this, v );

  	},

  	crossVectors: function ( a, b ) {

  		var ax = a.x, ay = a.y, az = a.z;
  		var bx = b.x, by = b.y, bz = b.z;

  		this.x = ay * bz - az * by;
  		this.y = az * bx - ax * bz;
  		this.z = ax * by - ay * bx;

  		return this;

  	},

  	projectOnVector: function ( vector ) {

  		var scalar = vector.dot( this ) / vector.lengthSq();

  		return this.copy( vector ).multiplyScalar( scalar );

  	},

  	projectOnPlane: function () {

  		var v1 = new Vector3();

  		return function projectOnPlane( planeNormal ) {

  			v1.copy( this ).projectOnVector( planeNormal );

  			return this.sub( v1 );

  		};

  	}(),

  	reflect: function () {

  		// reflect incident vector off plane orthogonal to normal
  		// normal is assumed to have unit length

  		var v1 = new Vector3();

  		return function reflect( normal ) {

  			return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );

  		};

  	}(),

  	angleTo: function ( v ) {

  		var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) );

  		// clamp, to handle numerical problems

  		return Math.acos( _Math.clamp( theta, - 1, 1 ) );

  	},

  	distanceTo: function ( v ) {

  		return Math.sqrt( this.distanceToSquared( v ) );

  	},

  	distanceToSquared: function ( v ) {

  		var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;

  		return dx * dx + dy * dy + dz * dz;

  	},

  	manhattanDistanceTo: function ( v ) {

  		return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );

  	},

  	setFromSpherical: function ( s ) {

  		var sinPhiRadius = Math.sin( s.phi ) * s.radius;

  		this.x = sinPhiRadius * Math.sin( s.theta );
  		this.y = Math.cos( s.phi ) * s.radius;
  		this.z = sinPhiRadius * Math.cos( s.theta );

  		return this;

  	},

  	setFromCylindrical: function ( c ) {

  		this.x = c.radius * Math.sin( c.theta );
  		this.y = c.y;
  		this.z = c.radius * Math.cos( c.theta );

  		return this;

  	},

  	setFromMatrixPosition: function ( m ) {

  		var e = m.elements;

  		this.x = e[ 12 ];
  		this.y = e[ 13 ];
  		this.z = e[ 14 ];

  		return this;

  	},

  	setFromMatrixScale: function ( m ) {

  		var sx = this.setFromMatrixColumn( m, 0 ).length();
  		var sy = this.setFromMatrixColumn( m, 1 ).length();
  		var sz = this.setFromMatrixColumn( m, 2 ).length();

  		this.x = sx;
  		this.y = sy;
  		this.z = sz;

  		return this;

  	},

  	setFromMatrixColumn: function ( m, index ) {

  		return this.fromArray( m.elements, index * 4 );

  	},

  	equals: function ( v ) {

  		return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this.x = array[ offset ];
  		this.y = array[ offset + 1 ];
  		this.z = array[ offset + 2 ];

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		array[ offset ] = this.x;
  		array[ offset + 1 ] = this.y;
  		array[ offset + 2 ] = this.z;

  		return array;

  	},

  	fromBufferAttribute: function ( attribute, index, offset ) {

  		if ( offset !== undefined ) {

  			console.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' );

  		}

  		this.x = attribute.getX( index );
  		this.y = attribute.getY( index );
  		this.z = attribute.getZ( index );

  		return this;

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author WestLangley / http://github.com/WestLangley
   * @author bhouston / http://clara.io
   * @author tschw
   */

  function Matrix3() {

  	this.elements = [

  		1, 0, 0,
  		0, 1, 0,
  		0, 0, 1

  	];

  	if ( arguments.length > 0 ) {

  		console.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );

  	}

  }

  Object.assign( Matrix3.prototype, {

  	isMatrix3: true,

  	set: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {

  		var te = this.elements;

  		te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;
  		te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;
  		te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;

  		return this;

  	},

  	identity: function () {

  		this.set(

  			1, 0, 0,
  			0, 1, 0,
  			0, 0, 1

  		);

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().fromArray( this.elements );

  	},

  	copy: function ( m ) {

  		var te = this.elements;
  		var me = m.elements;

  		te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];
  		te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];
  		te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];

  		return this;

  	},

  	setFromMatrix4: function ( m ) {

  		var me = m.elements;

  		this.set(

  			me[ 0 ], me[ 4 ], me[ 8 ],
  			me[ 1 ], me[ 5 ], me[ 9 ],
  			me[ 2 ], me[ 6 ], me[ 10 ]

  		);

  		return this;

  	},

  	applyToBufferAttribute: function () {

  		var v1 = new Vector3();

  		return function applyToBufferAttribute( attribute ) {

  			for ( var i = 0, l = attribute.count; i < l; i ++ ) {

  				v1.x = attribute.getX( i );
  				v1.y = attribute.getY( i );
  				v1.z = attribute.getZ( i );

  				v1.applyMatrix3( this );

  				attribute.setXYZ( i, v1.x, v1.y, v1.z );

  			}

  			return attribute;

  		};

  	}(),

  	multiply: function ( m ) {

  		return this.multiplyMatrices( this, m );

  	},

  	premultiply: function ( m ) {

  		return this.multiplyMatrices( m, this );

  	},

  	multiplyMatrices: function ( a, b ) {

  		var ae = a.elements;
  		var be = b.elements;
  		var te = this.elements;

  		var a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];
  		var a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];
  		var a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];

  		var b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];
  		var b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];
  		var b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];

  		te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;
  		te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;
  		te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;

  		te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;
  		te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;
  		te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;

  		te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;
  		te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;
  		te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;

  		return this;

  	},

  	multiplyScalar: function ( s ) {

  		var te = this.elements;

  		te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;
  		te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;
  		te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;

  		return this;

  	},

  	determinant: function () {

  		var te = this.elements;

  		var a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],
  			d = te[ 3 ], e = te[ 4 ], f = te[ 5 ],
  			g = te[ 6 ], h = te[ 7 ], i = te[ 8 ];

  		return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;

  	},

  	getInverse: function ( matrix, throwOnDegenerate ) {

  		if ( matrix && matrix.isMatrix4 ) {

  			console.error( "THREE.Matrix3: .getInverse() no longer takes a Matrix4 argument." );

  		}

  		var me = matrix.elements,
  			te = this.elements,

  			n11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ],
  			n12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ],
  			n13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],

  			t11 = n33 * n22 - n32 * n23,
  			t12 = n32 * n13 - n33 * n12,
  			t13 = n23 * n12 - n22 * n13,

  			det = n11 * t11 + n21 * t12 + n31 * t13;

  		if ( det === 0 ) {

  			var msg = "THREE.Matrix3: .getInverse() can't invert matrix, determinant is 0";

  			if ( throwOnDegenerate === true ) {

  				throw new Error( msg );

  			} else {

  				console.warn( msg );

  			}

  			return this.identity();

  		}

  		var detInv = 1 / det;

  		te[ 0 ] = t11 * detInv;
  		te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;
  		te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;

  		te[ 3 ] = t12 * detInv;
  		te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;
  		te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;

  		te[ 6 ] = t13 * detInv;
  		te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;
  		te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;

  		return this;

  	},

  	transpose: function () {

  		var tmp, m = this.elements;

  		tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;
  		tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;
  		tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;

  		return this;

  	},

  	getNormalMatrix: function ( matrix4 ) {

  		return this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();

  	},

  	transposeIntoArray: function ( r ) {

  		var m = this.elements;

  		r[ 0 ] = m[ 0 ];
  		r[ 1 ] = m[ 3 ];
  		r[ 2 ] = m[ 6 ];
  		r[ 3 ] = m[ 1 ];
  		r[ 4 ] = m[ 4 ];
  		r[ 5 ] = m[ 7 ];
  		r[ 6 ] = m[ 2 ];
  		r[ 7 ] = m[ 5 ];
  		r[ 8 ] = m[ 8 ];

  		return this;

  	},

  	setUvTransform: function ( tx, ty, sx, sy, rotation, cx, cy ) {

  		var c = Math.cos( rotation );
  		var s = Math.sin( rotation );

  		this.set(
  			sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx,
  			- sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty,
  			0, 0, 1
  		);

  	},

  	scale: function ( sx, sy ) {

  		var te = this.elements;

  		te[ 0 ] *= sx; te[ 3 ] *= sx; te[ 6 ] *= sx;
  		te[ 1 ] *= sy; te[ 4 ] *= sy; te[ 7 ] *= sy;

  		return this;

  	},

  	rotate: function ( theta ) {

  		var c = Math.cos( theta );
  		var s = Math.sin( theta );

  		var te = this.elements;

  		var a11 = te[ 0 ], a12 = te[ 3 ], a13 = te[ 6 ];
  		var a21 = te[ 1 ], a22 = te[ 4 ], a23 = te[ 7 ];

  		te[ 0 ] = c * a11 + s * a21;
  		te[ 3 ] = c * a12 + s * a22;
  		te[ 6 ] = c * a13 + s * a23;

  		te[ 1 ] = - s * a11 + c * a21;
  		te[ 4 ] = - s * a12 + c * a22;
  		te[ 7 ] = - s * a13 + c * a23;

  		return this;

  	},

  	translate: function ( tx, ty ) {

  		var te = this.elements;

  		te[ 0 ] += tx * te[ 2 ]; te[ 3 ] += tx * te[ 5 ]; te[ 6 ] += tx * te[ 8 ];
  		te[ 1 ] += ty * te[ 2 ]; te[ 4 ] += ty * te[ 5 ]; te[ 7 ] += ty * te[ 8 ];

  		return this;

  	},

  	equals: function ( matrix ) {

  		var te = this.elements;
  		var me = matrix.elements;

  		for ( var i = 0; i < 9; i ++ ) {

  			if ( te[ i ] !== me[ i ] ) return false;

  		}

  		return true;

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		for ( var i = 0; i < 9; i ++ ) {

  			this.elements[ i ] = array[ i + offset ];

  		}

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		var te = this.elements;

  		array[ offset ] = te[ 0 ];
  		array[ offset + 1 ] = te[ 1 ];
  		array[ offset + 2 ] = te[ 2 ];

  		array[ offset + 3 ] = te[ 3 ];
  		array[ offset + 4 ] = te[ 4 ];
  		array[ offset + 5 ] = te[ 5 ];

  		array[ offset + 6 ] = te[ 6 ];
  		array[ offset + 7 ] = te[ 7 ];
  		array[ offset + 8 ] = te[ 8 ];

  		return array;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   * @author szimek / https://github.com/szimek/
   */

  var textureId = 0;

  function Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {

  	Object.defineProperty( this, 'id', { value: textureId ++ } );

  	this.uuid = _Math.generateUUID();

  	this.name = '';

  	this.image = image !== undefined ? image : Texture.DEFAULT_IMAGE;
  	this.mipmaps = [];

  	this.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING;

  	this.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping;
  	this.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping;

  	this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
  	this.minFilter = minFilter !== undefined ? minFilter : LinearMipMapLinearFilter;

  	this.anisotropy = anisotropy !== undefined ? anisotropy : 1;

  	this.format = format !== undefined ? format : RGBAFormat;
  	this.type = type !== undefined ? type : UnsignedByteType;

  	this.offset = new Vector2( 0, 0 );
  	this.repeat = new Vector2( 1, 1 );
  	this.center = new Vector2( 0, 0 );
  	this.rotation = 0;

  	this.matrixAutoUpdate = true;
  	this.matrix = new Matrix3();

  	this.generateMipmaps = true;
  	this.premultiplyAlpha = false;
  	this.flipY = true;
  	this.unpackAlignment = 4;	// valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)

  	// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
  	//
  	// Also changing the encoding after already used by a Material will not automatically make the Material
  	// update.  You need to explicitly call Material.needsUpdate to trigger it to recompile.
  	this.encoding = encoding !== undefined ? encoding : LinearEncoding;

  	this.version = 0;
  	this.onUpdate = null;

  }

  Texture.DEFAULT_IMAGE = undefined;
  Texture.DEFAULT_MAPPING = UVMapping;

  Texture.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: Texture,

  	isTexture: true,

  	updateMatrix: function () {

  		this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y );

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( source ) {

  		this.name = source.name;

  		this.image = source.image;
  		this.mipmaps = source.mipmaps.slice( 0 );

  		this.mapping = source.mapping;

  		this.wrapS = source.wrapS;
  		this.wrapT = source.wrapT;

  		this.magFilter = source.magFilter;
  		this.minFilter = source.minFilter;

  		this.anisotropy = source.anisotropy;

  		this.format = source.format;
  		this.type = source.type;

  		this.offset.copy( source.offset );
  		this.repeat.copy( source.repeat );
  		this.center.copy( source.center );
  		this.rotation = source.rotation;

  		this.matrixAutoUpdate = source.matrixAutoUpdate;
  		this.matrix.copy( source.matrix );

  		this.generateMipmaps = source.generateMipmaps;
  		this.premultiplyAlpha = source.premultiplyAlpha;
  		this.flipY = source.flipY;
  		this.unpackAlignment = source.unpackAlignment;
  		this.encoding = source.encoding;

  		return this;

  	},

  	toJSON: function ( meta ) {

  		var isRootObject = ( meta === undefined || typeof meta === 'string' );

  		if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) {

  			return meta.textures[ this.uuid ];

  		}

  		function getDataURL( image ) {

  			var canvas;

  			if ( image instanceof HTMLCanvasElement ) {

  				canvas = image;

  			} else {

  				canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
  				canvas.width = image.width;
  				canvas.height = image.height;

  				var context = canvas.getContext( '2d' );

  				if ( image instanceof ImageData ) {

  					context.putImageData( image, 0, 0 );

  				} else {

  					context.drawImage( image, 0, 0, image.width, image.height );

  				}

  			}

  			if ( canvas.width > 2048 || canvas.height > 2048 ) {

  				return canvas.toDataURL( 'image/jpeg', 0.6 );

  			} else {

  				return canvas.toDataURL( 'image/png' );

  			}

  		}

  		var output = {

  			metadata: {
  				version: 4.5,
  				type: 'Texture',
  				generator: 'Texture.toJSON'
  			},

  			uuid: this.uuid,
  			name: this.name,

  			mapping: this.mapping,

  			repeat: [ this.repeat.x, this.repeat.y ],
  			offset: [ this.offset.x, this.offset.y ],
  			center: [ this.center.x, this.center.y ],
  			rotation: this.rotation,

  			wrap: [ this.wrapS, this.wrapT ],

  			format: this.format,
  			minFilter: this.minFilter,
  			magFilter: this.magFilter,
  			anisotropy: this.anisotropy,

  			flipY: this.flipY

  		};

  		if ( this.image !== undefined ) {

  			// TODO: Move to THREE.Image

  			var image = this.image;

  			if ( image.uuid === undefined ) {

  				image.uuid = _Math.generateUUID(); // UGH

  			}

  			if ( ! isRootObject && meta.images[ image.uuid ] === undefined ) {

  				meta.images[ image.uuid ] = {
  					uuid: image.uuid,
  					url: getDataURL( image )
  				};

  			}

  			output.image = image.uuid;

  		}

  		if ( ! isRootObject ) {

  			meta.textures[ this.uuid ] = output;

  		}

  		return output;

  	},

  	dispose: function () {

  		this.dispatchEvent( { type: 'dispose' } );

  	},

  	transformUv: function ( uv ) {

  		if ( this.mapping !== UVMapping ) return;

  		uv.applyMatrix3( this.matrix );

  		if ( uv.x < 0 || uv.x > 1 ) {

  			switch ( this.wrapS ) {

  				case RepeatWrapping:

  					uv.x = uv.x - Math.floor( uv.x );
  					break;

  				case ClampToEdgeWrapping:

  					uv.x = uv.x < 0 ? 0 : 1;
  					break;

  				case MirroredRepeatWrapping:

  					if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {

  						uv.x = Math.ceil( uv.x ) - uv.x;

  					} else {

  						uv.x = uv.x - Math.floor( uv.x );

  					}
  					break;

  			}

  		}

  		if ( uv.y < 0 || uv.y > 1 ) {

  			switch ( this.wrapT ) {

  				case RepeatWrapping:

  					uv.y = uv.y - Math.floor( uv.y );
  					break;

  				case ClampToEdgeWrapping:

  					uv.y = uv.y < 0 ? 0 : 1;
  					break;

  				case MirroredRepeatWrapping:

  					if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {

  						uv.y = Math.ceil( uv.y ) - uv.y;

  					} else {

  						uv.y = uv.y - Math.floor( uv.y );

  					}
  					break;

  			}

  		}

  		if ( this.flipY ) {

  			uv.y = 1 - uv.y;

  		}

  	}

  } );

  Object.defineProperty( Texture.prototype, "needsUpdate", {

  	set: function ( value ) {

  		if ( value === true ) this.version ++;

  	}

  } );

  /**
   * @author supereggbert / http://www.paulbrunt.co.uk/
   * @author philogb / http://blog.thejit.org/
   * @author mikael emtinger / http://gomo.se/
   * @author egraether / http://egraether.com/
   * @author WestLangley / http://github.com/WestLangley
   */

  function Vector4( x, y, z, w ) {

  	this.x = x || 0;
  	this.y = y || 0;
  	this.z = z || 0;
  	this.w = ( w !== undefined ) ? w : 1;

  }

  Object.assign( Vector4.prototype, {

  	isVector4: true,

  	set: function ( x, y, z, w ) {

  		this.x = x;
  		this.y = y;
  		this.z = z;
  		this.w = w;

  		return this;

  	},

  	setScalar: function ( scalar ) {

  		this.x = scalar;
  		this.y = scalar;
  		this.z = scalar;
  		this.w = scalar;

  		return this;

  	},

  	setX: function ( x ) {

  		this.x = x;

  		return this;

  	},

  	setY: function ( y ) {

  		this.y = y;

  		return this;

  	},

  	setZ: function ( z ) {

  		this.z = z;

  		return this;

  	},

  	setW: function ( w ) {

  		this.w = w;

  		return this;

  	},

  	setComponent: function ( index, value ) {

  		switch ( index ) {

  			case 0: this.x = value; break;
  			case 1: this.y = value; break;
  			case 2: this.z = value; break;
  			case 3: this.w = value; break;
  			default: throw new Error( 'index is out of range: ' + index );

  		}

  		return this;

  	},

  	getComponent: function ( index ) {

  		switch ( index ) {

  			case 0: return this.x;
  			case 1: return this.y;
  			case 2: return this.z;
  			case 3: return this.w;
  			default: throw new Error( 'index is out of range: ' + index );

  		}

  	},

  	clone: function () {

  		return new this.constructor( this.x, this.y, this.z, this.w );

  	},

  	copy: function ( v ) {

  		this.x = v.x;
  		this.y = v.y;
  		this.z = v.z;
  		this.w = ( v.w !== undefined ) ? v.w : 1;

  		return this;

  	},

  	add: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
  			return this.addVectors( v, w );

  		}

  		this.x += v.x;
  		this.y += v.y;
  		this.z += v.z;
  		this.w += v.w;

  		return this;

  	},

  	addScalar: function ( s ) {

  		this.x += s;
  		this.y += s;
  		this.z += s;
  		this.w += s;

  		return this;

  	},

  	addVectors: function ( a, b ) {

  		this.x = a.x + b.x;
  		this.y = a.y + b.y;
  		this.z = a.z + b.z;
  		this.w = a.w + b.w;

  		return this;

  	},

  	addScaledVector: function ( v, s ) {

  		this.x += v.x * s;
  		this.y += v.y * s;
  		this.z += v.z * s;
  		this.w += v.w * s;

  		return this;

  	},

  	sub: function ( v, w ) {

  		if ( w !== undefined ) {

  			console.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
  			return this.subVectors( v, w );

  		}

  		this.x -= v.x;
  		this.y -= v.y;
  		this.z -= v.z;
  		this.w -= v.w;

  		return this;

  	},

  	subScalar: function ( s ) {

  		this.x -= s;
  		this.y -= s;
  		this.z -= s;
  		this.w -= s;

  		return this;

  	},

  	subVectors: function ( a, b ) {

  		this.x = a.x - b.x;
  		this.y = a.y - b.y;
  		this.z = a.z - b.z;
  		this.w = a.w - b.w;

  		return this;

  	},

  	multiplyScalar: function ( scalar ) {

  		this.x *= scalar;
  		this.y *= scalar;
  		this.z *= scalar;
  		this.w *= scalar;

  		return this;

  	},

  	applyMatrix4: function ( m ) {

  		var x = this.x, y = this.y, z = this.z, w = this.w;
  		var e = m.elements;

  		this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
  		this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
  		this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
  		this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;

  		return this;

  	},

  	divideScalar: function ( scalar ) {

  		return this.multiplyScalar( 1 / scalar );

  	},

  	setAxisAngleFromQuaternion: function ( q ) {

  		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm

  		// q is assumed to be normalized

  		this.w = 2 * Math.acos( q.w );

  		var s = Math.sqrt( 1 - q.w * q.w );

  		if ( s < 0.0001 ) {

  			this.x = 1;
  			this.y = 0;
  			this.z = 0;

  		} else {

  			this.x = q.x / s;
  			this.y = q.y / s;
  			this.z = q.z / s;

  		}

  		return this;

  	},

  	setAxisAngleFromRotationMatrix: function ( m ) {

  		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm

  		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

  		var angle, x, y, z,		// variables for result
  			epsilon = 0.01,		// margin to allow for rounding errors
  			epsilon2 = 0.1,		// margin to distinguish between 0 and 180 degrees

  			te = m.elements,

  			m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
  			m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
  			m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];

  		if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
  		     ( Math.abs( m13 - m31 ) < epsilon ) &&
  		     ( Math.abs( m23 - m32 ) < epsilon ) ) {

  			// singularity found
  			// first check for identity matrix which must have +1 for all terms
  			// in leading diagonal and zero in other terms

  			if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
  			     ( Math.abs( m13 + m31 ) < epsilon2 ) &&
  			     ( Math.abs( m23 + m32 ) < epsilon2 ) &&
  			     ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {

  				// this singularity is identity matrix so angle = 0

  				this.set( 1, 0, 0, 0 );

  				return this; // zero angle, arbitrary axis

  			}

  			// otherwise this singularity is angle = 180

  			angle = Math.PI;

  			var xx = ( m11 + 1 ) / 2;
  			var yy = ( m22 + 1 ) / 2;
  			var zz = ( m33 + 1 ) / 2;
  			var xy = ( m12 + m21 ) / 4;
  			var xz = ( m13 + m31 ) / 4;
  			var yz = ( m23 + m32 ) / 4;

  			if ( ( xx > yy ) && ( xx > zz ) ) {

  				// m11 is the largest diagonal term

  				if ( xx < epsilon ) {

  					x = 0;
  					y = 0.707106781;
  					z = 0.707106781;

  				} else {

  					x = Math.sqrt( xx );
  					y = xy / x;
  					z = xz / x;

  				}

  			} else if ( yy > zz ) {

  				// m22 is the largest diagonal term

  				if ( yy < epsilon ) {

  					x = 0.707106781;
  					y = 0;
  					z = 0.707106781;

  				} else {

  					y = Math.sqrt( yy );
  					x = xy / y;
  					z = yz / y;

  				}

  			} else {

  				// m33 is the largest diagonal term so base result on this

  				if ( zz < epsilon ) {

  					x = 0.707106781;
  					y = 0.707106781;
  					z = 0;

  				} else {

  					z = Math.sqrt( zz );
  					x = xz / z;
  					y = yz / z;

  				}

  			}

  			this.set( x, y, z, angle );

  			return this; // return 180 deg rotation

  		}

  		// as we have reached here there are no singularities so we can handle normally

  		var s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
  		                   ( m13 - m31 ) * ( m13 - m31 ) +
  		                   ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize

  		if ( Math.abs( s ) < 0.001 ) s = 1;

  		// prevent divide by zero, should not happen if matrix is orthogonal and should be
  		// caught by singularity test above, but I've left it in just in case

  		this.x = ( m32 - m23 ) / s;
  		this.y = ( m13 - m31 ) / s;
  		this.z = ( m21 - m12 ) / s;
  		this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );

  		return this;

  	},

  	min: function ( v ) {

  		this.x = Math.min( this.x, v.x );
  		this.y = Math.min( this.y, v.y );
  		this.z = Math.min( this.z, v.z );
  		this.w = Math.min( this.w, v.w );

  		return this;

  	},

  	max: function ( v ) {

  		this.x = Math.max( this.x, v.x );
  		this.y = Math.max( this.y, v.y );
  		this.z = Math.max( this.z, v.z );
  		this.w = Math.max( this.w, v.w );

  		return this;

  	},

  	clamp: function ( min, max ) {

  		// assumes min < max, componentwise

  		this.x = Math.max( min.x, Math.min( max.x, this.x ) );
  		this.y = Math.max( min.y, Math.min( max.y, this.y ) );
  		this.z = Math.max( min.z, Math.min( max.z, this.z ) );
  		this.w = Math.max( min.w, Math.min( max.w, this.w ) );

  		return this;

  	},

  	clampScalar: function () {

  		var min, max;

  		return function clampScalar( minVal, maxVal ) {

  			if ( min === undefined ) {

  				min = new Vector4();
  				max = new Vector4();

  			}

  			min.set( minVal, minVal, minVal, minVal );
  			max.set( maxVal, maxVal, maxVal, maxVal );

  			return this.clamp( min, max );

  		};

  	}(),

  	clampLength: function ( min, max ) {

  		var length = this.length();

  		return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

  	},

  	floor: function () {

  		this.x = Math.floor( this.x );
  		this.y = Math.floor( this.y );
  		this.z = Math.floor( this.z );
  		this.w = Math.floor( this.w );

  		return this;

  	},

  	ceil: function () {

  		this.x = Math.ceil( this.x );
  		this.y = Math.ceil( this.y );
  		this.z = Math.ceil( this.z );
  		this.w = Math.ceil( this.w );

  		return this;

  	},

  	round: function () {

  		this.x = Math.round( this.x );
  		this.y = Math.round( this.y );
  		this.z = Math.round( this.z );
  		this.w = Math.round( this.w );

  		return this;

  	},

  	roundToZero: function () {

  		this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
  		this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
  		this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
  		this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );

  		return this;

  	},

  	negate: function () {

  		this.x = - this.x;
  		this.y = - this.y;
  		this.z = - this.z;
  		this.w = - this.w;

  		return this;

  	},

  	dot: function ( v ) {

  		return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;

  	},

  	lengthSq: function () {

  		return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;

  	},

  	length: function () {

  		return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );

  	},

  	manhattanLength: function () {

  		return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );

  	},

  	normalize: function () {

  		return this.divideScalar( this.length() || 1 );

  	},

  	setLength: function ( length ) {

  		return this.normalize().multiplyScalar( length );

  	},

  	lerp: function ( v, alpha ) {

  		this.x += ( v.x - this.x ) * alpha;
  		this.y += ( v.y - this.y ) * alpha;
  		this.z += ( v.z - this.z ) * alpha;
  		this.w += ( v.w - this.w ) * alpha;

  		return this;

  	},

  	lerpVectors: function ( v1, v2, alpha ) {

  		return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );

  	},

  	equals: function ( v ) {

  		return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this.x = array[ offset ];
  		this.y = array[ offset + 1 ];
  		this.z = array[ offset + 2 ];
  		this.w = array[ offset + 3 ];

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		array[ offset ] = this.x;
  		array[ offset + 1 ] = this.y;
  		array[ offset + 2 ] = this.z;
  		array[ offset + 3 ] = this.w;

  		return array;

  	},

  	fromBufferAttribute: function ( attribute, index, offset ) {

  		if ( offset !== undefined ) {

  			console.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );

  		}

  		this.x = attribute.getX( index );
  		this.y = attribute.getY( index );
  		this.z = attribute.getZ( index );
  		this.w = attribute.getW( index );

  		return this;

  	}

  } );

  /**
   * @author szimek / https://github.com/szimek/
   * @author alteredq / http://alteredqualia.com/
   * @author Marius Kintel / https://github.com/kintel
   */

  /*
   In options, we can specify:
   * Texture parameters for an auto-generated target texture
   * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
  */
  function WebGLRenderTarget( width, height, options ) {

  	this.width = width;
  	this.height = height;

  	this.scissor = new Vector4( 0, 0, width, height );
  	this.scissorTest = false;

  	this.viewport = new Vector4( 0, 0, width, height );

  	options = options || {};

  	if ( options.minFilter === undefined ) options.minFilter = LinearFilter;

  	this.texture = new Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );

  	this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : true;

  	this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
  	this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;
  	this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;

  }

  WebGLRenderTarget.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: WebGLRenderTarget,

  	isWebGLRenderTarget: true,

  	setSize: function ( width, height ) {

  		if ( this.width !== width || this.height !== height ) {

  			this.width = width;
  			this.height = height;

  			this.dispose();

  		}

  		this.viewport.set( 0, 0, width, height );
  		this.scissor.set( 0, 0, width, height );

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( source ) {

  		this.width = source.width;
  		this.height = source.height;

  		this.viewport.copy( source.viewport );

  		this.texture = source.texture.clone();

  		this.depthBuffer = source.depthBuffer;
  		this.stencilBuffer = source.stencilBuffer;
  		this.depthTexture = source.depthTexture;

  		return this;

  	},

  	dispose: function () {

  		this.dispatchEvent( { type: 'dispose' } );

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com
   */

  function WebGLRenderTargetCube( width, height, options ) {

  	WebGLRenderTarget.call( this, width, height, options );

  	this.activeCubeFace = 0; // PX 0, NX 1, PY 2, NY 3, PZ 4, NZ 5
  	this.activeMipMapLevel = 0;

  }

  WebGLRenderTargetCube.prototype = Object.create( WebGLRenderTarget.prototype );
  WebGLRenderTargetCube.prototype.constructor = WebGLRenderTargetCube;

  WebGLRenderTargetCube.prototype.isWebGLRenderTargetCube = true;

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {

  	Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

  	this.image = { data: data, width: width, height: height };

  	this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
  	this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;

  	this.generateMipmaps = false;
  	this.flipY = false;
  	this.unpackAlignment = 1;

  }

  DataTexture.prototype = Object.create( Texture.prototype );
  DataTexture.prototype.constructor = DataTexture;

  DataTexture.prototype.isDataTexture = true;

  /**
   * @author bhouston / http://clara.io
   * @author WestLangley / http://github.com/WestLangley
   */

  function Box3( min, max ) {

  	this.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity );
  	this.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity );

  }

  Object.assign( Box3.prototype, {

  	isBox3: true,

  	set: function ( min, max ) {

  		this.min.copy( min );
  		this.max.copy( max );

  		return this;

  	},

  	setFromArray: function ( array ) {

  		var minX = + Infinity;
  		var minY = + Infinity;
  		var minZ = + Infinity;

  		var maxX = - Infinity;
  		var maxY = - Infinity;
  		var maxZ = - Infinity;

  		for ( var i = 0, l = array.length; i < l; i += 3 ) {

  			var x = array[ i ];
  			var y = array[ i + 1 ];
  			var z = array[ i + 2 ];

  			if ( x < minX ) minX = x;
  			if ( y < minY ) minY = y;
  			if ( z < minZ ) minZ = z;

  			if ( x > maxX ) maxX = x;
  			if ( y > maxY ) maxY = y;
  			if ( z > maxZ ) maxZ = z;

  		}

  		this.min.set( minX, minY, minZ );
  		this.max.set( maxX, maxY, maxZ );

  		return this;

  	},

  	setFromBufferAttribute: function ( attribute ) {

  		var minX = + Infinity;
  		var minY = + Infinity;
  		var minZ = + Infinity;

  		var maxX = - Infinity;
  		var maxY = - Infinity;
  		var maxZ = - Infinity;

  		for ( var i = 0, l = attribute.count; i < l; i ++ ) {

  			var x = attribute.getX( i );
  			var y = attribute.getY( i );
  			var z = attribute.getZ( i );

  			if ( x < minX ) minX = x;
  			if ( y < minY ) minY = y;
  			if ( z < minZ ) minZ = z;

  			if ( x > maxX ) maxX = x;
  			if ( y > maxY ) maxY = y;
  			if ( z > maxZ ) maxZ = z;

  		}

  		this.min.set( minX, minY, minZ );
  		this.max.set( maxX, maxY, maxZ );

  		return this;

  	},

  	setFromPoints: function ( points ) {

  		this.makeEmpty();

  		for ( var i = 0, il = points.length; i < il; i ++ ) {

  			this.expandByPoint( points[ i ] );

  		}

  		return this;

  	},

  	setFromCenterAndSize: function () {

  		var v1 = new Vector3();

  		return function setFromCenterAndSize( center, size ) {

  			var halfSize = v1.copy( size ).multiplyScalar( 0.5 );

  			this.min.copy( center ).sub( halfSize );
  			this.max.copy( center ).add( halfSize );

  			return this;

  		};

  	}(),

  	setFromObject: function ( object ) {

  		this.makeEmpty();

  		return this.expandByObject( object );

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( box ) {

  		this.min.copy( box.min );
  		this.max.copy( box.max );

  		return this;

  	},

  	makeEmpty: function () {

  		this.min.x = this.min.y = this.min.z = + Infinity;
  		this.max.x = this.max.y = this.max.z = - Infinity;

  		return this;

  	},

  	isEmpty: function () {

  		// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes

  		return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );

  	},

  	getCenter: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box3: .getCenter() target is now required' );
  			target = new Vector3();

  		}

  		return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );

  	},

  	getSize: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box3: .getSize() target is now required' );
  			target = new Vector3();

  		}

  		return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min );

  	},

  	expandByPoint: function ( point ) {

  		this.min.min( point );
  		this.max.max( point );

  		return this;

  	},

  	expandByVector: function ( vector ) {

  		this.min.sub( vector );
  		this.max.add( vector );

  		return this;

  	},

  	expandByScalar: function ( scalar ) {

  		this.min.addScalar( - scalar );
  		this.max.addScalar( scalar );

  		return this;

  	},

  	expandByObject: function () {

  		// Computes the world-axis-aligned bounding box of an object (including its children),
  		// accounting for both the object's, and children's, world transforms

  		var scope, i, l;

  		var v1 = new Vector3();

  		function traverse( node ) {

  			var geometry = node.geometry;

  			if ( geometry !== undefined ) {

  				if ( geometry.isGeometry ) {

  					var vertices = geometry.vertices;

  					for ( i = 0, l = vertices.length; i < l; i ++ ) {

  						v1.copy( vertices[ i ] );
  						v1.applyMatrix4( node.matrixWorld );

  						scope.expandByPoint( v1 );

  					}

  				} else if ( geometry.isBufferGeometry ) {

  					var attribute = geometry.attributes.position;

  					if ( attribute !== undefined ) {

  						for ( i = 0, l = attribute.count; i < l; i ++ ) {

  							v1.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );

  							scope.expandByPoint( v1 );

  						}

  					}

  				}

  			}

  		}

  		return function expandByObject( object ) {

  			scope = this;

  			object.updateMatrixWorld( true );

  			object.traverse( traverse );

  			return this;

  		};

  	}(),

  	containsPoint: function ( point ) {

  		return point.x < this.min.x || point.x > this.max.x ||
  			point.y < this.min.y || point.y > this.max.y ||
  			point.z < this.min.z || point.z > this.max.z ? false : true;

  	},

  	containsBox: function ( box ) {

  		return this.min.x <= box.min.x && box.max.x <= this.max.x &&
  			this.min.y <= box.min.y && box.max.y <= this.max.y &&
  			this.min.z <= box.min.z && box.max.z <= this.max.z;

  	},

  	getParameter: function ( point, target ) {

  		// This can potentially have a divide by zero if the box
  		// has a size dimension of 0.

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box3: .getParameter() target is now required' );
  			target = new Vector3();

  		}

  		return target.set(
  			( point.x - this.min.x ) / ( this.max.x - this.min.x ),
  			( point.y - this.min.y ) / ( this.max.y - this.min.y ),
  			( point.z - this.min.z ) / ( this.max.z - this.min.z )
  		);

  	},

  	intersectsBox: function ( box ) {

  		// using 6 splitting planes to rule out intersections.
  		return box.max.x < this.min.x || box.min.x > this.max.x ||
  			box.max.y < this.min.y || box.min.y > this.max.y ||
  			box.max.z < this.min.z || box.min.z > this.max.z ? false : true;

  	},

  	intersectsSphere: ( function () {

  		var closestPoint = new Vector3();

  		return function intersectsSphere( sphere ) {

  			// Find the point on the AABB closest to the sphere center.
  			this.clampPoint( sphere.center, closestPoint );

  			// If that point is inside the sphere, the AABB and sphere intersect.
  			return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );

  		};

  	} )(),

  	intersectsPlane: function ( plane ) {

  		// We compute the minimum and maximum dot product values. If those values
  		// are on the same side (back or front) of the plane, then there is no intersection.

  		var min, max;

  		if ( plane.normal.x > 0 ) {

  			min = plane.normal.x * this.min.x;
  			max = plane.normal.x * this.max.x;

  		} else {

  			min = plane.normal.x * this.max.x;
  			max = plane.normal.x * this.min.x;

  		}

  		if ( plane.normal.y > 0 ) {

  			min += plane.normal.y * this.min.y;
  			max += plane.normal.y * this.max.y;

  		} else {

  			min += plane.normal.y * this.max.y;
  			max += plane.normal.y * this.min.y;

  		}

  		if ( plane.normal.z > 0 ) {

  			min += plane.normal.z * this.min.z;
  			max += plane.normal.z * this.max.z;

  		} else {

  			min += plane.normal.z * this.max.z;
  			max += plane.normal.z * this.min.z;

  		}

  		return ( min <= plane.constant && max >= plane.constant );

  	},

  	intersectsTriangle: ( function () {

  		// triangle centered vertices
  		var v0 = new Vector3();
  		var v1 = new Vector3();
  		var v2 = new Vector3();

  		// triangle edge vectors
  		var f0 = new Vector3();
  		var f1 = new Vector3();
  		var f2 = new Vector3();

  		var testAxis = new Vector3();

  		var center = new Vector3();
  		var extents = new Vector3();

  		var triangleNormal = new Vector3();

  		function satForAxes( axes ) {

  			var i, j;

  			for ( i = 0, j = axes.length - 3; i <= j; i += 3 ) {

  				testAxis.fromArray( axes, i );
  				// project the aabb onto the seperating axis
  				var r = extents.x * Math.abs( testAxis.x ) + extents.y * Math.abs( testAxis.y ) + extents.z * Math.abs( testAxis.z );
  				// project all 3 vertices of the triangle onto the seperating axis
  				var p0 = v0.dot( testAxis );
  				var p1 = v1.dot( testAxis );
  				var p2 = v2.dot( testAxis );
  				// actual test, basically see if either of the most extreme of the triangle points intersects r
  				if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) {

  					// points of the projected triangle are outside the projected half-length of the aabb
  					// the axis is seperating and we can exit
  					return false;

  				}

  			}

  			return true;

  		}

  		return function intersectsTriangle( triangle ) {

  			if ( this.isEmpty() ) {

  				return false;

  			}

  			// compute box center and extents
  			this.getCenter( center );
  			extents.subVectors( this.max, center );

  			// translate triangle to aabb origin
  			v0.subVectors( triangle.a, center );
  			v1.subVectors( triangle.b, center );
  			v2.subVectors( triangle.c, center );

  			// compute edge vectors for triangle
  			f0.subVectors( v1, v0 );
  			f1.subVectors( v2, v1 );
  			f2.subVectors( v0, v2 );

  			// test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
  			// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
  			// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
  			var axes = [
  				0, - f0.z, f0.y, 0, - f1.z, f1.y, 0, - f2.z, f2.y,
  				f0.z, 0, - f0.x, f1.z, 0, - f1.x, f2.z, 0, - f2.x,
  				- f0.y, f0.x, 0, - f1.y, f1.x, 0, - f2.y, f2.x, 0
  			];
  			if ( ! satForAxes( axes ) ) {

  				return false;

  			}

  			// test 3 face normals from the aabb
  			axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ];
  			if ( ! satForAxes( axes ) ) {

  				return false;

  			}

  			// finally testing the face normal of the triangle
  			// use already existing triangle edge vectors here
  			triangleNormal.crossVectors( f0, f1 );
  			axes = [ triangleNormal.x, triangleNormal.y, triangleNormal.z ];
  			return satForAxes( axes );

  		};

  	} )(),

  	clampPoint: function ( point, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box3: .clampPoint() target is now required' );
  			target = new Vector3();

  		}

  		return target.copy( point ).clamp( this.min, this.max );

  	},

  	distanceToPoint: function () {

  		var v1 = new Vector3();

  		return function distanceToPoint( point ) {

  			var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
  			return clampedPoint.sub( point ).length();

  		};

  	}(),

  	getBoundingSphere: function () {

  		var v1 = new Vector3();

  		return function getBoundingSphere( target ) {

  			if ( target === undefined ) {

  				console.warn( 'THREE.Box3: .getBoundingSphere() target is now required' );
  				target = new Sphere();

  			}

  			this.getCenter( target.center );

  			target.radius = this.getSize( v1 ).length() * 0.5;

  			return target;

  		};

  	}(),

  	intersect: function ( box ) {

  		this.min.max( box.min );
  		this.max.min( box.max );

  		// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
  		if ( this.isEmpty() ) this.makeEmpty();

  		return this;

  	},

  	union: function ( box ) {

  		this.min.min( box.min );
  		this.max.max( box.max );

  		return this;

  	},

  	applyMatrix4: function ( matrix ) {

  		// transform of empty box is an empty box.
  		if ( this.isEmpty( ) ) return this;

  		var m = matrix.elements;

  		var xax = m[ 0 ] * this.min.x, xay = m[ 1 ] * this.min.x, xaz = m[ 2 ] * this.min.x;
  		var xbx = m[ 0 ] * this.max.x, xby = m[ 1 ] * this.max.x, xbz = m[ 2 ] * this.max.x;
  		var yax = m[ 4 ] * this.min.y, yay = m[ 5 ] * this.min.y, yaz = m[ 6 ] * this.min.y;
  		var ybx = m[ 4 ] * this.max.y, yby = m[ 5 ] * this.max.y, ybz = m[ 6 ] * this.max.y;
  		var zax = m[ 8 ] * this.min.z, zay = m[ 9 ] * this.min.z, zaz = m[ 10 ] * this.min.z;
  		var zbx = m[ 8 ] * this.max.z, zby = m[ 9 ] * this.max.z, zbz = m[ 10 ] * this.max.z;

  		this.min.x = Math.min( xax, xbx ) + Math.min( yax, ybx ) + Math.min( zax, zbx ) + m[ 12 ];
  		this.min.y = Math.min( xay, xby ) + Math.min( yay, yby ) + Math.min( zay, zby ) + m[ 13 ];
  		this.min.z = Math.min( xaz, xbz ) + Math.min( yaz, ybz ) + Math.min( zaz, zbz ) + m[ 14 ];
  		this.max.x = Math.max( xax, xbx ) + Math.max( yax, ybx ) + Math.max( zax, zbx ) + m[ 12 ];
  		this.max.y = Math.max( xay, xby ) + Math.max( yay, yby ) + Math.max( zay, zby ) + m[ 13 ];
  		this.max.z = Math.max( xaz, xbz ) + Math.max( yaz, ybz ) + Math.max( zaz, zbz ) + m[ 14 ];

  		return this;

  	},

  	translate: function ( offset ) {

  		this.min.add( offset );
  		this.max.add( offset );

  		return this;

  	},

  	equals: function ( box ) {

  		return box.min.equals( this.min ) && box.max.equals( this.max );

  	}

  } );

  /**
   * @author bhouston / http://clara.io
   * @author mrdoob / http://mrdoob.com/
   */

  function Sphere( center, radius ) {

  	this.center = ( center !== undefined ) ? center : new Vector3();
  	this.radius = ( radius !== undefined ) ? radius : 0;

  }

  Object.assign( Sphere.prototype, {

  	set: function ( center, radius ) {

  		this.center.copy( center );
  		this.radius = radius;

  		return this;

  	},

  	setFromPoints: function () {

  		var box = new Box3();

  		return function setFromPoints( points, optionalCenter ) {

  			var center = this.center;

  			if ( optionalCenter !== undefined ) {

  				center.copy( optionalCenter );

  			} else {

  				box.setFromPoints( points ).getCenter( center );

  			}

  			var maxRadiusSq = 0;

  			for ( var i = 0, il = points.length; i < il; i ++ ) {

  				maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );

  			}

  			this.radius = Math.sqrt( maxRadiusSq );

  			return this;

  		};

  	}(),

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( sphere ) {

  		this.center.copy( sphere.center );
  		this.radius = sphere.radius;

  		return this;

  	},

  	empty: function () {

  		return ( this.radius <= 0 );

  	},

  	containsPoint: function ( point ) {

  		return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );

  	},

  	distanceToPoint: function ( point ) {

  		return ( point.distanceTo( this.center ) - this.radius );

  	},

  	intersectsSphere: function ( sphere ) {

  		var radiusSum = this.radius + sphere.radius;

  		return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );

  	},

  	intersectsBox: function ( box ) {

  		return box.intersectsSphere( this );

  	},

  	intersectsPlane: function ( plane ) {

  		return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius;

  	},

  	clampPoint: function ( point, target ) {

  		var deltaLengthSq = this.center.distanceToSquared( point );

  		if ( target === undefined ) {

  			console.warn( 'THREE.Sphere: .clampPoint() target is now required' );
  			target = new Vector3();

  		}

  		target.copy( point );

  		if ( deltaLengthSq > ( this.radius * this.radius ) ) {

  			target.sub( this.center ).normalize();
  			target.multiplyScalar( this.radius ).add( this.center );

  		}

  		return target;

  	},

  	getBoundingBox: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Sphere: .getBoundingBox() target is now required' );
  			target = new Box3();

  		}

  		target.set( this.center, this.center );
  		target.expandByScalar( this.radius );

  		return target;

  	},

  	applyMatrix4: function ( matrix ) {

  		this.center.applyMatrix4( matrix );
  		this.radius = this.radius * matrix.getMaxScaleOnAxis();

  		return this;

  	},

  	translate: function ( offset ) {

  		this.center.add( offset );

  		return this;

  	},

  	equals: function ( sphere ) {

  		return sphere.center.equals( this.center ) && ( sphere.radius === this.radius );

  	}

  } );

  /**
   * @author bhouston / http://clara.io
   */

  function Plane( normal, constant ) {

  	// normal is assumed to be normalized

  	this.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 );
  	this.constant = ( constant !== undefined ) ? constant : 0;

  }

  Object.assign( Plane.prototype, {

  	set: function ( normal, constant ) {

  		this.normal.copy( normal );
  		this.constant = constant;

  		return this;

  	},

  	setComponents: function ( x, y, z, w ) {

  		this.normal.set( x, y, z );
  		this.constant = w;

  		return this;

  	},

  	setFromNormalAndCoplanarPoint: function ( normal, point ) {

  		this.normal.copy( normal );
  		this.constant = - point.dot( this.normal );

  		return this;

  	},

  	setFromCoplanarPoints: function () {

  		var v1 = new Vector3();
  		var v2 = new Vector3();

  		return function setFromCoplanarPoints( a, b, c ) {

  			var normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize();

  			// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?

  			this.setFromNormalAndCoplanarPoint( normal, a );

  			return this;

  		};

  	}(),

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( plane ) {

  		this.normal.copy( plane.normal );
  		this.constant = plane.constant;

  		return this;

  	},

  	normalize: function () {

  		// Note: will lead to a divide by zero if the plane is invalid.

  		var inverseNormalLength = 1.0 / this.normal.length();
  		this.normal.multiplyScalar( inverseNormalLength );
  		this.constant *= inverseNormalLength;

  		return this;

  	},

  	negate: function () {

  		this.constant *= - 1;
  		this.normal.negate();

  		return this;

  	},

  	distanceToPoint: function ( point ) {

  		return this.normal.dot( point ) + this.constant;

  	},

  	distanceToSphere: function ( sphere ) {

  		return this.distanceToPoint( sphere.center ) - sphere.radius;

  	},

  	projectPoint: function ( point, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Plane: .projectPoint() target is now required' );
  			target = new Vector3();

  		}

  		return target.copy( this.normal ).multiplyScalar( - this.distanceToPoint( point ) ).add( point );

  	},

  	intersectLine: function () {

  		var v1 = new Vector3();

  		return function intersectLine( line, target ) {

  			if ( target === undefined ) {

  				console.warn( 'THREE.Plane: .intersectLine() target is now required' );
  				target = new Vector3();

  			}

  			var direction = line.delta( v1 );

  			var denominator = this.normal.dot( direction );

  			if ( denominator === 0 ) {

  				// line is coplanar, return origin
  				if ( this.distanceToPoint( line.start ) === 0 ) {

  					return target.copy( line.start );

  				}

  				// Unsure if this is the correct method to handle this case.
  				return undefined;

  			}

  			var t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;

  			if ( t < 0 || t > 1 ) {

  				return undefined;

  			}

  			return target.copy( direction ).multiplyScalar( t ).add( line.start );

  		};

  	}(),

  	intersectsLine: function ( line ) {

  		// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.

  		var startSign = this.distanceToPoint( line.start );
  		var endSign = this.distanceToPoint( line.end );

  		return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );

  	},

  	intersectsBox: function ( box ) {

  		return box.intersectsPlane( this );

  	},

  	intersectsSphere: function ( sphere ) {

  		return sphere.intersectsPlane( this );

  	},

  	coplanarPoint: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Plane: .coplanarPoint() target is now required' );
  			target = new Vector3();

  		}

  		return target.copy( this.normal ).multiplyScalar( - this.constant );

  	},

  	applyMatrix4: function () {

  		var v1 = new Vector3();
  		var m1 = new Matrix3();

  		return function applyMatrix4( matrix, optionalNormalMatrix ) {

  			var normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix );

  			var referencePoint = this.coplanarPoint( v1 ).applyMatrix4( matrix );

  			var normal = this.normal.applyMatrix3( normalMatrix ).normalize();

  			this.constant = - referencePoint.dot( normal );

  			return this;

  		};

  	}(),

  	translate: function ( offset ) {

  		this.constant -= offset.dot( this.normal );

  		return this;

  	},

  	equals: function ( plane ) {

  		return plane.normal.equals( this.normal ) && ( plane.constant === this.constant );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   * @author bhouston / http://clara.io
   */

  function Frustum( p0, p1, p2, p3, p4, p5 ) {

  	this.planes = [

  		( p0 !== undefined ) ? p0 : new Plane(),
  		( p1 !== undefined ) ? p1 : new Plane(),
  		( p2 !== undefined ) ? p2 : new Plane(),
  		( p3 !== undefined ) ? p3 : new Plane(),
  		( p4 !== undefined ) ? p4 : new Plane(),
  		( p5 !== undefined ) ? p5 : new Plane()

  	];

  }

  Object.assign( Frustum.prototype, {

  	set: function ( p0, p1, p2, p3, p4, p5 ) {

  		var planes = this.planes;

  		planes[ 0 ].copy( p0 );
  		planes[ 1 ].copy( p1 );
  		planes[ 2 ].copy( p2 );
  		planes[ 3 ].copy( p3 );
  		planes[ 4 ].copy( p4 );
  		planes[ 5 ].copy( p5 );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( frustum ) {

  		var planes = this.planes;

  		for ( var i = 0; i < 6; i ++ ) {

  			planes[ i ].copy( frustum.planes[ i ] );

  		}

  		return this;

  	},

  	setFromMatrix: function ( m ) {

  		var planes = this.planes;
  		var me = m.elements;
  		var me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];
  		var me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];
  		var me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];
  		var me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];

  		planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();
  		planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();
  		planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();
  		planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();
  		planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();
  		planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();

  		return this;

  	},

  	intersectsObject: function () {

  		var sphere = new Sphere();

  		return function intersectsObject( object ) {

  			var geometry = object.geometry;

  			if ( geometry.boundingSphere === null )
  				geometry.computeBoundingSphere();

  			sphere.copy( geometry.boundingSphere )
  				.applyMatrix4( object.matrixWorld );

  			return this.intersectsSphere( sphere );

  		};

  	}(),

  	intersectsSprite: function () {

  		var sphere = new Sphere();

  		return function intersectsSprite( sprite ) {

  			sphere.center.set( 0, 0, 0 );
  			sphere.radius = 0.7071067811865476;
  			sphere.applyMatrix4( sprite.matrixWorld );

  			return this.intersectsSphere( sphere );

  		};

  	}(),

  	intersectsSphere: function ( sphere ) {

  		var planes = this.planes;
  		var center = sphere.center;
  		var negRadius = - sphere.radius;

  		for ( var i = 0; i < 6; i ++ ) {

  			var distance = planes[ i ].distanceToPoint( center );

  			if ( distance < negRadius ) {

  				return false;

  			}

  		}

  		return true;

  	},

  	intersectsBox: function () {

  		var p1 = new Vector3(),
  			p2 = new Vector3();

  		return function intersectsBox( box ) {

  			var planes = this.planes;

  			for ( var i = 0; i < 6; i ++ ) {

  				var plane = planes[ i ];

  				p1.x = plane.normal.x > 0 ? box.min.x : box.max.x;
  				p2.x = plane.normal.x > 0 ? box.max.x : box.min.x;
  				p1.y = plane.normal.y > 0 ? box.min.y : box.max.y;
  				p2.y = plane.normal.y > 0 ? box.max.y : box.min.y;
  				p1.z = plane.normal.z > 0 ? box.min.z : box.max.z;
  				p2.z = plane.normal.z > 0 ? box.max.z : box.min.z;

  				var d1 = plane.distanceToPoint( p1 );
  				var d2 = plane.distanceToPoint( p2 );

  				// if both outside plane, no intersection

  				if ( d1 < 0 && d2 < 0 ) {

  					return false;

  				}

  			}

  			return true;

  		};

  	}(),

  	containsPoint: function ( point ) {

  		var planes = this.planes;

  		for ( var i = 0; i < 6; i ++ ) {

  			if ( planes[ i ].distanceToPoint( point ) < 0 ) {

  				return false;

  			}

  		}

  		return true;

  	}

  } );

  var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif\n";

  var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif\n";

  var alphatest_fragment = "#ifdef ALPHATEST\n\tif ( diffuseColor.a < ALPHATEST ) discard;\n#endif\n";

  var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\n\t#endif\n#endif\n";

  var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";

  var begin_vertex = "\nvec3 transformed = vec3( position );\n";

  var beginnormal_vertex = "\nvec3 objectNormal = vec3( normal );\n";

  var bsdfs = "float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\tif( decayExponent > 0.0 ) {\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tfloat maxDistanceCutoffFactor = pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\treturn distanceFalloff * maxDistanceCutoffFactor;\n#else\n\t\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\n#endif\n\t}\n\treturn 1.0;\n}\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\n\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\n\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\n}\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\treturn 1.0 / ( gl * gv );\n}\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( G * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE  = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS  = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\n\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;\n\treturn specularColor * AB.x + AB.y;\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\n\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\n\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, dotLH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\n}\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\n\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\n}\n";

  var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 );\n\t\tfDet *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif\n";

  var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vViewPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\tif ( clipped ) discard;\n\t#endif\n#endif\n";

  var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\t#if ! defined( PHYSICAL ) && ! defined( PHONG )\n\t\tvarying vec3 vViewPosition;\n\t#endif\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif\n";

  var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\n\tvarying vec3 vViewPosition;\n#endif\n";

  var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n";

  var color_fragment = "#ifdef USE_COLOR\n\tdiffuseColor.rgb *= vColor;\n#endif";

  var color_pars_fragment = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif\n";

  var color_pars_vertex = "#ifdef USE_COLOR\n\tvarying vec3 vColor;\n#endif";

  var color_vertex = "#ifdef USE_COLOR\n\tvColor.xyz = color.xyz;\n#endif";

  var common = "#define PI 3.14159265359\n#define PI2 6.28318530718\n#define PI_HALF 1.5707963267949\n#define RECIPROCAL_PI 0.31830988618\n#define RECIPROCAL_PI2 0.15915494\n#define LOG2 1.442695\n#define EPSILON 1e-6\n#define saturate(a) clamp( a, 0.0, 1.0 )\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract(sin(sn) * c);\n}\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\tfloat distance = dot( planeNormal, point - pointOnPlane );\n\treturn - distance * planeNormal + point;\n}\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn sign( dot( point - pointOnPlane, planeNormal ) );\n}\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\n\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\n";

  var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n#define cubeUV_textureSize (1024.0)\nint getFaceFromDirection(vec3 direction) {\n\tvec3 absDirection = abs(direction);\n\tint face = -1;\n\tif( absDirection.x > absDirection.z ) {\n\t\tif(absDirection.x > absDirection.y )\n\t\t\tface = direction.x > 0.0 ? 0 : 3;\n\t\telse\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\n\t}\n\telse {\n\t\tif(absDirection.z > absDirection.y )\n\t\t\tface = direction.z > 0.0 ? 2 : 5;\n\t\telse\n\t\t\tface = direction.y > 0.0 ? 1 : 4;\n\t}\n\treturn face;\n}\n#define cubeUV_maxLods1  (log2(cubeUV_textureSize*0.25) - 1.0)\n#define cubeUV_rangeClamp (exp2((6.0 - 1.0) * 2.0))\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\n\tfloat scale = exp2(cubeUV_maxLods1 - roughnessLevel);\n\tfloat dxRoughness = dFdx(roughness);\n\tfloat dyRoughness = dFdy(roughness);\n\tvec3 dx = dFdx( vec * scale * dxRoughness );\n\tvec3 dy = dFdy( vec * scale * dyRoughness );\n\tfloat d = max( dot( dx, dx ), dot( dy, dy ) );\n\td = clamp(d, 1.0, cubeUV_rangeClamp);\n\tfloat mipLevel = 0.5 * log2(d);\n\treturn vec2(floor(mipLevel), fract(mipLevel));\n}\n#define cubeUV_maxLods2 (log2(cubeUV_textureSize*0.25) - 2.0)\n#define cubeUV_rcpTextureSize (1.0 / cubeUV_textureSize)\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\n\tmipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\n\tfloat a = 16.0 * cubeUV_rcpTextureSize;\n\tvec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\n\tvec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\n\tfloat powScale = exp2_packed.x * exp2_packed.y;\n\tfloat scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\n\tfloat mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\n\tbool bRes = mipLevel == 0.0;\n\tscale =  bRes && (scale < a) ? a : scale;\n\tvec3 r;\n\tvec2 offset;\n\tint face = getFaceFromDirection(direction);\n\tfloat rcpPowScale = 1.0 / powScale;\n\tif( face == 0) {\n\t\tr = vec3(direction.x, -direction.z, direction.y);\n\t\toffset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 1) {\n\t\tr = vec3(direction.y, direction.x, direction.z);\n\t\toffset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 2) {\n\t\tr = vec3(direction.z, direction.x, direction.y);\n\t\toffset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\n\t}\n\telse if( face == 3) {\n\t\tr = vec3(direction.x, direction.z, direction.y);\n\t\toffset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\telse if( face == 4) {\n\t\tr = vec3(direction.y, direction.x, -direction.z);\n\t\toffset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\telse {\n\t\tr = vec3(direction.z, -direction.x, direction.y);\n\t\toffset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\n\t\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\n\t}\n\tr = normalize(r);\n\tfloat texelOffset = 0.5 * cubeUV_rcpTextureSize;\n\tvec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\n\tvec2 base = offset + vec2( texelOffset );\n\treturn base + s * ( scale - 2.0 * texelOffset );\n}\n#define cubeUV_maxLods3 (log2(cubeUV_textureSize*0.25) - 3.0)\nvec4 textureCubeUV(vec3 reflectedDirection, float roughness ) {\n\tfloat roughnessVal = roughness* cubeUV_maxLods3;\n\tfloat r1 = floor(roughnessVal);\n\tfloat r2 = r1 + 1.0;\n\tfloat t = fract(roughnessVal);\n\tvec2 mipInfo = MipLevelInfo(reflectedDirection, r1, roughness);\n\tfloat s = mipInfo.y;\n\tfloat level0 = mipInfo.x;\n\tfloat level1 = level0 + 1.0;\n\tlevel1 = level1 > 5.0 ? 5.0 : level1;\n\tlevel0 += min( floor( s + 0.5 ), 5.0 );\n\tvec2 uv_10 = getCubeUV(reflectedDirection, r1, level0);\n\tvec4 color10 = envMapTexelToLinear(texture2D(envMap, uv_10));\n\tvec2 uv_20 = getCubeUV(reflectedDirection, r2, level0);\n\tvec4 color20 = envMapTexelToLinear(texture2D(envMap, uv_20));\n\tvec4 result = mix(color10, color20, t);\n\treturn vec4(result.rgb, 1.0);\n}\n#endif\n";

  var defaultnormal_vertex = "vec3 transformedNormal = normalMatrix * objectNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n";

  var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif\n";

  var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\n#endif\n";

  var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif\n";

  var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif\n";

  var encodings_fragment = "  gl_FragColor = linearToOutputTexel( gl_FragColor );\n";

  var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.xyz, vec3( gammaFactor ) ), value.w );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.xyz, vec3( 1.0 / gammaFactor ) ), value.w );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.w );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.w );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.xyz * value.w * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\n\tfloat M      = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM            = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.x, max( value.g, value.b ) );\n\tfloat D      = max( maxRange / maxRGB, 1.0 );\n\tD            = min( floor( D ) / 255.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value )  {\n\tvec3 Xp_Y_XYZp = value.rgb * cLogLuvM;\n\tXp_Y_XYZp = max(Xp_Y_XYZp, vec3(1e-6, 1e-6, 1e-6));\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract(Le);\n\tvResult.z = (Le - (floor(vResult.w*255.0))/255.0)/255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2((Le - 127.0) / 2.0);\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = Xp_Y_XYZp.rgb * cLogLuvInverseM;\n\treturn vec4( max(vRGB, 0.0), 1.0 );\n}\n";

  var envmap_fragment = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\tvec2 sampleUV;\n\t\treflectVec = normalize( reflectVec );\n\t\tsampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\tvec4 envColor = texture2D( envMap, sampleUV );\n\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\treflectVec = normalize( reflectVec );\n\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );\n\t\tvec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\tenvColor = envMapTexelToLinear( envColor );\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif\n";

  var envmap_pars_fragment = "#if defined( USE_ENVMAP ) || defined( PHYSICAL )\n\tuniform float reflectivity;\n\tuniform float envMapIntensity;\n#endif\n#ifdef USE_ENVMAP\n\t#if ! defined( PHYSICAL ) && ( defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) )\n\t\tvarying vec3 vWorldPosition;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( PHYSICAL )\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif\n";

  var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif\n";

  var envmap_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif\n";

  var fog_vertex = "\n#ifdef USE_FOG\nfogDepth = -mvPosition.z;\n#endif";

  var fog_pars_vertex = "#ifdef USE_FOG\n  varying float fogDepth;\n#endif\n";

  var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * fogDepth * fogDepth * LOG2 ) );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif\n";

  var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float fogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif\n";

  var gradientmap_pars_fragment = "#ifdef TOON\n\tuniform sampler2D gradientMap;\n\tvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\t\tfloat dotNL = dot( normal, lightDirection );\n\t\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t\t#ifdef USE_GRADIENTMAP\n\t\t\treturn texture2D( gradientMap, coord ).rgb;\n\t\t#else\n\t\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t\t#endif\n\t}\n#endif\n";

  var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\treflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n#endif\n";

  var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";

  var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = PI * directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvLightFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\n\t\t#endif\n\t}\n#endif\n";

  var lights_pars_begin = "uniform vec3 ambientLightColor;\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treturn irradiance;\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tdirectLight.color = directionalLight.color;\n\t\tdirectLight.direction = directionalLight.direction;\n\t\tdirectLight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t\tfloat shadowCameraNear;\n\t\tfloat shadowCameraFar;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tdirectLight.color = pointLight.color;\n\t\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\n\t\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t\tint shadow;\n\t\tfloat shadowBias;\n\t\tfloat shadowRadius;\n\t\tvec2 shadowMapSize;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight  ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tdirectLight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tfloat angleCos = dot( directLight.direction, spotLight.direction );\n\t\tif ( angleCos > spotLight.coneCos ) {\n\t\t\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\t\tdirectLight.color = spotLight.color;\n\t\t\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tdirectLight.visible = true;\n\t\t} else {\n\t\t\tdirectLight.color = vec3( 0.0 );\n\t\t\tdirectLight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\n\t\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tirradiance *= PI;\n\t\t#endif\n\t\treturn irradiance;\n\t}\n#endif\n";

  var lights_pars_maps = "#if defined( USE_ENVMAP ) && defined( PHYSICAL )\n\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\n\t\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\n\t\t\tvec4 envMapColor = textureCubeUV( queryVec, 1.0 );\n\t\t#else\n\t\t\tvec4 envMapColor = vec4( 0.0 );\n\t\t#endif\n\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t}\n\tfloat getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) {\n\t\tfloat maxMIPLevelScalar = float( maxMIPLevel );\n\t\tfloat desiredMIPLevel = maxMIPLevelScalar + 0.79248 - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\n\t\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\n\t}\n\tvec3 getLightProbeIndirectRadiance( const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) {\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( -geometry.viewDir, geometry.normal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio );\n\t\t#endif\n\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\tfloat specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel );\n\t\t#ifdef ENVMAP_TYPE_CUBE\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\n\t\t\tvec4 envMapColor = textureCubeUV(queryReflectVec, BlinnExponentToGGXRoughness(blinnShininessExponent));\n\t\t#elif defined( ENVMAP_TYPE_EQUIREC )\n\t\t\tvec2 sampleUV;\n\t\t\tsampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\t\t\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#elif defined( ENVMAP_TYPE_SPHERE )\n\t\t\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0,0.0,1.0 ) );\n\t\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\t\tvec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#else\n\t\t\t\tvec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\n\t\t\t#endif\n\t\t\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\n\t\t#endif\n\t\treturn envMapColor.rgb * envMapIntensity;\n\t}\n#endif\n";

  var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;\n";

  var lights_phong_pars_fragment = "varying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\nstruct BlinnPhongMaterial {\n\tvec3\tdiffuseColor;\n\tvec3\tspecularColor;\n\tfloat\tspecularShininess;\n\tfloat\tspecularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\t#ifdef TOON\n\t\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\t#else\n\t\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\t\tvec3 irradiance = dotNL * directLight.color;\n\t#endif\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)\n";

  var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\n#ifdef STANDARD\n\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.clearCoat = saturate( clearCoat );\tmaterial.clearCoatRoughness = clamp( clearCoatRoughness, 0.04, 1.0 );\n#endif\n";

  var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3\tdiffuseColor;\n\tfloat\tspecularRoughness;\n\tvec3\tspecularColor;\n\t#ifndef STANDARD\n\t\tfloat clearCoat;\n\t\tfloat clearCoatRoughness;\n\t#endif\n};\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\nfloat clearCoatDHRApprox( const in float roughness, const in float dotNL ) {\n\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.specularRoughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos - halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos + halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos + halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos - halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3(    0, 1,    0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tirradiance *= PI;\n\t#endif\n\t#ifndef STANDARD\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\n\t#else\n\t\tfloat clearCoatDHR = 0.0;\n\t#endif\n\treflectedLight.directSpecular += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\n\treflectedLight.directDiffuse += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n\t#ifndef STANDARD\n\t\treflectedLight.directSpecular += irradiance * material.clearCoat * BRDF_Specular_GGX( directLight, geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\n\t#endif\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 clearCoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t#ifndef STANDARD\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\tfloat dotNL = dotNV;\n\t\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\n\t#else\n\t\tfloat clearCoatDHR = 0.0;\n\t#endif\n\treflectedLight.indirectSpecular += ( 1.0 - clearCoatDHR ) * radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\n\t#ifndef STANDARD\n\t\treflectedLight.indirectSpecular += clearCoatRadiance * material.clearCoat * BRDF_Specular_GGX_Environment( geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\n\t#endif\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\n#define Material_BlinnShininessExponent( material )   GGXRoughnessToBlinnExponent( material.specularRoughness )\n#define Material_ClearCoat_BlinnShininessExponent( material )   GGXRoughnessToBlinnExponent( material.clearCoatRoughness )\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}\n";

  var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = normalize( vViewPosition );\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\n\t\t#ifdef USE_SHADOWMAP\n\t\tdirectLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\n\t\t}\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearCoatRadiance = vec3( 0.0 );\n#endif\n";

  var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( PHYSICAL ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tirradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), maxMipLevel );\n\t#ifndef STANDARD\n\t\tclearCoatRadiance += getLightProbeIndirectRadiance( geometry, Material_ClearCoat_BlinnShininessExponent( material ), maxMipLevel );\n\t#endif\n#endif\n";

  var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, clearCoatRadiance, geometry, material, reflectedLight );\n#endif\n";

  var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";

  var logdepthbuf_pars_fragment = "#ifdef USE_LOGDEPTHBUF\n\tuniform float logDepthBufFC;\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t#endif\n#endif\n";

  var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t#endif\n\tuniform float logDepthBufFC;\n#endif";

  var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t#else\n\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\tgl_Position.z *= gl_Position.w;\n\t#endif\n#endif\n";

  var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif\n";

  var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n";

  var map_particle_fragment = "#ifdef USE_MAP\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n";

  var map_particle_pars_fragment = "#ifdef USE_MAP\n\tuniform mat3 uvTransform;\n\tuniform sampler2D map;\n#endif\n";

  var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif\n";

  var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";

  var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\n\tobjectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\n\tobjectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\n\tobjectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\n#endif\n";

  var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\t#ifndef USE_MORPHNORMALS\n\tuniform float morphTargetInfluences[ 8 ];\n\t#else\n\tuniform float morphTargetInfluences[ 4 ];\n\t#endif\n#endif";

  var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\n\ttransformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\n\ttransformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\n\ttransformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\n\t#ifndef USE_MORPHNORMALS\n\ttransformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\n\ttransformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\n\ttransformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\n\ttransformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\n\t#endif\n#endif\n";

  var normal_fragment_begin = "#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t#endif\n#endif\n";

  var normal_fragment_maps = "#ifdef USE_NORMALMAP\n\tnormal = perturbNormal2Arb( -vViewPosition, normal );\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\n#endif\n";

  var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tfloat scale = sign( st1.t * st0.s - st0.t * st1.s );\n\t\tvec3 S = normalize( ( q0 * st1.t - q1 * st0.t ) * scale );\n\t\tvec3 T = normalize( ( - q0 * st1.s + q1 * st0.s ) * scale );\n\t\tvec3 N = normalize( surf_norm );\n\t\tmat3 tsn = mat3( S, T, N );\n\t\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t\tmapN.xy *= normalScale;\n\t\tmapN.xy *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\n\t\treturn normalize( tsn * mapN );\n\t}\n#endif\n";

  var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256.,  256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}\n";

  var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif\n";

  var project_vertex = "vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\ngl_Position = projectionMatrix * mvPosition;\n";

  var dithering_fragment = "#if defined( DITHERING )\n  gl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif\n";

  var dithering_pars_fragment = "#if defined( DITHERING )\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif\n";

  var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif\n";

  var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";

  var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tfloat texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\n\t\tconst vec2 offset = vec2( 0.0, 1.0 );\n\t\tvec2 texelSize = vec2( 1.0 ) / size;\n\t\tvec2 centroidUV = floor( uv * size + 0.5 ) / size;\n\t\tfloat lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\n\t\tfloat lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\n\t\tfloat rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\n\t\tfloat rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\n\t\tvec2 f = fract( uv * size + 0.5 );\n\t\tfloat a = mix( lb, lt, f.y );\n\t\tfloat b = mix( rb, rt, f.y );\n\t\tfloat c = mix( a, b, f.x );\n\t\treturn c;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tshadow = (\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif\n";

  var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\n\t#endif\n#endif\n";

  var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\n\t}\n\t#endif\n#endif\n";

  var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHTS > 0\n\tDirectionalLight directionalLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tshadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#endif\n\t#if NUM_SPOT_LIGHTS > 0\n\tSpotLight spotLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tshadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#endif\n\t#if NUM_POINT_LIGHTS > 0\n\tPointLight pointLight;\n\t#pragma unroll_loop\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tshadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#endif\n\t#endif\n\treturn shadow;\n}\n";

  var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";

  var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif\n";

  var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif\n";

  var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix  = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n#endif\n";

  var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";

  var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";

  var tonemapping_fragment = "#if defined( TONE_MAPPING )\n  gl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif\n";

  var tonemapping_pars_fragment = "#ifndef saturate\n\t#define saturate(a) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nuniform float toneMappingWhitePoint;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\nvec3 Uncharted2ToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\n";

  var uv_pars_fragment = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvarying vec2 vUv;\n#endif";

  var uv_pars_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvarying vec2 vUv;\n\tuniform mat3 uvTransform;\n#endif\n";

  var uv_vertex = "#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";

  var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";

  var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n#endif";

  var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = uv2;\n#endif";

  var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )\n\tvec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\n#endif\n";

  var cube_frag = "uniform samplerCube tCube;\nuniform float tFlip;\nuniform float opacity;\nvarying vec3 vWorldPosition;\nvoid main() {\n\tgl_FragColor = textureCube( tCube, vec3( tFlip * vWorldPosition.x, vWorldPosition.yz ) );\n\tgl_FragColor.a *= opacity;\n}\n";

  var cube_vert = "varying vec3 vWorldPosition;\n#include <common>\nvoid main() {\n\tvWorldPosition = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\tgl_Position.z = gl_Position.w;\n}\n";

  var depth_frag = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - gl_FragCoord.z ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( gl_FragCoord.z );\n\t#endif\n}\n";

  var depth_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n}\n";

  var distanceRGBA_frag = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}\n";

  var distanceRGBA_vert = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}\n";

  var equirect_frag = "uniform sampler2D tEquirect;\nvarying vec3 vWorldPosition;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldPosition );\n\tvec2 sampleUV;\n\tsampleUV.y = asin( clamp( direction.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\tsampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\n}\n";

  var equirect_vert = "varying vec3 vWorldPosition;\n#include <common>\nvoid main() {\n\tvWorldPosition = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}\n";

  var linedashed_frag = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <premultiplied_alpha_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}\n";

  var linedashed_vert = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\tvLineDistance = scale * lineDistance;\n\tvec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}\n";

  var meshbasic_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\treflectedLight.indirectDiffuse += texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <premultiplied_alpha_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}\n";

  var meshbasic_vert = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_ENVMAP\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}\n";

  var meshlambert_frag = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_pars_maps>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\treflectedLight.indirectDiffuse = getAmbientLightIrradiance( ambientLightColor );\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Diffuse_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}\n";

  var meshlambert_vert = "#define LAMBERT\nvarying vec3 vLightFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_pars_maps>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}\n";

  var meshphong_frag = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <lights_pars_maps>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}\n";

  var meshphong_vert = "#define PHONG\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}\n";

  var meshphysical_frag = "#define PHYSICAL\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifndef STANDARD\n\tuniform float clearCoat;\n\tuniform float clearCoatRoughness;\n#endif\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <lights_pars_begin>\n#include <lights_pars_maps>\n#include <lights_physical_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}\n";

  var meshphysical_vert = "#define PHYSICAL\nvarying vec3 vViewPosition;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}\n";

  var normal_frag = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\nvoid main() {\n\t#include <logdepthbuf_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}\n";

  var normal_vert = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}\n";

  var points_frag = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\n\t#include <premultiplied_alpha_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}\n";

  var points_vert = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\t#ifdef USE_SIZEATTENUATION\n\t\tgl_PointSize = size * ( scale / - mvPosition.z );\n\t#else\n\t\tgl_PointSize = size;\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <fog_vertex>\n}\n";

  var shadow_frag = "uniform vec3 color;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include <fog_fragment>\n}\n";

  var shadow_vert = "#include <fog_pars_vertex>\n#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}\n";

  var ShaderChunk = {
  	alphamap_fragment: alphamap_fragment,
  	alphamap_pars_fragment: alphamap_pars_fragment,
  	alphatest_fragment: alphatest_fragment,
  	aomap_fragment: aomap_fragment,
  	aomap_pars_fragment: aomap_pars_fragment,
  	begin_vertex: begin_vertex,
  	beginnormal_vertex: beginnormal_vertex,
  	bsdfs: bsdfs,
  	bumpmap_pars_fragment: bumpmap_pars_fragment,
  	clipping_planes_fragment: clipping_planes_fragment,
  	clipping_planes_pars_fragment: clipping_planes_pars_fragment,
  	clipping_planes_pars_vertex: clipping_planes_pars_vertex,
  	clipping_planes_vertex: clipping_planes_vertex,
  	color_fragment: color_fragment,
  	color_pars_fragment: color_pars_fragment,
  	color_pars_vertex: color_pars_vertex,
  	color_vertex: color_vertex,
  	common: common,
  	cube_uv_reflection_fragment: cube_uv_reflection_fragment,
  	defaultnormal_vertex: defaultnormal_vertex,
  	displacementmap_pars_vertex: displacementmap_pars_vertex,
  	displacementmap_vertex: displacementmap_vertex,
  	emissivemap_fragment: emissivemap_fragment,
  	emissivemap_pars_fragment: emissivemap_pars_fragment,
  	encodings_fragment: encodings_fragment,
  	encodings_pars_fragment: encodings_pars_fragment,
  	envmap_fragment: envmap_fragment,
  	envmap_pars_fragment: envmap_pars_fragment,
  	envmap_pars_vertex: envmap_pars_vertex,
  	envmap_vertex: envmap_vertex,
  	fog_vertex: fog_vertex,
  	fog_pars_vertex: fog_pars_vertex,
  	fog_fragment: fog_fragment,
  	fog_pars_fragment: fog_pars_fragment,
  	gradientmap_pars_fragment: gradientmap_pars_fragment,
  	lightmap_fragment: lightmap_fragment,
  	lightmap_pars_fragment: lightmap_pars_fragment,
  	lights_lambert_vertex: lights_lambert_vertex,
  	lights_pars_begin: lights_pars_begin,
  	lights_pars_maps: lights_pars_maps,
  	lights_phong_fragment: lights_phong_fragment,
  	lights_phong_pars_fragment: lights_phong_pars_fragment,
  	lights_physical_fragment: lights_physical_fragment,
  	lights_physical_pars_fragment: lights_physical_pars_fragment,
  	lights_fragment_begin: lights_fragment_begin,
  	lights_fragment_maps: lights_fragment_maps,
  	lights_fragment_end: lights_fragment_end,
  	logdepthbuf_fragment: logdepthbuf_fragment,
  	logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
  	logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
  	logdepthbuf_vertex: logdepthbuf_vertex,
  	map_fragment: map_fragment,
  	map_pars_fragment: map_pars_fragment,
  	map_particle_fragment: map_particle_fragment,
  	map_particle_pars_fragment: map_particle_pars_fragment,
  	metalnessmap_fragment: metalnessmap_fragment,
  	metalnessmap_pars_fragment: metalnessmap_pars_fragment,
  	morphnormal_vertex: morphnormal_vertex,
  	morphtarget_pars_vertex: morphtarget_pars_vertex,
  	morphtarget_vertex: morphtarget_vertex,
  	normal_fragment_begin: normal_fragment_begin,
  	normal_fragment_maps: normal_fragment_maps,
  	normalmap_pars_fragment: normalmap_pars_fragment,
  	packing: packing,
  	premultiplied_alpha_fragment: premultiplied_alpha_fragment,
  	project_vertex: project_vertex,
  	dithering_fragment: dithering_fragment,
  	dithering_pars_fragment: dithering_pars_fragment,
  	roughnessmap_fragment: roughnessmap_fragment,
  	roughnessmap_pars_fragment: roughnessmap_pars_fragment,
  	shadowmap_pars_fragment: shadowmap_pars_fragment,
  	shadowmap_pars_vertex: shadowmap_pars_vertex,
  	shadowmap_vertex: shadowmap_vertex,
  	shadowmask_pars_fragment: shadowmask_pars_fragment,
  	skinbase_vertex: skinbase_vertex,
  	skinning_pars_vertex: skinning_pars_vertex,
  	skinning_vertex: skinning_vertex,
  	skinnormal_vertex: skinnormal_vertex,
  	specularmap_fragment: specularmap_fragment,
  	specularmap_pars_fragment: specularmap_pars_fragment,
  	tonemapping_fragment: tonemapping_fragment,
  	tonemapping_pars_fragment: tonemapping_pars_fragment,
  	uv_pars_fragment: uv_pars_fragment,
  	uv_pars_vertex: uv_pars_vertex,
  	uv_vertex: uv_vertex,
  	uv2_pars_fragment: uv2_pars_fragment,
  	uv2_pars_vertex: uv2_pars_vertex,
  	uv2_vertex: uv2_vertex,
  	worldpos_vertex: worldpos_vertex,

  	cube_frag: cube_frag,
  	cube_vert: cube_vert,
  	depth_frag: depth_frag,
  	depth_vert: depth_vert,
  	distanceRGBA_frag: distanceRGBA_frag,
  	distanceRGBA_vert: distanceRGBA_vert,
  	equirect_frag: equirect_frag,
  	equirect_vert: equirect_vert,
  	linedashed_frag: linedashed_frag,
  	linedashed_vert: linedashed_vert,
  	meshbasic_frag: meshbasic_frag,
  	meshbasic_vert: meshbasic_vert,
  	meshlambert_frag: meshlambert_frag,
  	meshlambert_vert: meshlambert_vert,
  	meshphong_frag: meshphong_frag,
  	meshphong_vert: meshphong_vert,
  	meshphysical_frag: meshphysical_frag,
  	meshphysical_vert: meshphysical_vert,
  	normal_frag: normal_frag,
  	normal_vert: normal_vert,
  	points_frag: points_frag,
  	points_vert: points_vert,
  	shadow_frag: shadow_frag,
  	shadow_vert: shadow_vert
  };

  /**
   * Uniform Utilities
   */

  var UniformsUtils = {

  	merge: function ( uniforms ) {

  		var merged = {};

  		for ( var u = 0; u < uniforms.length; u ++ ) {

  			var tmp = this.clone( uniforms[ u ] );

  			for ( var p in tmp ) {

  				merged[ p ] = tmp[ p ];

  			}

  		}

  		return merged;

  	},

  	clone: function ( uniforms_src ) {

  		var uniforms_dst = {};

  		for ( var u in uniforms_src ) {

  			uniforms_dst[ u ] = {};

  			for ( var p in uniforms_src[ u ] ) {

  				var parameter_src = uniforms_src[ u ][ p ];

  				if ( parameter_src && ( parameter_src.isColor ||
  					parameter_src.isMatrix3 || parameter_src.isMatrix4 ||
  					parameter_src.isVector2 || parameter_src.isVector3 || parameter_src.isVector4 ||
  					parameter_src.isTexture ) ) {

  					uniforms_dst[ u ][ p ] = parameter_src.clone();

  				} else if ( Array.isArray( parameter_src ) ) {

  					uniforms_dst[ u ][ p ] = parameter_src.slice();

  				} else {

  					uniforms_dst[ u ][ p ] = parameter_src;

  				}

  			}

  		}

  		return uniforms_dst;

  	}

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  var ColorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF,
  	'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2,
  	'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50,
  	'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B,
  	'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B,
  	'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F,
  	'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3,
  	'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222,
  	'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700,
  	'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4,
  	'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00,
  	'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3,
  	'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA,
  	'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32,
  	'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3,
  	'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC,
  	'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD,
  	'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6,
  	'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9,
  	'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F,
  	'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE,
  	'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA,
  	'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0,
  	'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 };

  function Color( r, g, b ) {

  	if ( g === undefined && b === undefined ) {

  		// r is THREE.Color, hex or string
  		return this.set( r );

  	}

  	return this.setRGB( r, g, b );

  }

  Object.assign( Color.prototype, {

  	isColor: true,

  	r: 1, g: 1, b: 1,

  	set: function ( value ) {

  		if ( value && value.isColor ) {

  			this.copy( value );

  		} else if ( typeof value === 'number' ) {

  			this.setHex( value );

  		} else if ( typeof value === 'string' ) {

  			this.setStyle( value );

  		}

  		return this;

  	},

  	setScalar: function ( scalar ) {

  		this.r = scalar;
  		this.g = scalar;
  		this.b = scalar;

  		return this;

  	},

  	setHex: function ( hex ) {

  		hex = Math.floor( hex );

  		this.r = ( hex >> 16 & 255 ) / 255;
  		this.g = ( hex >> 8 & 255 ) / 255;
  		this.b = ( hex & 255 ) / 255;

  		return this;

  	},

  	setRGB: function ( r, g, b ) {

  		this.r = r;
  		this.g = g;
  		this.b = b;

  		return this;

  	},

  	setHSL: function () {

  		function hue2rgb( p, q, t ) {

  			if ( t < 0 ) t += 1;
  			if ( t > 1 ) t -= 1;
  			if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t;
  			if ( t < 1 / 2 ) return q;
  			if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t );
  			return p;

  		}

  		return function setHSL( h, s, l ) {

  			// h,s,l ranges are in 0.0 - 1.0
  			h = _Math.euclideanModulo( h, 1 );
  			s = _Math.clamp( s, 0, 1 );
  			l = _Math.clamp( l, 0, 1 );

  			if ( s === 0 ) {

  				this.r = this.g = this.b = l;

  			} else {

  				var p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s );
  				var q = ( 2 * l ) - p;

  				this.r = hue2rgb( q, p, h + 1 / 3 );
  				this.g = hue2rgb( q, p, h );
  				this.b = hue2rgb( q, p, h - 1 / 3 );

  			}

  			return this;

  		};

  	}(),

  	setStyle: function ( style ) {

  		function handleAlpha( string ) {

  			if ( string === undefined ) return;

  			if ( parseFloat( string ) < 1 ) {

  				console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' );

  			}

  		}


  		var m;

  		if ( m = /^((?:rgb|hsl)a?)\(\s*([^\)]*)\)/.exec( style ) ) {

  			// rgb / hsl

  			var color;
  			var name = m[ 1 ];
  			var components = m[ 2 ];

  			switch ( name ) {

  				case 'rgb':
  				case 'rgba':

  					if ( color = /^(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

  						// rgb(255,0,0) rgba(255,0,0,0.5)
  						this.r = Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255;
  						this.g = Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255;
  						this.b = Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255;

  						handleAlpha( color[ 5 ] );

  						return this;

  					}

  					if ( color = /^(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

  						// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
  						this.r = Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100;
  						this.g = Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100;
  						this.b = Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100;

  						handleAlpha( color[ 5 ] );

  						return this;

  					}

  					break;

  				case 'hsl':
  				case 'hsla':

  					if ( color = /^([0-9]*\.?[0-9]+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(,\s*([0-9]*\.?[0-9]+)\s*)?$/.exec( components ) ) {

  						// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
  						var h = parseFloat( color[ 1 ] ) / 360;
  						var s = parseInt( color[ 2 ], 10 ) / 100;
  						var l = parseInt( color[ 3 ], 10 ) / 100;

  						handleAlpha( color[ 5 ] );

  						return this.setHSL( h, s, l );

  					}

  					break;

  			}

  		} else if ( m = /^\#([A-Fa-f0-9]+)$/.exec( style ) ) {

  			// hex color

  			var hex = m[ 1 ];
  			var size = hex.length;

  			if ( size === 3 ) {

  				// #ff0
  				this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 0 ), 16 ) / 255;
  				this.g = parseInt( hex.charAt( 1 ) + hex.charAt( 1 ), 16 ) / 255;
  				this.b = parseInt( hex.charAt( 2 ) + hex.charAt( 2 ), 16 ) / 255;

  				return this;

  			} else if ( size === 6 ) {

  				// #ff0000
  				this.r = parseInt( hex.charAt( 0 ) + hex.charAt( 1 ), 16 ) / 255;
  				this.g = parseInt( hex.charAt( 2 ) + hex.charAt( 3 ), 16 ) / 255;
  				this.b = parseInt( hex.charAt( 4 ) + hex.charAt( 5 ), 16 ) / 255;

  				return this;

  			}

  		}

  		if ( style && style.length > 0 ) {

  			// color keywords
  			var hex = ColorKeywords[ style ];

  			if ( hex !== undefined ) {

  				// red
  				this.setHex( hex );

  			} else {

  				// unknown color
  				console.warn( 'THREE.Color: Unknown color ' + style );

  			}

  		}

  		return this;

  	},

  	clone: function () {

  		return new this.constructor( this.r, this.g, this.b );

  	},

  	copy: function ( color ) {

  		this.r = color.r;
  		this.g = color.g;
  		this.b = color.b;

  		return this;

  	},

  	copyGammaToLinear: function ( color, gammaFactor ) {

  		if ( gammaFactor === undefined ) gammaFactor = 2.0;

  		this.r = Math.pow( color.r, gammaFactor );
  		this.g = Math.pow( color.g, gammaFactor );
  		this.b = Math.pow( color.b, gammaFactor );

  		return this;

  	},

  	copyLinearToGamma: function ( color, gammaFactor ) {

  		if ( gammaFactor === undefined ) gammaFactor = 2.0;

  		var safeInverse = ( gammaFactor > 0 ) ? ( 1.0 / gammaFactor ) : 1.0;

  		this.r = Math.pow( color.r, safeInverse );
  		this.g = Math.pow( color.g, safeInverse );
  		this.b = Math.pow( color.b, safeInverse );

  		return this;

  	},

  	convertGammaToLinear: function ( gammaFactor ) {

  		this.copyGammaToLinear( this, gammaFactor );

  		return this;

  	},

  	convertLinearToGamma: function ( gammaFactor ) {

  		this.copyLinearToGamma( this, gammaFactor );

  		return this;

  	},

  	getHex: function () {

  		return ( this.r * 255 ) << 16 ^ ( this.g * 255 ) << 8 ^ ( this.b * 255 ) << 0;

  	},

  	getHexString: function () {

  		return ( '000000' + this.getHex().toString( 16 ) ).slice( - 6 );

  	},

  	getHSL: function ( target ) {

  		// h,s,l ranges are in 0.0 - 1.0

  		if ( target === undefined ) {

  			console.warn( 'THREE.Color: .getHSL() target is now required' );
  			target = { h: 0, s: 0, l: 0 };

  		}

  		var r = this.r, g = this.g, b = this.b;

  		var max = Math.max( r, g, b );
  		var min = Math.min( r, g, b );

  		var hue, saturation;
  		var lightness = ( min + max ) / 2.0;

  		if ( min === max ) {

  			hue = 0;
  			saturation = 0;

  		} else {

  			var delta = max - min;

  			saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min );

  			switch ( max ) {

  				case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break;
  				case g: hue = ( b - r ) / delta + 2; break;
  				case b: hue = ( r - g ) / delta + 4; break;

  			}

  			hue /= 6;

  		}

  		target.h = hue;
  		target.s = saturation;
  		target.l = lightness;

  		return target;

  	},

  	getStyle: function () {

  		return 'rgb(' + ( ( this.r * 255 ) | 0 ) + ',' + ( ( this.g * 255 ) | 0 ) + ',' + ( ( this.b * 255 ) | 0 ) + ')';

  	},

  	offsetHSL: function () {

  		var hsl = {};

  		return function ( h, s, l ) {

  			this.getHSL( hsl );

  			hsl.h += h; hsl.s += s; hsl.l += l;

  			this.setHSL( hsl.h, hsl.s, hsl.l );

  			return this;

  		};

  	}(),

  	add: function ( color ) {

  		this.r += color.r;
  		this.g += color.g;
  		this.b += color.b;

  		return this;

  	},

  	addColors: function ( color1, color2 ) {

  		this.r = color1.r + color2.r;
  		this.g = color1.g + color2.g;
  		this.b = color1.b + color2.b;

  		return this;

  	},

  	addScalar: function ( s ) {

  		this.r += s;
  		this.g += s;
  		this.b += s;

  		return this;

  	},

  	sub: function ( color ) {

  		this.r = Math.max( 0, this.r - color.r );
  		this.g = Math.max( 0, this.g - color.g );
  		this.b = Math.max( 0, this.b - color.b );

  		return this;

  	},

  	multiply: function ( color ) {

  		this.r *= color.r;
  		this.g *= color.g;
  		this.b *= color.b;

  		return this;

  	},

  	multiplyScalar: function ( s ) {

  		this.r *= s;
  		this.g *= s;
  		this.b *= s;

  		return this;

  	},

  	lerp: function ( color, alpha ) {

  		this.r += ( color.r - this.r ) * alpha;
  		this.g += ( color.g - this.g ) * alpha;
  		this.b += ( color.b - this.b ) * alpha;

  		return this;

  	},

  	equals: function ( c ) {

  		return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b );

  	},

  	fromArray: function ( array, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this.r = array[ offset ];
  		this.g = array[ offset + 1 ];
  		this.b = array[ offset + 2 ];

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		array[ offset ] = this.r;
  		array[ offset + 1 ] = this.g;
  		array[ offset + 2 ] = this.b;

  		return array;

  	},

  	toJSON: function () {

  		return this.getHex();

  	}

  } );

  /**
   * Uniforms library for shared webgl shaders
   */

  var UniformsLib = {

  	common: {

  		diffuse: { value: new Color( 0xeeeeee ) },
  		opacity: { value: 1.0 },

  		map: { value: null },
  		uvTransform: { value: new Matrix3() },

  		alphaMap: { value: null },

  	},

  	specularmap: {

  		specularMap: { value: null },

  	},

  	envmap: {

  		envMap: { value: null },
  		flipEnvMap: { value: - 1 },
  		reflectivity: { value: 1.0 },
  		refractionRatio: { value: 0.98 },
  		maxMipLevel: { value: 0 }

  	},

  	aomap: {

  		aoMap: { value: null },
  		aoMapIntensity: { value: 1 }

  	},

  	lightmap: {

  		lightMap: { value: null },
  		lightMapIntensity: { value: 1 }

  	},

  	emissivemap: {

  		emissiveMap: { value: null }

  	},

  	bumpmap: {

  		bumpMap: { value: null },
  		bumpScale: { value: 1 }

  	},

  	normalmap: {

  		normalMap: { value: null },
  		normalScale: { value: new Vector2( 1, 1 ) }

  	},

  	displacementmap: {

  		displacementMap: { value: null },
  		displacementScale: { value: 1 },
  		displacementBias: { value: 0 }

  	},

  	roughnessmap: {

  		roughnessMap: { value: null }

  	},

  	metalnessmap: {

  		metalnessMap: { value: null }

  	},

  	gradientmap: {

  		gradientMap: { value: null }

  	},

  	fog: {

  		fogDensity: { value: 0.00025 },
  		fogNear: { value: 1 },
  		fogFar: { value: 2000 },
  		fogColor: { value: new Color( 0xffffff ) }

  	},

  	lights: {

  		ambientLightColor: { value: [] },

  		directionalLights: { value: [], properties: {
  			direction: {},
  			color: {},

  			shadow: {},
  			shadowBias: {},
  			shadowRadius: {},
  			shadowMapSize: {}
  		} },

  		directionalShadowMap: { value: [] },
  		directionalShadowMatrix: { value: [] },

  		spotLights: { value: [], properties: {
  			color: {},
  			position: {},
  			direction: {},
  			distance: {},
  			coneCos: {},
  			penumbraCos: {},
  			decay: {},

  			shadow: {},
  			shadowBias: {},
  			shadowRadius: {},
  			shadowMapSize: {}
  		} },

  		spotShadowMap: { value: [] },
  		spotShadowMatrix: { value: [] },

  		pointLights: { value: [], properties: {
  			color: {},
  			position: {},
  			decay: {},
  			distance: {},

  			shadow: {},
  			shadowBias: {},
  			shadowRadius: {},
  			shadowMapSize: {},
  			shadowCameraNear: {},
  			shadowCameraFar: {}
  		} },

  		pointShadowMap: { value: [] },
  		pointShadowMatrix: { value: [] },

  		hemisphereLights: { value: [], properties: {
  			direction: {},
  			skyColor: {},
  			groundColor: {}
  		} },

  		// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
  		rectAreaLights: { value: [], properties: {
  			color: {},
  			position: {},
  			width: {},
  			height: {}
  		} }

  	},

  	points: {

  		diffuse: { value: new Color( 0xeeeeee ) },
  		opacity: { value: 1.0 },
  		size: { value: 1.0 },
  		scale: { value: 1.0 },
  		map: { value: null },
  		uvTransform: { value: new Matrix3() }

  	}

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   * @author mikael emtinger / http://gomo.se/
   */

  var ShaderLib = {

  	basic: {

  		uniforms: UniformsUtils.merge( [
  			UniformsLib.common,
  			UniformsLib.specularmap,
  			UniformsLib.envmap,
  			UniformsLib.aomap,
  			UniformsLib.lightmap,
  			UniformsLib.fog
  		] ),

  		vertexShader: ShaderChunk.meshbasic_vert,
  		fragmentShader: ShaderChunk.meshbasic_frag

  	},

  	lambert: {

  		uniforms: UniformsUtils.merge( [
  			UniformsLib.common,
  			UniformsLib.specularmap,
  			UniformsLib.envmap,
  			UniformsLib.aomap,
  			UniformsLib.lightmap,
  			UniformsLib.emissivemap,
  			UniformsLib.fog,
  			UniformsLib.lights,
  			{
  				emissive: { value: new Color( 0x000000 ) }
  			}
  		] ),

  		vertexShader: ShaderChunk.meshlambert_vert,
  		fragmentShader: ShaderChunk.meshlambert_frag

  	},

  	phong: {

  		uniforms: UniformsUtils.merge( [
  			UniformsLib.common,
  			UniformsLib.specularmap,
  			UniformsLib.envmap,
  			UniformsLib.aomap,
  			UniformsLib.lightmap,
  			UniformsLib.emissivemap,
  			UniformsLib.bumpmap,
  			UniformsLib.normalmap,
  			UniformsLib.displacementmap,
  			UniformsLib.gradientmap,
  			UniformsLib.fog,
  			UniformsLib.lights,
  			{
  				emissive: { value: new Color( 0x000000 ) },
  				specular: { value: new Color( 0x111111 ) },
  				shininess: { value: 30 }
  			}
  		] ),

  		vertexShader: ShaderChunk.meshphong_vert,
  		fragmentShader: ShaderChunk.meshphong_frag

  	},

  	standard: {

  		uniforms: UniformsUtils.merge( [
  			UniformsLib.common,
  			UniformsLib.envmap,
  			UniformsLib.aomap,
  			UniformsLib.lightmap,
  			UniformsLib.emissivemap,
  			UniformsLib.bumpmap,
  			UniformsLib.normalmap,
  			UniformsLib.displacementmap,
  			UniformsLib.roughnessmap,
  			UniformsLib.metalnessmap,
  			UniformsLib.fog,
  			UniformsLib.lights,
  			{
  				emissive: { value: new Color( 0x000000 ) },
  				roughness: { value: 0.5 },
  				metalness: { value: 0.5 },
  				envMapIntensity: { value: 1 } // temporary
  			}
  		] ),

  		vertexShader: ShaderChunk.meshphysical_vert,
  		fragmentShader: ShaderChunk.meshphysical_frag

  	},

  	points: {

  		uniforms: UniformsUtils.merge( [
  			UniformsLib.points,
  			UniformsLib.fog
  		] ),

  		vertexShader: ShaderChunk.points_vert,
  		fragmentShader: ShaderChunk.points_frag

  	},

  	dashed: {

  		uniforms: UniformsUtils.merge( [
  			UniformsLib.common,
  			UniformsLib.fog,
  			{
  				scale: { value: 1 },
  				dashSize: { value: 1 },
  				totalSize: { value: 2 }
  			}
  		] ),

  		vertexShader: ShaderChunk.linedashed_vert,
  		fragmentShader: ShaderChunk.linedashed_frag

  	},

  	depth: {

  		uniforms: UniformsUtils.merge( [
  			UniformsLib.common,
  			UniformsLib.displacementmap
  		] ),

  		vertexShader: ShaderChunk.depth_vert,
  		fragmentShader: ShaderChunk.depth_frag

  	},

  	normal: {

  		uniforms: UniformsUtils.merge( [
  			UniformsLib.common,
  			UniformsLib.bumpmap,
  			UniformsLib.normalmap,
  			UniformsLib.displacementmap,
  			{
  				opacity: { value: 1.0 }
  			}
  		] ),

  		vertexShader: ShaderChunk.normal_vert,
  		fragmentShader: ShaderChunk.normal_frag

  	},

  	/* -------------------------------------------------------------------------
  	//	Cube map shader
  	 ------------------------------------------------------------------------- */

  	cube: {

  		uniforms: {
  			tCube: { value: null },
  			tFlip: { value: - 1 },
  			opacity: { value: 1.0 }
  		},

  		vertexShader: ShaderChunk.cube_vert,
  		fragmentShader: ShaderChunk.cube_frag

  	},

  	equirect: {

  		uniforms: {
  			tEquirect: { value: null },
  		},

  		vertexShader: ShaderChunk.equirect_vert,
  		fragmentShader: ShaderChunk.equirect_frag

  	},

  	distanceRGBA: {

  		uniforms: UniformsUtils.merge( [
  			UniformsLib.common,
  			UniformsLib.displacementmap,
  			{
  				referencePosition: { value: new Vector3() },
  				nearDistance: { value: 1 },
  				farDistance: { value: 1000 }
  			}
  		] ),

  		vertexShader: ShaderChunk.distanceRGBA_vert,
  		fragmentShader: ShaderChunk.distanceRGBA_frag

  	},

  	shadow: {

  		uniforms: UniformsUtils.merge( [
  			UniformsLib.lights,
  			UniformsLib.fog,
  			{
  				color: { value: new Color( 0x00000 ) },
  				opacity: { value: 1.0 }
  			},
  		] ),

  		vertexShader: ShaderChunk.shadow_vert,
  		fragmentShader: ShaderChunk.shadow_frag

  	}

  };

  ShaderLib.physical = {

  	uniforms: UniformsUtils.merge( [
  		ShaderLib.standard.uniforms,
  		{
  			clearCoat: { value: 0 },
  			clearCoatRoughness: { value: 0 }
  		}
  	] ),

  	vertexShader: ShaderChunk.meshphysical_vert,
  	fragmentShader: ShaderChunk.meshphysical_frag

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLAnimation() {

  	var context = null;
  	var isAnimating = false;
  	var animationLoop = null;

  	function onAnimationFrame( time, frame ) {

  		if ( isAnimating === false ) return;

  		animationLoop( time, frame );

  		context.requestAnimationFrame( onAnimationFrame );

  	}

  	return {

  		start: function () {

  			if ( isAnimating === true ) return;
  			if ( animationLoop === null ) return;

  			context.requestAnimationFrame( onAnimationFrame );

  			isAnimating = true;

  		},

  		stop: function () {

  			isAnimating = false;

  		},

  		setAnimationLoop: function ( callback ) {

  			animationLoop = callback;

  		},

  		setContext: function ( value ) {

  			context = value;

  		}

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLAttributes( gl ) {

  	var buffers = new WeakMap();

  	function createBuffer( attribute, bufferType ) {

  		var array = attribute.array;
  		var usage = attribute.dynamic ? gl.DYNAMIC_DRAW : gl.STATIC_DRAW;

  		var buffer = gl.createBuffer();

  		gl.bindBuffer( bufferType, buffer );
  		gl.bufferData( bufferType, array, usage );

  		attribute.onUploadCallback();

  		var type = gl.FLOAT;

  		if ( array instanceof Float32Array ) {

  			type = gl.FLOAT;

  		} else if ( array instanceof Float64Array ) {

  			console.warn( 'THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.' );

  		} else if ( array instanceof Uint16Array ) {

  			type = gl.UNSIGNED_SHORT;

  		} else if ( array instanceof Int16Array ) {

  			type = gl.SHORT;

  		} else if ( array instanceof Uint32Array ) {

  			type = gl.UNSIGNED_INT;

  		} else if ( array instanceof Int32Array ) {

  			type = gl.INT;

  		} else if ( array instanceof Int8Array ) {

  			type = gl.BYTE;

  		} else if ( array instanceof Uint8Array ) {

  			type = gl.UNSIGNED_BYTE;

  		}

  		return {
  			buffer: buffer,
  			type: type,
  			bytesPerElement: array.BYTES_PER_ELEMENT,
  			version: attribute.version
  		};

  	}

  	function updateBuffer( buffer, attribute, bufferType ) {

  		var array = attribute.array;
  		var updateRange = attribute.updateRange;

  		gl.bindBuffer( bufferType, buffer );

  		if ( attribute.dynamic === false ) {

  			gl.bufferData( bufferType, array, gl.STATIC_DRAW );

  		} else if ( updateRange.count === - 1 ) {

  			// Not using update ranges

  			gl.bufferSubData( bufferType, 0, array );

  		} else if ( updateRange.count === 0 ) {

  			console.error( 'THREE.WebGLObjects.updateBuffer: dynamic THREE.BufferAttribute marked as needsUpdate but updateRange.count is 0, ensure you are using set methods or updating manually.' );

  		} else {

  			gl.bufferSubData( bufferType, updateRange.offset * array.BYTES_PER_ELEMENT,
  				array.subarray( updateRange.offset, updateRange.offset + updateRange.count ) );

  			updateRange.count = - 1; // reset range

  		}

  	}

  	//

  	function get( attribute ) {

  		if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;

  		return buffers.get( attribute );

  	}

  	function remove( attribute ) {

  		if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;

  		var data = buffers.get( attribute );

  		if ( data ) {

  			gl.deleteBuffer( data.buffer );

  			buffers.delete( attribute );

  		}

  	}

  	function update( attribute, bufferType ) {

  		if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data;

  		var data = buffers.get( attribute );

  		if ( data === undefined ) {

  			buffers.set( attribute, createBuffer( attribute, bufferType ) );

  		} else if ( data.version < attribute.version ) {

  			updateBuffer( data.buffer, attribute, bufferType );

  			data.version = attribute.version;

  		}

  	}

  	return {

  		get: get,
  		remove: remove,
  		update: update

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author WestLangley / http://github.com/WestLangley
   * @author bhouston / http://clara.io
   */

  function Euler( x, y, z, order ) {

  	this._x = x || 0;
  	this._y = y || 0;
  	this._z = z || 0;
  	this._order = order || Euler.DefaultOrder;

  }

  Euler.RotationOrders = [ 'XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX' ];

  Euler.DefaultOrder = 'XYZ';

  Object.defineProperties( Euler.prototype, {

  	x: {

  		get: function () {

  			return this._x;

  		},

  		set: function ( value ) {

  			this._x = value;
  			this.onChangeCallback();

  		}

  	},

  	y: {

  		get: function () {

  			return this._y;

  		},

  		set: function ( value ) {

  			this._y = value;
  			this.onChangeCallback();

  		}

  	},

  	z: {

  		get: function () {

  			return this._z;

  		},

  		set: function ( value ) {

  			this._z = value;
  			this.onChangeCallback();

  		}

  	},

  	order: {

  		get: function () {

  			return this._order;

  		},

  		set: function ( value ) {

  			this._order = value;
  			this.onChangeCallback();

  		}

  	}

  } );

  Object.assign( Euler.prototype, {

  	isEuler: true,

  	set: function ( x, y, z, order ) {

  		this._x = x;
  		this._y = y;
  		this._z = z;
  		this._order = order || this._order;

  		this.onChangeCallback();

  		return this;

  	},

  	clone: function () {

  		return new this.constructor( this._x, this._y, this._z, this._order );

  	},

  	copy: function ( euler ) {

  		this._x = euler._x;
  		this._y = euler._y;
  		this._z = euler._z;
  		this._order = euler._order;

  		this.onChangeCallback();

  		return this;

  	},

  	setFromRotationMatrix: function ( m, order, update ) {

  		var clamp = _Math.clamp;

  		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

  		var te = m.elements;
  		var m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ];
  		var m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ];
  		var m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];

  		order = order || this._order;

  		if ( order === 'XYZ' ) {

  			this._y = Math.asin( clamp( m13, - 1, 1 ) );

  			if ( Math.abs( m13 ) < 0.99999 ) {

  				this._x = Math.atan2( - m23, m33 );
  				this._z = Math.atan2( - m12, m11 );

  			} else {

  				this._x = Math.atan2( m32, m22 );
  				this._z = 0;

  			}

  		} else if ( order === 'YXZ' ) {

  			this._x = Math.asin( - clamp( m23, - 1, 1 ) );

  			if ( Math.abs( m23 ) < 0.99999 ) {

  				this._y = Math.atan2( m13, m33 );
  				this._z = Math.atan2( m21, m22 );

  			} else {

  				this._y = Math.atan2( - m31, m11 );
  				this._z = 0;

  			}

  		} else if ( order === 'ZXY' ) {

  			this._x = Math.asin( clamp( m32, - 1, 1 ) );

  			if ( Math.abs( m32 ) < 0.99999 ) {

  				this._y = Math.atan2( - m31, m33 );
  				this._z = Math.atan2( - m12, m22 );

  			} else {

  				this._y = 0;
  				this._z = Math.atan2( m21, m11 );

  			}

  		} else if ( order === 'ZYX' ) {

  			this._y = Math.asin( - clamp( m31, - 1, 1 ) );

  			if ( Math.abs( m31 ) < 0.99999 ) {

  				this._x = Math.atan2( m32, m33 );
  				this._z = Math.atan2( m21, m11 );

  			} else {

  				this._x = 0;
  				this._z = Math.atan2( - m12, m22 );

  			}

  		} else if ( order === 'YZX' ) {

  			this._z = Math.asin( clamp( m21, - 1, 1 ) );

  			if ( Math.abs( m21 ) < 0.99999 ) {

  				this._x = Math.atan2( - m23, m22 );
  				this._y = Math.atan2( - m31, m11 );

  			} else {

  				this._x = 0;
  				this._y = Math.atan2( m13, m33 );

  			}

  		} else if ( order === 'XZY' ) {

  			this._z = Math.asin( - clamp( m12, - 1, 1 ) );

  			if ( Math.abs( m12 ) < 0.99999 ) {

  				this._x = Math.atan2( m32, m22 );
  				this._y = Math.atan2( m13, m11 );

  			} else {

  				this._x = Math.atan2( - m23, m33 );
  				this._y = 0;

  			}

  		} else {

  			console.warn( 'THREE.Euler: .setFromRotationMatrix() given unsupported order: ' + order );

  		}

  		this._order = order;

  		if ( update !== false ) this.onChangeCallback();

  		return this;

  	},

  	setFromQuaternion: function () {

  		var matrix = new Matrix4();

  		return function setFromQuaternion( q, order, update ) {

  			matrix.makeRotationFromQuaternion( q );

  			return this.setFromRotationMatrix( matrix, order, update );

  		};

  	}(),

  	setFromVector3: function ( v, order ) {

  		return this.set( v.x, v.y, v.z, order || this._order );

  	},

  	reorder: function () {

  		// WARNING: this discards revolution information -bhouston

  		var q = new Quaternion();

  		return function reorder( newOrder ) {

  			q.setFromEuler( this );

  			return this.setFromQuaternion( q, newOrder );

  		};

  	}(),

  	equals: function ( euler ) {

  		return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order );

  	},

  	fromArray: function ( array ) {

  		this._x = array[ 0 ];
  		this._y = array[ 1 ];
  		this._z = array[ 2 ];
  		if ( array[ 3 ] !== undefined ) this._order = array[ 3 ];

  		this.onChangeCallback();

  		return this;

  	},

  	toArray: function ( array, offset ) {

  		if ( array === undefined ) array = [];
  		if ( offset === undefined ) offset = 0;

  		array[ offset ] = this._x;
  		array[ offset + 1 ] = this._y;
  		array[ offset + 2 ] = this._z;
  		array[ offset + 3 ] = this._order;

  		return array;

  	},

  	toVector3: function ( optionalResult ) {

  		if ( optionalResult ) {

  			return optionalResult.set( this._x, this._y, this._z );

  		} else {

  			return new Vector3( this._x, this._y, this._z );

  		}

  	},

  	onChange: function ( callback ) {

  		this.onChangeCallback = callback;

  		return this;

  	},

  	onChangeCallback: function () {}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function Layers() {

  	this.mask = 1 | 0;

  }

  Object.assign( Layers.prototype, {

  	set: function ( channel ) {

  		this.mask = 1 << channel | 0;

  	},

  	enable: function ( channel ) {

  		this.mask |= 1 << channel | 0;

  	},

  	toggle: function ( channel ) {

  		this.mask ^= 1 << channel | 0;

  	},

  	disable: function ( channel ) {

  		this.mask &= ~ ( 1 << channel | 0 );

  	},

  	test: function ( layers ) {

  		return ( this.mask & layers.mask ) !== 0;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   * @author WestLangley / http://github.com/WestLangley
   * @author elephantatwork / www.elephantatwork.ch
   */

  var object3DId = 0;

  function Object3D() {

  	Object.defineProperty( this, 'id', { value: object3DId ++ } );

  	this.uuid = _Math.generateUUID();

  	this.name = '';
  	this.type = 'Object3D';

  	this.parent = null;
  	this.children = [];

  	this.up = Object3D.DefaultUp.clone();

  	var position = new Vector3();
  	var rotation = new Euler();
  	var quaternion = new Quaternion();
  	var scale = new Vector3( 1, 1, 1 );

  	function onRotationChange() {

  		quaternion.setFromEuler( rotation, false );

  	}

  	function onQuaternionChange() {

  		rotation.setFromQuaternion( quaternion, undefined, false );

  	}

  	rotation.onChange( onRotationChange );
  	quaternion.onChange( onQuaternionChange );

  	Object.defineProperties( this, {
  		position: {
  			enumerable: true,
  			value: position
  		},
  		rotation: {
  			enumerable: true,
  			value: rotation
  		},
  		quaternion: {
  			enumerable: true,
  			value: quaternion
  		},
  		scale: {
  			enumerable: true,
  			value: scale
  		},
  		modelViewMatrix: {
  			value: new Matrix4()
  		},
  		normalMatrix: {
  			value: new Matrix3()
  		}
  	} );

  	this.matrix = new Matrix4();
  	this.matrixWorld = new Matrix4();

  	this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
  	this.matrixWorldNeedsUpdate = false;

  	this.layers = new Layers();
  	this.visible = true;

  	this.castShadow = false;
  	this.receiveShadow = false;

  	this.frustumCulled = true;
  	this.renderOrder = 0;

  	this.userData = {};

  }

  Object3D.DefaultUp = new Vector3( 0, 1, 0 );
  Object3D.DefaultMatrixAutoUpdate = true;

  Object3D.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: Object3D,

  	isObject3D: true,

  	onBeforeRender: function () {},
  	onAfterRender: function () {},

  	applyMatrix: function ( matrix ) {

  		this.matrix.multiplyMatrices( matrix, this.matrix );

  		this.matrix.decompose( this.position, this.quaternion, this.scale );

  	},

  	applyQuaternion: function ( q ) {

  		this.quaternion.premultiply( q );

  		return this;

  	},

  	setRotationFromAxisAngle: function ( axis, angle ) {

  		// assumes axis is normalized

  		this.quaternion.setFromAxisAngle( axis, angle );

  	},

  	setRotationFromEuler: function ( euler ) {

  		this.quaternion.setFromEuler( euler, true );

  	},

  	setRotationFromMatrix: function ( m ) {

  		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

  		this.quaternion.setFromRotationMatrix( m );

  	},

  	setRotationFromQuaternion: function ( q ) {

  		// assumes q is normalized

  		this.quaternion.copy( q );

  	},

  	rotateOnAxis: function () {

  		// rotate object on axis in object space
  		// axis is assumed to be normalized

  		var q1 = new Quaternion();

  		return function rotateOnAxis( axis, angle ) {

  			q1.setFromAxisAngle( axis, angle );

  			this.quaternion.multiply( q1 );

  			return this;

  		};

  	}(),

  	rotateOnWorldAxis: function () {

  		// rotate object on axis in world space
  		// axis is assumed to be normalized
  		// method assumes no rotated parent

  		var q1 = new Quaternion();

  		return function rotateOnWorldAxis( axis, angle ) {

  			q1.setFromAxisAngle( axis, angle );

  			this.quaternion.premultiply( q1 );

  			return this;

  		};

  	}(),

  	rotateX: function () {

  		var v1 = new Vector3( 1, 0, 0 );

  		return function rotateX( angle ) {

  			return this.rotateOnAxis( v1, angle );

  		};

  	}(),

  	rotateY: function () {

  		var v1 = new Vector3( 0, 1, 0 );

  		return function rotateY( angle ) {

  			return this.rotateOnAxis( v1, angle );

  		};

  	}(),

  	rotateZ: function () {

  		var v1 = new Vector3( 0, 0, 1 );

  		return function rotateZ( angle ) {

  			return this.rotateOnAxis( v1, angle );

  		};

  	}(),

  	translateOnAxis: function () {

  		// translate object by distance along axis in object space
  		// axis is assumed to be normalized

  		var v1 = new Vector3();

  		return function translateOnAxis( axis, distance ) {

  			v1.copy( axis ).applyQuaternion( this.quaternion );

  			this.position.add( v1.multiplyScalar( distance ) );

  			return this;

  		};

  	}(),

  	translateX: function () {

  		var v1 = new Vector3( 1, 0, 0 );

  		return function translateX( distance ) {

  			return this.translateOnAxis( v1, distance );

  		};

  	}(),

  	translateY: function () {

  		var v1 = new Vector3( 0, 1, 0 );

  		return function translateY( distance ) {

  			return this.translateOnAxis( v1, distance );

  		};

  	}(),

  	translateZ: function () {

  		var v1 = new Vector3( 0, 0, 1 );

  		return function translateZ( distance ) {

  			return this.translateOnAxis( v1, distance );

  		};

  	}(),

  	localToWorld: function ( vector ) {

  		return vector.applyMatrix4( this.matrixWorld );

  	},

  	worldToLocal: function () {

  		var m1 = new Matrix4();

  		return function worldToLocal( vector ) {

  			return vector.applyMatrix4( m1.getInverse( this.matrixWorld ) );

  		};

  	}(),

  	lookAt: function () {

  		// This method does not support objects with rotated and/or translated parent(s)

  		var m1 = new Matrix4();
  		var vector = new Vector3();

  		return function lookAt( x, y, z ) {

  			if ( x.isVector3 ) {

  				vector.copy( x );

  			} else {

  				vector.set( x, y, z );

  			}

  			if ( this.isCamera ) {

  				m1.lookAt( this.position, vector, this.up );

  			} else {

  				m1.lookAt( vector, this.position, this.up );

  			}

  			this.quaternion.setFromRotationMatrix( m1 );

  		};

  	}(),

  	add: function ( object ) {

  		if ( arguments.length > 1 ) {

  			for ( var i = 0; i < arguments.length; i ++ ) {

  				this.add( arguments[ i ] );

  			}

  			return this;

  		}

  		if ( object === this ) {

  			console.error( "THREE.Object3D.add: object can't be added as a child of itself.", object );
  			return this;

  		}

  		if ( ( object && object.isObject3D ) ) {

  			if ( object.parent !== null ) {

  				object.parent.remove( object );

  			}

  			object.parent = this;
  			object.dispatchEvent( { type: 'added' } );

  			this.children.push( object );

  		} else {

  			console.error( "THREE.Object3D.add: object not an instance of THREE.Object3D.", object );

  		}

  		return this;

  	},

  	remove: function ( object ) {

  		if ( arguments.length > 1 ) {

  			for ( var i = 0; i < arguments.length; i ++ ) {

  				this.remove( arguments[ i ] );

  			}

  			return this;

  		}

  		var index = this.children.indexOf( object );

  		if ( index !== - 1 ) {

  			object.parent = null;

  			object.dispatchEvent( { type: 'removed' } );

  			this.children.splice( index, 1 );

  		}

  		return this;

  	},

  	getObjectById: function ( id ) {

  		return this.getObjectByProperty( 'id', id );

  	},

  	getObjectByName: function ( name ) {

  		return this.getObjectByProperty( 'name', name );

  	},

  	getObjectByProperty: function ( name, value ) {

  		if ( this[ name ] === value ) return this;

  		for ( var i = 0, l = this.children.length; i < l; i ++ ) {

  			var child = this.children[ i ];
  			var object = child.getObjectByProperty( name, value );

  			if ( object !== undefined ) {

  				return object;

  			}

  		}

  		return undefined;

  	},

  	getWorldPosition: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Object3D: .getWorldPosition() target is now required' );
  			target = new Vector3();

  		}

  		this.updateMatrixWorld( true );

  		return target.setFromMatrixPosition( this.matrixWorld );

  	},

  	getWorldQuaternion: function () {

  		var position = new Vector3();
  		var scale = new Vector3();

  		return function getWorldQuaternion( target ) {

  			if ( target === undefined ) {

  				console.warn( 'THREE.Object3D: .getWorldQuaternion() target is now required' );
  				target = new Quaternion();

  			}

  			this.updateMatrixWorld( true );

  			this.matrixWorld.decompose( position, target, scale );

  			return target;

  		};

  	}(),

  	getWorldScale: function () {

  		var position = new Vector3();
  		var quaternion = new Quaternion();

  		return function getWorldScale( target ) {

  			if ( target === undefined ) {

  				console.warn( 'THREE.Object3D: .getWorldScale() target is now required' );
  				target = new Vector3();

  			}

  			this.updateMatrixWorld( true );

  			this.matrixWorld.decompose( position, quaternion, target );

  			return target;

  		};

  	}(),

  	getWorldDirection: function () {

  		var quaternion = new Quaternion();

  		return function getWorldDirection( target ) {

  			if ( target === undefined ) {

  				console.warn( 'THREE.Object3D: .getWorldDirection() target is now required' );
  				target = new Vector3();

  			}

  			this.getWorldQuaternion( quaternion );

  			return target.set( 0, 0, 1 ).applyQuaternion( quaternion );

  		};

  	}(),

  	raycast: function () {},

  	traverse: function ( callback ) {

  		callback( this );

  		var children = this.children;

  		for ( var i = 0, l = children.length; i < l; i ++ ) {

  			children[ i ].traverse( callback );

  		}

  	},

  	traverseVisible: function ( callback ) {

  		if ( this.visible === false ) return;

  		callback( this );

  		var children = this.children;

  		for ( var i = 0, l = children.length; i < l; i ++ ) {

  			children[ i ].traverseVisible( callback );

  		}

  	},

  	traverseAncestors: function ( callback ) {

  		var parent = this.parent;

  		if ( parent !== null ) {

  			callback( parent );

  			parent.traverseAncestors( callback );

  		}

  	},

  	updateMatrix: function () {

  		this.matrix.compose( this.position, this.quaternion, this.scale );

  		this.matrixWorldNeedsUpdate = true;

  	},

  	updateMatrixWorld: function ( force ) {

  		if ( this.matrixAutoUpdate ) this.updateMatrix();

  		if ( this.matrixWorldNeedsUpdate || force ) {

  			if ( this.parent === null ) {

  				this.matrixWorld.copy( this.matrix );

  			} else {

  				this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix );

  			}

  			this.matrixWorldNeedsUpdate = false;

  			force = true;

  		}

  		// update children

  		var children = this.children;

  		for ( var i = 0, l = children.length; i < l; i ++ ) {

  			children[ i ].updateMatrixWorld( force );

  		}

  	},

  	toJSON: function ( meta ) {

  		// meta is a string when called from JSON.stringify
  		var isRootObject = ( meta === undefined || typeof meta === 'string' );

  		var output = {};

  		// meta is a hash used to collect geometries, materials.
  		// not providing it implies that this is the root object
  		// being serialized.
  		if ( isRootObject ) {

  			// initialize meta obj
  			meta = {
  				geometries: {},
  				materials: {},
  				textures: {},
  				images: {},
  				shapes: {}
  			};

  			output.metadata = {
  				version: 4.5,
  				type: 'Object',
  				generator: 'Object3D.toJSON'
  			};

  		}

  		// standard Object3D serialization

  		var object = {};

  		object.uuid = this.uuid;
  		object.type = this.type;

  		if ( this.name !== '' ) object.name = this.name;
  		if ( this.castShadow === true ) object.castShadow = true;
  		if ( this.receiveShadow === true ) object.receiveShadow = true;
  		if ( this.visible === false ) object.visible = false;
  		if ( this.frustumCulled === false ) object.frustumCulled = false;
  		if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder;
  		if ( JSON.stringify( this.userData ) !== '{}' ) object.userData = this.userData;

  		object.matrix = this.matrix.toArray();

  		if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false;

  		//

  		function serialize( library, element ) {

  			if ( library[ element.uuid ] === undefined ) {

  				library[ element.uuid ] = element.toJSON( meta );

  			}

  			return element.uuid;

  		}

  		if ( this.geometry !== undefined ) {

  			object.geometry = serialize( meta.geometries, this.geometry );

  			var parameters = this.geometry.parameters;

  			if ( parameters !== undefined && parameters.shapes !== undefined ) {

  				var shapes = parameters.shapes;

  				if ( Array.isArray( shapes ) ) {

  					for ( var i = 0, l = shapes.length; i < l; i ++ ) {

  						var shape = shapes[ i ];

  						serialize( meta.shapes, shape );

  					}

  				} else {

  					serialize( meta.shapes, shapes );

  				}

  			}

  		}

  		if ( this.material !== undefined ) {

  			if ( Array.isArray( this.material ) ) {

  				var uuids = [];

  				for ( var i = 0, l = this.material.length; i < l; i ++ ) {

  					uuids.push( serialize( meta.materials, this.material[ i ] ) );

  				}

  				object.material = uuids;

  			} else {

  				object.material = serialize( meta.materials, this.material );

  			}

  		}

  		//

  		if ( this.children.length > 0 ) {

  			object.children = [];

  			for ( var i = 0; i < this.children.length; i ++ ) {

  				object.children.push( this.children[ i ].toJSON( meta ).object );

  			}

  		}

  		if ( isRootObject ) {

  			var geometries = extractFromCache( meta.geometries );
  			var materials = extractFromCache( meta.materials );
  			var textures = extractFromCache( meta.textures );
  			var images = extractFromCache( meta.images );
  			var shapes = extractFromCache( meta.shapes );

  			if ( geometries.length > 0 ) output.geometries = geometries;
  			if ( materials.length > 0 ) output.materials = materials;
  			if ( textures.length > 0 ) output.textures = textures;
  			if ( images.length > 0 ) output.images = images;
  			if ( shapes.length > 0 ) output.shapes = shapes;

  		}

  		output.object = object;

  		return output;

  		// extract data from the cache hash
  		// remove metadata on each item
  		// and return as array
  		function extractFromCache( cache ) {

  			var values = [];
  			for ( var key in cache ) {

  				var data = cache[ key ];
  				delete data.metadata;
  				values.push( data );

  			}
  			return values;

  		}

  	},

  	clone: function ( recursive ) {

  		return new this.constructor().copy( this, recursive );

  	},

  	copy: function ( source, recursive ) {

  		if ( recursive === undefined ) recursive = true;

  		this.name = source.name;

  		this.up.copy( source.up );

  		this.position.copy( source.position );
  		this.quaternion.copy( source.quaternion );
  		this.scale.copy( source.scale );

  		this.matrix.copy( source.matrix );
  		this.matrixWorld.copy( source.matrixWorld );

  		this.matrixAutoUpdate = source.matrixAutoUpdate;
  		this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;

  		this.layers.mask = source.layers.mask;
  		this.visible = source.visible;

  		this.castShadow = source.castShadow;
  		this.receiveShadow = source.receiveShadow;

  		this.frustumCulled = source.frustumCulled;
  		this.renderOrder = source.renderOrder;

  		this.userData = JSON.parse( JSON.stringify( source.userData ) );

  		if ( recursive === true ) {

  			for ( var i = 0; i < source.children.length; i ++ ) {

  				var child = source.children[ i ];
  				this.add( child.clone() );

  			}

  		}

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author mikael emtinger / http://gomo.se/
   * @author WestLangley / http://github.com/WestLangley
  */

  function Camera() {

  	Object3D.call( this );

  	this.type = 'Camera';

  	this.matrixWorldInverse = new Matrix4();
  	this.projectionMatrix = new Matrix4();

  }

  Camera.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Camera,

  	isCamera: true,

  	copy: function ( source, recursive ) {

  		Object3D.prototype.copy.call( this, source, recursive );

  		this.matrixWorldInverse.copy( source.matrixWorldInverse );
  		this.projectionMatrix.copy( source.projectionMatrix );

  		return this;

  	},

  	getWorldDirection: function () {

  		var quaternion = new Quaternion();

  		return function getWorldDirection( target ) {

  			if ( target === undefined ) {

  				console.warn( 'THREE.Camera: .getWorldDirection() target is now required' );
  				target = new Vector3();

  			}

  			this.getWorldQuaternion( quaternion );

  			return target.set( 0, 0, - 1 ).applyQuaternion( quaternion );

  		};

  	}(),

  	updateMatrixWorld: function ( force ) {

  		Object3D.prototype.updateMatrixWorld.call( this, force );

  		this.matrixWorldInverse.getInverse( this.matrixWorld );

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author arose / http://github.com/arose
   */

  function OrthographicCamera( left, right, top, bottom, near, far ) {

  	Camera.call( this );

  	this.type = 'OrthographicCamera';

  	this.zoom = 1;
  	this.view = null;

  	this.left = left;
  	this.right = right;
  	this.top = top;
  	this.bottom = bottom;

  	this.near = ( near !== undefined ) ? near : 0.1;
  	this.far = ( far !== undefined ) ? far : 2000;

  	this.updateProjectionMatrix();

  }

  OrthographicCamera.prototype = Object.assign( Object.create( Camera.prototype ), {

  	constructor: OrthographicCamera,

  	isOrthographicCamera: true,

  	copy: function ( source, recursive ) {

  		Camera.prototype.copy.call( this, source, recursive );

  		this.left = source.left;
  		this.right = source.right;
  		this.top = source.top;
  		this.bottom = source.bottom;
  		this.near = source.near;
  		this.far = source.far;

  		this.zoom = source.zoom;
  		this.view = source.view === null ? null : Object.assign( {}, source.view );

  		return this;

  	},

  	setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {

  		if ( this.view === null ) {

  			this.view = {
  				enabled: true,
  				fullWidth: 1,
  				fullHeight: 1,
  				offsetX: 0,
  				offsetY: 0,
  				width: 1,
  				height: 1
  			};

  		}

  		this.view.enabled = true;
  		this.view.fullWidth = fullWidth;
  		this.view.fullHeight = fullHeight;
  		this.view.offsetX = x;
  		this.view.offsetY = y;
  		this.view.width = width;
  		this.view.height = height;

  		this.updateProjectionMatrix();

  	},

  	clearViewOffset: function () {

  		if ( this.view !== null ) {

  			this.view.enabled = false;

  		}

  		this.updateProjectionMatrix();

  	},

  	updateProjectionMatrix: function () {

  		var dx = ( this.right - this.left ) / ( 2 * this.zoom );
  		var dy = ( this.top - this.bottom ) / ( 2 * this.zoom );
  		var cx = ( this.right + this.left ) / 2;
  		var cy = ( this.top + this.bottom ) / 2;

  		var left = cx - dx;
  		var right = cx + dx;
  		var top = cy + dy;
  		var bottom = cy - dy;

  		if ( this.view !== null && this.view.enabled ) {

  			var zoomW = this.zoom / ( this.view.width / this.view.fullWidth );
  			var zoomH = this.zoom / ( this.view.height / this.view.fullHeight );
  			var scaleW = ( this.right - this.left ) / this.view.width;
  			var scaleH = ( this.top - this.bottom ) / this.view.height;

  			left += scaleW * ( this.view.offsetX / zoomW );
  			right = left + scaleW * ( this.view.width / zoomW );
  			top -= scaleH * ( this.view.offsetY / zoomH );
  			bottom = top - scaleH * ( this.view.height / zoomH );

  		}

  		this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far );

  	},

  	toJSON: function ( meta ) {

  		var data = Object3D.prototype.toJSON.call( this, meta );

  		data.object.zoom = this.zoom;
  		data.object.left = this.left;
  		data.object.right = this.right;
  		data.object.top = this.top;
  		data.object.bottom = this.bottom;
  		data.object.near = this.near;
  		data.object.far = this.far;

  		if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );

  		return data;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  function Face3( a, b, c, normal, color, materialIndex ) {

  	this.a = a;
  	this.b = b;
  	this.c = c;

  	this.normal = ( normal && normal.isVector3 ) ? normal : new Vector3();
  	this.vertexNormals = Array.isArray( normal ) ? normal : [];

  	this.color = ( color && color.isColor ) ? color : new Color();
  	this.vertexColors = Array.isArray( color ) ? color : [];

  	this.materialIndex = materialIndex !== undefined ? materialIndex : 0;

  }

  Object.assign( Face3.prototype, {

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( source ) {

  		this.a = source.a;
  		this.b = source.b;
  		this.c = source.c;

  		this.normal.copy( source.normal );
  		this.color.copy( source.color );

  		this.materialIndex = source.materialIndex;

  		for ( var i = 0, il = source.vertexNormals.length; i < il; i ++ ) {

  			this.vertexNormals[ i ] = source.vertexNormals[ i ].clone();

  		}

  		for ( var i = 0, il = source.vertexColors.length; i < il; i ++ ) {

  			this.vertexColors[ i ] = source.vertexColors[ i ].clone();

  		}

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author kile / http://kile.stravaganza.org/
   * @author alteredq / http://alteredqualia.com/
   * @author mikael emtinger / http://gomo.se/
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * @author bhouston / http://clara.io
   */

  var geometryId = 0; // Geometry uses even numbers as Id

  function Geometry() {

  	Object.defineProperty( this, 'id', { value: geometryId += 2 } );

  	this.uuid = _Math.generateUUID();

  	this.name = '';
  	this.type = 'Geometry';

  	this.vertices = [];
  	this.colors = [];
  	this.faces = [];
  	this.faceVertexUvs = [[]];

  	this.morphTargets = [];
  	this.morphNormals = [];

  	this.skinWeights = [];
  	this.skinIndices = [];

  	this.lineDistances = [];

  	this.boundingBox = null;
  	this.boundingSphere = null;

  	// update flags

  	this.elementsNeedUpdate = false;
  	this.verticesNeedUpdate = false;
  	this.uvsNeedUpdate = false;
  	this.normalsNeedUpdate = false;
  	this.colorsNeedUpdate = false;
  	this.lineDistancesNeedUpdate = false;
  	this.groupsNeedUpdate = false;

  }

  Geometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: Geometry,

  	isGeometry: true,

  	applyMatrix: function ( matrix ) {

  		var normalMatrix = new Matrix3().getNormalMatrix( matrix );

  		for ( var i = 0, il = this.vertices.length; i < il; i ++ ) {

  			var vertex = this.vertices[ i ];
  			vertex.applyMatrix4( matrix );

  		}

  		for ( var i = 0, il = this.faces.length; i < il; i ++ ) {

  			var face = this.faces[ i ];
  			face.normal.applyMatrix3( normalMatrix ).normalize();

  			for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {

  				face.vertexNormals[ j ].applyMatrix3( normalMatrix ).normalize();

  			}

  		}

  		if ( this.boundingBox !== null ) {

  			this.computeBoundingBox();

  		}

  		if ( this.boundingSphere !== null ) {

  			this.computeBoundingSphere();

  		}

  		this.verticesNeedUpdate = true;
  		this.normalsNeedUpdate = true;

  		return this;

  	},

  	rotateX: function () {

  		// rotate geometry around world x-axis

  		var m1 = new Matrix4();

  		return function rotateX( angle ) {

  			m1.makeRotationX( angle );

  			this.applyMatrix( m1 );

  			return this;

  		};

  	}(),

  	rotateY: function () {

  		// rotate geometry around world y-axis

  		var m1 = new Matrix4();

  		return function rotateY( angle ) {

  			m1.makeRotationY( angle );

  			this.applyMatrix( m1 );

  			return this;

  		};

  	}(),

  	rotateZ: function () {

  		// rotate geometry around world z-axis

  		var m1 = new Matrix4();

  		return function rotateZ( angle ) {

  			m1.makeRotationZ( angle );

  			this.applyMatrix( m1 );

  			return this;

  		};

  	}(),

  	translate: function () {

  		// translate geometry

  		var m1 = new Matrix4();

  		return function translate( x, y, z ) {

  			m1.makeTranslation( x, y, z );

  			this.applyMatrix( m1 );

  			return this;

  		};

  	}(),

  	scale: function () {

  		// scale geometry

  		var m1 = new Matrix4();

  		return function scale( x, y, z ) {

  			m1.makeScale( x, y, z );

  			this.applyMatrix( m1 );

  			return this;

  		};

  	}(),

  	lookAt: function () {

  		var obj = new Object3D();

  		return function lookAt( vector ) {

  			obj.lookAt( vector );

  			obj.updateMatrix();

  			this.applyMatrix( obj.matrix );

  		};

  	}(),

  	fromBufferGeometry: function ( geometry ) {

  		var scope = this;

  		var indices = geometry.index !== null ? geometry.index.array : undefined;
  		var attributes = geometry.attributes;

  		var positions = attributes.position.array;
  		var normals = attributes.normal !== undefined ? attributes.normal.array : undefined;
  		var colors = attributes.color !== undefined ? attributes.color.array : undefined;
  		var uvs = attributes.uv !== undefined ? attributes.uv.array : undefined;
  		var uvs2 = attributes.uv2 !== undefined ? attributes.uv2.array : undefined;

  		if ( uvs2 !== undefined ) this.faceVertexUvs[ 1 ] = [];

  		var tempNormals = [];
  		var tempUVs = [];
  		var tempUVs2 = [];

  		for ( var i = 0, j = 0; i < positions.length; i += 3, j += 2 ) {

  			scope.vertices.push( new Vector3( positions[ i ], positions[ i + 1 ], positions[ i + 2 ] ) );

  			if ( normals !== undefined ) {

  				tempNormals.push( new Vector3( normals[ i ], normals[ i + 1 ], normals[ i + 2 ] ) );

  			}

  			if ( colors !== undefined ) {

  				scope.colors.push( new Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) );

  			}

  			if ( uvs !== undefined ) {

  				tempUVs.push( new Vector2( uvs[ j ], uvs[ j + 1 ] ) );

  			}

  			if ( uvs2 !== undefined ) {

  				tempUVs2.push( new Vector2( uvs2[ j ], uvs2[ j + 1 ] ) );

  			}

  		}

  		function addFace( a, b, c, materialIndex ) {

  			var vertexNormals = normals !== undefined ? [ tempNormals[ a ].clone(), tempNormals[ b ].clone(), tempNormals[ c ].clone() ] : [];
  			var vertexColors = colors !== undefined ? [ scope.colors[ a ].clone(), scope.colors[ b ].clone(), scope.colors[ c ].clone() ] : [];

  			var face = new Face3( a, b, c, vertexNormals, vertexColors, materialIndex );

  			scope.faces.push( face );

  			if ( uvs !== undefined ) {

  				scope.faceVertexUvs[ 0 ].push( [ tempUVs[ a ].clone(), tempUVs[ b ].clone(), tempUVs[ c ].clone() ] );

  			}

  			if ( uvs2 !== undefined ) {

  				scope.faceVertexUvs[ 1 ].push( [ tempUVs2[ a ].clone(), tempUVs2[ b ].clone(), tempUVs2[ c ].clone() ] );

  			}

  		}

  		var groups = geometry.groups;

  		if ( groups.length > 0 ) {

  			for ( var i = 0; i < groups.length; i ++ ) {

  				var group = groups[ i ];

  				var start = group.start;
  				var count = group.count;

  				for ( var j = start, jl = start + count; j < jl; j += 3 ) {

  					if ( indices !== undefined ) {

  						addFace( indices[ j ], indices[ j + 1 ], indices[ j + 2 ], group.materialIndex );

  					} else {

  						addFace( j, j + 1, j + 2, group.materialIndex );

  					}

  				}

  			}

  		} else {

  			if ( indices !== undefined ) {

  				for ( var i = 0; i < indices.length; i += 3 ) {

  					addFace( indices[ i ], indices[ i + 1 ], indices[ i + 2 ] );

  				}

  			} else {

  				for ( var i = 0; i < positions.length / 3; i += 3 ) {

  					addFace( i, i + 1, i + 2 );

  				}

  			}

  		}

  		this.computeFaceNormals();

  		if ( geometry.boundingBox !== null ) {

  			this.boundingBox = geometry.boundingBox.clone();

  		}

  		if ( geometry.boundingSphere !== null ) {

  			this.boundingSphere = geometry.boundingSphere.clone();

  		}

  		return this;

  	},

  	center: function () {

  		var offset = new Vector3();

  		return function center() {

  			this.computeBoundingBox();

  			this.boundingBox.getCenter( offset ).negate();

  			this.translate( offset.x, offset.y, offset.z );

  			return this;

  		};

  	}(),

  	normalize: function () {

  		this.computeBoundingSphere();

  		var center = this.boundingSphere.center;
  		var radius = this.boundingSphere.radius;

  		var s = radius === 0 ? 1 : 1.0 / radius;

  		var matrix = new Matrix4();
  		matrix.set(
  			s, 0, 0, - s * center.x,
  			0, s, 0, - s * center.y,
  			0, 0, s, - s * center.z,
  			0, 0, 0, 1
  		);

  		this.applyMatrix( matrix );

  		return this;

  	},

  	computeFaceNormals: function () {

  		var cb = new Vector3(), ab = new Vector3();

  		for ( var f = 0, fl = this.faces.length; f < fl; f ++ ) {

  			var face = this.faces[ f ];

  			var vA = this.vertices[ face.a ];
  			var vB = this.vertices[ face.b ];
  			var vC = this.vertices[ face.c ];

  			cb.subVectors( vC, vB );
  			ab.subVectors( vA, vB );
  			cb.cross( ab );

  			cb.normalize();

  			face.normal.copy( cb );

  		}

  	},

  	computeVertexNormals: function ( areaWeighted ) {

  		if ( areaWeighted === undefined ) areaWeighted = true;

  		var v, vl, f, fl, face, vertices;

  		vertices = new Array( this.vertices.length );

  		for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {

  			vertices[ v ] = new Vector3();

  		}

  		if ( areaWeighted ) {

  			// vertex normals weighted by triangle areas
  			// http://www.iquilezles.org/www/articles/normals/normals.htm

  			var vA, vB, vC;
  			var cb = new Vector3(), ab = new Vector3();

  			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

  				face = this.faces[ f ];

  				vA = this.vertices[ face.a ];
  				vB = this.vertices[ face.b ];
  				vC = this.vertices[ face.c ];

  				cb.subVectors( vC, vB );
  				ab.subVectors( vA, vB );
  				cb.cross( ab );

  				vertices[ face.a ].add( cb );
  				vertices[ face.b ].add( cb );
  				vertices[ face.c ].add( cb );

  			}

  		} else {

  			this.computeFaceNormals();

  			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

  				face = this.faces[ f ];

  				vertices[ face.a ].add( face.normal );
  				vertices[ face.b ].add( face.normal );
  				vertices[ face.c ].add( face.normal );

  			}

  		}

  		for ( v = 0, vl = this.vertices.length; v < vl; v ++ ) {

  			vertices[ v ].normalize();

  		}

  		for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

  			face = this.faces[ f ];

  			var vertexNormals = face.vertexNormals;

  			if ( vertexNormals.length === 3 ) {

  				vertexNormals[ 0 ].copy( vertices[ face.a ] );
  				vertexNormals[ 1 ].copy( vertices[ face.b ] );
  				vertexNormals[ 2 ].copy( vertices[ face.c ] );

  			} else {

  				vertexNormals[ 0 ] = vertices[ face.a ].clone();
  				vertexNormals[ 1 ] = vertices[ face.b ].clone();
  				vertexNormals[ 2 ] = vertices[ face.c ].clone();

  			}

  		}

  		if ( this.faces.length > 0 ) {

  			this.normalsNeedUpdate = true;

  		}

  	},

  	computeFlatVertexNormals: function () {

  		var f, fl, face;

  		this.computeFaceNormals();

  		for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

  			face = this.faces[ f ];

  			var vertexNormals = face.vertexNormals;

  			if ( vertexNormals.length === 3 ) {

  				vertexNormals[ 0 ].copy( face.normal );
  				vertexNormals[ 1 ].copy( face.normal );
  				vertexNormals[ 2 ].copy( face.normal );

  			} else {

  				vertexNormals[ 0 ] = face.normal.clone();
  				vertexNormals[ 1 ] = face.normal.clone();
  				vertexNormals[ 2 ] = face.normal.clone();

  			}

  		}

  		if ( this.faces.length > 0 ) {

  			this.normalsNeedUpdate = true;

  		}

  	},

  	computeMorphNormals: function () {

  		var i, il, f, fl, face;

  		// save original normals
  		// - create temp variables on first access
  		//   otherwise just copy (for faster repeated calls)

  		for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

  			face = this.faces[ f ];

  			if ( ! face.__originalFaceNormal ) {

  				face.__originalFaceNormal = face.normal.clone();

  			} else {

  				face.__originalFaceNormal.copy( face.normal );

  			}

  			if ( ! face.__originalVertexNormals ) face.__originalVertexNormals = [];

  			for ( i = 0, il = face.vertexNormals.length; i < il; i ++ ) {

  				if ( ! face.__originalVertexNormals[ i ] ) {

  					face.__originalVertexNormals[ i ] = face.vertexNormals[ i ].clone();

  				} else {

  					face.__originalVertexNormals[ i ].copy( face.vertexNormals[ i ] );

  				}

  			}

  		}

  		// use temp geometry to compute face and vertex normals for each morph

  		var tmpGeo = new Geometry();
  		tmpGeo.faces = this.faces;

  		for ( i = 0, il = this.morphTargets.length; i < il; i ++ ) {

  			// create on first access

  			if ( ! this.morphNormals[ i ] ) {

  				this.morphNormals[ i ] = {};
  				this.morphNormals[ i ].faceNormals = [];
  				this.morphNormals[ i ].vertexNormals = [];

  				var dstNormalsFace = this.morphNormals[ i ].faceNormals;
  				var dstNormalsVertex = this.morphNormals[ i ].vertexNormals;

  				var faceNormal, vertexNormals;

  				for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

  					faceNormal = new Vector3();
  					vertexNormals = { a: new Vector3(), b: new Vector3(), c: new Vector3() };

  					dstNormalsFace.push( faceNormal );
  					dstNormalsVertex.push( vertexNormals );

  				}

  			}

  			var morphNormals = this.morphNormals[ i ];

  			// set vertices to morph target

  			tmpGeo.vertices = this.morphTargets[ i ].vertices;

  			// compute morph normals

  			tmpGeo.computeFaceNormals();
  			tmpGeo.computeVertexNormals();

  			// store morph normals

  			var faceNormal, vertexNormals;

  			for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

  				face = this.faces[ f ];

  				faceNormal = morphNormals.faceNormals[ f ];
  				vertexNormals = morphNormals.vertexNormals[ f ];

  				faceNormal.copy( face.normal );

  				vertexNormals.a.copy( face.vertexNormals[ 0 ] );
  				vertexNormals.b.copy( face.vertexNormals[ 1 ] );
  				vertexNormals.c.copy( face.vertexNormals[ 2 ] );

  			}

  		}

  		// restore original normals

  		for ( f = 0, fl = this.faces.length; f < fl; f ++ ) {

  			face = this.faces[ f ];

  			face.normal = face.__originalFaceNormal;
  			face.vertexNormals = face.__originalVertexNormals;

  		}

  	},

  	computeBoundingBox: function () {

  		if ( this.boundingBox === null ) {

  			this.boundingBox = new Box3();

  		}

  		this.boundingBox.setFromPoints( this.vertices );

  	},

  	computeBoundingSphere: function () {

  		if ( this.boundingSphere === null ) {

  			this.boundingSphere = new Sphere();

  		}

  		this.boundingSphere.setFromPoints( this.vertices );

  	},

  	merge: function ( geometry, matrix, materialIndexOffset ) {

  		if ( ! ( geometry && geometry.isGeometry ) ) {

  			console.error( 'THREE.Geometry.merge(): geometry not an instance of THREE.Geometry.', geometry );
  			return;

  		}

  		var normalMatrix,
  			vertexOffset = this.vertices.length,
  			vertices1 = this.vertices,
  			vertices2 = geometry.vertices,
  			faces1 = this.faces,
  			faces2 = geometry.faces,
  			uvs1 = this.faceVertexUvs[ 0 ],
  			uvs2 = geometry.faceVertexUvs[ 0 ],
  			colors1 = this.colors,
  			colors2 = geometry.colors;

  		if ( materialIndexOffset === undefined ) materialIndexOffset = 0;

  		if ( matrix !== undefined ) {

  			normalMatrix = new Matrix3().getNormalMatrix( matrix );

  		}

  		// vertices

  		for ( var i = 0, il = vertices2.length; i < il; i ++ ) {

  			var vertex = vertices2[ i ];

  			var vertexCopy = vertex.clone();

  			if ( matrix !== undefined ) vertexCopy.applyMatrix4( matrix );

  			vertices1.push( vertexCopy );

  		}

  		// colors

  		for ( var i = 0, il = colors2.length; i < il; i ++ ) {

  			colors1.push( colors2[ i ].clone() );

  		}

  		// faces

  		for ( i = 0, il = faces2.length; i < il; i ++ ) {

  			var face = faces2[ i ], faceCopy, normal, color,
  				faceVertexNormals = face.vertexNormals,
  				faceVertexColors = face.vertexColors;

  			faceCopy = new Face3( face.a + vertexOffset, face.b + vertexOffset, face.c + vertexOffset );
  			faceCopy.normal.copy( face.normal );

  			if ( normalMatrix !== undefined ) {

  				faceCopy.normal.applyMatrix3( normalMatrix ).normalize();

  			}

  			for ( var j = 0, jl = faceVertexNormals.length; j < jl; j ++ ) {

  				normal = faceVertexNormals[ j ].clone();

  				if ( normalMatrix !== undefined ) {

  					normal.applyMatrix3( normalMatrix ).normalize();

  				}

  				faceCopy.vertexNormals.push( normal );

  			}

  			faceCopy.color.copy( face.color );

  			for ( var j = 0, jl = faceVertexColors.length; j < jl; j ++ ) {

  				color = faceVertexColors[ j ];
  				faceCopy.vertexColors.push( color.clone() );

  			}

  			faceCopy.materialIndex = face.materialIndex + materialIndexOffset;

  			faces1.push( faceCopy );

  		}

  		// uvs

  		for ( i = 0, il = uvs2.length; i < il; i ++ ) {

  			var uv = uvs2[ i ], uvCopy = [];

  			if ( uv === undefined ) {

  				continue;

  			}

  			for ( var j = 0, jl = uv.length; j < jl; j ++ ) {

  				uvCopy.push( uv[ j ].clone() );

  			}

  			uvs1.push( uvCopy );

  		}

  	},

  	mergeMesh: function ( mesh ) {

  		if ( ! ( mesh && mesh.isMesh ) ) {

  			console.error( 'THREE.Geometry.mergeMesh(): mesh not an instance of THREE.Mesh.', mesh );
  			return;

  		}

  		if ( mesh.matrixAutoUpdate ) mesh.updateMatrix();

  		this.merge( mesh.geometry, mesh.matrix );

  	},

  	/*
  	 * Checks for duplicate vertices with hashmap.
  	 * Duplicated vertices are removed
  	 * and faces' vertices are updated.
  	 */

  	mergeVertices: function () {

  		var verticesMap = {}; // Hashmap for looking up vertices by position coordinates (and making sure they are unique)
  		var unique = [], changes = [];

  		var v, key;
  		var precisionPoints = 4; // number of decimal points, e.g. 4 for epsilon of 0.0001
  		var precision = Math.pow( 10, precisionPoints );
  		var i, il, face;
  		var indices, j, jl;

  		for ( i = 0, il = this.vertices.length; i < il; i ++ ) {

  			v = this.vertices[ i ];
  			key = Math.round( v.x * precision ) + '_' + Math.round( v.y * precision ) + '_' + Math.round( v.z * precision );

  			if ( verticesMap[ key ] === undefined ) {

  				verticesMap[ key ] = i;
  				unique.push( this.vertices[ i ] );
  				changes[ i ] = unique.length - 1;

  			} else {

  				//console.log('Duplicate vertex found. ', i, ' could be using ', verticesMap[key]);
  				changes[ i ] = changes[ verticesMap[ key ] ];

  			}

  		}


  		// if faces are completely degenerate after merging vertices, we
  		// have to remove them from the geometry.
  		var faceIndicesToRemove = [];

  		for ( i = 0, il = this.faces.length; i < il; i ++ ) {

  			face = this.faces[ i ];

  			face.a = changes[ face.a ];
  			face.b = changes[ face.b ];
  			face.c = changes[ face.c ];

  			indices = [ face.a, face.b, face.c ];

  			// if any duplicate vertices are found in a Face3
  			// we have to remove the face as nothing can be saved
  			for ( var n = 0; n < 3; n ++ ) {

  				if ( indices[ n ] === indices[ ( n + 1 ) % 3 ] ) {

  					faceIndicesToRemove.push( i );
  					break;

  				}

  			}

  		}

  		for ( i = faceIndicesToRemove.length - 1; i >= 0; i -- ) {

  			var idx = faceIndicesToRemove[ i ];

  			this.faces.splice( idx, 1 );

  			for ( j = 0, jl = this.faceVertexUvs.length; j < jl; j ++ ) {

  				this.faceVertexUvs[ j ].splice( idx, 1 );

  			}

  		}

  		// Use unique set of vertices

  		var diff = this.vertices.length - unique.length;
  		this.vertices = unique;
  		return diff;

  	},

  	setFromPoints: function ( points ) {

  		this.vertices = [];

  		for ( var i = 0, l = points.length; i < l; i ++ ) {

  			var point = points[ i ];
  			this.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );

  		}

  		return this;

  	},

  	sortFacesByMaterialIndex: function () {

  		var faces = this.faces;
  		var length = faces.length;

  		// tag faces

  		for ( var i = 0; i < length; i ++ ) {

  			faces[ i ]._id = i;

  		}

  		// sort faces

  		function materialIndexSort( a, b ) {

  			return a.materialIndex - b.materialIndex;

  		}

  		faces.sort( materialIndexSort );

  		// sort uvs

  		var uvs1 = this.faceVertexUvs[ 0 ];
  		var uvs2 = this.faceVertexUvs[ 1 ];

  		var newUvs1, newUvs2;

  		if ( uvs1 && uvs1.length === length ) newUvs1 = [];
  		if ( uvs2 && uvs2.length === length ) newUvs2 = [];

  		for ( var i = 0; i < length; i ++ ) {

  			var id = faces[ i ]._id;

  			if ( newUvs1 ) newUvs1.push( uvs1[ id ] );
  			if ( newUvs2 ) newUvs2.push( uvs2[ id ] );

  		}

  		if ( newUvs1 ) this.faceVertexUvs[ 0 ] = newUvs1;
  		if ( newUvs2 ) this.faceVertexUvs[ 1 ] = newUvs2;

  	},

  	toJSON: function () {

  		var data = {
  			metadata: {
  				version: 4.5,
  				type: 'Geometry',
  				generator: 'Geometry.toJSON'
  			}
  		};

  		// standard Geometry serialization

  		data.uuid = this.uuid;
  		data.type = this.type;
  		if ( this.name !== '' ) data.name = this.name;

  		if ( this.parameters !== undefined ) {

  			var parameters = this.parameters;

  			for ( var key in parameters ) {

  				if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];

  			}

  			return data;

  		}

  		var vertices = [];

  		for ( var i = 0; i < this.vertices.length; i ++ ) {

  			var vertex = this.vertices[ i ];
  			vertices.push( vertex.x, vertex.y, vertex.z );

  		}

  		var faces = [];
  		var normals = [];
  		var normalsHash = {};
  		var colors = [];
  		var colorsHash = {};
  		var uvs = [];
  		var uvsHash = {};

  		for ( var i = 0; i < this.faces.length; i ++ ) {

  			var face = this.faces[ i ];

  			var hasMaterial = true;
  			var hasFaceUv = false; // deprecated
  			var hasFaceVertexUv = this.faceVertexUvs[ 0 ][ i ] !== undefined;
  			var hasFaceNormal = face.normal.length() > 0;
  			var hasFaceVertexNormal = face.vertexNormals.length > 0;
  			var hasFaceColor = face.color.r !== 1 || face.color.g !== 1 || face.color.b !== 1;
  			var hasFaceVertexColor = face.vertexColors.length > 0;

  			var faceType = 0;

  			faceType = setBit( faceType, 0, 0 ); // isQuad
  			faceType = setBit( faceType, 1, hasMaterial );
  			faceType = setBit( faceType, 2, hasFaceUv );
  			faceType = setBit( faceType, 3, hasFaceVertexUv );
  			faceType = setBit( faceType, 4, hasFaceNormal );
  			faceType = setBit( faceType, 5, hasFaceVertexNormal );
  			faceType = setBit( faceType, 6, hasFaceColor );
  			faceType = setBit( faceType, 7, hasFaceVertexColor );

  			faces.push( faceType );
  			faces.push( face.a, face.b, face.c );
  			faces.push( face.materialIndex );

  			if ( hasFaceVertexUv ) {

  				var faceVertexUvs = this.faceVertexUvs[ 0 ][ i ];

  				faces.push(
  					getUvIndex( faceVertexUvs[ 0 ] ),
  					getUvIndex( faceVertexUvs[ 1 ] ),
  					getUvIndex( faceVertexUvs[ 2 ] )
  				);

  			}

  			if ( hasFaceNormal ) {

  				faces.push( getNormalIndex( face.normal ) );

  			}

  			if ( hasFaceVertexNormal ) {

  				var vertexNormals = face.vertexNormals;

  				faces.push(
  					getNormalIndex( vertexNormals[ 0 ] ),
  					getNormalIndex( vertexNormals[ 1 ] ),
  					getNormalIndex( vertexNormals[ 2 ] )
  				);

  			}

  			if ( hasFaceColor ) {

  				faces.push( getColorIndex( face.color ) );

  			}

  			if ( hasFaceVertexColor ) {

  				var vertexColors = face.vertexColors;

  				faces.push(
  					getColorIndex( vertexColors[ 0 ] ),
  					getColorIndex( vertexColors[ 1 ] ),
  					getColorIndex( vertexColors[ 2 ] )
  				);

  			}

  		}

  		function setBit( value, position, enabled ) {

  			return enabled ? value | ( 1 << position ) : value & ( ~ ( 1 << position ) );

  		}

  		function getNormalIndex( normal ) {

  			var hash = normal.x.toString() + normal.y.toString() + normal.z.toString();

  			if ( normalsHash[ hash ] !== undefined ) {

  				return normalsHash[ hash ];

  			}

  			normalsHash[ hash ] = normals.length / 3;
  			normals.push( normal.x, normal.y, normal.z );

  			return normalsHash[ hash ];

  		}

  		function getColorIndex( color ) {

  			var hash = color.r.toString() + color.g.toString() + color.b.toString();

  			if ( colorsHash[ hash ] !== undefined ) {

  				return colorsHash[ hash ];

  			}

  			colorsHash[ hash ] = colors.length;
  			colors.push( color.getHex() );

  			return colorsHash[ hash ];

  		}

  		function getUvIndex( uv ) {

  			var hash = uv.x.toString() + uv.y.toString();

  			if ( uvsHash[ hash ] !== undefined ) {

  				return uvsHash[ hash ];

  			}

  			uvsHash[ hash ] = uvs.length / 2;
  			uvs.push( uv.x, uv.y );

  			return uvsHash[ hash ];

  		}

  		data.data = {};

  		data.data.vertices = vertices;
  		data.data.normals = normals;
  		if ( colors.length > 0 ) data.data.colors = colors;
  		if ( uvs.length > 0 ) data.data.uvs = [ uvs ]; // temporal backward compatibility
  		data.data.faces = faces;

  		return data;

  	},

  	clone: function () {

  		/*
  		 // Handle primitives

  		 var parameters = this.parameters;

  		 if ( parameters !== undefined ) {

  		 var values = [];

  		 for ( var key in parameters ) {

  		 values.push( parameters[ key ] );

  		 }

  		 var geometry = Object.create( this.constructor.prototype );
  		 this.constructor.apply( geometry, values );
  		 return geometry;

  		 }

  		 return new this.constructor().copy( this );
  		 */

  		return new Geometry().copy( this );

  	},

  	copy: function ( source ) {

  		var i, il, j, jl, k, kl;

  		// reset

  		this.vertices = [];
  		this.colors = [];
  		this.faces = [];
  		this.faceVertexUvs = [[]];
  		this.morphTargets = [];
  		this.morphNormals = [];
  		this.skinWeights = [];
  		this.skinIndices = [];
  		this.lineDistances = [];
  		this.boundingBox = null;
  		this.boundingSphere = null;

  		// name

  		this.name = source.name;

  		// vertices

  		var vertices = source.vertices;

  		for ( i = 0, il = vertices.length; i < il; i ++ ) {

  			this.vertices.push( vertices[ i ].clone() );

  		}

  		// colors

  		var colors = source.colors;

  		for ( i = 0, il = colors.length; i < il; i ++ ) {

  			this.colors.push( colors[ i ].clone() );

  		}

  		// faces

  		var faces = source.faces;

  		for ( i = 0, il = faces.length; i < il; i ++ ) {

  			this.faces.push( faces[ i ].clone() );

  		}

  		// face vertex uvs

  		for ( i = 0, il = source.faceVertexUvs.length; i < il; i ++ ) {

  			var faceVertexUvs = source.faceVertexUvs[ i ];

  			if ( this.faceVertexUvs[ i ] === undefined ) {

  				this.faceVertexUvs[ i ] = [];

  			}

  			for ( j = 0, jl = faceVertexUvs.length; j < jl; j ++ ) {

  				var uvs = faceVertexUvs[ j ], uvsCopy = [];

  				for ( k = 0, kl = uvs.length; k < kl; k ++ ) {

  					var uv = uvs[ k ];

  					uvsCopy.push( uv.clone() );

  				}

  				this.faceVertexUvs[ i ].push( uvsCopy );

  			}

  		}

  		// morph targets

  		var morphTargets = source.morphTargets;

  		for ( i = 0, il = morphTargets.length; i < il; i ++ ) {

  			var morphTarget = {};
  			morphTarget.name = morphTargets[ i ].name;

  			// vertices

  			if ( morphTargets[ i ].vertices !== undefined ) {

  				morphTarget.vertices = [];

  				for ( j = 0, jl = morphTargets[ i ].vertices.length; j < jl; j ++ ) {

  					morphTarget.vertices.push( morphTargets[ i ].vertices[ j ].clone() );

  				}

  			}

  			// normals

  			if ( morphTargets[ i ].normals !== undefined ) {

  				morphTarget.normals = [];

  				for ( j = 0, jl = morphTargets[ i ].normals.length; j < jl; j ++ ) {

  					morphTarget.normals.push( morphTargets[ i ].normals[ j ].clone() );

  				}

  			}

  			this.morphTargets.push( morphTarget );

  		}

  		// morph normals

  		var morphNormals = source.morphNormals;

  		for ( i = 0, il = morphNormals.length; i < il; i ++ ) {

  			var morphNormal = {};

  			// vertex normals

  			if ( morphNormals[ i ].vertexNormals !== undefined ) {

  				morphNormal.vertexNormals = [];

  				for ( j = 0, jl = morphNormals[ i ].vertexNormals.length; j < jl; j ++ ) {

  					var srcVertexNormal = morphNormals[ i ].vertexNormals[ j ];
  					var destVertexNormal = {};

  					destVertexNormal.a = srcVertexNormal.a.clone();
  					destVertexNormal.b = srcVertexNormal.b.clone();
  					destVertexNormal.c = srcVertexNormal.c.clone();

  					morphNormal.vertexNormals.push( destVertexNormal );

  				}

  			}

  			// face normals

  			if ( morphNormals[ i ].faceNormals !== undefined ) {

  				morphNormal.faceNormals = [];

  				for ( j = 0, jl = morphNormals[ i ].faceNormals.length; j < jl; j ++ ) {

  					morphNormal.faceNormals.push( morphNormals[ i ].faceNormals[ j ].clone() );

  				}

  			}

  			this.morphNormals.push( morphNormal );

  		}

  		// skin weights

  		var skinWeights = source.skinWeights;

  		for ( i = 0, il = skinWeights.length; i < il; i ++ ) {

  			this.skinWeights.push( skinWeights[ i ].clone() );

  		}

  		// skin indices

  		var skinIndices = source.skinIndices;

  		for ( i = 0, il = skinIndices.length; i < il; i ++ ) {

  			this.skinIndices.push( skinIndices[ i ].clone() );

  		}

  		// line distances

  		var lineDistances = source.lineDistances;

  		for ( i = 0, il = lineDistances.length; i < il; i ++ ) {

  			this.lineDistances.push( lineDistances[ i ] );

  		}

  		// bounding box

  		var boundingBox = source.boundingBox;

  		if ( boundingBox !== null ) {

  			this.boundingBox = boundingBox.clone();

  		}

  		// bounding sphere

  		var boundingSphere = source.boundingSphere;

  		if ( boundingSphere !== null ) {

  			this.boundingSphere = boundingSphere.clone();

  		}

  		// update flags

  		this.elementsNeedUpdate = source.elementsNeedUpdate;
  		this.verticesNeedUpdate = source.verticesNeedUpdate;
  		this.uvsNeedUpdate = source.uvsNeedUpdate;
  		this.normalsNeedUpdate = source.normalsNeedUpdate;
  		this.colorsNeedUpdate = source.colorsNeedUpdate;
  		this.lineDistancesNeedUpdate = source.lineDistancesNeedUpdate;
  		this.groupsNeedUpdate = source.groupsNeedUpdate;

  		return this;

  	},

  	dispose: function () {

  		this.dispatchEvent( { type: 'dispose' } );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function BufferAttribute( array, itemSize, normalized ) {

  	if ( Array.isArray( array ) ) {

  		throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );

  	}

  	this.name = '';

  	this.array = array;
  	this.itemSize = itemSize;
  	this.count = array !== undefined ? array.length / itemSize : 0;
  	this.normalized = normalized === true;

  	this.dynamic = false;
  	this.updateRange = { offset: 0, count: - 1 };

  	this.version = 0;

  }

  Object.defineProperty( BufferAttribute.prototype, 'needsUpdate', {

  	set: function ( value ) {

  		if ( value === true ) this.version ++;

  	}

  } );

  Object.assign( BufferAttribute.prototype, {

  	isBufferAttribute: true,

  	onUploadCallback: function () {},

  	setArray: function ( array ) {

  		if ( Array.isArray( array ) ) {

  			throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );

  		}

  		this.count = array !== undefined ? array.length / this.itemSize : 0;
  		this.array = array;

  		return this;

  	},

  	setDynamic: function ( value ) {

  		this.dynamic = value;

  		return this;

  	},

  	copy: function ( source ) {

  		this.name = source.name;
  		this.array = new source.array.constructor( source.array );
  		this.itemSize = source.itemSize;
  		this.count = source.count;
  		this.normalized = source.normalized;

  		this.dynamic = source.dynamic;

  		return this;

  	},

  	copyAt: function ( index1, attribute, index2 ) {

  		index1 *= this.itemSize;
  		index2 *= attribute.itemSize;

  		for ( var i = 0, l = this.itemSize; i < l; i ++ ) {

  			this.array[ index1 + i ] = attribute.array[ index2 + i ];

  		}

  		return this;

  	},

  	copyArray: function ( array ) {

  		this.array.set( array );

  		return this;

  	},

  	copyColorsArray: function ( colors ) {

  		var array = this.array, offset = 0;

  		for ( var i = 0, l = colors.length; i < l; i ++ ) {

  			var color = colors[ i ];

  			if ( color === undefined ) {

  				console.warn( 'THREE.BufferAttribute.copyColorsArray(): color is undefined', i );
  				color = new Color();

  			}

  			array[ offset ++ ] = color.r;
  			array[ offset ++ ] = color.g;
  			array[ offset ++ ] = color.b;

  		}

  		return this;

  	},

  	copyVector2sArray: function ( vectors ) {

  		var array = this.array, offset = 0;

  		for ( var i = 0, l = vectors.length; i < l; i ++ ) {

  			var vector = vectors[ i ];

  			if ( vector === undefined ) {

  				console.warn( 'THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i );
  				vector = new Vector2();

  			}

  			array[ offset ++ ] = vector.x;
  			array[ offset ++ ] = vector.y;

  		}

  		return this;

  	},

  	copyVector3sArray: function ( vectors ) {

  		var array = this.array, offset = 0;

  		for ( var i = 0, l = vectors.length; i < l; i ++ ) {

  			var vector = vectors[ i ];

  			if ( vector === undefined ) {

  				console.warn( 'THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i );
  				vector = new Vector3();

  			}

  			array[ offset ++ ] = vector.x;
  			array[ offset ++ ] = vector.y;
  			array[ offset ++ ] = vector.z;

  		}

  		return this;

  	},

  	copyVector4sArray: function ( vectors ) {

  		var array = this.array, offset = 0;

  		for ( var i = 0, l = vectors.length; i < l; i ++ ) {

  			var vector = vectors[ i ];

  			if ( vector === undefined ) {

  				console.warn( 'THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i );
  				vector = new Vector4();

  			}

  			array[ offset ++ ] = vector.x;
  			array[ offset ++ ] = vector.y;
  			array[ offset ++ ] = vector.z;
  			array[ offset ++ ] = vector.w;

  		}

  		return this;

  	},

  	set: function ( value, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this.array.set( value, offset );

  		return this;

  	},

  	getX: function ( index ) {

  		return this.array[ index * this.itemSize ];

  	},

  	setX: function ( index, x ) {

  		this.array[ index * this.itemSize ] = x;

  		return this;

  	},

  	getY: function ( index ) {

  		return this.array[ index * this.itemSize + 1 ];

  	},

  	setY: function ( index, y ) {

  		this.array[ index * this.itemSize + 1 ] = y;

  		return this;

  	},

  	getZ: function ( index ) {

  		return this.array[ index * this.itemSize + 2 ];

  	},

  	setZ: function ( index, z ) {

  		this.array[ index * this.itemSize + 2 ] = z;

  		return this;

  	},

  	getW: function ( index ) {

  		return this.array[ index * this.itemSize + 3 ];

  	},

  	setW: function ( index, w ) {

  		this.array[ index * this.itemSize + 3 ] = w;

  		return this;

  	},

  	setXY: function ( index, x, y ) {

  		index *= this.itemSize;

  		this.array[ index + 0 ] = x;
  		this.array[ index + 1 ] = y;

  		return this;

  	},

  	setXYZ: function ( index, x, y, z ) {

  		index *= this.itemSize;

  		this.array[ index + 0 ] = x;
  		this.array[ index + 1 ] = y;
  		this.array[ index + 2 ] = z;

  		return this;

  	},

  	setXYZW: function ( index, x, y, z, w ) {

  		index *= this.itemSize;

  		this.array[ index + 0 ] = x;
  		this.array[ index + 1 ] = y;
  		this.array[ index + 2 ] = z;
  		this.array[ index + 3 ] = w;

  		return this;

  	},

  	onUpload: function ( callback ) {

  		this.onUploadCallback = callback;

  		return this;

  	},

  	clone: function () {

  		return new this.constructor( this.array, this.itemSize ).copy( this );

  	}

  } );

  //

  function Int8BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Int8Array( array ), itemSize, normalized );

  }

  Int8BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Int8BufferAttribute.prototype.constructor = Int8BufferAttribute;


  function Uint8BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Uint8Array( array ), itemSize, normalized );

  }

  Uint8BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Uint8BufferAttribute.prototype.constructor = Uint8BufferAttribute;


  function Uint8ClampedBufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Uint8ClampedArray( array ), itemSize, normalized );

  }

  Uint8ClampedBufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Uint8ClampedBufferAttribute.prototype.constructor = Uint8ClampedBufferAttribute;


  function Int16BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Int16Array( array ), itemSize, normalized );

  }

  Int16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Int16BufferAttribute.prototype.constructor = Int16BufferAttribute;


  function Uint16BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Uint16Array( array ), itemSize, normalized );

  }

  Uint16BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Uint16BufferAttribute.prototype.constructor = Uint16BufferAttribute;


  function Int32BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Int32Array( array ), itemSize, normalized );

  }

  Int32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Int32BufferAttribute.prototype.constructor = Int32BufferAttribute;


  function Uint32BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Uint32Array( array ), itemSize, normalized );

  }

  Uint32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Uint32BufferAttribute.prototype.constructor = Uint32BufferAttribute;


  function Float32BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Float32Array( array ), itemSize, normalized );

  }

  Float32BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Float32BufferAttribute.prototype.constructor = Float32BufferAttribute;


  function Float64BufferAttribute( array, itemSize, normalized ) {

  	BufferAttribute.call( this, new Float64Array( array ), itemSize, normalized );

  }

  Float64BufferAttribute.prototype = Object.create( BufferAttribute.prototype );
  Float64BufferAttribute.prototype.constructor = Float64BufferAttribute;

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function DirectGeometry() {

  	this.vertices = [];
  	this.normals = [];
  	this.colors = [];
  	this.uvs = [];
  	this.uvs2 = [];

  	this.groups = [];

  	this.morphTargets = {};

  	this.skinWeights = [];
  	this.skinIndices = [];

  	// this.lineDistances = [];

  	this.boundingBox = null;
  	this.boundingSphere = null;

  	// update flags

  	this.verticesNeedUpdate = false;
  	this.normalsNeedUpdate = false;
  	this.colorsNeedUpdate = false;
  	this.uvsNeedUpdate = false;
  	this.groupsNeedUpdate = false;

  }

  Object.assign( DirectGeometry.prototype, {

  	computeGroups: function ( geometry ) {

  		var group;
  		var groups = [];
  		var materialIndex = undefined;

  		var faces = geometry.faces;

  		for ( var i = 0; i < faces.length; i ++ ) {

  			var face = faces[ i ];

  			// materials

  			if ( face.materialIndex !== materialIndex ) {

  				materialIndex = face.materialIndex;

  				if ( group !== undefined ) {

  					group.count = ( i * 3 ) - group.start;
  					groups.push( group );

  				}

  				group = {
  					start: i * 3,
  					materialIndex: materialIndex
  				};

  			}

  		}

  		if ( group !== undefined ) {

  			group.count = ( i * 3 ) - group.start;
  			groups.push( group );

  		}

  		this.groups = groups;

  	},

  	fromGeometry: function ( geometry ) {

  		var faces = geometry.faces;
  		var vertices = geometry.vertices;
  		var faceVertexUvs = geometry.faceVertexUvs;

  		var hasFaceVertexUv = faceVertexUvs[ 0 ] && faceVertexUvs[ 0 ].length > 0;
  		var hasFaceVertexUv2 = faceVertexUvs[ 1 ] && faceVertexUvs[ 1 ].length > 0;

  		// morphs

  		var morphTargets = geometry.morphTargets;
  		var morphTargetsLength = morphTargets.length;

  		var morphTargetsPosition;

  		if ( morphTargetsLength > 0 ) {

  			morphTargetsPosition = [];

  			for ( var i = 0; i < morphTargetsLength; i ++ ) {

  				morphTargetsPosition[ i ] = [];

  			}

  			this.morphTargets.position = morphTargetsPosition;

  		}

  		var morphNormals = geometry.morphNormals;
  		var morphNormalsLength = morphNormals.length;

  		var morphTargetsNormal;

  		if ( morphNormalsLength > 0 ) {

  			morphTargetsNormal = [];

  			for ( var i = 0; i < morphNormalsLength; i ++ ) {

  				morphTargetsNormal[ i ] = [];

  			}

  			this.morphTargets.normal = morphTargetsNormal;

  		}

  		// skins

  		var skinIndices = geometry.skinIndices;
  		var skinWeights = geometry.skinWeights;

  		var hasSkinIndices = skinIndices.length === vertices.length;
  		var hasSkinWeights = skinWeights.length === vertices.length;

  		//

  		if ( faces.length === 0 ) {

  			console.error( 'THREE.DirectGeometry: Faceless geometries are not supported.' );

  		}

  		for ( var i = 0; i < faces.length; i ++ ) {

  			var face = faces[ i ];

  			this.vertices.push( vertices[ face.a ], vertices[ face.b ], vertices[ face.c ] );

  			var vertexNormals = face.vertexNormals;

  			if ( vertexNormals.length === 3 ) {

  				this.normals.push( vertexNormals[ 0 ], vertexNormals[ 1 ], vertexNormals[ 2 ] );

  			} else {

  				var normal = face.normal;

  				this.normals.push( normal, normal, normal );

  			}

  			var vertexColors = face.vertexColors;

  			if ( vertexColors.length === 3 ) {

  				this.colors.push( vertexColors[ 0 ], vertexColors[ 1 ], vertexColors[ 2 ] );

  			} else {

  				var color = face.color;

  				this.colors.push( color, color, color );

  			}

  			if ( hasFaceVertexUv === true ) {

  				var vertexUvs = faceVertexUvs[ 0 ][ i ];

  				if ( vertexUvs !== undefined ) {

  					this.uvs.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );

  				} else {

  					console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv ', i );

  					this.uvs.push( new Vector2(), new Vector2(), new Vector2() );

  				}

  			}

  			if ( hasFaceVertexUv2 === true ) {

  				var vertexUvs = faceVertexUvs[ 1 ][ i ];

  				if ( vertexUvs !== undefined ) {

  					this.uvs2.push( vertexUvs[ 0 ], vertexUvs[ 1 ], vertexUvs[ 2 ] );

  				} else {

  					console.warn( 'THREE.DirectGeometry.fromGeometry(): Undefined vertexUv2 ', i );

  					this.uvs2.push( new Vector2(), new Vector2(), new Vector2() );

  				}

  			}

  			// morphs

  			for ( var j = 0; j < morphTargetsLength; j ++ ) {

  				var morphTarget = morphTargets[ j ].vertices;

  				morphTargetsPosition[ j ].push( morphTarget[ face.a ], morphTarget[ face.b ], morphTarget[ face.c ] );

  			}

  			for ( var j = 0; j < morphNormalsLength; j ++ ) {

  				var morphNormal = morphNormals[ j ].vertexNormals[ i ];

  				morphTargetsNormal[ j ].push( morphNormal.a, morphNormal.b, morphNormal.c );

  			}

  			// skins

  			if ( hasSkinIndices ) {

  				this.skinIndices.push( skinIndices[ face.a ], skinIndices[ face.b ], skinIndices[ face.c ] );

  			}

  			if ( hasSkinWeights ) {

  				this.skinWeights.push( skinWeights[ face.a ], skinWeights[ face.b ], skinWeights[ face.c ] );

  			}

  		}

  		this.computeGroups( geometry );

  		this.verticesNeedUpdate = geometry.verticesNeedUpdate;
  		this.normalsNeedUpdate = geometry.normalsNeedUpdate;
  		this.colorsNeedUpdate = geometry.colorsNeedUpdate;
  		this.uvsNeedUpdate = geometry.uvsNeedUpdate;
  		this.groupsNeedUpdate = geometry.groupsNeedUpdate;

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function arrayMax( array ) {

  	if ( array.length === 0 ) return - Infinity;

  	var max = array[ 0 ];

  	for ( var i = 1, l = array.length; i < l; ++ i ) {

  		if ( array[ i ] > max ) max = array[ i ];

  	}

  	return max;

  }

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   */

  var bufferGeometryId = 1; // BufferGeometry uses odd numbers as Id

  function BufferGeometry() {

  	Object.defineProperty( this, 'id', { value: bufferGeometryId += 2 } );

  	this.uuid = _Math.generateUUID();

  	this.name = '';
  	this.type = 'BufferGeometry';

  	this.index = null;
  	this.attributes = {};

  	this.morphAttributes = {};

  	this.groups = [];

  	this.boundingBox = null;
  	this.boundingSphere = null;

  	this.drawRange = { start: 0, count: Infinity };

  	this.userData = {};

  }

  BufferGeometry.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: BufferGeometry,

  	isBufferGeometry: true,

  	getIndex: function () {

  		return this.index;

  	},

  	setIndex: function ( index ) {

  		if ( Array.isArray( index ) ) {

  			this.index = new ( arrayMax( index ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );

  		} else {

  			this.index = index;

  		}

  	},

  	addAttribute: function ( name, attribute ) {

  		if ( ! ( attribute && attribute.isBufferAttribute ) && ! ( attribute && attribute.isInterleavedBufferAttribute ) ) {

  			console.warn( 'THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).' );

  			return this.addAttribute( name, new BufferAttribute( arguments[ 1 ], arguments[ 2 ] ) );

  		}

  		if ( name === 'index' ) {

  			console.warn( 'THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.' );
  			this.setIndex( attribute );

  			return this;

  		}

  		this.attributes[ name ] = attribute;

  		return this;

  	},

  	getAttribute: function ( name ) {

  		return this.attributes[ name ];

  	},

  	removeAttribute: function ( name ) {

  		delete this.attributes[ name ];

  		return this;

  	},

  	addGroup: function ( start, count, materialIndex ) {

  		this.groups.push( {

  			start: start,
  			count: count,
  			materialIndex: materialIndex !== undefined ? materialIndex : 0

  		} );

  	},

  	clearGroups: function () {

  		this.groups = [];

  	},

  	setDrawRange: function ( start, count ) {

  		this.drawRange.start = start;
  		this.drawRange.count = count;

  	},

  	applyMatrix: function ( matrix ) {

  		var position = this.attributes.position;

  		if ( position !== undefined ) {

  			matrix.applyToBufferAttribute( position );
  			position.needsUpdate = true;

  		}

  		var normal = this.attributes.normal;

  		if ( normal !== undefined ) {

  			var normalMatrix = new Matrix3().getNormalMatrix( matrix );

  			normalMatrix.applyToBufferAttribute( normal );
  			normal.needsUpdate = true;

  		}

  		if ( this.boundingBox !== null ) {

  			this.computeBoundingBox();

  		}

  		if ( this.boundingSphere !== null ) {

  			this.computeBoundingSphere();

  		}

  		return this;

  	},

  	rotateX: function () {

  		// rotate geometry around world x-axis

  		var m1 = new Matrix4();

  		return function rotateX( angle ) {

  			m1.makeRotationX( angle );

  			this.applyMatrix( m1 );

  			return this;

  		};

  	}(),

  	rotateY: function () {

  		// rotate geometry around world y-axis

  		var m1 = new Matrix4();

  		return function rotateY( angle ) {

  			m1.makeRotationY( angle );

  			this.applyMatrix( m1 );

  			return this;

  		};

  	}(),

  	rotateZ: function () {

  		// rotate geometry around world z-axis

  		var m1 = new Matrix4();

  		return function rotateZ( angle ) {

  			m1.makeRotationZ( angle );

  			this.applyMatrix( m1 );

  			return this;

  		};

  	}(),

  	translate: function () {

  		// translate geometry

  		var m1 = new Matrix4();

  		return function translate( x, y, z ) {

  			m1.makeTranslation( x, y, z );

  			this.applyMatrix( m1 );

  			return this;

  		};

  	}(),

  	scale: function () {

  		// scale geometry

  		var m1 = new Matrix4();

  		return function scale( x, y, z ) {

  			m1.makeScale( x, y, z );

  			this.applyMatrix( m1 );

  			return this;

  		};

  	}(),

  	lookAt: function () {

  		var obj = new Object3D();

  		return function lookAt( vector ) {

  			obj.lookAt( vector );

  			obj.updateMatrix();

  			this.applyMatrix( obj.matrix );

  		};

  	}(),

  	center: function () {

  		var offset = new Vector3();

  		return function center() {

  			this.computeBoundingBox();

  			this.boundingBox.getCenter( offset ).negate();

  			this.translate( offset.x, offset.y, offset.z );

  			return this;

  		};

  	}(),

  	setFromObject: function ( object ) {

  		// console.log( 'THREE.BufferGeometry.setFromObject(). Converting', object, this );

  		var geometry = object.geometry;

  		if ( object.isPoints || object.isLine ) {

  			var positions = new Float32BufferAttribute( geometry.vertices.length * 3, 3 );
  			var colors = new Float32BufferAttribute( geometry.colors.length * 3, 3 );

  			this.addAttribute( 'position', positions.copyVector3sArray( geometry.vertices ) );
  			this.addAttribute( 'color', colors.copyColorsArray( geometry.colors ) );

  			if ( geometry.lineDistances && geometry.lineDistances.length === geometry.vertices.length ) {

  				var lineDistances = new Float32BufferAttribute( geometry.lineDistances.length, 1 );

  				this.addAttribute( 'lineDistance', lineDistances.copyArray( geometry.lineDistances ) );

  			}

  			if ( geometry.boundingSphere !== null ) {

  				this.boundingSphere = geometry.boundingSphere.clone();

  			}

  			if ( geometry.boundingBox !== null ) {

  				this.boundingBox = geometry.boundingBox.clone();

  			}

  		} else if ( object.isMesh ) {

  			if ( geometry && geometry.isGeometry ) {

  				this.fromGeometry( geometry );

  			}

  		}

  		return this;

  	},

  	setFromPoints: function ( points ) {

  		var position = [];

  		for ( var i = 0, l = points.length; i < l; i ++ ) {

  			var point = points[ i ];
  			position.push( point.x, point.y, point.z || 0 );

  		}

  		this.addAttribute( 'position', new Float32BufferAttribute( position, 3 ) );

  		return this;

  	},

  	updateFromObject: function ( object ) {

  		var geometry = object.geometry;

  		if ( object.isMesh ) {

  			var direct = geometry.__directGeometry;

  			if ( geometry.elementsNeedUpdate === true ) {

  				direct = undefined;
  				geometry.elementsNeedUpdate = false;

  			}

  			if ( direct === undefined ) {

  				return this.fromGeometry( geometry );

  			}

  			direct.verticesNeedUpdate = geometry.verticesNeedUpdate;
  			direct.normalsNeedUpdate = geometry.normalsNeedUpdate;
  			direct.colorsNeedUpdate = geometry.colorsNeedUpdate;
  			direct.uvsNeedUpdate = geometry.uvsNeedUpdate;
  			direct.groupsNeedUpdate = geometry.groupsNeedUpdate;

  			geometry.verticesNeedUpdate = false;
  			geometry.normalsNeedUpdate = false;
  			geometry.colorsNeedUpdate = false;
  			geometry.uvsNeedUpdate = false;
  			geometry.groupsNeedUpdate = false;

  			geometry = direct;

  		}

  		var attribute;

  		if ( geometry.verticesNeedUpdate === true ) {

  			attribute = this.attributes.position;

  			if ( attribute !== undefined ) {

  				attribute.copyVector3sArray( geometry.vertices );
  				attribute.needsUpdate = true;

  			}

  			geometry.verticesNeedUpdate = false;

  		}

  		if ( geometry.normalsNeedUpdate === true ) {

  			attribute = this.attributes.normal;

  			if ( attribute !== undefined ) {

  				attribute.copyVector3sArray( geometry.normals );
  				attribute.needsUpdate = true;

  			}

  			geometry.normalsNeedUpdate = false;

  		}

  		if ( geometry.colorsNeedUpdate === true ) {

  			attribute = this.attributes.color;

  			if ( attribute !== undefined ) {

  				attribute.copyColorsArray( geometry.colors );
  				attribute.needsUpdate = true;

  			}

  			geometry.colorsNeedUpdate = false;

  		}

  		if ( geometry.uvsNeedUpdate ) {

  			attribute = this.attributes.uv;

  			if ( attribute !== undefined ) {

  				attribute.copyVector2sArray( geometry.uvs );
  				attribute.needsUpdate = true;

  			}

  			geometry.uvsNeedUpdate = false;

  		}

  		if ( geometry.lineDistancesNeedUpdate ) {

  			attribute = this.attributes.lineDistance;

  			if ( attribute !== undefined ) {

  				attribute.copyArray( geometry.lineDistances );
  				attribute.needsUpdate = true;

  			}

  			geometry.lineDistancesNeedUpdate = false;

  		}

  		if ( geometry.groupsNeedUpdate ) {

  			geometry.computeGroups( object.geometry );
  			this.groups = geometry.groups;

  			geometry.groupsNeedUpdate = false;

  		}

  		return this;

  	},

  	fromGeometry: function ( geometry ) {

  		geometry.__directGeometry = new DirectGeometry().fromGeometry( geometry );

  		return this.fromDirectGeometry( geometry.__directGeometry );

  	},

  	fromDirectGeometry: function ( geometry ) {

  		var positions = new Float32Array( geometry.vertices.length * 3 );
  		this.addAttribute( 'position', new BufferAttribute( positions, 3 ).copyVector3sArray( geometry.vertices ) );

  		if ( geometry.normals.length > 0 ) {

  			var normals = new Float32Array( geometry.normals.length * 3 );
  			this.addAttribute( 'normal', new BufferAttribute( normals, 3 ).copyVector3sArray( geometry.normals ) );

  		}

  		if ( geometry.colors.length > 0 ) {

  			var colors = new Float32Array( geometry.colors.length * 3 );
  			this.addAttribute( 'color', new BufferAttribute( colors, 3 ).copyColorsArray( geometry.colors ) );

  		}

  		if ( geometry.uvs.length > 0 ) {

  			var uvs = new Float32Array( geometry.uvs.length * 2 );
  			this.addAttribute( 'uv', new BufferAttribute( uvs, 2 ).copyVector2sArray( geometry.uvs ) );

  		}

  		if ( geometry.uvs2.length > 0 ) {

  			var uvs2 = new Float32Array( geometry.uvs2.length * 2 );
  			this.addAttribute( 'uv2', new BufferAttribute( uvs2, 2 ).copyVector2sArray( geometry.uvs2 ) );

  		}

  		// groups

  		this.groups = geometry.groups;

  		// morphs

  		for ( var name in geometry.morphTargets ) {

  			var array = [];
  			var morphTargets = geometry.morphTargets[ name ];

  			for ( var i = 0, l = morphTargets.length; i < l; i ++ ) {

  				var morphTarget = morphTargets[ i ];

  				var attribute = new Float32BufferAttribute( morphTarget.length * 3, 3 );

  				array.push( attribute.copyVector3sArray( morphTarget ) );

  			}

  			this.morphAttributes[ name ] = array;

  		}

  		// skinning

  		if ( geometry.skinIndices.length > 0 ) {

  			var skinIndices = new Float32BufferAttribute( geometry.skinIndices.length * 4, 4 );
  			this.addAttribute( 'skinIndex', skinIndices.copyVector4sArray( geometry.skinIndices ) );

  		}

  		if ( geometry.skinWeights.length > 0 ) {

  			var skinWeights = new Float32BufferAttribute( geometry.skinWeights.length * 4, 4 );
  			this.addAttribute( 'skinWeight', skinWeights.copyVector4sArray( geometry.skinWeights ) );

  		}

  		//

  		if ( geometry.boundingSphere !== null ) {

  			this.boundingSphere = geometry.boundingSphere.clone();

  		}

  		if ( geometry.boundingBox !== null ) {

  			this.boundingBox = geometry.boundingBox.clone();

  		}

  		return this;

  	},

  	computeBoundingBox: function () {

  		if ( this.boundingBox === null ) {

  			this.boundingBox = new Box3();

  		}

  		var position = this.attributes.position;

  		if ( position !== undefined ) {

  			this.boundingBox.setFromBufferAttribute( position );

  		} else {

  			this.boundingBox.makeEmpty();

  		}

  		if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {

  			console.error( 'THREE.BufferGeometry.computeBoundingBox: Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );

  		}

  	},

  	computeBoundingSphere: function () {

  		var box = new Box3();
  		var vector = new Vector3();

  		return function computeBoundingSphere() {

  			if ( this.boundingSphere === null ) {

  				this.boundingSphere = new Sphere();

  			}

  			var position = this.attributes.position;

  			if ( position ) {

  				var center = this.boundingSphere.center;

  				box.setFromBufferAttribute( position );
  				box.getCenter( center );

  				// hoping to find a boundingSphere with a radius smaller than the
  				// boundingSphere of the boundingBox: sqrt(3) smaller in the best case

  				var maxRadiusSq = 0;

  				for ( var i = 0, il = position.count; i < il; i ++ ) {

  					vector.x = position.getX( i );
  					vector.y = position.getY( i );
  					vector.z = position.getZ( i );
  					maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( vector ) );

  				}

  				this.boundingSphere.radius = Math.sqrt( maxRadiusSq );

  				if ( isNaN( this.boundingSphere.radius ) ) {

  					console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );

  				}

  			}

  		};

  	}(),

  	computeFaceNormals: function () {

  		// backwards compatibility

  	},

  	computeVertexNormals: function () {

  		var index = this.index;
  		var attributes = this.attributes;
  		var groups = this.groups;

  		if ( attributes.position ) {

  			var positions = attributes.position.array;

  			if ( attributes.normal === undefined ) {

  				this.addAttribute( 'normal', new BufferAttribute( new Float32Array( positions.length ), 3 ) );

  			} else {

  				// reset existing normals to zero

  				var array = attributes.normal.array;

  				for ( var i = 0, il = array.length; i < il; i ++ ) {

  					array[ i ] = 0;

  				}

  			}

  			var normals = attributes.normal.array;

  			var vA, vB, vC;
  			var pA = new Vector3(), pB = new Vector3(), pC = new Vector3();
  			var cb = new Vector3(), ab = new Vector3();

  			// indexed elements

  			if ( index ) {

  				var indices = index.array;

  				if ( groups.length === 0 ) {

  					this.addGroup( 0, indices.length );

  				}

  				for ( var j = 0, jl = groups.length; j < jl; ++ j ) {

  					var group = groups[ j ];

  					var start = group.start;
  					var count = group.count;

  					for ( var i = start, il = start + count; i < il; i += 3 ) {

  						vA = indices[ i + 0 ] * 3;
  						vB = indices[ i + 1 ] * 3;
  						vC = indices[ i + 2 ] * 3;

  						pA.fromArray( positions, vA );
  						pB.fromArray( positions, vB );
  						pC.fromArray( positions, vC );

  						cb.subVectors( pC, pB );
  						ab.subVectors( pA, pB );
  						cb.cross( ab );

  						normals[ vA ] += cb.x;
  						normals[ vA + 1 ] += cb.y;
  						normals[ vA + 2 ] += cb.z;

  						normals[ vB ] += cb.x;
  						normals[ vB + 1 ] += cb.y;
  						normals[ vB + 2 ] += cb.z;

  						normals[ vC ] += cb.x;
  						normals[ vC + 1 ] += cb.y;
  						normals[ vC + 2 ] += cb.z;

  					}

  				}

  			} else {

  				// non-indexed elements (unconnected triangle soup)

  				for ( var i = 0, il = positions.length; i < il; i += 9 ) {

  					pA.fromArray( positions, i );
  					pB.fromArray( positions, i + 3 );
  					pC.fromArray( positions, i + 6 );

  					cb.subVectors( pC, pB );
  					ab.subVectors( pA, pB );
  					cb.cross( ab );

  					normals[ i ] = cb.x;
  					normals[ i + 1 ] = cb.y;
  					normals[ i + 2 ] = cb.z;

  					normals[ i + 3 ] = cb.x;
  					normals[ i + 4 ] = cb.y;
  					normals[ i + 5 ] = cb.z;

  					normals[ i + 6 ] = cb.x;
  					normals[ i + 7 ] = cb.y;
  					normals[ i + 8 ] = cb.z;

  				}

  			}

  			this.normalizeNormals();

  			attributes.normal.needsUpdate = true;

  		}

  	},

  	merge: function ( geometry, offset ) {

  		if ( ! ( geometry && geometry.isBufferGeometry ) ) {

  			console.error( 'THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry );
  			return;

  		}

  		if ( offset === undefined ) {

  			offset = 0;

  			console.warn(
  				'THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. '
  				+ 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.'
  			);

  		}

  		var attributes = this.attributes;

  		for ( var key in attributes ) {

  			if ( geometry.attributes[ key ] === undefined ) continue;

  			var attribute1 = attributes[ key ];
  			var attributeArray1 = attribute1.array;

  			var attribute2 = geometry.attributes[ key ];
  			var attributeArray2 = attribute2.array;

  			var attributeSize = attribute2.itemSize;

  			for ( var i = 0, j = attributeSize * offset; i < attributeArray2.length; i ++, j ++ ) {

  				attributeArray1[ j ] = attributeArray2[ i ];

  			}

  		}

  		return this;

  	},

  	normalizeNormals: function () {

  		var vector = new Vector3();

  		return function normalizeNormals() {

  			var normals = this.attributes.normal;

  			for ( var i = 0, il = normals.count; i < il; i ++ ) {

  				vector.x = normals.getX( i );
  				vector.y = normals.getY( i );
  				vector.z = normals.getZ( i );

  				vector.normalize();

  				normals.setXYZ( i, vector.x, vector.y, vector.z );

  			}

  		};

  	}(),

  	toNonIndexed: function () {

  		if ( this.index === null ) {

  			console.warn( 'THREE.BufferGeometry.toNonIndexed(): Geometry is already non-indexed.' );
  			return this;

  		}

  		var geometry2 = new BufferGeometry();

  		var indices = this.index.array;
  		var attributes = this.attributes;

  		for ( var name in attributes ) {

  			var attribute = attributes[ name ];

  			var array = attribute.array;
  			var itemSize = attribute.itemSize;

  			var array2 = new array.constructor( indices.length * itemSize );

  			var index = 0, index2 = 0;

  			for ( var i = 0, l = indices.length; i < l; i ++ ) {

  				index = indices[ i ] * itemSize;

  				for ( var j = 0; j < itemSize; j ++ ) {

  					array2[ index2 ++ ] = array[ index ++ ];

  				}

  			}

  			geometry2.addAttribute( name, new BufferAttribute( array2, itemSize ) );

  		}

  		var groups = this.groups;

  		for ( var i = 0, l = groups.length; i < l; i ++ ) {

  			var group = groups[ i ];
  			geometry2.addGroup( group.start, group.count, group.materialIndex );

  		}

  		return geometry2;

  	},

  	toJSON: function () {

  		var data = {
  			metadata: {
  				version: 4.5,
  				type: 'BufferGeometry',
  				generator: 'BufferGeometry.toJSON'
  			}
  		};

  		// standard BufferGeometry serialization

  		data.uuid = this.uuid;
  		data.type = this.type;
  		if ( this.name !== '' ) data.name = this.name;
  		if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData;

  		if ( this.parameters !== undefined ) {

  			var parameters = this.parameters;

  			for ( var key in parameters ) {

  				if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ];

  			}

  			return data;

  		}

  		data.data = { attributes: {} };

  		var index = this.index;

  		if ( index !== null ) {

  			var array = Array.prototype.slice.call( index.array );

  			data.data.index = {
  				type: index.array.constructor.name,
  				array: array
  			};

  		}

  		var attributes = this.attributes;

  		for ( var key in attributes ) {

  			var attribute = attributes[ key ];

  			var array = Array.prototype.slice.call( attribute.array );

  			data.data.attributes[ key ] = {
  				itemSize: attribute.itemSize,
  				type: attribute.array.constructor.name,
  				array: array,
  				normalized: attribute.normalized
  			};

  		}

  		var groups = this.groups;

  		if ( groups.length > 0 ) {

  			data.data.groups = JSON.parse( JSON.stringify( groups ) );

  		}

  		var boundingSphere = this.boundingSphere;

  		if ( boundingSphere !== null ) {

  			data.data.boundingSphere = {
  				center: boundingSphere.center.toArray(),
  				radius: boundingSphere.radius
  			};

  		}

  		return data;

  	},

  	clone: function () {

  		/*
  		 // Handle primitives

  		 var parameters = this.parameters;

  		 if ( parameters !== undefined ) {

  		 var values = [];

  		 for ( var key in parameters ) {

  		 values.push( parameters[ key ] );

  		 }

  		 var geometry = Object.create( this.constructor.prototype );
  		 this.constructor.apply( geometry, values );
  		 return geometry;

  		 }

  		 return new this.constructor().copy( this );
  		 */

  		return new BufferGeometry().copy( this );

  	},

  	copy: function ( source ) {

  		var name, i, l;

  		// reset

  		this.index = null;
  		this.attributes = {};
  		this.morphAttributes = {};
  		this.groups = [];
  		this.boundingBox = null;
  		this.boundingSphere = null;

  		// name

  		this.name = source.name;

  		// index

  		var index = source.index;

  		if ( index !== null ) {

  			this.setIndex( index.clone() );

  		}

  		// attributes

  		var attributes = source.attributes;

  		for ( name in attributes ) {

  			var attribute = attributes[ name ];
  			this.addAttribute( name, attribute.clone() );

  		}

  		// morph attributes

  		var morphAttributes = source.morphAttributes;

  		for ( name in morphAttributes ) {

  			var array = [];
  			var morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes

  			for ( i = 0, l = morphAttribute.length; i < l; i ++ ) {

  				array.push( morphAttribute[ i ].clone() );

  			}

  			this.morphAttributes[ name ] = array;

  		}

  		// groups

  		var groups = source.groups;

  		for ( i = 0, l = groups.length; i < l; i ++ ) {

  			var group = groups[ i ];
  			this.addGroup( group.start, group.count, group.materialIndex );

  		}

  		// bounding box

  		var boundingBox = source.boundingBox;

  		if ( boundingBox !== null ) {

  			this.boundingBox = boundingBox.clone();

  		}

  		// bounding sphere

  		var boundingSphere = source.boundingSphere;

  		if ( boundingSphere !== null ) {

  			this.boundingSphere = boundingSphere.clone();

  		}

  		// draw range

  		this.drawRange.start = source.drawRange.start;
  		this.drawRange.count = source.drawRange.count;

  		// user data

  		this.userData = source.userData;

  		return this;

  	},

  	dispose: function () {

  		this.dispatchEvent( { type: 'dispose' } );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / https://github.com/Mugen87
   */

  // BoxGeometry

  function BoxGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) {

  	Geometry.call( this );

  	this.type = 'BoxGeometry';

  	this.parameters = {
  		width: width,
  		height: height,
  		depth: depth,
  		widthSegments: widthSegments,
  		heightSegments: heightSegments,
  		depthSegments: depthSegments
  	};

  	this.fromBufferGeometry( new BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) );
  	this.mergeVertices();

  }

  BoxGeometry.prototype = Object.create( Geometry.prototype );
  BoxGeometry.prototype.constructor = BoxGeometry;

  // BoxBufferGeometry

  function BoxBufferGeometry( width, height, depth, widthSegments, heightSegments, depthSegments ) {

  	BufferGeometry.call( this );

  	this.type = 'BoxBufferGeometry';

  	this.parameters = {
  		width: width,
  		height: height,
  		depth: depth,
  		widthSegments: widthSegments,
  		heightSegments: heightSegments,
  		depthSegments: depthSegments
  	};

  	var scope = this;

  	width = width || 1;
  	height = height || 1;
  	depth = depth || 1;

  	// segments

  	widthSegments = Math.floor( widthSegments ) || 1;
  	heightSegments = Math.floor( heightSegments ) || 1;
  	depthSegments = Math.floor( depthSegments ) || 1;

  	// buffers

  	var indices = [];
  	var vertices = [];
  	var normals = [];
  	var uvs = [];

  	// helper variables

  	var numberOfVertices = 0;
  	var groupStart = 0;

  	// build each side of the box geometry

  	buildPlane( 'z', 'y', 'x', - 1, - 1, depth, height, width, depthSegments, heightSegments, 0 ); // px
  	buildPlane( 'z', 'y', 'x', 1, - 1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx
  	buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py
  	buildPlane( 'x', 'z', 'y', 1, - 1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny
  	buildPlane( 'x', 'y', 'z', 1, - 1, width, height, depth, widthSegments, heightSegments, 4 ); // pz
  	buildPlane( 'x', 'y', 'z', - 1, - 1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz

  	// build geometry

  	this.setIndex( indices );
  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  	function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) {

  		var segmentWidth = width / gridX;
  		var segmentHeight = height / gridY;

  		var widthHalf = width / 2;
  		var heightHalf = height / 2;
  		var depthHalf = depth / 2;

  		var gridX1 = gridX + 1;
  		var gridY1 = gridY + 1;

  		var vertexCounter = 0;
  		var groupCount = 0;

  		var ix, iy;

  		var vector = new Vector3();

  		// generate vertices, normals and uvs

  		for ( iy = 0; iy < gridY1; iy ++ ) {

  			var y = iy * segmentHeight - heightHalf;

  			for ( ix = 0; ix < gridX1; ix ++ ) {

  				var x = ix * segmentWidth - widthHalf;

  				// set values to correct vector component

  				vector[ u ] = x * udir;
  				vector[ v ] = y * vdir;
  				vector[ w ] = depthHalf;

  				// now apply vector to vertex buffer

  				vertices.push( vector.x, vector.y, vector.z );

  				// set values to correct vector component

  				vector[ u ] = 0;
  				vector[ v ] = 0;
  				vector[ w ] = depth > 0 ? 1 : - 1;

  				// now apply vector to normal buffer

  				normals.push( vector.x, vector.y, vector.z );

  				// uvs

  				uvs.push( ix / gridX );
  				uvs.push( 1 - ( iy / gridY ) );

  				// counters

  				vertexCounter += 1;

  			}

  		}

  		// indices

  		// 1. you need three indices to draw a single face
  		// 2. a single segment consists of two faces
  		// 3. so we need to generate six (2*3) indices per segment

  		for ( iy = 0; iy < gridY; iy ++ ) {

  			for ( ix = 0; ix < gridX; ix ++ ) {

  				var a = numberOfVertices + ix + gridX1 * iy;
  				var b = numberOfVertices + ix + gridX1 * ( iy + 1 );
  				var c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 );
  				var d = numberOfVertices + ( ix + 1 ) + gridX1 * iy;

  				// faces

  				indices.push( a, b, d );
  				indices.push( b, c, d );

  				// increase counter

  				groupCount += 6;

  			}

  		}

  		// add a group to the geometry. this will ensure multi material support

  		scope.addGroup( groupStart, groupCount, materialIndex );

  		// calculate new start value for groups

  		groupStart += groupCount;

  		// update total number of vertices

  		numberOfVertices += vertexCounter;

  	}

  }

  BoxBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  BoxBufferGeometry.prototype.constructor = BoxBufferGeometry;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / https://github.com/Mugen87
   */

  // PlaneGeometry

  function PlaneGeometry( width, height, widthSegments, heightSegments ) {

  	Geometry.call( this );

  	this.type = 'PlaneGeometry';

  	this.parameters = {
  		width: width,
  		height: height,
  		widthSegments: widthSegments,
  		heightSegments: heightSegments
  	};

  	this.fromBufferGeometry( new PlaneBufferGeometry( width, height, widthSegments, heightSegments ) );
  	this.mergeVertices();

  }

  PlaneGeometry.prototype = Object.create( Geometry.prototype );
  PlaneGeometry.prototype.constructor = PlaneGeometry;

  // PlaneBufferGeometry

  function PlaneBufferGeometry( width, height, widthSegments, heightSegments ) {

  	BufferGeometry.call( this );

  	this.type = 'PlaneBufferGeometry';

  	this.parameters = {
  		width: width,
  		height: height,
  		widthSegments: widthSegments,
  		heightSegments: heightSegments
  	};

  	width = width || 1;
  	height = height || 1;

  	var width_half = width / 2;
  	var height_half = height / 2;

  	var gridX = Math.floor( widthSegments ) || 1;
  	var gridY = Math.floor( heightSegments ) || 1;

  	var gridX1 = gridX + 1;
  	var gridY1 = gridY + 1;

  	var segment_width = width / gridX;
  	var segment_height = height / gridY;

  	var ix, iy;

  	// buffers

  	var indices = [];
  	var vertices = [];
  	var normals = [];
  	var uvs = [];

  	// generate vertices, normals and uvs

  	for ( iy = 0; iy < gridY1; iy ++ ) {

  		var y = iy * segment_height - height_half;

  		for ( ix = 0; ix < gridX1; ix ++ ) {

  			var x = ix * segment_width - width_half;

  			vertices.push( x, - y, 0 );

  			normals.push( 0, 0, 1 );

  			uvs.push( ix / gridX );
  			uvs.push( 1 - ( iy / gridY ) );

  		}

  	}

  	// indices

  	for ( iy = 0; iy < gridY; iy ++ ) {

  		for ( ix = 0; ix < gridX; ix ++ ) {

  			var a = ix + gridX1 * iy;
  			var b = ix + gridX1 * ( iy + 1 );
  			var c = ( ix + 1 ) + gridX1 * ( iy + 1 );
  			var d = ( ix + 1 ) + gridX1 * iy;

  			// faces

  			indices.push( a, b, d );
  			indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  }

  PlaneBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  PlaneBufferGeometry.prototype.constructor = PlaneBufferGeometry;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  var materialId = 0;

  function Material() {

  	Object.defineProperty( this, 'id', { value: materialId ++ } );

  	this.uuid = _Math.generateUUID();

  	this.name = '';
  	this.type = 'Material';

  	this.fog = true;
  	this.lights = true;

  	this.blending = NormalBlending;
  	this.side = FrontSide;
  	this.flatShading = false;
  	this.vertexColors = NoColors; // THREE.NoColors, THREE.VertexColors, THREE.FaceColors

  	this.opacity = 1;
  	this.transparent = false;

  	this.blendSrc = SrcAlphaFactor;
  	this.blendDst = OneMinusSrcAlphaFactor;
  	this.blendEquation = AddEquation;
  	this.blendSrcAlpha = null;
  	this.blendDstAlpha = null;
  	this.blendEquationAlpha = null;

  	this.depthFunc = LessEqualDepth;
  	this.depthTest = true;
  	this.depthWrite = true;

  	this.clippingPlanes = null;
  	this.clipIntersection = false;
  	this.clipShadows = false;

  	this.shadowSide = null;

  	this.colorWrite = true;

  	this.precision = null; // override the renderer's default precision for this material

  	this.polygonOffset = false;
  	this.polygonOffsetFactor = 0;
  	this.polygonOffsetUnits = 0;

  	this.dithering = false;

  	this.alphaTest = 0;
  	this.premultipliedAlpha = false;

  	this.overdraw = 0; // Overdrawn pixels (typically between 0 and 1) for fixing antialiasing gaps in CanvasRenderer

  	this.visible = true;

  	this.userData = {};

  	this.needsUpdate = true;

  }

  Material.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: Material,

  	isMaterial: true,

  	onBeforeCompile: function () {},

  	setValues: function ( values ) {

  		if ( values === undefined ) return;

  		for ( var key in values ) {

  			var newValue = values[ key ];

  			if ( newValue === undefined ) {

  				console.warn( "THREE.Material: '" + key + "' parameter is undefined." );
  				continue;

  			}

  			// for backward compatability if shading is set in the constructor
  			if ( key === 'shading' ) {

  				console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );
  				this.flatShading = ( newValue === FlatShading ) ? true : false;
  				continue;

  			}

  			var currentValue = this[ key ];

  			if ( currentValue === undefined ) {

  				console.warn( "THREE." + this.type + ": '" + key + "' is not a property of this material." );
  				continue;

  			}

  			if ( currentValue && currentValue.isColor ) {

  				currentValue.set( newValue );

  			} else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) {

  				currentValue.copy( newValue );

  			} else if ( key === 'overdraw' ) {

  				// ensure overdraw is backwards-compatible with legacy boolean type
  				this[ key ] = Number( newValue );

  			} else {

  				this[ key ] = newValue;

  			}

  		}

  	},

  	toJSON: function ( meta ) {

  		var isRoot = ( meta === undefined || typeof meta === 'string' );

  		if ( isRoot ) {

  			meta = {
  				textures: {},
  				images: {}
  			};

  		}

  		var data = {
  			metadata: {
  				version: 4.5,
  				type: 'Material',
  				generator: 'Material.toJSON'
  			}
  		};

  		// standard Material serialization
  		data.uuid = this.uuid;
  		data.type = this.type;

  		if ( this.name !== '' ) data.name = this.name;

  		if ( this.color && this.color.isColor ) data.color = this.color.getHex();

  		if ( this.roughness !== undefined ) data.roughness = this.roughness;
  		if ( this.metalness !== undefined ) data.metalness = this.metalness;

  		if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex();
  		if ( this.emissiveIntensity !== 1 ) data.emissiveIntensity = this.emissiveIntensity;

  		if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex();
  		if ( this.shininess !== undefined ) data.shininess = this.shininess;
  		if ( this.clearCoat !== undefined ) data.clearCoat = this.clearCoat;
  		if ( this.clearCoatRoughness !== undefined ) data.clearCoatRoughness = this.clearCoatRoughness;

  		if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid;
  		if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid;
  		if ( this.lightMap && this.lightMap.isTexture ) data.lightMap = this.lightMap.toJSON( meta ).uuid;

  		if ( this.aoMap && this.aoMap.isTexture ) {

  			data.aoMap = this.aoMap.toJSON( meta ).uuid;
  			data.aoMapIntensity = this.aoMapIntensity;

  		}

  		if ( this.bumpMap && this.bumpMap.isTexture ) {

  			data.bumpMap = this.bumpMap.toJSON( meta ).uuid;
  			data.bumpScale = this.bumpScale;

  		}

  		if ( this.normalMap && this.normalMap.isTexture ) {

  			data.normalMap = this.normalMap.toJSON( meta ).uuid;
  			data.normalScale = this.normalScale.toArray();

  		}

  		if ( this.displacementMap && this.displacementMap.isTexture ) {

  			data.displacementMap = this.displacementMap.toJSON( meta ).uuid;
  			data.displacementScale = this.displacementScale;
  			data.displacementBias = this.displacementBias;

  		}

  		if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid;
  		if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid;

  		if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid;
  		if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid;

  		if ( this.envMap && this.envMap.isTexture ) {

  			data.envMap = this.envMap.toJSON( meta ).uuid;
  			data.reflectivity = this.reflectivity; // Scale behind envMap

  		}

  		if ( this.gradientMap && this.gradientMap.isTexture ) {

  			data.gradientMap = this.gradientMap.toJSON( meta ).uuid;

  		}

  		if ( this.size !== undefined ) data.size = this.size;
  		if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation;

  		if ( this.blending !== NormalBlending ) data.blending = this.blending;
  		if ( this.flatShading === true ) data.flatShading = this.flatShading;
  		if ( this.side !== FrontSide ) data.side = this.side;
  		if ( this.vertexColors !== NoColors ) data.vertexColors = this.vertexColors;

  		if ( this.opacity < 1 ) data.opacity = this.opacity;
  		if ( this.transparent === true ) data.transparent = this.transparent;

  		data.depthFunc = this.depthFunc;
  		data.depthTest = this.depthTest;
  		data.depthWrite = this.depthWrite;

  		// rotation (SpriteMaterial)
  		if ( this.rotation !== 0 ) data.rotation = this.rotation;

  		if ( this.linewidth !== 1 ) data.linewidth = this.linewidth;
  		if ( this.dashSize !== undefined ) data.dashSize = this.dashSize;
  		if ( this.gapSize !== undefined ) data.gapSize = this.gapSize;
  		if ( this.scale !== undefined ) data.scale = this.scale;

  		if ( this.dithering === true ) data.dithering = true;

  		if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest;
  		if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = this.premultipliedAlpha;

  		if ( this.wireframe === true ) data.wireframe = this.wireframe;
  		if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth;
  		if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap;
  		if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin;

  		if ( this.morphTargets === true ) data.morphTargets = true;
  		if ( this.skinning === true ) data.skinning = true;

  		if ( this.visible === false ) data.visible = false;
  		if ( JSON.stringify( this.userData ) !== '{}' ) data.userData = this.userData;

  		// TODO: Copied from Object3D.toJSON

  		function extractFromCache( cache ) {

  			var values = [];

  			for ( var key in cache ) {

  				var data = cache[ key ];
  				delete data.metadata;
  				values.push( data );

  			}

  			return values;

  		}

  		if ( isRoot ) {

  			var textures = extractFromCache( meta.textures );
  			var images = extractFromCache( meta.images );

  			if ( textures.length > 0 ) data.textures = textures;
  			if ( images.length > 0 ) data.images = images;

  		}

  		return data;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( source ) {

  		this.name = source.name;

  		this.fog = source.fog;
  		this.lights = source.lights;

  		this.blending = source.blending;
  		this.side = source.side;
  		this.flatShading = source.flatShading;
  		this.vertexColors = source.vertexColors;

  		this.opacity = source.opacity;
  		this.transparent = source.transparent;

  		this.blendSrc = source.blendSrc;
  		this.blendDst = source.blendDst;
  		this.blendEquation = source.blendEquation;
  		this.blendSrcAlpha = source.blendSrcAlpha;
  		this.blendDstAlpha = source.blendDstAlpha;
  		this.blendEquationAlpha = source.blendEquationAlpha;

  		this.depthFunc = source.depthFunc;
  		this.depthTest = source.depthTest;
  		this.depthWrite = source.depthWrite;

  		this.colorWrite = source.colorWrite;

  		this.precision = source.precision;

  		this.polygonOffset = source.polygonOffset;
  		this.polygonOffsetFactor = source.polygonOffsetFactor;
  		this.polygonOffsetUnits = source.polygonOffsetUnits;

  		this.dithering = source.dithering;

  		this.alphaTest = source.alphaTest;
  		this.premultipliedAlpha = source.premultipliedAlpha;

  		this.overdraw = source.overdraw;

  		this.visible = source.visible;
  		this.userData = JSON.parse( JSON.stringify( source.userData ) );

  		this.clipShadows = source.clipShadows;
  		this.clipIntersection = source.clipIntersection;

  		var srcPlanes = source.clippingPlanes,
  			dstPlanes = null;

  		if ( srcPlanes !== null ) {

  			var n = srcPlanes.length;
  			dstPlanes = new Array( n );

  			for ( var i = 0; i !== n; ++ i )
  				dstPlanes[ i ] = srcPlanes[ i ].clone();

  		}

  		this.clippingPlanes = dstPlanes;

  		this.shadowSide = source.shadowSide;

  		return this;

  	},

  	dispose: function () {

  		this.dispatchEvent( { type: 'dispose' } );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  opacity: <float>,
   *  map: new THREE.Texture( <Image> ),
   *
   *  lightMap: new THREE.Texture( <Image> ),
   *  lightMapIntensity: <float>
   *
   *  aoMap: new THREE.Texture( <Image> ),
   *  aoMapIntensity: <float>
   *
   *  specularMap: new THREE.Texture( <Image> ),
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
   *  combine: THREE.Multiply,
   *  reflectivity: <float>,
   *  refractionRatio: <float>,
   *
   *  depthTest: <bool>,
   *  depthWrite: <bool>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>
   * }
   */

  function MeshBasicMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'MeshBasicMaterial';

  	this.color = new Color( 0xffffff ); // emissive

  	this.map = null;

  	this.lightMap = null;
  	this.lightMapIntensity = 1.0;

  	this.aoMap = null;
  	this.aoMapIntensity = 1.0;

  	this.specularMap = null;

  	this.alphaMap = null;

  	this.envMap = null;
  	this.combine = MultiplyOperation;
  	this.reflectivity = 1;
  	this.refractionRatio = 0.98;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;
  	this.wireframeLinecap = 'round';
  	this.wireframeLinejoin = 'round';

  	this.skinning = false;
  	this.morphTargets = false;

  	this.lights = false;

  	this.setValues( parameters );

  }

  MeshBasicMaterial.prototype = Object.create( Material.prototype );
  MeshBasicMaterial.prototype.constructor = MeshBasicMaterial;

  MeshBasicMaterial.prototype.isMeshBasicMaterial = true;

  MeshBasicMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );

  	this.map = source.map;

  	this.lightMap = source.lightMap;
  	this.lightMapIntensity = source.lightMapIntensity;

  	this.aoMap = source.aoMap;
  	this.aoMapIntensity = source.aoMapIntensity;

  	this.specularMap = source.specularMap;

  	this.alphaMap = source.alphaMap;

  	this.envMap = source.envMap;
  	this.combine = source.combine;
  	this.reflectivity = source.reflectivity;
  	this.refractionRatio = source.refractionRatio;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;
  	this.wireframeLinecap = source.wireframeLinecap;
  	this.wireframeLinejoin = source.wireframeLinejoin;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;

  	return this;

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  defines: { "label" : "value" },
   *  uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
   *
   *  fragmentShader: <string>,
   *  vertexShader: <string>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>,
   *
   *  lights: <bool>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *  morphNormals: <bool>
   * }
   */

  function ShaderMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'ShaderMaterial';

  	this.defines = {};
  	this.uniforms = {};

  	this.vertexShader = 'void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}';
  	this.fragmentShader = 'void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}';

  	this.linewidth = 1;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;

  	this.fog = false; // set to use scene fog
  	this.lights = false; // set to use scene lights
  	this.clipping = false; // set to use user-defined clipping planes

  	this.skinning = false; // set to use skinning attribute streams
  	this.morphTargets = false; // set to use morph targets
  	this.morphNormals = false; // set to use morph normals

  	this.extensions = {
  		derivatives: false, // set to use derivatives
  		fragDepth: false, // set to use fragment depth values
  		drawBuffers: false, // set to use draw buffers
  		shaderTextureLOD: false // set to use shader texture LOD
  	};

  	// When rendered geometry doesn't include these attributes but the material does,
  	// use these default values in WebGL. This avoids errors when buffer data is missing.
  	this.defaultAttributeValues = {
  		'color': [ 1, 1, 1 ],
  		'uv': [ 0, 0 ],
  		'uv2': [ 0, 0 ]
  	};

  	this.index0AttributeName = undefined;
  	this.uniformsNeedUpdate = false;

  	if ( parameters !== undefined ) {

  		if ( parameters.attributes !== undefined ) {

  			console.error( 'THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.' );

  		}

  		this.setValues( parameters );

  	}

  }

  ShaderMaterial.prototype = Object.create( Material.prototype );
  ShaderMaterial.prototype.constructor = ShaderMaterial;

  ShaderMaterial.prototype.isShaderMaterial = true;

  ShaderMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.fragmentShader = source.fragmentShader;
  	this.vertexShader = source.vertexShader;

  	this.uniforms = UniformsUtils.clone( source.uniforms );

  	this.defines = Object.assign( {}, source.defines );

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;

  	this.lights = source.lights;
  	this.clipping = source.clipping;

  	this.skinning = source.skinning;

  	this.morphTargets = source.morphTargets;
  	this.morphNormals = source.morphNormals;

  	this.extensions = source.extensions;

  	return this;

  };

  ShaderMaterial.prototype.toJSON = function ( meta ) {

  	var data = Material.prototype.toJSON.call( this, meta );

  	data.uniforms = this.uniforms;
  	data.vertexShader = this.vertexShader;
  	data.fragmentShader = this.fragmentShader;

  	return data;

  };

  /**
   * @author bhouston / http://clara.io
   */

  function Ray( origin, direction ) {

  	this.origin = ( origin !== undefined ) ? origin : new Vector3();
  	this.direction = ( direction !== undefined ) ? direction : new Vector3();

  }

  Object.assign( Ray.prototype, {

  	set: function ( origin, direction ) {

  		this.origin.copy( origin );
  		this.direction.copy( direction );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( ray ) {

  		this.origin.copy( ray.origin );
  		this.direction.copy( ray.direction );

  		return this;

  	},

  	at: function ( t, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Ray: .at() target is now required' );
  			target = new Vector3();

  		}

  		return target.copy( this.direction ).multiplyScalar( t ).add( this.origin );

  	},

  	lookAt: function ( v ) {

  		this.direction.copy( v ).sub( this.origin ).normalize();

  		return this;

  	},

  	recast: function () {

  		var v1 = new Vector3();

  		return function recast( t ) {

  			this.origin.copy( this.at( t, v1 ) );

  			return this;

  		};

  	}(),

  	closestPointToPoint: function ( point, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Ray: .closestPointToPoint() target is now required' );
  			target = new Vector3();

  		}

  		target.subVectors( point, this.origin );

  		var directionDistance = target.dot( this.direction );

  		if ( directionDistance < 0 ) {

  			return target.copy( this.origin );

  		}

  		return target.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );

  	},

  	distanceToPoint: function ( point ) {

  		return Math.sqrt( this.distanceSqToPoint( point ) );

  	},

  	distanceSqToPoint: function () {

  		var v1 = new Vector3();

  		return function distanceSqToPoint( point ) {

  			var directionDistance = v1.subVectors( point, this.origin ).dot( this.direction );

  			// point behind the ray

  			if ( directionDistance < 0 ) {

  				return this.origin.distanceToSquared( point );

  			}

  			v1.copy( this.direction ).multiplyScalar( directionDistance ).add( this.origin );

  			return v1.distanceToSquared( point );

  		};

  	}(),

  	distanceSqToSegment: function () {

  		var segCenter = new Vector3();
  		var segDir = new Vector3();
  		var diff = new Vector3();

  		return function distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) {

  			// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
  			// It returns the min distance between the ray and the segment
  			// defined by v0 and v1
  			// It can also set two optional targets :
  			// - The closest point on the ray
  			// - The closest point on the segment

  			segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 );
  			segDir.copy( v1 ).sub( v0 ).normalize();
  			diff.copy( this.origin ).sub( segCenter );

  			var segExtent = v0.distanceTo( v1 ) * 0.5;
  			var a01 = - this.direction.dot( segDir );
  			var b0 = diff.dot( this.direction );
  			var b1 = - diff.dot( segDir );
  			var c = diff.lengthSq();
  			var det = Math.abs( 1 - a01 * a01 );
  			var s0, s1, sqrDist, extDet;

  			if ( det > 0 ) {

  				// The ray and segment are not parallel.

  				s0 = a01 * b1 - b0;
  				s1 = a01 * b0 - b1;
  				extDet = segExtent * det;

  				if ( s0 >= 0 ) {

  					if ( s1 >= - extDet ) {

  						if ( s1 <= extDet ) {

  							// region 0
  							// Minimum at interior points of ray and segment.

  							var invDet = 1 / det;
  							s0 *= invDet;
  							s1 *= invDet;
  							sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c;

  						} else {

  							// region 1

  							s1 = segExtent;
  							s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
  							sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

  						}

  					} else {

  						// region 5

  						s1 = - segExtent;
  						s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
  						sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

  					}

  				} else {

  					if ( s1 <= - extDet ) {

  						// region 4

  						s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) );
  						s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
  						sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

  					} else if ( s1 <= extDet ) {

  						// region 3

  						s0 = 0;
  						s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent );
  						sqrDist = s1 * ( s1 + 2 * b1 ) + c;

  					} else {

  						// region 2

  						s0 = Math.max( 0, - ( a01 * segExtent + b0 ) );
  						s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent );
  						sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

  					}

  				}

  			} else {

  				// Ray and segment are parallel.

  				s1 = ( a01 > 0 ) ? - segExtent : segExtent;
  				s0 = Math.max( 0, - ( a01 * s1 + b0 ) );
  				sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c;

  			}

  			if ( optionalPointOnRay ) {

  				optionalPointOnRay.copy( this.direction ).multiplyScalar( s0 ).add( this.origin );

  			}

  			if ( optionalPointOnSegment ) {

  				optionalPointOnSegment.copy( segDir ).multiplyScalar( s1 ).add( segCenter );

  			}

  			return sqrDist;

  		};

  	}(),

  	intersectSphere: function () {

  		var v1 = new Vector3();

  		return function intersectSphere( sphere, target ) {

  			v1.subVectors( sphere.center, this.origin );
  			var tca = v1.dot( this.direction );
  			var d2 = v1.dot( v1 ) - tca * tca;
  			var radius2 = sphere.radius * sphere.radius;

  			if ( d2 > radius2 ) return null;

  			var thc = Math.sqrt( radius2 - d2 );

  			// t0 = first intersect point - entrance on front of sphere
  			var t0 = tca - thc;

  			// t1 = second intersect point - exit point on back of sphere
  			var t1 = tca + thc;

  			// test to see if both t0 and t1 are behind the ray - if so, return null
  			if ( t0 < 0 && t1 < 0 ) return null;

  			// test to see if t0 is behind the ray:
  			// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
  			// in order to always return an intersect point that is in front of the ray.
  			if ( t0 < 0 ) return this.at( t1, target );

  			// else t0 is in front of the ray, so return the first collision point scaled by t0
  			return this.at( t0, target );

  		};

  	}(),

  	intersectsSphere: function ( sphere ) {

  		return this.distanceToPoint( sphere.center ) <= sphere.radius;

  	},

  	distanceToPlane: function ( plane ) {

  		var denominator = plane.normal.dot( this.direction );

  		if ( denominator === 0 ) {

  			// line is coplanar, return origin
  			if ( plane.distanceToPoint( this.origin ) === 0 ) {

  				return 0;

  			}

  			// Null is preferable to undefined since undefined means.... it is undefined

  			return null;

  		}

  		var t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator;

  		// Return if the ray never intersects the plane

  		return t >= 0 ? t : null;

  	},

  	intersectPlane: function ( plane, target ) {

  		var t = this.distanceToPlane( plane );

  		if ( t === null ) {

  			return null;

  		}

  		return this.at( t, target );

  	},

  	intersectsPlane: function ( plane ) {

  		// check if the ray lies on the plane first

  		var distToPoint = plane.distanceToPoint( this.origin );

  		if ( distToPoint === 0 ) {

  			return true;

  		}

  		var denominator = plane.normal.dot( this.direction );

  		if ( denominator * distToPoint < 0 ) {

  			return true;

  		}

  		// ray origin is behind the plane (and is pointing behind it)

  		return false;

  	},

  	intersectBox: function ( box, target ) {

  		var tmin, tmax, tymin, tymax, tzmin, tzmax;

  		var invdirx = 1 / this.direction.x,
  			invdiry = 1 / this.direction.y,
  			invdirz = 1 / this.direction.z;

  		var origin = this.origin;

  		if ( invdirx >= 0 ) {

  			tmin = ( box.min.x - origin.x ) * invdirx;
  			tmax = ( box.max.x - origin.x ) * invdirx;

  		} else {

  			tmin = ( box.max.x - origin.x ) * invdirx;
  			tmax = ( box.min.x - origin.x ) * invdirx;

  		}

  		if ( invdiry >= 0 ) {

  			tymin = ( box.min.y - origin.y ) * invdiry;
  			tymax = ( box.max.y - origin.y ) * invdiry;

  		} else {

  			tymin = ( box.max.y - origin.y ) * invdiry;
  			tymax = ( box.min.y - origin.y ) * invdiry;

  		}

  		if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null;

  		// These lines also handle the case where tmin or tmax is NaN
  		// (result of 0 * Infinity). x !== x returns true if x is NaN

  		if ( tymin > tmin || tmin !== tmin ) tmin = tymin;

  		if ( tymax < tmax || tmax !== tmax ) tmax = tymax;

  		if ( invdirz >= 0 ) {

  			tzmin = ( box.min.z - origin.z ) * invdirz;
  			tzmax = ( box.max.z - origin.z ) * invdirz;

  		} else {

  			tzmin = ( box.max.z - origin.z ) * invdirz;
  			tzmax = ( box.min.z - origin.z ) * invdirz;

  		}

  		if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null;

  		if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin;

  		if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax;

  		//return point closest to the ray (positive side)

  		if ( tmax < 0 ) return null;

  		return this.at( tmin >= 0 ? tmin : tmax, target );

  	},

  	intersectsBox: ( function () {

  		var v = new Vector3();

  		return function intersectsBox( box ) {

  			return this.intersectBox( box, v ) !== null;

  		};

  	} )(),

  	intersectTriangle: function () {

  		// Compute the offset origin, edges, and normal.
  		var diff = new Vector3();
  		var edge1 = new Vector3();
  		var edge2 = new Vector3();
  		var normal = new Vector3();

  		return function intersectTriangle( a, b, c, backfaceCulling, target ) {

  			// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h

  			edge1.subVectors( b, a );
  			edge2.subVectors( c, a );
  			normal.crossVectors( edge1, edge2 );

  			// Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
  			// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
  			//   |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
  			//   |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
  			//   |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
  			var DdN = this.direction.dot( normal );
  			var sign;

  			if ( DdN > 0 ) {

  				if ( backfaceCulling ) return null;
  				sign = 1;

  			} else if ( DdN < 0 ) {

  				sign = - 1;
  				DdN = - DdN;

  			} else {

  				return null;

  			}

  			diff.subVectors( this.origin, a );
  			var DdQxE2 = sign * this.direction.dot( edge2.crossVectors( diff, edge2 ) );

  			// b1 < 0, no intersection
  			if ( DdQxE2 < 0 ) {

  				return null;

  			}

  			var DdE1xQ = sign * this.direction.dot( edge1.cross( diff ) );

  			// b2 < 0, no intersection
  			if ( DdE1xQ < 0 ) {

  				return null;

  			}

  			// b1+b2 > 1, no intersection
  			if ( DdQxE2 + DdE1xQ > DdN ) {

  				return null;

  			}

  			// Line intersects triangle, check if ray does.
  			var QdN = - sign * diff.dot( normal );

  			// t < 0, no intersection
  			if ( QdN < 0 ) {

  				return null;

  			}

  			// Ray intersects triangle.
  			return this.at( QdN / DdN, target );

  		};

  	}(),

  	applyMatrix4: function ( matrix4 ) {

  		this.origin.applyMatrix4( matrix4 );
  		this.direction.transformDirection( matrix4 );

  		return this;

  	},

  	equals: function ( ray ) {

  		return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction );

  	}

  } );

  /**
   * @author bhouston / http://clara.io
   */

  function Line3( start, end ) {

  	this.start = ( start !== undefined ) ? start : new Vector3();
  	this.end = ( end !== undefined ) ? end : new Vector3();

  }

  Object.assign( Line3.prototype, {

  	set: function ( start, end ) {

  		this.start.copy( start );
  		this.end.copy( end );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( line ) {

  		this.start.copy( line.start );
  		this.end.copy( line.end );

  		return this;

  	},

  	getCenter: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Line3: .getCenter() target is now required' );
  			target = new Vector3();

  		}

  		return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 );

  	},

  	delta: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Line3: .delta() target is now required' );
  			target = new Vector3();

  		}

  		return target.subVectors( this.end, this.start );

  	},

  	distanceSq: function () {

  		return this.start.distanceToSquared( this.end );

  	},

  	distance: function () {

  		return this.start.distanceTo( this.end );

  	},

  	at: function ( t, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Line3: .at() target is now required' );
  			target = new Vector3();

  		}

  		return this.delta( target ).multiplyScalar( t ).add( this.start );

  	},

  	closestPointToPointParameter: function () {

  		var startP = new Vector3();
  		var startEnd = new Vector3();

  		return function closestPointToPointParameter( point, clampToLine ) {

  			startP.subVectors( point, this.start );
  			startEnd.subVectors( this.end, this.start );

  			var startEnd2 = startEnd.dot( startEnd );
  			var startEnd_startP = startEnd.dot( startP );

  			var t = startEnd_startP / startEnd2;

  			if ( clampToLine ) {

  				t = _Math.clamp( t, 0, 1 );

  			}

  			return t;

  		};

  	}(),

  	closestPointToPoint: function ( point, clampToLine, target ) {

  		var t = this.closestPointToPointParameter( point, clampToLine );

  		if ( target === undefined ) {

  			console.warn( 'THREE.Line3: .closestPointToPoint() target is now required' );
  			target = new Vector3();

  		}

  		return this.delta( target ).multiplyScalar( t ).add( this.start );

  	},

  	applyMatrix4: function ( matrix ) {

  		this.start.applyMatrix4( matrix );
  		this.end.applyMatrix4( matrix );

  		return this;

  	},

  	equals: function ( line ) {

  		return line.start.equals( this.start ) && line.end.equals( this.end );

  	}

  } );

  /**
   * @author bhouston / http://clara.io
   * @author mrdoob / http://mrdoob.com/
   */

  function Triangle( a, b, c ) {

  	this.a = ( a !== undefined ) ? a : new Vector3();
  	this.b = ( b !== undefined ) ? b : new Vector3();
  	this.c = ( c !== undefined ) ? c : new Vector3();

  }

  Object.assign( Triangle, {

  	getNormal: function () {

  		var v0 = new Vector3();

  		return function getNormal( a, b, c, target ) {

  			if ( target === undefined ) {

  				console.warn( 'THREE.Triangle: .getNormal() target is now required' );
  				target = new Vector3();

  			}

  			target.subVectors( c, b );
  			v0.subVectors( a, b );
  			target.cross( v0 );

  			var targetLengthSq = target.lengthSq();
  			if ( targetLengthSq > 0 ) {

  				return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) );

  			}

  			return target.set( 0, 0, 0 );

  		};

  	}(),

  	// static/instance method to calculate barycentric coordinates
  	// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
  	getBarycoord: function () {

  		var v0 = new Vector3();
  		var v1 = new Vector3();
  		var v2 = new Vector3();

  		return function getBarycoord( point, a, b, c, target ) {

  			v0.subVectors( c, a );
  			v1.subVectors( b, a );
  			v2.subVectors( point, a );

  			var dot00 = v0.dot( v0 );
  			var dot01 = v0.dot( v1 );
  			var dot02 = v0.dot( v2 );
  			var dot11 = v1.dot( v1 );
  			var dot12 = v1.dot( v2 );

  			var denom = ( dot00 * dot11 - dot01 * dot01 );

  			if ( target === undefined ) {

  				console.warn( 'THREE.Triangle: .getBarycoord() target is now required' );
  				target = new Vector3();

  			}

  			// collinear or singular triangle
  			if ( denom === 0 ) {

  				// arbitrary location outside of triangle?
  				// not sure if this is the best idea, maybe should be returning undefined
  				return target.set( - 2, - 1, - 1 );

  			}

  			var invDenom = 1 / denom;
  			var u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom;
  			var v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom;

  			// barycentric coordinates must always sum to 1
  			return target.set( 1 - u - v, v, u );

  		};

  	}(),

  	containsPoint: function () {

  		var v1 = new Vector3();

  		return function containsPoint( point, a, b, c ) {

  			Triangle.getBarycoord( point, a, b, c, v1 );

  			return ( v1.x >= 0 ) && ( v1.y >= 0 ) && ( ( v1.x + v1.y ) <= 1 );

  		};

  	}()

  } );

  Object.assign( Triangle.prototype, {

  	set: function ( a, b, c ) {

  		this.a.copy( a );
  		this.b.copy( b );
  		this.c.copy( c );

  		return this;

  	},

  	setFromPointsAndIndices: function ( points, i0, i1, i2 ) {

  		this.a.copy( points[ i0 ] );
  		this.b.copy( points[ i1 ] );
  		this.c.copy( points[ i2 ] );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( triangle ) {

  		this.a.copy( triangle.a );
  		this.b.copy( triangle.b );
  		this.c.copy( triangle.c );

  		return this;

  	},

  	getArea: function () {

  		var v0 = new Vector3();
  		var v1 = new Vector3();

  		return function getArea() {

  			v0.subVectors( this.c, this.b );
  			v1.subVectors( this.a, this.b );

  			return v0.cross( v1 ).length() * 0.5;

  		};

  	}(),

  	getMidpoint: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Triangle: .getMidpoint() target is now required' );
  			target = new Vector3();

  		}

  		return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 );

  	},

  	getNormal: function ( target ) {

  		return Triangle.getNormal( this.a, this.b, this.c, target );

  	},

  	getPlane: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Triangle: .getPlane() target is now required' );
  			target = new Vector3();

  		}

  		return target.setFromCoplanarPoints( this.a, this.b, this.c );

  	},

  	getBarycoord: function ( point, target ) {

  		return Triangle.getBarycoord( point, this.a, this.b, this.c, target );

  	},

  	containsPoint: function ( point ) {

  		return Triangle.containsPoint( point, this.a, this.b, this.c );

  	},

  	intersectsBox: function ( box ) {

  		return box.intersectsTriangle( this );

  	},

  	closestPointToPoint: function () {

  		var plane = new Plane();
  		var edgeList = [ new Line3(), new Line3(), new Line3() ];
  		var projectedPoint = new Vector3();
  		var closestPoint = new Vector3();

  		return function closestPointToPoint( point, target ) {

  			if ( target === undefined ) {

  				console.warn( 'THREE.Triangle: .closestPointToPoint() target is now required' );
  				target = new Vector3();

  			}

  			var minDistance = Infinity;

  			// project the point onto the plane of the triangle

  			plane.setFromCoplanarPoints( this.a, this.b, this.c );
  			plane.projectPoint( point, projectedPoint );

  			// check if the projection lies within the triangle

  			if ( this.containsPoint( projectedPoint ) === true ) {

  				// if so, this is the closest point

  				target.copy( projectedPoint );

  			} else {

  				// if not, the point falls outside the triangle. the target is the closest point to the triangle's edges or vertices

  				edgeList[ 0 ].set( this.a, this.b );
  				edgeList[ 1 ].set( this.b, this.c );
  				edgeList[ 2 ].set( this.c, this.a );

  				for ( var i = 0; i < edgeList.length; i ++ ) {

  					edgeList[ i ].closestPointToPoint( projectedPoint, true, closestPoint );

  					var distance = projectedPoint.distanceToSquared( closestPoint );

  					if ( distance < minDistance ) {

  						minDistance = distance;

  						target.copy( closestPoint );

  					}

  				}

  			}

  			return target;

  		};

  	}(),

  	equals: function ( triangle ) {

  		return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   * @author mikael emtinger / http://gomo.se/
   * @author jonobr1 / http://jonobr1.com/
   */

  function Mesh( geometry, material ) {

  	Object3D.call( this );

  	this.type = 'Mesh';

  	this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
  	this.material = material !== undefined ? material : new MeshBasicMaterial( { color: Math.random() * 0xffffff } );

  	this.drawMode = TrianglesDrawMode;

  	this.updateMorphTargets();

  }

  Mesh.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Mesh,

  	isMesh: true,

  	setDrawMode: function ( value ) {

  		this.drawMode = value;

  	},

  	copy: function ( source ) {

  		Object3D.prototype.copy.call( this, source );

  		this.drawMode = source.drawMode;

  		if ( source.morphTargetInfluences !== undefined ) {

  			this.morphTargetInfluences = source.morphTargetInfluences.slice();

  		}

  		if ( source.morphTargetDictionary !== undefined ) {

  			this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary );

  		}

  		return this;

  	},

  	updateMorphTargets: function () {

  		var geometry = this.geometry;
  		var m, ml, name;

  		if ( geometry.isBufferGeometry ) {

  			var morphAttributes = geometry.morphAttributes;
  			var keys = Object.keys( morphAttributes );

  			if ( keys.length > 0 ) {

  				var morphAttribute = morphAttributes[ keys[ 0 ] ];

  				if ( morphAttribute !== undefined ) {

  					this.morphTargetInfluences = [];
  					this.morphTargetDictionary = {};

  					for ( m = 0, ml = morphAttribute.length; m < ml; m ++ ) {

  						name = morphAttribute[ m ].name || String( m );

  						this.morphTargetInfluences.push( 0 );
  						this.morphTargetDictionary[ name ] = m;

  					}

  				}

  			}

  		} else {

  			var morphTargets = geometry.morphTargets;

  			if ( morphTargets !== undefined && morphTargets.length > 0 ) {

  				this.morphTargetInfluences = [];
  				this.morphTargetDictionary = {};

  				for ( m = 0, ml = morphTargets.length; m < ml; m ++ ) {

  					name = morphTargets[ m ].name || String( m );

  					this.morphTargetInfluences.push( 0 );
  					this.morphTargetDictionary[ name ] = m;

  				}

  			}

  		}

  	},

  	raycast: ( function () {

  		var inverseMatrix = new Matrix4();
  		var ray = new Ray();
  		var sphere = new Sphere();

  		var vA = new Vector3();
  		var vB = new Vector3();
  		var vC = new Vector3();

  		var tempA = new Vector3();
  		var tempB = new Vector3();
  		var tempC = new Vector3();

  		var uvA = new Vector2();
  		var uvB = new Vector2();
  		var uvC = new Vector2();

  		var barycoord = new Vector3();

  		var intersectionPoint = new Vector3();
  		var intersectionPointWorld = new Vector3();

  		function uvIntersection( point, p1, p2, p3, uv1, uv2, uv3 ) {

  			Triangle.getBarycoord( point, p1, p2, p3, barycoord );

  			uv1.multiplyScalar( barycoord.x );
  			uv2.multiplyScalar( barycoord.y );
  			uv3.multiplyScalar( barycoord.z );

  			uv1.add( uv2 ).add( uv3 );

  			return uv1.clone();

  		}

  		function checkIntersection( object, material, raycaster, ray, pA, pB, pC, point ) {

  			var intersect;

  			if ( material.side === BackSide ) {

  				intersect = ray.intersectTriangle( pC, pB, pA, true, point );

  			} else {

  				intersect = ray.intersectTriangle( pA, pB, pC, material.side !== DoubleSide, point );

  			}

  			if ( intersect === null ) return null;

  			intersectionPointWorld.copy( point );
  			intersectionPointWorld.applyMatrix4( object.matrixWorld );

  			var distance = raycaster.ray.origin.distanceTo( intersectionPointWorld );

  			if ( distance < raycaster.near || distance > raycaster.far ) return null;

  			return {
  				distance: distance,
  				point: intersectionPointWorld.clone(),
  				object: object
  			};

  		}

  		function checkBufferGeometryIntersection( object, raycaster, ray, position, uv, a, b, c ) {

  			vA.fromBufferAttribute( position, a );
  			vB.fromBufferAttribute( position, b );
  			vC.fromBufferAttribute( position, c );

  			var intersection = checkIntersection( object, object.material, raycaster, ray, vA, vB, vC, intersectionPoint );

  			if ( intersection ) {

  				if ( uv ) {

  					uvA.fromBufferAttribute( uv, a );
  					uvB.fromBufferAttribute( uv, b );
  					uvC.fromBufferAttribute( uv, c );

  					intersection.uv = uvIntersection( intersectionPoint, vA, vB, vC, uvA, uvB, uvC );

  				}

  				var face = new Face3( a, b, c );
  				Triangle.getNormal( vA, vB, vC, face.normal );

  				intersection.face = face;

  			}

  			return intersection;

  		}

  		return function raycast( raycaster, intersects ) {

  			var geometry = this.geometry;
  			var material = this.material;
  			var matrixWorld = this.matrixWorld;

  			if ( material === undefined ) return;

  			// Checking boundingSphere distance to ray

  			if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

  			sphere.copy( geometry.boundingSphere );
  			sphere.applyMatrix4( matrixWorld );

  			if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;

  			//

  			inverseMatrix.getInverse( matrixWorld );
  			ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );

  			// Check boundingBox before continuing

  			if ( geometry.boundingBox !== null ) {

  				if ( ray.intersectsBox( geometry.boundingBox ) === false ) return;

  			}

  			var intersection;

  			if ( geometry.isBufferGeometry ) {

  				var a, b, c;
  				var index = geometry.index;
  				var position = geometry.attributes.position;
  				var uv = geometry.attributes.uv;
  				var i, l;

  				if ( index !== null ) {

  					// indexed buffer geometry

  					for ( i = 0, l = index.count; i < l; i += 3 ) {

  						a = index.getX( i );
  						b = index.getX( i + 1 );
  						c = index.getX( i + 2 );

  						intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c );

  						if ( intersection ) {

  							intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics
  							intersects.push( intersection );

  						}

  					}

  				} else if ( position !== undefined ) {

  					// non-indexed buffer geometry

  					for ( i = 0, l = position.count; i < l; i += 3 ) {

  						a = i;
  						b = i + 1;
  						c = i + 2;

  						intersection = checkBufferGeometryIntersection( this, raycaster, ray, position, uv, a, b, c );

  						if ( intersection ) {

  							intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics
  							intersects.push( intersection );

  						}

  					}

  				}

  			} else if ( geometry.isGeometry ) {

  				var fvA, fvB, fvC;
  				var isMultiMaterial = Array.isArray( material );

  				var vertices = geometry.vertices;
  				var faces = geometry.faces;
  				var uvs;

  				var faceVertexUvs = geometry.faceVertexUvs[ 0 ];
  				if ( faceVertexUvs.length > 0 ) uvs = faceVertexUvs;

  				for ( var f = 0, fl = faces.length; f < fl; f ++ ) {

  					var face = faces[ f ];
  					var faceMaterial = isMultiMaterial ? material[ face.materialIndex ] : material;

  					if ( faceMaterial === undefined ) continue;

  					fvA = vertices[ face.a ];
  					fvB = vertices[ face.b ];
  					fvC = vertices[ face.c ];

  					if ( faceMaterial.morphTargets === true ) {

  						var morphTargets = geometry.morphTargets;
  						var morphInfluences = this.morphTargetInfluences;

  						vA.set( 0, 0, 0 );
  						vB.set( 0, 0, 0 );
  						vC.set( 0, 0, 0 );

  						for ( var t = 0, tl = morphTargets.length; t < tl; t ++ ) {

  							var influence = morphInfluences[ t ];

  							if ( influence === 0 ) continue;

  							var targets = morphTargets[ t ].vertices;

  							vA.addScaledVector( tempA.subVectors( targets[ face.a ], fvA ), influence );
  							vB.addScaledVector( tempB.subVectors( targets[ face.b ], fvB ), influence );
  							vC.addScaledVector( tempC.subVectors( targets[ face.c ], fvC ), influence );

  						}

  						vA.add( fvA );
  						vB.add( fvB );
  						vC.add( fvC );

  						fvA = vA;
  						fvB = vB;
  						fvC = vC;

  					}

  					intersection = checkIntersection( this, faceMaterial, raycaster, ray, fvA, fvB, fvC, intersectionPoint );

  					if ( intersection ) {

  						if ( uvs && uvs[ f ] ) {

  							var uvs_f = uvs[ f ];
  							uvA.copy( uvs_f[ 0 ] );
  							uvB.copy( uvs_f[ 1 ] );
  							uvC.copy( uvs_f[ 2 ] );

  							intersection.uv = uvIntersection( intersectionPoint, fvA, fvB, fvC, uvA, uvB, uvC );

  						}

  						intersection.face = face;
  						intersection.faceIndex = f;
  						intersects.push( intersection );

  					}

  				}

  			}

  		};

  	}() ),

  	clone: function () {

  		return new this.constructor( this.geometry, this.material ).copy( this );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLBackground( renderer, state, objects, premultipliedAlpha ) {

  	var clearColor = new Color( 0x000000 );
  	var clearAlpha = 0;

  	var planeCamera, planeMesh;
  	var boxMesh;

  	function render( renderList, scene, camera, forceClear ) {

  		var background = scene.background;

  		if ( background === null ) {

  			setClear( clearColor, clearAlpha );

  		} else if ( background && background.isColor ) {

  			setClear( background, 1 );
  			forceClear = true;

  		}

  		if ( renderer.autoClear || forceClear ) {

  			renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil );

  		}

  		if ( background && background.isCubeTexture ) {

  			if ( boxMesh === undefined ) {

  				boxMesh = new Mesh(
  					new BoxBufferGeometry( 1, 1, 1 ),
  					new ShaderMaterial( {
  						uniforms: ShaderLib.cube.uniforms,
  						vertexShader: ShaderLib.cube.vertexShader,
  						fragmentShader: ShaderLib.cube.fragmentShader,
  						side: BackSide,
  						depthTest: true,
  						depthWrite: false,
  						fog: false
  					} )
  				);

  				boxMesh.geometry.removeAttribute( 'normal' );
  				boxMesh.geometry.removeAttribute( 'uv' );

  				boxMesh.onBeforeRender = function ( renderer, scene, camera ) {

  					this.matrixWorld.copyPosition( camera.matrixWorld );

  				};

  				objects.update( boxMesh );

  			}

  			boxMesh.material.uniforms.tCube.value = background;

  			renderList.push( boxMesh, boxMesh.geometry, boxMesh.material, 0, null );

  		} else if ( background && background.isTexture ) {

  			if ( planeCamera === undefined ) {

  				planeCamera = new OrthographicCamera( - 1, 1, 1, - 1, 0, 1 );

  				planeMesh = new Mesh(
  					new PlaneBufferGeometry( 2, 2 ),
  					new MeshBasicMaterial( { depthTest: false, depthWrite: false, fog: false } )
  				);

  				objects.update( planeMesh );

  			}

  			planeMesh.material.map = background;

  			// TODO Push this to renderList

  			renderer.renderBufferDirect( planeCamera, null, planeMesh.geometry, planeMesh.material, planeMesh, null );

  		}

  	}

  	function setClear( color, alpha ) {

  		state.buffers.color.setClear( color.r, color.g, color.b, alpha, premultipliedAlpha );

  	}

  	return {

  		getClearColor: function () {

  			return clearColor;

  		},
  		setClearColor: function ( color, alpha ) {

  			clearColor.set( color );
  			clearAlpha = alpha !== undefined ? alpha : 1;
  			setClear( clearColor, clearAlpha );

  		},
  		getClearAlpha: function () {

  			return clearAlpha;

  		},
  		setClearAlpha: function ( alpha ) {

  			clearAlpha = alpha;
  			setClear( clearColor, clearAlpha );

  		},
  		render: render

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLBufferRenderer( gl, extensions, info ) {

  	var mode;

  	function setMode( value ) {

  		mode = value;

  	}

  	function render( start, count ) {

  		gl.drawArrays( mode, start, count );

  		info.update( count, mode );

  	}

  	function renderInstances( geometry, start, count ) {

  		var extension = extensions.get( 'ANGLE_instanced_arrays' );

  		if ( extension === null ) {

  			console.error( 'THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
  			return;

  		}

  		extension.drawArraysInstancedANGLE( mode, start, count, geometry.maxInstancedCount );

  		info.update( count, mode, geometry.maxInstancedCount );

  	}

  	//

  	this.setMode = setMode;
  	this.render = render;
  	this.renderInstances = renderInstances;

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLCapabilities( gl, extensions, parameters ) {

  	var maxAnisotropy;

  	function getMaxAnisotropy() {

  		if ( maxAnisotropy !== undefined ) return maxAnisotropy;

  		var extension = extensions.get( 'EXT_texture_filter_anisotropic' );

  		if ( extension !== null ) {

  			maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT );

  		} else {

  			maxAnisotropy = 0;

  		}

  		return maxAnisotropy;

  	}

  	function getMaxPrecision( precision ) {

  		if ( precision === 'highp' ) {

  			if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 &&
  			     gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) {

  				return 'highp';

  			}

  			precision = 'mediump';

  		}

  		if ( precision === 'mediump' ) {

  			if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 &&
  			     gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) {

  				return 'mediump';

  			}

  		}

  		return 'lowp';

  	}

  	var precision = parameters.precision !== undefined ? parameters.precision : 'highp';
  	var maxPrecision = getMaxPrecision( precision );

  	if ( maxPrecision !== precision ) {

  		console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' );
  		precision = maxPrecision;

  	}

  	var logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;

  	var maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS );
  	var maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS );
  	var maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE );
  	var maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE );

  	var maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS );
  	var maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS );
  	var maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS );
  	var maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS );

  	var vertexTextures = maxVertexTextures > 0;
  	var floatFragmentTextures = !! extensions.get( 'OES_texture_float' );
  	var floatVertexTextures = vertexTextures && floatFragmentTextures;

  	return {

  		getMaxAnisotropy: getMaxAnisotropy,
  		getMaxPrecision: getMaxPrecision,

  		precision: precision,
  		logarithmicDepthBuffer: logarithmicDepthBuffer,

  		maxTextures: maxTextures,
  		maxVertexTextures: maxVertexTextures,
  		maxTextureSize: maxTextureSize,
  		maxCubemapSize: maxCubemapSize,

  		maxAttributes: maxAttributes,
  		maxVertexUniforms: maxVertexUniforms,
  		maxVaryings: maxVaryings,
  		maxFragmentUniforms: maxFragmentUniforms,

  		vertexTextures: vertexTextures,
  		floatFragmentTextures: floatFragmentTextures,
  		floatVertexTextures: floatVertexTextures

  	};

  }

  /**
   * @author tschw
   */

  function WebGLClipping() {

  	var scope = this,

  		globalState = null,
  		numGlobalPlanes = 0,
  		localClippingEnabled = false,
  		renderingShadows = false,

  		plane = new Plane(),
  		viewNormalMatrix = new Matrix3(),

  		uniform = { value: null, needsUpdate: false };

  	this.uniform = uniform;
  	this.numPlanes = 0;
  	this.numIntersection = 0;

  	this.init = function ( planes, enableLocalClipping, camera ) {

  		var enabled =
  			planes.length !== 0 ||
  			enableLocalClipping ||
  			// enable state of previous frame - the clipping code has to
  			// run another frame in order to reset the state:
  			numGlobalPlanes !== 0 ||
  			localClippingEnabled;

  		localClippingEnabled = enableLocalClipping;

  		globalState = projectPlanes( planes, camera, 0 );
  		numGlobalPlanes = planes.length;

  		return enabled;

  	};

  	this.beginShadows = function () {

  		renderingShadows = true;
  		projectPlanes( null );

  	};

  	this.endShadows = function () {

  		renderingShadows = false;
  		resetGlobalState();

  	};

  	this.setState = function ( planes, clipIntersection, clipShadows, camera, cache, fromCache ) {

  		if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) {

  			// there's no local clipping

  			if ( renderingShadows ) {

  				// there's no global clipping

  				projectPlanes( null );

  			} else {

  				resetGlobalState();

  			}

  		} else {

  			var nGlobal = renderingShadows ? 0 : numGlobalPlanes,
  				lGlobal = nGlobal * 4,

  				dstArray = cache.clippingState || null;

  			uniform.value = dstArray; // ensure unique state

  			dstArray = projectPlanes( planes, camera, lGlobal, fromCache );

  			for ( var i = 0; i !== lGlobal; ++ i ) {

  				dstArray[ i ] = globalState[ i ];

  			}

  			cache.clippingState = dstArray;
  			this.numIntersection = clipIntersection ? this.numPlanes : 0;
  			this.numPlanes += nGlobal;

  		}


  	};

  	function resetGlobalState() {

  		if ( uniform.value !== globalState ) {

  			uniform.value = globalState;
  			uniform.needsUpdate = numGlobalPlanes > 0;

  		}

  		scope.numPlanes = numGlobalPlanes;
  		scope.numIntersection = 0;

  	}

  	function projectPlanes( planes, camera, dstOffset, skipTransform ) {

  		var nPlanes = planes !== null ? planes.length : 0,
  			dstArray = null;

  		if ( nPlanes !== 0 ) {

  			dstArray = uniform.value;

  			if ( skipTransform !== true || dstArray === null ) {

  				var flatSize = dstOffset + nPlanes * 4,
  					viewMatrix = camera.matrixWorldInverse;

  				viewNormalMatrix.getNormalMatrix( viewMatrix );

  				if ( dstArray === null || dstArray.length < flatSize ) {

  					dstArray = new Float32Array( flatSize );

  				}

  				for ( var i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) {

  					plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix );

  					plane.normal.toArray( dstArray, i4 );
  					dstArray[ i4 + 3 ] = plane.constant;

  				}

  			}

  			uniform.value = dstArray;
  			uniform.needsUpdate = true;

  		}

  		scope.numPlanes = nPlanes;

  		return dstArray;

  	}

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLExtensions( gl ) {

  	var extensions = {};

  	return {

  		get: function ( name ) {

  			if ( extensions[ name ] !== undefined ) {

  				return extensions[ name ];

  			}

  			var extension;

  			switch ( name ) {

  				case 'WEBGL_depth_texture':
  					extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' );
  					break;

  				case 'EXT_texture_filter_anisotropic':
  					extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' );
  					break;

  				case 'WEBGL_compressed_texture_s3tc':
  					extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' );
  					break;

  				case 'WEBGL_compressed_texture_pvrtc':
  					extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' );
  					break;

  				default:
  					extension = gl.getExtension( name );

  			}

  			if ( extension === null ) {

  				console.warn( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' );

  			}

  			extensions[ name ] = extension;

  			return extension;

  		}

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLGeometries( gl, attributes, info ) {

  	var geometries = {};
  	var wireframeAttributes = {};

  	function onGeometryDispose( event ) {

  		var geometry = event.target;
  		var buffergeometry = geometries[ geometry.id ];

  		if ( buffergeometry.index !== null ) {

  			attributes.remove( buffergeometry.index );

  		}

  		for ( var name in buffergeometry.attributes ) {

  			attributes.remove( buffergeometry.attributes[ name ] );

  		}

  		geometry.removeEventListener( 'dispose', onGeometryDispose );

  		delete geometries[ geometry.id ];

  		// TODO Remove duplicate code

  		var attribute = wireframeAttributes[ geometry.id ];

  		if ( attribute ) {

  			attributes.remove( attribute );
  			delete wireframeAttributes[ geometry.id ];

  		}

  		attribute = wireframeAttributes[ buffergeometry.id ];

  		if ( attribute ) {

  			attributes.remove( attribute );
  			delete wireframeAttributes[ buffergeometry.id ];

  		}

  		//

  		info.memory.geometries --;

  	}

  	function get( object, geometry ) {

  		var buffergeometry = geometries[ geometry.id ];

  		if ( buffergeometry ) return buffergeometry;

  		geometry.addEventListener( 'dispose', onGeometryDispose );

  		if ( geometry.isBufferGeometry ) {

  			buffergeometry = geometry;

  		} else if ( geometry.isGeometry ) {

  			if ( geometry._bufferGeometry === undefined ) {

  				geometry._bufferGeometry = new BufferGeometry().setFromObject( object );

  			}

  			buffergeometry = geometry._bufferGeometry;

  		}

  		geometries[ geometry.id ] = buffergeometry;

  		info.memory.geometries ++;

  		return buffergeometry;

  	}

  	function update( geometry ) {

  		var index = geometry.index;
  		var geometryAttributes = geometry.attributes;

  		if ( index !== null ) {

  			attributes.update( index, gl.ELEMENT_ARRAY_BUFFER );

  		}

  		for ( var name in geometryAttributes ) {

  			attributes.update( geometryAttributes[ name ], gl.ARRAY_BUFFER );

  		}

  		// morph targets

  		var morphAttributes = geometry.morphAttributes;

  		for ( var name in morphAttributes ) {

  			var array = morphAttributes[ name ];

  			for ( var i = 0, l = array.length; i < l; i ++ ) {

  				attributes.update( array[ i ], gl.ARRAY_BUFFER );

  			}

  		}

  	}

  	function getWireframeAttribute( geometry ) {

  		var attribute = wireframeAttributes[ geometry.id ];

  		if ( attribute ) return attribute;

  		var indices = [];

  		var geometryIndex = geometry.index;
  		var geometryAttributes = geometry.attributes;

  		// console.time( 'wireframe' );

  		if ( geometryIndex !== null ) {

  			var array = geometryIndex.array;

  			for ( var i = 0, l = array.length; i < l; i += 3 ) {

  				var a = array[ i + 0 ];
  				var b = array[ i + 1 ];
  				var c = array[ i + 2 ];

  				indices.push( a, b, b, c, c, a );

  			}

  		} else {

  			var array = geometryAttributes.position.array;

  			for ( var i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) {

  				var a = i + 0;
  				var b = i + 1;
  				var c = i + 2;

  				indices.push( a, b, b, c, c, a );

  			}

  		}

  		// console.timeEnd( 'wireframe' );

  		attribute = new ( arrayMax( indices ) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 );

  		attributes.update( attribute, gl.ELEMENT_ARRAY_BUFFER );

  		wireframeAttributes[ geometry.id ] = attribute;

  		return attribute;

  	}

  	return {

  		get: get,
  		update: update,

  		getWireframeAttribute: getWireframeAttribute

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLIndexedBufferRenderer( gl, extensions, info ) {

  	var mode;

  	function setMode( value ) {

  		mode = value;

  	}

  	var type, bytesPerElement;

  	function setIndex( value ) {

  		type = value.type;
  		bytesPerElement = value.bytesPerElement;

  	}

  	function render( start, count ) {

  		gl.drawElements( mode, count, type, start * bytesPerElement );

  		info.update( count, mode );

  	}

  	function renderInstances( geometry, start, count ) {

  		var extension = extensions.get( 'ANGLE_instanced_arrays' );

  		if ( extension === null ) {

  			console.error( 'THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
  			return;

  		}

  		extension.drawElementsInstancedANGLE( mode, count, type, start * bytesPerElement, geometry.maxInstancedCount );

  		info.update( count, mode, geometry.maxInstancedCount );

  	}

  	//

  	this.setMode = setMode;
  	this.setIndex = setIndex;
  	this.render = render;
  	this.renderInstances = renderInstances;

  }

  /**
   * @author Mugen87 / https://github.com/Mugen87
   */

  function WebGLInfo( gl ) {

  	var memory = {
  		geometries: 0,
  		textures: 0
  	};

  	var render = {
  		frame: 0,
  		calls: 0,
  		triangles: 0,
  		points: 0,
  		lines: 0
  	};

  	function update( count, mode, instanceCount ) {

  		instanceCount = instanceCount || 1;

  		render.calls ++;

  		switch ( mode ) {

  			case gl.TRIANGLES:
  				render.triangles += instanceCount * ( count / 3 );
  				break;

  			case gl.TRIANGLE_STRIP:
  			case gl.TRIANGLE_FAN:
  				render.triangles += instanceCount * ( count - 2 );
  				break;

  			case gl.LINES:
  				render.lines += instanceCount * ( count / 2 );
  				break;

  			case gl.LINE_STRIP:
  				render.lines += instanceCount * ( count - 1 );
  				break;

  			case gl.LINE_LOOP:
  				render.lines += instanceCount * count;
  				break;

  			case gl.POINTS:
  				render.points += instanceCount * count;
  				break;

  			default:
  				console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode );
  				break;

  		}

  	}

  	function reset() {

  		render.frame ++;
  		render.calls = 0;
  		render.triangles = 0;
  		render.points = 0;
  		render.lines = 0;

  	}

  	return {
  		memory: memory,
  		render: render,
  		programs: null,
  		autoReset: true,
  		reset: reset,
  		update: update
  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function absNumericalSort( a, b ) {

  	return Math.abs( b[ 1 ] ) - Math.abs( a[ 1 ] );

  }

  function WebGLMorphtargets( gl ) {

  	var influencesList = {};
  	var morphInfluences = new Float32Array( 8 );

  	function update( object, geometry, material, program ) {

  		var objectInfluences = object.morphTargetInfluences;

  		var length = objectInfluences.length;

  		var influences = influencesList[ geometry.id ];

  		if ( influences === undefined ) {

  			// initialise list

  			influences = [];

  			for ( var i = 0; i < length; i ++ ) {

  				influences[ i ] = [ i, 0 ];

  			}

  			influencesList[ geometry.id ] = influences;

  		}

  		var morphTargets = material.morphTargets && geometry.morphAttributes.position;
  		var morphNormals = material.morphNormals && geometry.morphAttributes.normal;

  		// Remove current morphAttributes

  		for ( var i = 0; i < length; i ++ ) {

  			var influence = influences[ i ];

  			if ( influence[ 1 ] !== 0 ) {

  				if ( morphTargets ) geometry.removeAttribute( 'morphTarget' + i );
  				if ( morphNormals ) geometry.removeAttribute( 'morphNormal' + i );

  			}

  		}

  		// Collect influences

  		for ( var i = 0; i < length; i ++ ) {

  			var influence = influences[ i ];

  			influence[ 0 ] = i;
  			influence[ 1 ] = objectInfluences[ i ];

  		}

  		influences.sort( absNumericalSort );

  		// Add morphAttributes

  		for ( var i = 0; i < 8; i ++ ) {

  			var influence = influences[ i ];

  			if ( influence ) {

  				var index = influence[ 0 ];
  				var value = influence[ 1 ];

  				if ( value ) {

  					if ( morphTargets ) geometry.addAttribute( 'morphTarget' + i, morphTargets[ index ] );
  					if ( morphNormals ) geometry.addAttribute( 'morphNormal' + i, morphNormals[ index ] );

  					morphInfluences[ i ] = value;
  					continue;

  				}

  			}

  			morphInfluences[ i ] = 0;

  		}

  		program.getUniforms().setValue( gl, 'morphTargetInfluences', morphInfluences );

  	}

  	return {

  		update: update

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLObjects( geometries, info ) {

  	var updateList = {};

  	function update( object ) {

  		var frame = info.render.frame;

  		var geometry = object.geometry;
  		var buffergeometry = geometries.get( object, geometry );

  		// Update once per frame

  		if ( updateList[ buffergeometry.id ] !== frame ) {

  			if ( geometry.isGeometry ) {

  				buffergeometry.updateFromObject( object );

  			}

  			geometries.update( buffergeometry );

  			updateList[ buffergeometry.id ] = frame;

  		}

  		return buffergeometry;

  	}

  	function dispose() {

  		updateList = {};

  	}

  	return {

  		update: update,
  		dispose: dispose

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function CubeTexture( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {

  	images = images !== undefined ? images : [];
  	mapping = mapping !== undefined ? mapping : CubeReflectionMapping;

  	Texture.call( this, images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

  	this.flipY = false;

  }

  CubeTexture.prototype = Object.create( Texture.prototype );
  CubeTexture.prototype.constructor = CubeTexture;

  CubeTexture.prototype.isCubeTexture = true;

  Object.defineProperty( CubeTexture.prototype, 'images', {

  	get: function () {

  		return this.image;

  	},

  	set: function ( value ) {

  		this.image = value;

  	}

  } );

  /**
   * @author tschw
   *
   * Uniforms of a program.
   * Those form a tree structure with a special top-level container for the root,
   * which you get by calling 'new WebGLUniforms( gl, program, renderer )'.
   *
   *
   * Properties of inner nodes including the top-level container:
   *
   * .seq - array of nested uniforms
   * .map - nested uniforms by name
   *
   *
   * Methods of all nodes except the top-level container:
   *
   * .setValue( gl, value, [renderer] )
   *
   * 		uploads a uniform value(s)
   *  	the 'renderer' parameter is needed for sampler uniforms
   *
   *
   * Static methods of the top-level container (renderer factorizations):
   *
   * .upload( gl, seq, values, renderer )
   *
   * 		sets uniforms in 'seq' to 'values[id].value'
   *
   * .seqWithValue( seq, values ) : filteredSeq
   *
   * 		filters 'seq' entries with corresponding entry in values
   *
   *
   * Methods of the top-level container (renderer factorizations):
   *
   * .setValue( gl, name, value )
   *
   * 		sets uniform with  name 'name' to 'value'
   *
   * .set( gl, obj, prop )
   *
   * 		sets uniform from object and property with same name than uniform
   *
   * .setOptional( gl, obj, prop )
   *
   * 		like .set for an optional property of the object
   *
   */

  var emptyTexture = new Texture();
  var emptyCubeTexture = new CubeTexture();

  // --- Base for inner nodes (including the root) ---

  function UniformContainer() {

  	this.seq = [];
  	this.map = {};

  }

  // --- Utilities ---

  // Array Caches (provide typed arrays for temporary by size)

  var arrayCacheF32 = [];
  var arrayCacheI32 = [];

  // Float32Array caches used for uploading Matrix uniforms

  var mat4array = new Float32Array( 16 );
  var mat3array = new Float32Array( 9 );
  var mat2array = new Float32Array( 4 );

  // Flattening for arrays of vectors and matrices

  function flatten( array, nBlocks, blockSize ) {

  	var firstElem = array[ 0 ];

  	if ( firstElem <= 0 || firstElem > 0 ) return array;
  	// unoptimized: ! isNaN( firstElem )
  	// see http://jacksondunstan.com/articles/983

  	var n = nBlocks * blockSize,
  		r = arrayCacheF32[ n ];

  	if ( r === undefined ) {

  		r = new Float32Array( n );
  		arrayCacheF32[ n ] = r;

  	}

  	if ( nBlocks !== 0 ) {

  		firstElem.toArray( r, 0 );

  		for ( var i = 1, offset = 0; i !== nBlocks; ++ i ) {

  			offset += blockSize;
  			array[ i ].toArray( r, offset );

  		}

  	}

  	return r;

  }

  function arraysEqual( a, b ) {

  	if ( a.length !== b.length ) return false;

  	for ( var i = 0, l = a.length; i < l; i ++ ) {

  		if ( a[ i ] !== b[ i ] ) return false;

  	}

  	return true;

  }

  function copyArray( a, b ) {

  	for ( var i = 0, l = b.length; i < l; i ++ ) {

  		a[ i ] = b[ i ];

  	}

  }

  // Texture unit allocation

  function allocTexUnits( renderer, n ) {

  	var r = arrayCacheI32[ n ];

  	if ( r === undefined ) {

  		r = new Int32Array( n );
  		arrayCacheI32[ n ] = r;

  	}

  	for ( var i = 0; i !== n; ++ i )
  		r[ i ] = renderer.allocTextureUnit();

  	return r;

  }

  // --- Setters ---

  // Note: Defining these methods externally, because they come in a bunch
  // and this way their names minify.

  // Single scalar

  function setValue1f( gl, v ) {

  	var cache = this.cache;

  	if ( cache[ 0 ] === v ) return;

  	gl.uniform1f( this.addr, v );

  	cache[ 0 ] = v;

  }

  function setValue1i( gl, v ) {

  	var cache = this.cache;

  	if ( cache[ 0 ] === v ) return;

  	gl.uniform1i( this.addr, v );

  	cache[ 0 ] = v;

  }

  // Single float vector (from flat array or THREE.VectorN)

  function setValue2fv( gl, v ) {

  	var cache = this.cache;

  	if ( v.x !== undefined ) {

  		if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) {

  			gl.uniform2f( this.addr, v.x, v.y );

  			cache[ 0 ] = v.x;
  			cache[ 1 ] = v.y;

  		}

  	} else {

  		if ( arraysEqual( cache, v ) ) return;

  		gl.uniform2fv( this.addr, v );

  		copyArray( cache, v );

  	}

  }

  function setValue3fv( gl, v ) {

  	var cache = this.cache;

  	if ( v.x !== undefined ) {

  		if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) {

  			gl.uniform3f( this.addr, v.x, v.y, v.z );

  			cache[ 0 ] = v.x;
  			cache[ 1 ] = v.y;
  			cache[ 2 ] = v.z;

  		}

  	} else if ( v.r !== undefined ) {

  		if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) {

  			gl.uniform3f( this.addr, v.r, v.g, v.b );

  			cache[ 0 ] = v.r;
  			cache[ 1 ] = v.g;
  			cache[ 2 ] = v.b;

  		}

  	} else {

  		if ( arraysEqual( cache, v ) ) return;

  		gl.uniform3fv( this.addr, v );

  		copyArray( cache, v );

  	}

  }

  function setValue4fv( gl, v ) {

  	var cache = this.cache;

  	if ( v.x !== undefined ) {

  		if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) {

  			gl.uniform4f( this.addr, v.x, v.y, v.z, v.w );

  			cache[ 0 ] = v.x;
  			cache[ 1 ] = v.y;
  			cache[ 2 ] = v.z;
  			cache[ 3 ] = v.w;

  		}

  	} else {

  		if ( arraysEqual( cache, v ) ) return;

  		gl.uniform4fv( this.addr, v );

  		copyArray( cache, v );

  	}

  }

  // Single matrix (from flat array or MatrixN)

  function setValue2fm( gl, v ) {

  	var cache = this.cache;
  	var elements = v.elements;

  	if ( elements === undefined ) {

  		if ( arraysEqual( cache, v ) ) return;

  		gl.uniformMatrix2fv( this.addr, false, v );

  		copyArray( cache, v );

  	} else {

  		if ( arraysEqual( cache, elements ) ) return;

  		mat2array.set( elements );

  		gl.uniformMatrix2fv( this.addr, false, mat2array );

  		copyArray( cache, elements );

  	}

  }

  function setValue3fm( gl, v ) {

  	var cache = this.cache;
  	var elements = v.elements;

  	if ( elements === undefined ) {

  		if ( arraysEqual( cache, v ) ) return;

  		gl.uniformMatrix3fv( this.addr, false, v );

  		copyArray( cache, v );

  	} else {

  		if ( arraysEqual( cache, elements ) ) return;

  		mat3array.set( elements );

  		gl.uniformMatrix3fv( this.addr, false, mat3array );

  		copyArray( cache, elements );

  	}

  }

  function setValue4fm( gl, v ) {

  	var cache = this.cache;
  	var elements = v.elements;

  	if ( elements === undefined ) {

  		if ( arraysEqual( cache, v ) ) return;

  		gl.uniformMatrix4fv( this.addr, false, v );

  		copyArray( cache, v );

  	} else {

  		if ( arraysEqual( cache, elements ) ) return;

  		mat4array.set( elements );

  		gl.uniformMatrix4fv( this.addr, false, mat4array );

  		copyArray( cache, elements );

  	}

  }

  // Single texture (2D / Cube)

  function setValueT1( gl, v, renderer ) {

  	var cache = this.cache;
  	var unit = renderer.allocTextureUnit();

  	if ( cache[ 0 ] !== unit ) {

  		gl.uniform1i( this.addr, unit );
  		cache[ 0 ] = unit;

  	}

  	renderer.setTexture2D( v || emptyTexture, unit );

  }

  function setValueT6( gl, v, renderer ) {

  	var cache = this.cache;
  	var unit = renderer.allocTextureUnit();

  	if ( cache[ 0 ] !== unit ) {

  		gl.uniform1i( this.addr, unit );
  		cache[ 0 ] = unit;

  	}

  	renderer.setTextureCube( v || emptyCubeTexture, unit );

  }

  // Integer / Boolean vectors or arrays thereof (always flat arrays)

  function setValue2iv( gl, v ) {

  	var cache = this.cache;

  	if ( arraysEqual( cache, v ) ) return;

  	gl.uniform2iv( this.addr, v );

  	copyArray( cache, v );

  }

  function setValue3iv( gl, v ) {

  	var cache = this.cache;

  	if ( arraysEqual( cache, v ) ) return;

  	gl.uniform3iv( this.addr, v );

  	copyArray( cache, v );

  }

  function setValue4iv( gl, v ) {

  	var cache = this.cache;

  	if ( arraysEqual( cache, v ) ) return;

  	gl.uniform4iv( this.addr, v );

  	copyArray( cache, v );

  }

  // Helper to pick the right setter for the singular case

  function getSingularSetter( type ) {

  	switch ( type ) {

  		case 0x1406: return setValue1f; // FLOAT
  		case 0x8b50: return setValue2fv; // _VEC2
  		case 0x8b51: return setValue3fv; // _VEC3
  		case 0x8b52: return setValue4fv; // _VEC4

  		case 0x8b5a: return setValue2fm; // _MAT2
  		case 0x8b5b: return setValue3fm; // _MAT3
  		case 0x8b5c: return setValue4fm; // _MAT4

  		case 0x8b5e: case 0x8d66: return setValueT1; // SAMPLER_2D, SAMPLER_EXTERNAL_OES
  		case 0x8b60: return setValueT6; // SAMPLER_CUBE

  		case 0x1404: case 0x8b56: return setValue1i; // INT, BOOL
  		case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
  		case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
  		case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4

  	}

  }

  // Array of scalars

  function setValue1fv( gl, v ) {

  	var cache = this.cache;

  	if ( arraysEqual( cache, v ) ) return;

  	gl.uniform1fv( this.addr, v );

  	copyArray( cache, v );

  }
  function setValue1iv( gl, v ) {

  	var cache = this.cache;

  	if ( arraysEqual( cache, v ) ) return;

  	gl.uniform1iv( this.addr, v );

  	copyArray( cache, v );

  }

  // Array of vectors (flat or from THREE classes)

  function setValueV2a( gl, v ) {

  	var cache = this.cache;
  	var data = flatten( v, this.size, 2 );

  	if ( arraysEqual( cache, data ) ) return;

  	gl.uniform2fv( this.addr, data );

  	this.updateCache( data );

  }

  function setValueV3a( gl, v ) {

  	var cache = this.cache;
  	var data = flatten( v, this.size, 3 );

  	if ( arraysEqual( cache, data ) ) return;

  	gl.uniform3fv( this.addr, data );

  	this.updateCache( data );

  }

  function setValueV4a( gl, v ) {

  	var cache = this.cache;
  	var data = flatten( v, this.size, 4 );

  	if ( arraysEqual( cache, data ) ) return;

  	gl.uniform4fv( this.addr, data );

  	this.updateCache( data );

  }

  // Array of matrices (flat or from THREE clases)

  function setValueM2a( gl, v ) {

  	var cache = this.cache;
  	var data = flatten( v, this.size, 4 );

  	if ( arraysEqual( cache, data ) ) return;

  	gl.uniformMatrix2fv( this.addr, false, data );

  	this.updateCache( data );

  }

  function setValueM3a( gl, v ) {

  	var cache = this.cache;
  	var data = flatten( v, this.size, 9 );

  	if ( arraysEqual( cache, data ) ) return;

  	gl.uniformMatrix3fv( this.addr, false, data );

  	this.updateCache( data );

  }

  function setValueM4a( gl, v ) {

  	var cache = this.cache;
  	var data = flatten( v, this.size, 16 );

  	if ( arraysEqual( cache, data ) ) return;

  	gl.uniformMatrix4fv( this.addr, false, data );

  	this.updateCache( data );

  }

  // Array of textures (2D / Cube)

  function setValueT1a( gl, v, renderer ) {

  	var cache = this.cache;
  	var n = v.length;

  	var units = allocTexUnits( renderer, n );

  	if ( arraysEqual( cache, units ) === false ) {

  		gl.uniform1iv( this.addr, units );
  		copyArray( cache, units );

  	}

  	for ( var i = 0; i !== n; ++ i ) {

  		renderer.setTexture2D( v[ i ] || emptyTexture, units[ i ] );

  	}

  }

  function setValueT6a( gl, v, renderer ) {

  	var cache = this.cache;
  	var n = v.length;

  	var units = allocTexUnits( renderer, n );

  	if ( arraysEqual( cache, units ) === false ) {

  		gl.uniform1iv( this.addr, units );
  		copyArray( cache, units );

  	}

  	for ( var i = 0; i !== n; ++ i ) {

  		renderer.setTextureCube( v[ i ] || emptyCubeTexture, units[ i ] );

  	}

  }

  // Helper to pick the right setter for a pure (bottom-level) array

  function getPureArraySetter( type ) {

  	switch ( type ) {

  		case 0x1406: return setValue1fv; // FLOAT
  		case 0x8b50: return setValueV2a; // _VEC2
  		case 0x8b51: return setValueV3a; // _VEC3
  		case 0x8b52: return setValueV4a; // _VEC4

  		case 0x8b5a: return setValueM2a; // _MAT2
  		case 0x8b5b: return setValueM3a; // _MAT3
  		case 0x8b5c: return setValueM4a; // _MAT4

  		case 0x8b5e: return setValueT1a; // SAMPLER_2D
  		case 0x8b60: return setValueT6a; // SAMPLER_CUBE

  		case 0x1404: case 0x8b56: return setValue1iv; // INT, BOOL
  		case 0x8b53: case 0x8b57: return setValue2iv; // _VEC2
  		case 0x8b54: case 0x8b58: return setValue3iv; // _VEC3
  		case 0x8b55: case 0x8b59: return setValue4iv; // _VEC4

  	}

  }

  // --- Uniform Classes ---

  function SingleUniform( id, activeInfo, addr ) {

  	this.id = id;
  	this.addr = addr;
  	this.cache = [];
  	this.setValue = getSingularSetter( activeInfo.type );

  	// this.path = activeInfo.name; // DEBUG

  }

  function PureArrayUniform( id, activeInfo, addr ) {

  	this.id = id;
  	this.addr = addr;
  	this.cache = [];
  	this.size = activeInfo.size;
  	this.setValue = getPureArraySetter( activeInfo.type );

  	// this.path = activeInfo.name; // DEBUG

  }

  PureArrayUniform.prototype.updateCache = function ( data ) {

  	var cache = this.cache;

  	if ( data instanceof Float32Array && cache.length !== data.length ) {

  		this.cache = new Float32Array( data.length );

  	}

  	copyArray( cache, data );

  };

  function StructuredUniform( id ) {

  	this.id = id;

  	UniformContainer.call( this ); // mix-in

  }

  StructuredUniform.prototype.setValue = function ( gl, value ) {

  	// Note: Don't need an extra 'renderer' parameter, since samplers
  	// are not allowed in structured uniforms.

  	var seq = this.seq;

  	for ( var i = 0, n = seq.length; i !== n; ++ i ) {

  		var u = seq[ i ];
  		u.setValue( gl, value[ u.id ] );

  	}

  };

  // --- Top-level ---

  // Parser - builds up the property tree from the path strings

  var RePathPart = /([\w\d_]+)(\])?(\[|\.)?/g;

  // extracts
  // 	- the identifier (member name or array index)
  //  - followed by an optional right bracket (found when array index)
  //  - followed by an optional left bracket or dot (type of subscript)
  //
  // Note: These portions can be read in a non-overlapping fashion and
  // allow straightforward parsing of the hierarchy that WebGL encodes
  // in the uniform names.

  function addUniform( container, uniformObject ) {

  	container.seq.push( uniformObject );
  	container.map[ uniformObject.id ] = uniformObject;

  }

  function parseUniform( activeInfo, addr, container ) {

  	var path = activeInfo.name,
  		pathLength = path.length;

  	// reset RegExp object, because of the early exit of a previous run
  	RePathPart.lastIndex = 0;

  	while ( true ) {

  		var match = RePathPart.exec( path ),
  			matchEnd = RePathPart.lastIndex,

  			id = match[ 1 ],
  			idIsIndex = match[ 2 ] === ']',
  			subscript = match[ 3 ];

  		if ( idIsIndex ) id = id | 0; // convert to integer

  		if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) {

  			// bare name or "pure" bottom-level array "[0]" suffix

  			addUniform( container, subscript === undefined ?
  				new SingleUniform( id, activeInfo, addr ) :
  				new PureArrayUniform( id, activeInfo, addr ) );

  			break;

  		} else {

  			// step into inner node / create it in case it doesn't exist

  			var map = container.map, next = map[ id ];

  			if ( next === undefined ) {

  				next = new StructuredUniform( id );
  				addUniform( container, next );

  			}

  			container = next;

  		}

  	}

  }

  // Root Container

  function WebGLUniforms( gl, program, renderer ) {

  	UniformContainer.call( this );

  	this.renderer = renderer;

  	var n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS );

  	for ( var i = 0; i < n; ++ i ) {

  		var info = gl.getActiveUniform( program, i ),
  			addr = gl.getUniformLocation( program, info.name );

  		parseUniform( info, addr, this );

  	}

  }

  WebGLUniforms.prototype.setValue = function ( gl, name, value ) {

  	var u = this.map[ name ];

  	if ( u !== undefined ) u.setValue( gl, value, this.renderer );

  };

  WebGLUniforms.prototype.setOptional = function ( gl, object, name ) {

  	var v = object[ name ];

  	if ( v !== undefined ) this.setValue( gl, name, v );

  };


  // Static interface

  WebGLUniforms.upload = function ( gl, seq, values, renderer ) {

  	for ( var i = 0, n = seq.length; i !== n; ++ i ) {

  		var u = seq[ i ],
  			v = values[ u.id ];

  		if ( v.needsUpdate !== false ) {

  			// note: always updating when .needsUpdate is undefined
  			u.setValue( gl, v.value, renderer );

  		}

  	}

  };

  WebGLUniforms.seqWithValue = function ( seq, values ) {

  	var r = [];

  	for ( var i = 0, n = seq.length; i !== n; ++ i ) {

  		var u = seq[ i ];
  		if ( u.id in values ) r.push( u );

  	}

  	return r;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function addLineNumbers( string ) {

  	var lines = string.split( '\n' );

  	for ( var i = 0; i < lines.length; i ++ ) {

  		lines[ i ] = ( i + 1 ) + ': ' + lines[ i ];

  	}

  	return lines.join( '\n' );

  }

  function WebGLShader( gl, type, string ) {

  	var shader = gl.createShader( type );

  	gl.shaderSource( shader, string );
  	gl.compileShader( shader );

  	if ( gl.getShaderParameter( shader, gl.COMPILE_STATUS ) === false ) {

  		console.error( 'THREE.WebGLShader: Shader couldn\'t compile.' );

  	}

  	if ( gl.getShaderInfoLog( shader ) !== '' ) {

  		console.warn( 'THREE.WebGLShader: gl.getShaderInfoLog()', type === gl.VERTEX_SHADER ? 'vertex' : 'fragment', gl.getShaderInfoLog( shader ), addLineNumbers( string ) );

  	}

  	// --enable-privileged-webgl-extension
  	// console.log( type, gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );

  	return shader;

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  var programIdCount = 0;

  function getEncodingComponents( encoding ) {

  	switch ( encoding ) {

  		case LinearEncoding:
  			return [ 'Linear', '( value )' ];
  		case sRGBEncoding:
  			return [ 'sRGB', '( value )' ];
  		case RGBEEncoding:
  			return [ 'RGBE', '( value )' ];
  		case RGBM7Encoding:
  			return [ 'RGBM', '( value, 7.0 )' ];
  		case RGBM16Encoding:
  			return [ 'RGBM', '( value, 16.0 )' ];
  		case RGBDEncoding:
  			return [ 'RGBD', '( value, 256.0 )' ];
  		case GammaEncoding:
  			return [ 'Gamma', '( value, float( GAMMA_FACTOR ) )' ];
  		default:
  			throw new Error( 'unsupported encoding: ' + encoding );

  	}

  }

  function getTexelDecodingFunction( functionName, encoding ) {

  	var components = getEncodingComponents( encoding );
  	return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[ 0 ] + 'ToLinear' + components[ 1 ] + '; }';

  }

  function getTexelEncodingFunction( functionName, encoding ) {

  	var components = getEncodingComponents( encoding );
  	return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[ 0 ] + components[ 1 ] + '; }';

  }

  function getToneMappingFunction( functionName, toneMapping ) {

  	var toneMappingName;

  	switch ( toneMapping ) {

  		case LinearToneMapping:
  			toneMappingName = 'Linear';
  			break;

  		case ReinhardToneMapping:
  			toneMappingName = 'Reinhard';
  			break;

  		case Uncharted2ToneMapping:
  			toneMappingName = 'Uncharted2';
  			break;

  		case CineonToneMapping:
  			toneMappingName = 'OptimizedCineon';
  			break;

  		default:
  			throw new Error( 'unsupported toneMapping: ' + toneMapping );

  	}

  	return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';

  }

  function generateExtensions( extensions, parameters, rendererExtensions ) {

  	extensions = extensions || {};

  	var chunks = [
  		( extensions.derivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.normalMap || parameters.flatShading ) ? '#extension GL_OES_standard_derivatives : enable' : '',
  		( extensions.fragDepth || parameters.logarithmicDepthBuffer ) && rendererExtensions.get( 'EXT_frag_depth' ) ? '#extension GL_EXT_frag_depth : enable' : '',
  		( extensions.drawBuffers ) && rendererExtensions.get( 'WEBGL_draw_buffers' ) ? '#extension GL_EXT_draw_buffers : require' : '',
  		( extensions.shaderTextureLOD || parameters.envMap ) && rendererExtensions.get( 'EXT_shader_texture_lod' ) ? '#extension GL_EXT_shader_texture_lod : enable' : ''
  	];

  	return chunks.filter( filterEmptyLine ).join( '\n' );

  }

  function generateDefines( defines ) {

  	var chunks = [];

  	for ( var name in defines ) {

  		var value = defines[ name ];

  		if ( value === false ) continue;

  		chunks.push( '#define ' + name + ' ' + value );

  	}

  	return chunks.join( '\n' );

  }

  function fetchAttributeLocations( gl, program ) {

  	var attributes = {};

  	var n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES );

  	for ( var i = 0; i < n; i ++ ) {

  		var info = gl.getActiveAttrib( program, i );
  		var name = info.name;

  		// console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );

  		attributes[ name ] = gl.getAttribLocation( program, name );

  	}

  	return attributes;

  }

  function filterEmptyLine( string ) {

  	return string !== '';

  }

  function replaceLightNums( string, parameters ) {

  	return string
  		.replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights )
  		.replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights )
  		.replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights )
  		.replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights )
  		.replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights );

  }

  function replaceClippingPlaneNums( string, parameters ) {

  	return string
  		.replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes )
  		.replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) );

  }

  function parseIncludes( string ) {

  	var pattern = /^[ \t]*#include +<([\w\d.]+)>/gm;

  	function replace( match, include ) {

  		var replace = ShaderChunk[ include ];

  		if ( replace === undefined ) {

  			throw new Error( 'Can not resolve #include <' + include + '>' );

  		}

  		return parseIncludes( replace );

  	}

  	return string.replace( pattern, replace );

  }

  function unrollLoops( string ) {

  	var pattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;

  	function replace( match, start, end, snippet ) {

  		var unroll = '';

  		for ( var i = parseInt( start ); i < parseInt( end ); i ++ ) {

  			unroll += snippet.replace( /\[ i \]/g, '[ ' + i + ' ]' );

  		}

  		return unroll;

  	}

  	return string.replace( pattern, replace );

  }

  function WebGLProgram( renderer, extensions, code, material, shader, parameters ) {

  	var gl = renderer.context;

  	var defines = material.defines;

  	var vertexShader = shader.vertexShader;
  	var fragmentShader = shader.fragmentShader;

  	var shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';

  	if ( parameters.shadowMapType === PCFShadowMap ) {

  		shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';

  	} else if ( parameters.shadowMapType === PCFSoftShadowMap ) {

  		shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';

  	}

  	var envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
  	var envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
  	var envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';

  	if ( parameters.envMap ) {

  		switch ( material.envMap.mapping ) {

  			case CubeReflectionMapping:
  			case CubeRefractionMapping:
  				envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
  				break;

  			case CubeUVReflectionMapping:
  			case CubeUVRefractionMapping:
  				envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
  				break;

  			case EquirectangularReflectionMapping:
  			case EquirectangularRefractionMapping:
  				envMapTypeDefine = 'ENVMAP_TYPE_EQUIREC';
  				break;

  			case SphericalReflectionMapping:
  				envMapTypeDefine = 'ENVMAP_TYPE_SPHERE';
  				break;

  		}

  		switch ( material.envMap.mapping ) {

  			case CubeRefractionMapping:
  			case EquirectangularRefractionMapping:
  				envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
  				break;

  		}

  		switch ( material.combine ) {

  			case MultiplyOperation:
  				envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
  				break;

  			case MixOperation:
  				envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
  				break;

  			case AddOperation:
  				envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
  				break;

  		}

  	}

  	var gammaFactorDefine = ( renderer.gammaFactor > 0 ) ? renderer.gammaFactor : 1.0;

  	// console.log( 'building new program ' );

  	//

  	var customExtensions = generateExtensions( material.extensions, parameters, extensions );

  	var customDefines = generateDefines( defines );

  	//

  	var program = gl.createProgram();

  	var prefixVertex, prefixFragment;

  	if ( material.isRawShaderMaterial ) {

  		prefixVertex = [

  			customDefines

  		].filter( filterEmptyLine ).join( '\n' );

  		if ( prefixVertex.length > 0 ) {

  			prefixVertex += '\n';

  		}

  		prefixFragment = [

  			customExtensions,
  			customDefines

  		].filter( filterEmptyLine ).join( '\n' );

  		if ( prefixFragment.length > 0 ) {

  			prefixFragment += '\n';

  		}

  	} else {

  		prefixVertex = [

  			'precision ' + parameters.precision + ' float;',
  			'precision ' + parameters.precision + ' int;',

  			'#define SHADER_NAME ' + shader.name,

  			customDefines,

  			parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '',

  			'#define GAMMA_FACTOR ' + gammaFactorDefine,

  			'#define MAX_BONES ' + parameters.maxBones,
  			( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
  			( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '',

  			parameters.map ? '#define USE_MAP' : '',
  			parameters.envMap ? '#define USE_ENVMAP' : '',
  			parameters.envMap ? '#define ' + envMapModeDefine : '',
  			parameters.lightMap ? '#define USE_LIGHTMAP' : '',
  			parameters.aoMap ? '#define USE_AOMAP' : '',
  			parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
  			parameters.bumpMap ? '#define USE_BUMPMAP' : '',
  			parameters.normalMap ? '#define USE_NORMALMAP' : '',
  			parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '',
  			parameters.specularMap ? '#define USE_SPECULARMAP' : '',
  			parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
  			parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
  			parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
  			parameters.vertexColors ? '#define USE_COLOR' : '',

  			parameters.flatShading ? '#define FLAT_SHADED' : '',

  			parameters.skinning ? '#define USE_SKINNING' : '',
  			parameters.useVertexTexture ? '#define BONE_TEXTURE' : '',

  			parameters.morphTargets ? '#define USE_MORPHTARGETS' : '',
  			parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '',
  			parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
  			parameters.flipSided ? '#define FLIP_SIDED' : '',

  			parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
  			parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',

  			parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '',

  			parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
  			parameters.logarithmicDepthBuffer && extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',

  			'uniform mat4 modelMatrix;',
  			'uniform mat4 modelViewMatrix;',
  			'uniform mat4 projectionMatrix;',
  			'uniform mat4 viewMatrix;',
  			'uniform mat3 normalMatrix;',
  			'uniform vec3 cameraPosition;',

  			'attribute vec3 position;',
  			'attribute vec3 normal;',
  			'attribute vec2 uv;',

  			'#ifdef USE_COLOR',

  			'	attribute vec3 color;',

  			'#endif',

  			'#ifdef USE_MORPHTARGETS',

  			'	attribute vec3 morphTarget0;',
  			'	attribute vec3 morphTarget1;',
  			'	attribute vec3 morphTarget2;',
  			'	attribute vec3 morphTarget3;',

  			'	#ifdef USE_MORPHNORMALS',

  			'		attribute vec3 morphNormal0;',
  			'		attribute vec3 morphNormal1;',
  			'		attribute vec3 morphNormal2;',
  			'		attribute vec3 morphNormal3;',

  			'	#else',

  			'		attribute vec3 morphTarget4;',
  			'		attribute vec3 morphTarget5;',
  			'		attribute vec3 morphTarget6;',
  			'		attribute vec3 morphTarget7;',

  			'	#endif',

  			'#endif',

  			'#ifdef USE_SKINNING',

  			'	attribute vec4 skinIndex;',
  			'	attribute vec4 skinWeight;',

  			'#endif',

  			'\n'

  		].filter( filterEmptyLine ).join( '\n' );

  		prefixFragment = [

  			customExtensions,

  			'precision ' + parameters.precision + ' float;',
  			'precision ' + parameters.precision + ' int;',

  			'#define SHADER_NAME ' + shader.name,

  			customDefines,

  			parameters.alphaTest ? '#define ALPHATEST ' + parameters.alphaTest + ( parameters.alphaTest % 1 ? '' : '.0' ) : '', // add '.0' if integer

  			'#define GAMMA_FACTOR ' + gammaFactorDefine,

  			( parameters.useFog && parameters.fog ) ? '#define USE_FOG' : '',
  			( parameters.useFog && parameters.fogExp ) ? '#define FOG_EXP2' : '',

  			parameters.map ? '#define USE_MAP' : '',
  			parameters.envMap ? '#define USE_ENVMAP' : '',
  			parameters.envMap ? '#define ' + envMapTypeDefine : '',
  			parameters.envMap ? '#define ' + envMapModeDefine : '',
  			parameters.envMap ? '#define ' + envMapBlendingDefine : '',
  			parameters.lightMap ? '#define USE_LIGHTMAP' : '',
  			parameters.aoMap ? '#define USE_AOMAP' : '',
  			parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '',
  			parameters.bumpMap ? '#define USE_BUMPMAP' : '',
  			parameters.normalMap ? '#define USE_NORMALMAP' : '',
  			parameters.specularMap ? '#define USE_SPECULARMAP' : '',
  			parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '',
  			parameters.metalnessMap ? '#define USE_METALNESSMAP' : '',
  			parameters.alphaMap ? '#define USE_ALPHAMAP' : '',
  			parameters.vertexColors ? '#define USE_COLOR' : '',

  			parameters.gradientMap ? '#define USE_GRADIENTMAP' : '',

  			parameters.flatShading ? '#define FLAT_SHADED' : '',

  			parameters.doubleSided ? '#define DOUBLE_SIDED' : '',
  			parameters.flipSided ? '#define FLIP_SIDED' : '',

  			parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '',
  			parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '',

  			parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '',

  			parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '',

  			parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '',
  			parameters.logarithmicDepthBuffer && extensions.get( 'EXT_frag_depth' ) ? '#define USE_LOGDEPTHBUF_EXT' : '',

  			parameters.envMap && extensions.get( 'EXT_shader_texture_lod' ) ? '#define TEXTURE_LOD_EXT' : '',

  			'uniform mat4 viewMatrix;',
  			'uniform vec3 cameraPosition;',

  			( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : '',
  			( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below
  			( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : '',

  			parameters.dithering ? '#define DITHERING' : '',

  			( parameters.outputEncoding || parameters.mapEncoding || parameters.envMapEncoding || parameters.emissiveMapEncoding ) ? ShaderChunk[ 'encodings_pars_fragment' ] : '', // this code is required here because it is used by the various encoding/decoding function defined below
  			parameters.mapEncoding ? getTexelDecodingFunction( 'mapTexelToLinear', parameters.mapEncoding ) : '',
  			parameters.envMapEncoding ? getTexelDecodingFunction( 'envMapTexelToLinear', parameters.envMapEncoding ) : '',
  			parameters.emissiveMapEncoding ? getTexelDecodingFunction( 'emissiveMapTexelToLinear', parameters.emissiveMapEncoding ) : '',
  			parameters.outputEncoding ? getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputEncoding ) : '',

  			parameters.depthPacking ? '#define DEPTH_PACKING ' + material.depthPacking : '',

  			'\n'

  		].filter( filterEmptyLine ).join( '\n' );

  	}

  	vertexShader = parseIncludes( vertexShader );
  	vertexShader = replaceLightNums( vertexShader, parameters );
  	vertexShader = replaceClippingPlaneNums( vertexShader, parameters );

  	fragmentShader = parseIncludes( fragmentShader );
  	fragmentShader = replaceLightNums( fragmentShader, parameters );
  	fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters );

  	vertexShader = unrollLoops( vertexShader );
  	fragmentShader = unrollLoops( fragmentShader );

  	var vertexGlsl = prefixVertex + vertexShader;
  	var fragmentGlsl = prefixFragment + fragmentShader;

  	// console.log( '*VERTEX*', vertexGlsl );
  	// console.log( '*FRAGMENT*', fragmentGlsl );

  	var glVertexShader = WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl );
  	var glFragmentShader = WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl );

  	gl.attachShader( program, glVertexShader );
  	gl.attachShader( program, glFragmentShader );

  	// Force a particular attribute to index 0.

  	if ( material.index0AttributeName !== undefined ) {

  		gl.bindAttribLocation( program, 0, material.index0AttributeName );

  	} else if ( parameters.morphTargets === true ) {

  		// programs with morphTargets displace position out of attribute 0
  		gl.bindAttribLocation( program, 0, 'position' );

  	}

  	gl.linkProgram( program );

  	var programLog = gl.getProgramInfoLog( program ).trim();
  	var vertexLog = gl.getShaderInfoLog( glVertexShader ).trim();
  	var fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim();

  	var runnable = true;
  	var haveDiagnostics = true;

  	// console.log( '**VERTEX**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glVertexShader ) );
  	// console.log( '**FRAGMENT**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( glFragmentShader ) );

  	if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) {

  		runnable = false;

  		console.error( 'THREE.WebGLProgram: shader error: ', gl.getError(), 'gl.VALIDATE_STATUS', gl.getProgramParameter( program, gl.VALIDATE_STATUS ), 'gl.getProgramInfoLog', programLog, vertexLog, fragmentLog );

  	} else if ( programLog !== '' ) {

  		console.warn( 'THREE.WebGLProgram: gl.getProgramInfoLog()', programLog );

  	} else if ( vertexLog === '' || fragmentLog === '' ) {

  		haveDiagnostics = false;

  	}

  	if ( haveDiagnostics ) {

  		this.diagnostics = {

  			runnable: runnable,
  			material: material,

  			programLog: programLog,

  			vertexShader: {

  				log: vertexLog,
  				prefix: prefixVertex

  			},

  			fragmentShader: {

  				log: fragmentLog,
  				prefix: prefixFragment

  			}

  		};

  	}

  	// clean up

  	gl.deleteShader( glVertexShader );
  	gl.deleteShader( glFragmentShader );

  	// set up caching for uniform locations

  	var cachedUniforms;

  	this.getUniforms = function () {

  		if ( cachedUniforms === undefined ) {

  			cachedUniforms = new WebGLUniforms( gl, program, renderer );

  		}

  		return cachedUniforms;

  	};

  	// set up caching for attribute locations

  	var cachedAttributes;

  	this.getAttributes = function () {

  		if ( cachedAttributes === undefined ) {

  			cachedAttributes = fetchAttributeLocations( gl, program );

  		}

  		return cachedAttributes;

  	};

  	// free resource

  	this.destroy = function () {

  		gl.deleteProgram( program );
  		this.program = undefined;

  	};

  	// DEPRECATED

  	Object.defineProperties( this, {

  		uniforms: {
  			get: function () {

  				console.warn( 'THREE.WebGLProgram: .uniforms is now .getUniforms().' );
  				return this.getUniforms();

  			}
  		},

  		attributes: {
  			get: function () {

  				console.warn( 'THREE.WebGLProgram: .attributes is now .getAttributes().' );
  				return this.getAttributes();

  			}
  		}

  	} );


  	//

  	this.name = shader.name;
  	this.id = programIdCount ++;
  	this.code = code;
  	this.usedTimes = 1;
  	this.program = program;
  	this.vertexShader = glVertexShader;
  	this.fragmentShader = glFragmentShader;

  	return this;

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLPrograms( renderer, extensions, capabilities ) {

  	var programs = [];

  	var shaderIDs = {
  		MeshDepthMaterial: 'depth',
  		MeshDistanceMaterial: 'distanceRGBA',
  		MeshNormalMaterial: 'normal',
  		MeshBasicMaterial: 'basic',
  		MeshLambertMaterial: 'lambert',
  		MeshPhongMaterial: 'phong',
  		MeshToonMaterial: 'phong',
  		MeshStandardMaterial: 'physical',
  		MeshPhysicalMaterial: 'physical',
  		LineBasicMaterial: 'basic',
  		LineDashedMaterial: 'dashed',
  		PointsMaterial: 'points',
  		ShadowMaterial: 'shadow'
  	};

  	var parameterNames = [
  		"precision", "supportsVertexTextures", "map", "mapEncoding", "envMap", "envMapMode", "envMapEncoding",
  		"lightMap", "aoMap", "emissiveMap", "emissiveMapEncoding", "bumpMap", "normalMap", "displacementMap", "specularMap",
  		"roughnessMap", "metalnessMap", "gradientMap",
  		"alphaMap", "combine", "vertexColors", "fog", "useFog", "fogExp",
  		"flatShading", "sizeAttenuation", "logarithmicDepthBuffer", "skinning",
  		"maxBones", "useVertexTexture", "morphTargets", "morphNormals",
  		"maxMorphTargets", "maxMorphNormals", "premultipliedAlpha",
  		"numDirLights", "numPointLights", "numSpotLights", "numHemiLights", "numRectAreaLights",
  		"shadowMapEnabled", "shadowMapType", "toneMapping", 'physicallyCorrectLights',
  		"alphaTest", "doubleSided", "flipSided", "numClippingPlanes", "numClipIntersection", "depthPacking", "dithering"
  	];


  	function allocateBones( object ) {

  		var skeleton = object.skeleton;
  		var bones = skeleton.bones;

  		if ( capabilities.floatVertexTextures ) {

  			return 1024;

  		} else {

  			// default for when object is not specified
  			// ( for example when prebuilding shader to be used with multiple objects )
  			//
  			//  - leave some extra space for other uniforms
  			//  - limit here is ANGLE's 254 max uniform vectors
  			//    (up to 54 should be safe)

  			var nVertexUniforms = capabilities.maxVertexUniforms;
  			var nVertexMatrices = Math.floor( ( nVertexUniforms - 20 ) / 4 );

  			var maxBones = Math.min( nVertexMatrices, bones.length );

  			if ( maxBones < bones.length ) {

  				console.warn( 'THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.' );
  				return 0;

  			}

  			return maxBones;

  		}

  	}

  	function getTextureEncodingFromMap( map, gammaOverrideLinear ) {

  		var encoding;

  		if ( ! map ) {

  			encoding = LinearEncoding;

  		} else if ( map.isTexture ) {

  			encoding = map.encoding;

  		} else if ( map.isWebGLRenderTarget ) {

  			console.warn( "THREE.WebGLPrograms.getTextureEncodingFromMap: don't use render targets as textures. Use their .texture property instead." );
  			encoding = map.texture.encoding;

  		}

  		// add backwards compatibility for WebGLRenderer.gammaInput/gammaOutput parameter, should probably be removed at some point.
  		if ( encoding === LinearEncoding && gammaOverrideLinear ) {

  			encoding = GammaEncoding;

  		}

  		return encoding;

  	}

  	this.getParameters = function ( material, lights, shadows, fog, nClipPlanes, nClipIntersection, object ) {

  		var shaderID = shaderIDs[ material.type ];

  		// heuristics to create shader parameters according to lights in the scene
  		// (not to blow over maxLights budget)

  		var maxBones = object.isSkinnedMesh ? allocateBones( object ) : 0;
  		var precision = capabilities.precision;

  		if ( material.precision !== null ) {

  			precision = capabilities.getMaxPrecision( material.precision );

  			if ( precision !== material.precision ) {

  				console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' );

  			}

  		}

  		var currentRenderTarget = renderer.getRenderTarget();

  		var parameters = {

  			shaderID: shaderID,

  			precision: precision,
  			supportsVertexTextures: capabilities.vertexTextures,
  			outputEncoding: getTextureEncodingFromMap( ( ! currentRenderTarget ) ? null : currentRenderTarget.texture, renderer.gammaOutput ),
  			map: !! material.map,
  			mapEncoding: getTextureEncodingFromMap( material.map, renderer.gammaInput ),
  			envMap: !! material.envMap,
  			envMapMode: material.envMap && material.envMap.mapping,
  			envMapEncoding: getTextureEncodingFromMap( material.envMap, renderer.gammaInput ),
  			envMapCubeUV: ( !! material.envMap ) && ( ( material.envMap.mapping === CubeUVReflectionMapping ) || ( material.envMap.mapping === CubeUVRefractionMapping ) ),
  			lightMap: !! material.lightMap,
  			aoMap: !! material.aoMap,
  			emissiveMap: !! material.emissiveMap,
  			emissiveMapEncoding: getTextureEncodingFromMap( material.emissiveMap, renderer.gammaInput ),
  			bumpMap: !! material.bumpMap,
  			normalMap: !! material.normalMap,
  			displacementMap: !! material.displacementMap,
  			roughnessMap: !! material.roughnessMap,
  			metalnessMap: !! material.metalnessMap,
  			specularMap: !! material.specularMap,
  			alphaMap: !! material.alphaMap,

  			gradientMap: !! material.gradientMap,

  			combine: material.combine,

  			vertexColors: material.vertexColors,

  			fog: !! fog,
  			useFog: material.fog,
  			fogExp: ( fog && fog.isFogExp2 ),

  			flatShading: material.flatShading,

  			sizeAttenuation: material.sizeAttenuation,
  			logarithmicDepthBuffer: capabilities.logarithmicDepthBuffer,

  			skinning: material.skinning && maxBones > 0,
  			maxBones: maxBones,
  			useVertexTexture: capabilities.floatVertexTextures,

  			morphTargets: material.morphTargets,
  			morphNormals: material.morphNormals,
  			maxMorphTargets: renderer.maxMorphTargets,
  			maxMorphNormals: renderer.maxMorphNormals,

  			numDirLights: lights.directional.length,
  			numPointLights: lights.point.length,
  			numSpotLights: lights.spot.length,
  			numRectAreaLights: lights.rectArea.length,
  			numHemiLights: lights.hemi.length,

  			numClippingPlanes: nClipPlanes,
  			numClipIntersection: nClipIntersection,

  			dithering: material.dithering,

  			shadowMapEnabled: renderer.shadowMap.enabled && object.receiveShadow && shadows.length > 0,
  			shadowMapType: renderer.shadowMap.type,

  			toneMapping: renderer.toneMapping,
  			physicallyCorrectLights: renderer.physicallyCorrectLights,

  			premultipliedAlpha: material.premultipliedAlpha,

  			alphaTest: material.alphaTest,
  			doubleSided: material.side === DoubleSide,
  			flipSided: material.side === BackSide,

  			depthPacking: ( material.depthPacking !== undefined ) ? material.depthPacking : false

  		};

  		return parameters;

  	};

  	this.getProgramCode = function ( material, parameters ) {

  		var array = [];

  		if ( parameters.shaderID ) {

  			array.push( parameters.shaderID );

  		} else {

  			array.push( material.fragmentShader );
  			array.push( material.vertexShader );

  		}

  		if ( material.defines !== undefined ) {

  			for ( var name in material.defines ) {

  				array.push( name );
  				array.push( material.defines[ name ] );

  			}

  		}

  		for ( var i = 0; i < parameterNames.length; i ++ ) {

  			array.push( parameters[ parameterNames[ i ] ] );

  		}

  		array.push( material.onBeforeCompile.toString() );

  		array.push( renderer.gammaOutput );

  		return array.join();

  	};

  	this.acquireProgram = function ( material, shader, parameters, code ) {

  		var program;

  		// Check if code has been already compiled
  		for ( var p = 0, pl = programs.length; p < pl; p ++ ) {

  			var programInfo = programs[ p ];

  			if ( programInfo.code === code ) {

  				program = programInfo;
  				++ program.usedTimes;

  				break;

  			}

  		}

  		if ( program === undefined ) {

  			program = new WebGLProgram( renderer, extensions, code, material, shader, parameters );
  			programs.push( program );

  		}

  		return program;

  	};

  	this.releaseProgram = function ( program ) {

  		if ( -- program.usedTimes === 0 ) {

  			// Remove from unordered set
  			var i = programs.indexOf( program );
  			programs[ i ] = programs[ programs.length - 1 ];
  			programs.pop();

  			// Free WebGL resources
  			program.destroy();

  		}

  	};

  	// Exposed for resource monitoring & error feedback via renderer.info:
  	this.programs = programs;

  }

  /**
   * @author fordacious / fordacious.github.io
   */

  function WebGLProperties() {

  	var properties = new WeakMap();

  	function get( object ) {

  		var map = properties.get( object );

  		if ( map === undefined ) {

  			map = {};
  			properties.set( object, map );

  		}

  		return map;

  	}

  	function remove( object ) {

  		properties.delete( object );

  	}

  	function update( object, key, value ) {

  		properties.get( object )[ key ] = value;

  	}

  	function dispose() {

  		properties = new WeakMap();

  	}

  	return {
  		get: get,
  		remove: remove,
  		update: update,
  		dispose: dispose
  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function painterSortStable( a, b ) {

  	if ( a.renderOrder !== b.renderOrder ) {

  		return a.renderOrder - b.renderOrder;

  	} else if ( a.program && b.program && a.program !== b.program ) {

  		return a.program.id - b.program.id;

  	} else if ( a.material.id !== b.material.id ) {

  		return a.material.id - b.material.id;

  	} else if ( a.z !== b.z ) {

  		return a.z - b.z;

  	} else {

  		return a.id - b.id;

  	}

  }

  function reversePainterSortStable( a, b ) {

  	if ( a.renderOrder !== b.renderOrder ) {

  		return a.renderOrder - b.renderOrder;

  	} if ( a.z !== b.z ) {

  		return b.z - a.z;

  	} else {

  		return a.id - b.id;

  	}

  }

  function WebGLRenderList() {

  	var renderItems = [];
  	var renderItemsIndex = 0;

  	var opaque = [];
  	var transparent = [];

  	function init() {

  		renderItemsIndex = 0;

  		opaque.length = 0;
  		transparent.length = 0;

  	}

  	function push( object, geometry, material, z, group ) {

  		var renderItem = renderItems[ renderItemsIndex ];

  		if ( renderItem === undefined ) {

  			renderItem = {
  				id: object.id,
  				object: object,
  				geometry: geometry,
  				material: material,
  				program: material.program,
  				renderOrder: object.renderOrder,
  				z: z,
  				group: group
  			};

  			renderItems[ renderItemsIndex ] = renderItem;

  		} else {

  			renderItem.id = object.id;
  			renderItem.object = object;
  			renderItem.geometry = geometry;
  			renderItem.material = material;
  			renderItem.program = material.program;
  			renderItem.renderOrder = object.renderOrder;
  			renderItem.z = z;
  			renderItem.group = group;

  		}

  		( material.transparent === true ? transparent : opaque ).push( renderItem );

  		renderItemsIndex ++;

  	}

  	function sort() {

  		if ( opaque.length > 1 ) opaque.sort( painterSortStable );
  		if ( transparent.length > 1 ) transparent.sort( reversePainterSortStable );

  	}

  	return {
  		opaque: opaque,
  		transparent: transparent,

  		init: init,
  		push: push,

  		sort: sort
  	};

  }

  function WebGLRenderLists() {

  	var lists = {};

  	function get( scene, camera ) {

  		var hash = scene.id + ',' + camera.id;
  		var list = lists[ hash ];

  		if ( list === undefined ) {

  			// console.log( 'THREE.WebGLRenderLists:', hash );

  			list = new WebGLRenderList();
  			lists[ hash ] = list;

  		}

  		return list;

  	}

  	function dispose() {

  		lists = {};

  	}

  	return {
  		get: get,
  		dispose: dispose
  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function UniformsCache() {

  	var lights = {};

  	return {

  		get: function ( light ) {

  			if ( lights[ light.id ] !== undefined ) {

  				return lights[ light.id ];

  			}

  			var uniforms;

  			switch ( light.type ) {

  				case 'DirectionalLight':
  					uniforms = {
  						direction: new Vector3(),
  						color: new Color(),

  						shadow: false,
  						shadowBias: 0,
  						shadowRadius: 1,
  						shadowMapSize: new Vector2()
  					};
  					break;

  				case 'SpotLight':
  					uniforms = {
  						position: new Vector3(),
  						direction: new Vector3(),
  						color: new Color(),
  						distance: 0,
  						coneCos: 0,
  						penumbraCos: 0,
  						decay: 0,

  						shadow: false,
  						shadowBias: 0,
  						shadowRadius: 1,
  						shadowMapSize: new Vector2()
  					};
  					break;

  				case 'PointLight':
  					uniforms = {
  						position: new Vector3(),
  						color: new Color(),
  						distance: 0,
  						decay: 0,

  						shadow: false,
  						shadowBias: 0,
  						shadowRadius: 1,
  						shadowMapSize: new Vector2(),
  						shadowCameraNear: 1,
  						shadowCameraFar: 1000
  					};
  					break;

  				case 'HemisphereLight':
  					uniforms = {
  						direction: new Vector3(),
  						skyColor: new Color(),
  						groundColor: new Color()
  					};
  					break;

  				case 'RectAreaLight':
  					uniforms = {
  						color: new Color(),
  						position: new Vector3(),
  						halfWidth: new Vector3(),
  						halfHeight: new Vector3()
  						// TODO (abelnation): set RectAreaLight shadow uniforms
  					};
  					break;

  			}

  			lights[ light.id ] = uniforms;

  			return uniforms;

  		}

  	};

  }

  var count = 0;

  function WebGLLights() {

  	var cache = new UniformsCache();

  	var state = {

  		id: count ++,

  		hash: '',

  		ambient: [ 0, 0, 0 ],
  		directional: [],
  		directionalShadowMap: [],
  		directionalShadowMatrix: [],
  		spot: [],
  		spotShadowMap: [],
  		spotShadowMatrix: [],
  		rectArea: [],
  		point: [],
  		pointShadowMap: [],
  		pointShadowMatrix: [],
  		hemi: []

  	};

  	var vector3 = new Vector3();
  	var matrix4 = new Matrix4();
  	var matrix42 = new Matrix4();

  	function setup( lights, shadows, camera ) {

  		var r = 0, g = 0, b = 0;

  		var directionalLength = 0;
  		var pointLength = 0;
  		var spotLength = 0;
  		var rectAreaLength = 0;
  		var hemiLength = 0;

  		var viewMatrix = camera.matrixWorldInverse;

  		for ( var i = 0, l = lights.length; i < l; i ++ ) {

  			var light = lights[ i ];

  			var color = light.color;
  			var intensity = light.intensity;
  			var distance = light.distance;

  			var shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null;

  			if ( light.isAmbientLight ) {

  				r += color.r * intensity;
  				g += color.g * intensity;
  				b += color.b * intensity;

  			} else if ( light.isDirectionalLight ) {

  				var uniforms = cache.get( light );

  				uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
  				uniforms.direction.setFromMatrixPosition( light.matrixWorld );
  				vector3.setFromMatrixPosition( light.target.matrixWorld );
  				uniforms.direction.sub( vector3 );
  				uniforms.direction.transformDirection( viewMatrix );

  				uniforms.shadow = light.castShadow;

  				if ( light.castShadow ) {

  					var shadow = light.shadow;

  					uniforms.shadowBias = shadow.bias;
  					uniforms.shadowRadius = shadow.radius;
  					uniforms.shadowMapSize = shadow.mapSize;

  				}

  				state.directionalShadowMap[ directionalLength ] = shadowMap;
  				state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix;
  				state.directional[ directionalLength ] = uniforms;

  				directionalLength ++;

  			} else if ( light.isSpotLight ) {

  				var uniforms = cache.get( light );

  				uniforms.position.setFromMatrixPosition( light.matrixWorld );
  				uniforms.position.applyMatrix4( viewMatrix );

  				uniforms.color.copy( color ).multiplyScalar( intensity );
  				uniforms.distance = distance;

  				uniforms.direction.setFromMatrixPosition( light.matrixWorld );
  				vector3.setFromMatrixPosition( light.target.matrixWorld );
  				uniforms.direction.sub( vector3 );
  				uniforms.direction.transformDirection( viewMatrix );

  				uniforms.coneCos = Math.cos( light.angle );
  				uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) );
  				uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay;

  				uniforms.shadow = light.castShadow;

  				if ( light.castShadow ) {

  					var shadow = light.shadow;

  					uniforms.shadowBias = shadow.bias;
  					uniforms.shadowRadius = shadow.radius;
  					uniforms.shadowMapSize = shadow.mapSize;

  				}

  				state.spotShadowMap[ spotLength ] = shadowMap;
  				state.spotShadowMatrix[ spotLength ] = light.shadow.matrix;
  				state.spot[ spotLength ] = uniforms;

  				spotLength ++;

  			} else if ( light.isRectAreaLight ) {

  				var uniforms = cache.get( light );

  				// (a) intensity is the total visible light emitted
  				//uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );

  				// (b) intensity is the brightness of the light
  				uniforms.color.copy( color ).multiplyScalar( intensity );

  				uniforms.position.setFromMatrixPosition( light.matrixWorld );
  				uniforms.position.applyMatrix4( viewMatrix );

  				// extract local rotation of light to derive width/height half vectors
  				matrix42.identity();
  				matrix4.copy( light.matrixWorld );
  				matrix4.premultiply( viewMatrix );
  				matrix42.extractRotation( matrix4 );

  				uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 );
  				uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 );

  				uniforms.halfWidth.applyMatrix4( matrix42 );
  				uniforms.halfHeight.applyMatrix4( matrix42 );

  				// TODO (abelnation): RectAreaLight distance?
  				// uniforms.distance = distance;

  				state.rectArea[ rectAreaLength ] = uniforms;

  				rectAreaLength ++;

  			} else if ( light.isPointLight ) {

  				var uniforms = cache.get( light );

  				uniforms.position.setFromMatrixPosition( light.matrixWorld );
  				uniforms.position.applyMatrix4( viewMatrix );

  				uniforms.color.copy( light.color ).multiplyScalar( light.intensity );
  				uniforms.distance = light.distance;
  				uniforms.decay = ( light.distance === 0 ) ? 0.0 : light.decay;

  				uniforms.shadow = light.castShadow;

  				if ( light.castShadow ) {

  					var shadow = light.shadow;

  					uniforms.shadowBias = shadow.bias;
  					uniforms.shadowRadius = shadow.radius;
  					uniforms.shadowMapSize = shadow.mapSize;
  					uniforms.shadowCameraNear = shadow.camera.near;
  					uniforms.shadowCameraFar = shadow.camera.far;

  				}

  				state.pointShadowMap[ pointLength ] = shadowMap;
  				state.pointShadowMatrix[ pointLength ] = light.shadow.matrix;
  				state.point[ pointLength ] = uniforms;

  				pointLength ++;

  			} else if ( light.isHemisphereLight ) {

  				var uniforms = cache.get( light );

  				uniforms.direction.setFromMatrixPosition( light.matrixWorld );
  				uniforms.direction.transformDirection( viewMatrix );
  				uniforms.direction.normalize();

  				uniforms.skyColor.copy( light.color ).multiplyScalar( intensity );
  				uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity );

  				state.hemi[ hemiLength ] = uniforms;

  				hemiLength ++;

  			}

  		}

  		state.ambient[ 0 ] = r;
  		state.ambient[ 1 ] = g;
  		state.ambient[ 2 ] = b;

  		state.directional.length = directionalLength;
  		state.spot.length = spotLength;
  		state.rectArea.length = rectAreaLength;
  		state.point.length = pointLength;
  		state.hemi.length = hemiLength;

  		state.hash = state.id + ',' + directionalLength + ',' + pointLength + ',' + spotLength + ',' + rectAreaLength + ',' + hemiLength + ',' + shadows.length;

  	}

  	return {
  		setup: setup,
  		state: state
  	};

  }

  /**
   * @author Mugen87 / https://github.com/Mugen87
   */

  function WebGLRenderState() {

  	var lights = new WebGLLights();

  	var lightsArray = [];
  	var shadowsArray = [];
  	var spritesArray = [];

  	function init() {

  		lightsArray.length = 0;
  		shadowsArray.length = 0;
  		spritesArray.length = 0;

  	}

  	function pushLight( light ) {

  		lightsArray.push( light );

  	}

  	function pushShadow( shadowLight ) {

  		shadowsArray.push( shadowLight );

  	}

  	function pushSprite( shadowLight ) {

  		spritesArray.push( shadowLight );

  	}

  	function setupLights( camera ) {

  		lights.setup( lightsArray, shadowsArray, camera );

  	}

  	var state = {
  		lightsArray: lightsArray,
  		shadowsArray: shadowsArray,
  		spritesArray: spritesArray,

  		lights: lights
  	};

  	return {
  		init: init,
  		state: state,
  		setupLights: setupLights,

  		pushLight: pushLight,
  		pushShadow: pushShadow,
  		pushSprite: pushSprite
  	};

  }

  function WebGLRenderStates() {

  	var renderStates = {};

  	function get( scene, camera ) {

  		var hash = scene.id + ',' + camera.id;

  		var renderState = renderStates[ hash ];

  		if ( renderState === undefined ) {

  			renderState = new WebGLRenderState();
  			renderStates[ hash ] = renderState;

  		}

  		return renderState;

  	}

  	function dispose() {

  		renderStates = {};

  	}

  	return {
  		get: get,
  		dispose: dispose
  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   * @author bhouston / https://clara.io
   * @author WestLangley / http://github.com/WestLangley
   *
   * parameters = {
   *
   *  opacity: <float>,
   *
   *  map: new THREE.Texture( <Image> ),
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  displacementMap: new THREE.Texture( <Image> ),
   *  displacementScale: <float>,
   *  displacementBias: <float>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>
   * }
   */

  function MeshDepthMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'MeshDepthMaterial';

  	this.depthPacking = BasicDepthPacking;

  	this.skinning = false;
  	this.morphTargets = false;

  	this.map = null;

  	this.alphaMap = null;

  	this.displacementMap = null;
  	this.displacementScale = 1;
  	this.displacementBias = 0;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;

  	this.fog = false;
  	this.lights = false;

  	this.setValues( parameters );

  }

  MeshDepthMaterial.prototype = Object.create( Material.prototype );
  MeshDepthMaterial.prototype.constructor = MeshDepthMaterial;

  MeshDepthMaterial.prototype.isMeshDepthMaterial = true;

  MeshDepthMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.depthPacking = source.depthPacking;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;

  	this.map = source.map;

  	this.alphaMap = source.alphaMap;

  	this.displacementMap = source.displacementMap;
  	this.displacementScale = source.displacementScale;
  	this.displacementBias = source.displacementBias;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;

  	return this;

  };

  /**
   * @author WestLangley / http://github.com/WestLangley
   *
   * parameters = {
   *
   *  referencePosition: <float>,
   *  nearDistance: <float>,
   *  farDistance: <float>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *
   *  map: new THREE.Texture( <Image> ),
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  displacementMap: new THREE.Texture( <Image> ),
   *  displacementScale: <float>,
   *  displacementBias: <float>
   *
   * }
   */

  function MeshDistanceMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'MeshDistanceMaterial';

  	this.referencePosition = new Vector3();
  	this.nearDistance = 1;
  	this.farDistance = 1000;

  	this.skinning = false;
  	this.morphTargets = false;

  	this.map = null;

  	this.alphaMap = null;

  	this.displacementMap = null;
  	this.displacementScale = 1;
  	this.displacementBias = 0;

  	this.fog = false;
  	this.lights = false;

  	this.setValues( parameters );

  }

  MeshDistanceMaterial.prototype = Object.create( Material.prototype );
  MeshDistanceMaterial.prototype.constructor = MeshDistanceMaterial;

  MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;

  MeshDistanceMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.referencePosition.copy( source.referencePosition );
  	this.nearDistance = source.nearDistance;
  	this.farDistance = source.farDistance;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;

  	this.map = source.map;

  	this.alphaMap = source.alphaMap;

  	this.displacementMap = source.displacementMap;
  	this.displacementScale = source.displacementScale;
  	this.displacementBias = source.displacementBias;

  	return this;

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLShadowMap( _renderer, _objects, maxTextureSize ) {

  	var _frustum = new Frustum(),
  		_projScreenMatrix = new Matrix4(),

  		_shadowMapSize = new Vector2(),
  		_maxShadowMapSize = new Vector2( maxTextureSize, maxTextureSize ),

  		_lookTarget = new Vector3(),
  		_lightPositionWorld = new Vector3(),

  		_MorphingFlag = 1,
  		_SkinningFlag = 2,

  		_NumberOfMaterialVariants = ( _MorphingFlag | _SkinningFlag ) + 1,

  		_depthMaterials = new Array( _NumberOfMaterialVariants ),
  		_distanceMaterials = new Array( _NumberOfMaterialVariants ),

  		_materialCache = {};

  	var shadowSide = { 0: BackSide, 1: FrontSide, 2: DoubleSide };

  	var cubeDirections = [
  		new Vector3( 1, 0, 0 ), new Vector3( - 1, 0, 0 ), new Vector3( 0, 0, 1 ),
  		new Vector3( 0, 0, - 1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, - 1, 0 )
  	];

  	var cubeUps = [
  		new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ),
  		new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ),	new Vector3( 0, 0, - 1 )
  	];

  	var cube2DViewPorts = [
  		new Vector4(), new Vector4(), new Vector4(),
  		new Vector4(), new Vector4(), new Vector4()
  	];

  	// init

  	for ( var i = 0; i !== _NumberOfMaterialVariants; ++ i ) {

  		var useMorphing = ( i & _MorphingFlag ) !== 0;
  		var useSkinning = ( i & _SkinningFlag ) !== 0;

  		var depthMaterial = new MeshDepthMaterial( {

  			depthPacking: RGBADepthPacking,

  			morphTargets: useMorphing,
  			skinning: useSkinning

  		} );

  		_depthMaterials[ i ] = depthMaterial;

  		//

  		var distanceMaterial = new MeshDistanceMaterial( {

  			morphTargets: useMorphing,
  			skinning: useSkinning

  		} );

  		_distanceMaterials[ i ] = distanceMaterial;

  	}

  	//

  	var scope = this;

  	this.enabled = false;

  	this.autoUpdate = true;
  	this.needsUpdate = false;

  	this.type = PCFShadowMap;

  	this.render = function ( lights, scene, camera ) {

  		if ( scope.enabled === false ) return;
  		if ( scope.autoUpdate === false && scope.needsUpdate === false ) return;

  		if ( lights.length === 0 ) return;

  		// TODO Clean up (needed in case of contextlost)
  		var _gl = _renderer.context;
  		var _state = _renderer.state;

  		// Set GL state for depth map.
  		_state.disable( _gl.BLEND );
  		_state.buffers.color.setClear( 1, 1, 1, 1 );
  		_state.buffers.depth.setTest( true );
  		_state.setScissorTest( false );

  		// render depth map

  		var faceCount;

  		for ( var i = 0, il = lights.length; i < il; i ++ ) {

  			var light = lights[ i ];
  			var shadow = light.shadow;
  			var isPointLight = light && light.isPointLight;

  			if ( shadow === undefined ) {

  				console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' );
  				continue;

  			}

  			var shadowCamera = shadow.camera;

  			_shadowMapSize.copy( shadow.mapSize );
  			_shadowMapSize.min( _maxShadowMapSize );

  			if ( isPointLight ) {

  				var vpWidth = _shadowMapSize.x;
  				var vpHeight = _shadowMapSize.y;

  				// These viewports map a cube-map onto a 2D texture with the
  				// following orientation:
  				//
  				//  xzXZ
  				//   y Y
  				//
  				// X - Positive x direction
  				// x - Negative x direction
  				// Y - Positive y direction
  				// y - Negative y direction
  				// Z - Positive z direction
  				// z - Negative z direction

  				// positive X
  				cube2DViewPorts[ 0 ].set( vpWidth * 2, vpHeight, vpWidth, vpHeight );
  				// negative X
  				cube2DViewPorts[ 1 ].set( 0, vpHeight, vpWidth, vpHeight );
  				// positive Z
  				cube2DViewPorts[ 2 ].set( vpWidth * 3, vpHeight, vpWidth, vpHeight );
  				// negative Z
  				cube2DViewPorts[ 3 ].set( vpWidth, vpHeight, vpWidth, vpHeight );
  				// positive Y
  				cube2DViewPorts[ 4 ].set( vpWidth * 3, 0, vpWidth, vpHeight );
  				// negative Y
  				cube2DViewPorts[ 5 ].set( vpWidth, 0, vpWidth, vpHeight );

  				_shadowMapSize.x *= 4.0;
  				_shadowMapSize.y *= 2.0;

  			}

  			if ( shadow.map === null ) {

  				var pars = { minFilter: NearestFilter, magFilter: NearestFilter, format: RGBAFormat };

  				shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars );
  				shadow.map.texture.name = light.name + ".shadowMap";

  				shadowCamera.updateProjectionMatrix();

  			}

  			if ( shadow.isSpotLightShadow ) {

  				shadow.update( light );

  			}

  			var shadowMap = shadow.map;
  			var shadowMatrix = shadow.matrix;

  			_lightPositionWorld.setFromMatrixPosition( light.matrixWorld );
  			shadowCamera.position.copy( _lightPositionWorld );

  			if ( isPointLight ) {

  				faceCount = 6;

  				// for point lights we set the shadow matrix to be a translation-only matrix
  				// equal to inverse of the light's position

  				shadowMatrix.makeTranslation( - _lightPositionWorld.x, - _lightPositionWorld.y, - _lightPositionWorld.z );

  			} else {

  				faceCount = 1;

  				_lookTarget.setFromMatrixPosition( light.target.matrixWorld );
  				shadowCamera.lookAt( _lookTarget );
  				shadowCamera.updateMatrixWorld();

  				// compute shadow matrix

  				shadowMatrix.set(
  					0.5, 0.0, 0.0, 0.5,
  					0.0, 0.5, 0.0, 0.5,
  					0.0, 0.0, 0.5, 0.5,
  					0.0, 0.0, 0.0, 1.0
  				);

  				shadowMatrix.multiply( shadowCamera.projectionMatrix );
  				shadowMatrix.multiply( shadowCamera.matrixWorldInverse );

  			}

  			_renderer.setRenderTarget( shadowMap );
  			_renderer.clear();

  			// render shadow map for each cube face (if omni-directional) or
  			// run a single pass if not

  			for ( var face = 0; face < faceCount; face ++ ) {

  				if ( isPointLight ) {

  					_lookTarget.copy( shadowCamera.position );
  					_lookTarget.add( cubeDirections[ face ] );
  					shadowCamera.up.copy( cubeUps[ face ] );
  					shadowCamera.lookAt( _lookTarget );
  					shadowCamera.updateMatrixWorld();

  					var vpDimensions = cube2DViewPorts[ face ];
  					_state.viewport( vpDimensions );

  				}

  				// update camera matrices and frustum

  				_projScreenMatrix.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse );
  				_frustum.setFromMatrix( _projScreenMatrix );

  				// set object matrices & frustum culling

  				renderObject( scene, camera, shadowCamera, isPointLight );

  			}

  		}

  		scope.needsUpdate = false;

  	};

  	function getDepthMaterial( object, material, isPointLight, lightPositionWorld, shadowCameraNear, shadowCameraFar ) {

  		var geometry = object.geometry;

  		var result = null;

  		var materialVariants = _depthMaterials;
  		var customMaterial = object.customDepthMaterial;

  		if ( isPointLight ) {

  			materialVariants = _distanceMaterials;
  			customMaterial = object.customDistanceMaterial;

  		}

  		if ( ! customMaterial ) {

  			var useMorphing = false;

  			if ( material.morphTargets ) {

  				if ( geometry && geometry.isBufferGeometry ) {

  					useMorphing = geometry.morphAttributes && geometry.morphAttributes.position && geometry.morphAttributes.position.length > 0;

  				} else if ( geometry && geometry.isGeometry ) {

  					useMorphing = geometry.morphTargets && geometry.morphTargets.length > 0;

  				}

  			}

  			if ( object.isSkinnedMesh && material.skinning === false ) {

  				console.warn( 'THREE.WebGLShadowMap: THREE.SkinnedMesh with material.skinning set to false:', object );

  			}

  			var useSkinning = object.isSkinnedMesh && material.skinning;

  			var variantIndex = 0;

  			if ( useMorphing ) variantIndex |= _MorphingFlag;
  			if ( useSkinning ) variantIndex |= _SkinningFlag;

  			result = materialVariants[ variantIndex ];

  		} else {

  			result = customMaterial;

  		}

  		if ( _renderer.localClippingEnabled &&
  				material.clipShadows === true &&
  				material.clippingPlanes.length !== 0 ) {

  			// in this case we need a unique material instance reflecting the
  			// appropriate state

  			var keyA = result.uuid, keyB = material.uuid;

  			var materialsForVariant = _materialCache[ keyA ];

  			if ( materialsForVariant === undefined ) {

  				materialsForVariant = {};
  				_materialCache[ keyA ] = materialsForVariant;

  			}

  			var cachedMaterial = materialsForVariant[ keyB ];

  			if ( cachedMaterial === undefined ) {

  				cachedMaterial = result.clone();
  				materialsForVariant[ keyB ] = cachedMaterial;

  			}

  			result = cachedMaterial;

  		}

  		result.visible = material.visible;
  		result.wireframe = material.wireframe;

  		result.side = ( material.shadowSide != null ) ? material.shadowSide : shadowSide[ material.side ];

  		result.clipShadows = material.clipShadows;
  		result.clippingPlanes = material.clippingPlanes;
  		result.clipIntersection = material.clipIntersection;

  		result.wireframeLinewidth = material.wireframeLinewidth;
  		result.linewidth = material.linewidth;

  		if ( isPointLight && result.isMeshDistanceMaterial ) {

  			result.referencePosition.copy( lightPositionWorld );
  			result.nearDistance = shadowCameraNear;
  			result.farDistance = shadowCameraFar;

  		}

  		return result;

  	}

  	function renderObject( object, camera, shadowCamera, isPointLight ) {

  		if ( object.visible === false ) return;

  		var visible = object.layers.test( camera.layers );

  		if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) {

  			if ( object.castShadow && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) {

  				object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld );

  				var geometry = _objects.update( object );
  				var material = object.material;

  				if ( Array.isArray( material ) ) {

  					var groups = geometry.groups;

  					for ( var k = 0, kl = groups.length; k < kl; k ++ ) {

  						var group = groups[ k ];
  						var groupMaterial = material[ group.materialIndex ];

  						if ( groupMaterial && groupMaterial.visible ) {

  							var depthMaterial = getDepthMaterial( object, groupMaterial, isPointLight, _lightPositionWorld, shadowCamera.near, shadowCamera.far );
  							_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group );

  						}

  					}

  				} else if ( material.visible ) {

  					var depthMaterial = getDepthMaterial( object, material, isPointLight, _lightPositionWorld, shadowCamera.near, shadowCamera.far );
  					_renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null );

  				}

  			}

  		}

  		var children = object.children;

  		for ( var i = 0, l = children.length; i < l; i ++ ) {

  			renderObject( children[ i ], camera, shadowCamera, isPointLight );

  		}

  	}

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function CanvasTexture( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {

  	Texture.call( this, canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

  	this.needsUpdate = true;

  }

  CanvasTexture.prototype = Object.create( Texture.prototype );
  CanvasTexture.prototype.constructor = CanvasTexture;
  CanvasTexture.prototype.isCanvasTexture = true;

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   */

  function WebGLSpriteRenderer( renderer, gl, state, textures, capabilities ) {

  	var vertexBuffer, elementBuffer;
  	var program, attributes, uniforms;

  	var texture;

  	// decompose matrixWorld

  	var spritePosition = new Vector3();
  	var spriteRotation = new Quaternion();
  	var spriteScale = new Vector3();

  	function init() {

  		var vertices = new Float32Array( [
  			- 0.5, - 0.5, 0, 0,
  			  0.5, - 0.5, 1, 0,
  			  0.5, 0.5, 1, 1,
  			- 0.5, 0.5, 0, 1
  		] );

  		var faces = new Uint16Array( [
  			0, 1, 2,
  			0, 2, 3
  		] );

  		vertexBuffer = gl.createBuffer();
  		elementBuffer = gl.createBuffer();

  		gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
  		gl.bufferData( gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW );

  		gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );
  		gl.bufferData( gl.ELEMENT_ARRAY_BUFFER, faces, gl.STATIC_DRAW );

  		program = createProgram();

  		attributes = {
  			position: gl.getAttribLocation( program, 'position' ),
  			uv: gl.getAttribLocation( program, 'uv' )
  		};

  		uniforms = {
  			uvOffset: gl.getUniformLocation( program, 'uvOffset' ),
  			uvScale: gl.getUniformLocation( program, 'uvScale' ),

  			rotation: gl.getUniformLocation( program, 'rotation' ),
  			center: gl.getUniformLocation( program, 'center' ),
  			scale: gl.getUniformLocation( program, 'scale' ),

  			color: gl.getUniformLocation( program, 'color' ),
  			map: gl.getUniformLocation( program, 'map' ),
  			opacity: gl.getUniformLocation( program, 'opacity' ),

  			modelViewMatrix: gl.getUniformLocation( program, 'modelViewMatrix' ),
  			projectionMatrix: gl.getUniformLocation( program, 'projectionMatrix' ),

  			fogType: gl.getUniformLocation( program, 'fogType' ),
  			fogDensity: gl.getUniformLocation( program, 'fogDensity' ),
  			fogNear: gl.getUniformLocation( program, 'fogNear' ),
  			fogFar: gl.getUniformLocation( program, 'fogFar' ),
  			fogColor: gl.getUniformLocation( program, 'fogColor' ),
  			fogDepth: gl.getUniformLocation( program, 'fogDepth' ),

  			alphaTest: gl.getUniformLocation( program, 'alphaTest' )
  		};

  		var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
  		canvas.width = 8;
  		canvas.height = 8;

  		var context = canvas.getContext( '2d' );
  		context.fillStyle = 'white';
  		context.fillRect( 0, 0, 8, 8 );

  		texture = new CanvasTexture( canvas );

  	}

  	this.render = function ( sprites, scene, camera ) {

  		if ( sprites.length === 0 ) return;

  		// setup gl

  		if ( program === undefined ) {

  			init();

  		}

  		state.useProgram( program );

  		state.initAttributes();
  		state.enableAttribute( attributes.position );
  		state.enableAttribute( attributes.uv );
  		state.disableUnusedAttributes();

  		state.disable( gl.CULL_FACE );
  		state.enable( gl.BLEND );

  		gl.bindBuffer( gl.ARRAY_BUFFER, vertexBuffer );
  		gl.vertexAttribPointer( attributes.position, 2, gl.FLOAT, false, 2 * 8, 0 );
  		gl.vertexAttribPointer( attributes.uv, 2, gl.FLOAT, false, 2 * 8, 8 );

  		gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, elementBuffer );

  		gl.uniformMatrix4fv( uniforms.projectionMatrix, false, camera.projectionMatrix.elements );

  		state.activeTexture( gl.TEXTURE0 );
  		gl.uniform1i( uniforms.map, 0 );

  		var oldFogType = 0;
  		var sceneFogType = 0;
  		var fog = scene.fog;

  		if ( fog ) {

  			gl.uniform3f( uniforms.fogColor, fog.color.r, fog.color.g, fog.color.b );

  			if ( fog.isFog ) {

  				gl.uniform1f( uniforms.fogNear, fog.near );
  				gl.uniform1f( uniforms.fogFar, fog.far );

  				gl.uniform1i( uniforms.fogType, 1 );
  				oldFogType = 1;
  				sceneFogType = 1;

  			} else if ( fog.isFogExp2 ) {

  				gl.uniform1f( uniforms.fogDensity, fog.density );

  				gl.uniform1i( uniforms.fogType, 2 );
  				oldFogType = 2;
  				sceneFogType = 2;

  			}

  		} else {

  			gl.uniform1i( uniforms.fogType, 0 );
  			oldFogType = 0;
  			sceneFogType = 0;

  		}


  		// update positions and sort

  		for ( var i = 0, l = sprites.length; i < l; i ++ ) {

  			var sprite = sprites[ i ];

  			sprite.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, sprite.matrixWorld );
  			sprite.z = - sprite.modelViewMatrix.elements[ 14 ];

  		}

  		sprites.sort( painterSortStable );

  		// render all sprites

  		var scale = [];
  		var center = [];

  		for ( var i = 0, l = sprites.length; i < l; i ++ ) {

  			var sprite = sprites[ i ];
  			var material = sprite.material;

  			if ( material.visible === false ) continue;

  			sprite.onBeforeRender( renderer, scene, camera, undefined, material, undefined );

  			gl.uniform1f( uniforms.alphaTest, material.alphaTest );
  			gl.uniformMatrix4fv( uniforms.modelViewMatrix, false, sprite.modelViewMatrix.elements );

  			sprite.matrixWorld.decompose( spritePosition, spriteRotation, spriteScale );

  			scale[ 0 ] = spriteScale.x;
  			scale[ 1 ] = spriteScale.y;

  			center[ 0 ] = sprite.center.x - 0.5;
  			center[ 1 ] = sprite.center.y - 0.5;

  			var fogType = 0;

  			if ( scene.fog && material.fog ) {

  				fogType = sceneFogType;

  			}

  			if ( oldFogType !== fogType ) {

  				gl.uniform1i( uniforms.fogType, fogType );
  				oldFogType = fogType;

  			}

  			if ( material.map !== null ) {

  				gl.uniform2f( uniforms.uvOffset, material.map.offset.x, material.map.offset.y );
  				gl.uniform2f( uniforms.uvScale, material.map.repeat.x, material.map.repeat.y );

  			} else {

  				gl.uniform2f( uniforms.uvOffset, 0, 0 );
  				gl.uniform2f( uniforms.uvScale, 1, 1 );

  			}

  			gl.uniform1f( uniforms.opacity, material.opacity );
  			gl.uniform3f( uniforms.color, material.color.r, material.color.g, material.color.b );

  			gl.uniform1f( uniforms.rotation, material.rotation );
  			gl.uniform2fv( uniforms.center, center );
  			gl.uniform2fv( uniforms.scale, scale );

  			state.setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha );
  			state.buffers.depth.setTest( material.depthTest );
  			state.buffers.depth.setMask( material.depthWrite );
  			state.buffers.color.setMask( material.colorWrite );

  			textures.setTexture2D( material.map || texture, 0 );

  			gl.drawElements( gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0 );

  			sprite.onAfterRender( renderer, scene, camera, undefined, material, undefined );

  		}

  		// restore gl

  		state.enable( gl.CULL_FACE );

  		state.reset();

  	};

  	function createProgram() {

  		var program = gl.createProgram();

  		var vertexShader = gl.createShader( gl.VERTEX_SHADER );
  		var fragmentShader = gl.createShader( gl.FRAGMENT_SHADER );

  		gl.shaderSource( vertexShader, [

  			'precision ' + capabilities.precision + ' float;',

  			'#define SHADER_NAME ' + 'SpriteMaterial',

  			'uniform mat4 modelViewMatrix;',
  			'uniform mat4 projectionMatrix;',
  			'uniform float rotation;',
  			'uniform vec2 center;',
  			'uniform vec2 scale;',
  			'uniform vec2 uvOffset;',
  			'uniform vec2 uvScale;',

  			'attribute vec2 position;',
  			'attribute vec2 uv;',

  			'varying vec2 vUV;',
  			'varying float fogDepth;',

  			'void main() {',

  			'	vUV = uvOffset + uv * uvScale;',

  			'	vec2 alignedPosition = ( position - center ) * scale;',

  			'	vec2 rotatedPosition;',
  			'	rotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;',
  			'	rotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;',

  			'	vec4 mvPosition;',

  			'	mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );',
  			'	mvPosition.xy += rotatedPosition;',

  			'	gl_Position = projectionMatrix * mvPosition;',

  			'	fogDepth = - mvPosition.z;',

  			'}'

  		].join( '\n' ) );

  		gl.shaderSource( fragmentShader, [

  			'precision ' + capabilities.precision + ' float;',

  			'#define SHADER_NAME ' + 'SpriteMaterial',

  			'uniform vec3 color;',
  			'uniform sampler2D map;',
  			'uniform float opacity;',

  			'uniform int fogType;',
  			'uniform vec3 fogColor;',
  			'uniform float fogDensity;',
  			'uniform float fogNear;',
  			'uniform float fogFar;',
  			'uniform float alphaTest;',

  			'varying vec2 vUV;',
  			'varying float fogDepth;',

  			'void main() {',

  			'	vec4 texture = texture2D( map, vUV );',

  			'	gl_FragColor = vec4( color * texture.xyz, texture.a * opacity );',

  			'	if ( gl_FragColor.a < alphaTest ) discard;',

  			'	if ( fogType > 0 ) {',

  			'		float fogFactor = 0.0;',

  			'		if ( fogType == 1 ) {',

  			'			fogFactor = smoothstep( fogNear, fogFar, fogDepth );',

  			'		} else {',

  			'			const float LOG2 = 1.442695;',
  			'			fogFactor = exp2( - fogDensity * fogDensity * fogDepth * fogDepth * LOG2 );',
  			'			fogFactor = 1.0 - clamp( fogFactor, 0.0, 1.0 );',

  			'		}',

  			'		gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );',

  			'	}',

  			'}'

  		].join( '\n' ) );

  		gl.compileShader( vertexShader );
  		gl.compileShader( fragmentShader );

  		gl.attachShader( program, vertexShader );
  		gl.attachShader( program, fragmentShader );

  		gl.linkProgram( program );

  		return program;

  	}

  	function painterSortStable( a, b ) {

  		if ( a.renderOrder !== b.renderOrder ) {

  			return a.renderOrder - b.renderOrder;

  		} else if ( a.z !== b.z ) {

  			return b.z - a.z;

  		} else {

  			return b.id - a.id;

  		}

  	}

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLState( gl, extensions, utils ) {

  	function ColorBuffer() {

  		var locked = false;

  		var color = new Vector4();
  		var currentColorMask = null;
  		var currentColorClear = new Vector4( 0, 0, 0, 0 );

  		return {

  			setMask: function ( colorMask ) {

  				if ( currentColorMask !== colorMask && ! locked ) {

  					gl.colorMask( colorMask, colorMask, colorMask, colorMask );
  					currentColorMask = colorMask;

  				}

  			},

  			setLocked: function ( lock ) {

  				locked = lock;

  			},

  			setClear: function ( r, g, b, a, premultipliedAlpha ) {

  				if ( premultipliedAlpha === true ) {

  					r *= a; g *= a; b *= a;

  				}

  				color.set( r, g, b, a );

  				if ( currentColorClear.equals( color ) === false ) {

  					gl.clearColor( r, g, b, a );
  					currentColorClear.copy( color );

  				}

  			},

  			reset: function () {

  				locked = false;

  				currentColorMask = null;
  				currentColorClear.set( - 1, 0, 0, 0 ); // set to invalid state

  			}

  		};

  	}

  	function DepthBuffer() {

  		var locked = false;

  		var currentDepthMask = null;
  		var currentDepthFunc = null;
  		var currentDepthClear = null;

  		return {

  			setTest: function ( depthTest ) {

  				if ( depthTest ) {

  					enable( gl.DEPTH_TEST );

  				} else {

  					disable( gl.DEPTH_TEST );

  				}

  			},

  			setMask: function ( depthMask ) {

  				if ( currentDepthMask !== depthMask && ! locked ) {

  					gl.depthMask( depthMask );
  					currentDepthMask = depthMask;

  				}

  			},

  			setFunc: function ( depthFunc ) {

  				if ( currentDepthFunc !== depthFunc ) {

  					if ( depthFunc ) {

  						switch ( depthFunc ) {

  							case NeverDepth:

  								gl.depthFunc( gl.NEVER );
  								break;

  							case AlwaysDepth:

  								gl.depthFunc( gl.ALWAYS );
  								break;

  							case LessDepth:

  								gl.depthFunc( gl.LESS );
  								break;

  							case LessEqualDepth:

  								gl.depthFunc( gl.LEQUAL );
  								break;

  							case EqualDepth:

  								gl.depthFunc( gl.EQUAL );
  								break;

  							case GreaterEqualDepth:

  								gl.depthFunc( gl.GEQUAL );
  								break;

  							case GreaterDepth:

  								gl.depthFunc( gl.GREATER );
  								break;

  							case NotEqualDepth:

  								gl.depthFunc( gl.NOTEQUAL );
  								break;

  							default:

  								gl.depthFunc( gl.LEQUAL );

  						}

  					} else {

  						gl.depthFunc( gl.LEQUAL );

  					}

  					currentDepthFunc = depthFunc;

  				}

  			},

  			setLocked: function ( lock ) {

  				locked = lock;

  			},

  			setClear: function ( depth ) {

  				if ( currentDepthClear !== depth ) {

  					gl.clearDepth( depth );
  					currentDepthClear = depth;

  				}

  			},

  			reset: function () {

  				locked = false;

  				currentDepthMask = null;
  				currentDepthFunc = null;
  				currentDepthClear = null;

  			}

  		};

  	}

  	function StencilBuffer() {

  		var locked = false;

  		var currentStencilMask = null;
  		var currentStencilFunc = null;
  		var currentStencilRef = null;
  		var currentStencilFuncMask = null;
  		var currentStencilFail = null;
  		var currentStencilZFail = null;
  		var currentStencilZPass = null;
  		var currentStencilClear = null;

  		return {

  			setTest: function ( stencilTest ) {

  				if ( stencilTest ) {

  					enable( gl.STENCIL_TEST );

  				} else {

  					disable( gl.STENCIL_TEST );

  				}

  			},

  			setMask: function ( stencilMask ) {

  				if ( currentStencilMask !== stencilMask && ! locked ) {

  					gl.stencilMask( stencilMask );
  					currentStencilMask = stencilMask;

  				}

  			},

  			setFunc: function ( stencilFunc, stencilRef, stencilMask ) {

  				if ( currentStencilFunc !== stencilFunc ||
  				     currentStencilRef 	!== stencilRef 	||
  				     currentStencilFuncMask !== stencilMask ) {

  					gl.stencilFunc( stencilFunc, stencilRef, stencilMask );

  					currentStencilFunc = stencilFunc;
  					currentStencilRef = stencilRef;
  					currentStencilFuncMask = stencilMask;

  				}

  			},

  			setOp: function ( stencilFail, stencilZFail, stencilZPass ) {

  				if ( currentStencilFail	 !== stencilFail 	||
  				     currentStencilZFail !== stencilZFail ||
  				     currentStencilZPass !== stencilZPass ) {

  					gl.stencilOp( stencilFail, stencilZFail, stencilZPass );

  					currentStencilFail = stencilFail;
  					currentStencilZFail = stencilZFail;
  					currentStencilZPass = stencilZPass;

  				}

  			},

  			setLocked: function ( lock ) {

  				locked = lock;

  			},

  			setClear: function ( stencil ) {

  				if ( currentStencilClear !== stencil ) {

  					gl.clearStencil( stencil );
  					currentStencilClear = stencil;

  				}

  			},

  			reset: function () {

  				locked = false;

  				currentStencilMask = null;
  				currentStencilFunc = null;
  				currentStencilRef = null;
  				currentStencilFuncMask = null;
  				currentStencilFail = null;
  				currentStencilZFail = null;
  				currentStencilZPass = null;
  				currentStencilClear = null;

  			}

  		};

  	}

  	//

  	var colorBuffer = new ColorBuffer();
  	var depthBuffer = new DepthBuffer();
  	var stencilBuffer = new StencilBuffer();

  	var maxVertexAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS );
  	var newAttributes = new Uint8Array( maxVertexAttributes );
  	var enabledAttributes = new Uint8Array( maxVertexAttributes );
  	var attributeDivisors = new Uint8Array( maxVertexAttributes );

  	var capabilities = {};

  	var compressedTextureFormats = null;

  	var currentProgram = null;

  	var currentBlending = null;
  	var currentBlendEquation = null;
  	var currentBlendSrc = null;
  	var currentBlendDst = null;
  	var currentBlendEquationAlpha = null;
  	var currentBlendSrcAlpha = null;
  	var currentBlendDstAlpha = null;
  	var currentPremultipledAlpha = false;

  	var currentFlipSided = null;
  	var currentCullFace = null;

  	var currentLineWidth = null;

  	var currentPolygonOffsetFactor = null;
  	var currentPolygonOffsetUnits = null;

  	var maxTextures = gl.getParameter( gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS );

  	var lineWidthAvailable = false;
  	var version = 0;
  	var glVersion = gl.getParameter( gl.VERSION );

  	if ( glVersion.indexOf( 'WebGL' ) !== - 1 ) {

  		version = parseFloat( /^WebGL\ ([0-9])/.exec( glVersion )[ 1 ] );
  		lineWidthAvailable = ( version >= 1.0 );

  	} else if ( glVersion.indexOf( 'OpenGL ES' ) !== - 1 ) {

  		version = parseFloat( /^OpenGL\ ES\ ([0-9])/.exec( glVersion )[ 1 ] );
  		lineWidthAvailable = ( version >= 2.0 );

  	}

  	var currentTextureSlot = null;
  	var currentBoundTextures = {};

  	var currentScissor = new Vector4();
  	var currentViewport = new Vector4();

  	function createTexture( type, target, count ) {

  		var data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4.
  		var texture = gl.createTexture();

  		gl.bindTexture( type, texture );
  		gl.texParameteri( type, gl.TEXTURE_MIN_FILTER, gl.NEAREST );
  		gl.texParameteri( type, gl.TEXTURE_MAG_FILTER, gl.NEAREST );

  		for ( var i = 0; i < count; i ++ ) {

  			gl.texImage2D( target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data );

  		}

  		return texture;

  	}

  	var emptyTextures = {};
  	emptyTextures[ gl.TEXTURE_2D ] = createTexture( gl.TEXTURE_2D, gl.TEXTURE_2D, 1 );
  	emptyTextures[ gl.TEXTURE_CUBE_MAP ] = createTexture( gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6 );

  	// init

  	colorBuffer.setClear( 0, 0, 0, 1 );
  	depthBuffer.setClear( 1 );
  	stencilBuffer.setClear( 0 );

  	enable( gl.DEPTH_TEST );
  	depthBuffer.setFunc( LessEqualDepth );

  	setFlipSided( false );
  	setCullFace( CullFaceBack );
  	enable( gl.CULL_FACE );

  	enable( gl.BLEND );
  	setBlending( NormalBlending );

  	//

  	function initAttributes() {

  		for ( var i = 0, l = newAttributes.length; i < l; i ++ ) {

  			newAttributes[ i ] = 0;

  		}

  	}

  	function enableAttribute( attribute ) {

  		enableAttributeAndDivisor( attribute, 0 );

  	}

  	function enableAttributeAndDivisor( attribute, meshPerAttribute ) {

  		newAttributes[ attribute ] = 1;

  		if ( enabledAttributes[ attribute ] === 0 ) {

  			gl.enableVertexAttribArray( attribute );
  			enabledAttributes[ attribute ] = 1;

  		}

  		if ( attributeDivisors[ attribute ] !== meshPerAttribute ) {

  			var extension = extensions.get( 'ANGLE_instanced_arrays' );

  			extension.vertexAttribDivisorANGLE( attribute, meshPerAttribute );
  			attributeDivisors[ attribute ] = meshPerAttribute;

  		}

  	}

  	function disableUnusedAttributes() {

  		for ( var i = 0, l = enabledAttributes.length; i !== l; ++ i ) {

  			if ( enabledAttributes[ i ] !== newAttributes[ i ] ) {

  				gl.disableVertexAttribArray( i );
  				enabledAttributes[ i ] = 0;

  			}

  		}

  	}

  	function enable( id ) {

  		if ( capabilities[ id ] !== true ) {

  			gl.enable( id );
  			capabilities[ id ] = true;

  		}

  	}

  	function disable( id ) {

  		if ( capabilities[ id ] !== false ) {

  			gl.disable( id );
  			capabilities[ id ] = false;

  		}

  	}

  	function getCompressedTextureFormats() {

  		if ( compressedTextureFormats === null ) {

  			compressedTextureFormats = [];

  			if ( extensions.get( 'WEBGL_compressed_texture_pvrtc' ) ||
  			     extensions.get( 'WEBGL_compressed_texture_s3tc' ) ||
  			     extensions.get( 'WEBGL_compressed_texture_etc1' ) ||
  			     extensions.get( 'WEBGL_compressed_texture_astc' ) ) {

  				var formats = gl.getParameter( gl.COMPRESSED_TEXTURE_FORMATS );

  				for ( var i = 0; i < formats.length; i ++ ) {

  					compressedTextureFormats.push( formats[ i ] );

  				}

  			}

  		}

  		return compressedTextureFormats;

  	}

  	function useProgram( program ) {

  		if ( currentProgram !== program ) {

  			gl.useProgram( program );

  			currentProgram = program;

  			return true;

  		}

  		return false;

  	}

  	function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha ) {

  		if ( blending !== NoBlending ) {

  			enable( gl.BLEND );

  		} else {

  			disable( gl.BLEND );

  		}

  		if ( blending !== CustomBlending ) {

  			if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) {

  				switch ( blending ) {

  					case AdditiveBlending:

  						if ( premultipliedAlpha ) {

  							gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
  							gl.blendFuncSeparate( gl.ONE, gl.ONE, gl.ONE, gl.ONE );

  						} else {

  							gl.blendEquation( gl.FUNC_ADD );
  							gl.blendFunc( gl.SRC_ALPHA, gl.ONE );

  						}
  						break;

  					case SubtractiveBlending:

  						if ( premultipliedAlpha ) {

  							gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
  							gl.blendFuncSeparate( gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA );

  						} else {

  							gl.blendEquation( gl.FUNC_ADD );
  							gl.blendFunc( gl.ZERO, gl.ONE_MINUS_SRC_COLOR );

  						}
  						break;

  					case MultiplyBlending:

  						if ( premultipliedAlpha ) {

  							gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
  							gl.blendFuncSeparate( gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA );

  						} else {

  							gl.blendEquation( gl.FUNC_ADD );
  							gl.blendFunc( gl.ZERO, gl.SRC_COLOR );

  						}
  						break;

  					default:

  						if ( premultipliedAlpha ) {

  							gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
  							gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA );

  						} else {

  							gl.blendEquationSeparate( gl.FUNC_ADD, gl.FUNC_ADD );
  							gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA );

  						}

  				}

  			}

  			currentBlendEquation = null;
  			currentBlendSrc = null;
  			currentBlendDst = null;
  			currentBlendEquationAlpha = null;
  			currentBlendSrcAlpha = null;
  			currentBlendDstAlpha = null;

  		} else {

  			blendEquationAlpha = blendEquationAlpha || blendEquation;
  			blendSrcAlpha = blendSrcAlpha || blendSrc;
  			blendDstAlpha = blendDstAlpha || blendDst;

  			if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) {

  				gl.blendEquationSeparate( utils.convert( blendEquation ), utils.convert( blendEquationAlpha ) );

  				currentBlendEquation = blendEquation;
  				currentBlendEquationAlpha = blendEquationAlpha;

  			}

  			if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) {

  				gl.blendFuncSeparate( utils.convert( blendSrc ), utils.convert( blendDst ), utils.convert( blendSrcAlpha ), utils.convert( blendDstAlpha ) );

  				currentBlendSrc = blendSrc;
  				currentBlendDst = blendDst;
  				currentBlendSrcAlpha = blendSrcAlpha;
  				currentBlendDstAlpha = blendDstAlpha;

  			}

  		}

  		currentBlending = blending;
  		currentPremultipledAlpha = premultipliedAlpha;

  	}

  	function setMaterial( material, frontFaceCW ) {

  		material.side === DoubleSide
  			? disable( gl.CULL_FACE )
  			: enable( gl.CULL_FACE );

  		var flipSided = ( material.side === BackSide );
  		if ( frontFaceCW ) flipSided = ! flipSided;

  		setFlipSided( flipSided );

  		material.transparent === true
  			? setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha )
  			: setBlending( NoBlending );

  		depthBuffer.setFunc( material.depthFunc );
  		depthBuffer.setTest( material.depthTest );
  		depthBuffer.setMask( material.depthWrite );
  		colorBuffer.setMask( material.colorWrite );

  		setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits );

  	}

  	//

  	function setFlipSided( flipSided ) {

  		if ( currentFlipSided !== flipSided ) {

  			if ( flipSided ) {

  				gl.frontFace( gl.CW );

  			} else {

  				gl.frontFace( gl.CCW );

  			}

  			currentFlipSided = flipSided;

  		}

  	}

  	function setCullFace( cullFace ) {

  		if ( cullFace !== CullFaceNone ) {

  			enable( gl.CULL_FACE );

  			if ( cullFace !== currentCullFace ) {

  				if ( cullFace === CullFaceBack ) {

  					gl.cullFace( gl.BACK );

  				} else if ( cullFace === CullFaceFront ) {

  					gl.cullFace( gl.FRONT );

  				} else {

  					gl.cullFace( gl.FRONT_AND_BACK );

  				}

  			}

  		} else {

  			disable( gl.CULL_FACE );

  		}

  		currentCullFace = cullFace;

  	}

  	function setLineWidth( width ) {

  		if ( width !== currentLineWidth ) {

  			if ( lineWidthAvailable ) gl.lineWidth( width );

  			currentLineWidth = width;

  		}

  	}

  	function setPolygonOffset( polygonOffset, factor, units ) {

  		if ( polygonOffset ) {

  			enable( gl.POLYGON_OFFSET_FILL );

  			if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) {

  				gl.polygonOffset( factor, units );

  				currentPolygonOffsetFactor = factor;
  				currentPolygonOffsetUnits = units;

  			}

  		} else {

  			disable( gl.POLYGON_OFFSET_FILL );

  		}

  	}

  	function setScissorTest( scissorTest ) {

  		if ( scissorTest ) {

  			enable( gl.SCISSOR_TEST );

  		} else {

  			disable( gl.SCISSOR_TEST );

  		}

  	}

  	// texture

  	function activeTexture( webglSlot ) {

  		if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1;

  		if ( currentTextureSlot !== webglSlot ) {

  			gl.activeTexture( webglSlot );
  			currentTextureSlot = webglSlot;

  		}

  	}

  	function bindTexture( webglType, webglTexture ) {

  		if ( currentTextureSlot === null ) {

  			activeTexture();

  		}

  		var boundTexture = currentBoundTextures[ currentTextureSlot ];

  		if ( boundTexture === undefined ) {

  			boundTexture = { type: undefined, texture: undefined };
  			currentBoundTextures[ currentTextureSlot ] = boundTexture;

  		}

  		if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) {

  			gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] );

  			boundTexture.type = webglType;
  			boundTexture.texture = webglTexture;

  		}

  	}

  	function compressedTexImage2D() {

  		try {

  			gl.compressedTexImage2D.apply( gl, arguments );

  		} catch ( error ) {

  			console.error( 'THREE.WebGLState:', error );

  		}

  	}

  	function texImage2D() {

  		try {

  			gl.texImage2D.apply( gl, arguments );

  		} catch ( error ) {

  			console.error( 'THREE.WebGLState:', error );

  		}

  	}

  	//

  	function scissor( scissor ) {

  		if ( currentScissor.equals( scissor ) === false ) {

  			gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w );
  			currentScissor.copy( scissor );

  		}

  	}

  	function viewport( viewport ) {

  		if ( currentViewport.equals( viewport ) === false ) {

  			gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w );
  			currentViewport.copy( viewport );

  		}

  	}

  	//

  	function reset() {

  		for ( var i = 0; i < enabledAttributes.length; i ++ ) {

  			if ( enabledAttributes[ i ] === 1 ) {

  				gl.disableVertexAttribArray( i );
  				enabledAttributes[ i ] = 0;

  			}

  		}

  		capabilities = {};

  		compressedTextureFormats = null;

  		currentTextureSlot = null;
  		currentBoundTextures = {};

  		currentProgram = null;

  		currentBlending = null;

  		currentFlipSided = null;
  		currentCullFace = null;

  		colorBuffer.reset();
  		depthBuffer.reset();
  		stencilBuffer.reset();

  	}

  	return {

  		buffers: {
  			color: colorBuffer,
  			depth: depthBuffer,
  			stencil: stencilBuffer
  		},

  		initAttributes: initAttributes,
  		enableAttribute: enableAttribute,
  		enableAttributeAndDivisor: enableAttributeAndDivisor,
  		disableUnusedAttributes: disableUnusedAttributes,
  		enable: enable,
  		disable: disable,
  		getCompressedTextureFormats: getCompressedTextureFormats,

  		useProgram: useProgram,

  		setBlending: setBlending,
  		setMaterial: setMaterial,

  		setFlipSided: setFlipSided,
  		setCullFace: setCullFace,

  		setLineWidth: setLineWidth,
  		setPolygonOffset: setPolygonOffset,

  		setScissorTest: setScissorTest,

  		activeTexture: activeTexture,
  		bindTexture: bindTexture,
  		compressedTexImage2D: compressedTexImage2D,
  		texImage2D: texImage2D,

  		scissor: scissor,
  		viewport: viewport,

  		reset: reset

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) {

  	var _isWebGL2 = ( typeof WebGL2RenderingContext !== 'undefined' && _gl instanceof WebGL2RenderingContext ); /* global WebGL2RenderingContext */
  	var _videoTextures = {};
  	var _canvas;

  	//

  	function clampToMaxSize( image, maxSize ) {

  		if ( image.width > maxSize || image.height > maxSize ) {

  			if ( 'data' in image ) {

  				console.warn( 'THREE.WebGLRenderer: image in DataTexture is too big (' + image.width + 'x' + image.height + ').' );
  				return;

  			}

  			// Warning: Scaling through the canvas will only work with images that use
  			// premultiplied alpha.

  			var scale = maxSize / Math.max( image.width, image.height );

  			var canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );
  			canvas.width = Math.floor( image.width * scale );
  			canvas.height = Math.floor( image.height * scale );

  			var context = canvas.getContext( '2d' );
  			context.drawImage( image, 0, 0, image.width, image.height, 0, 0, canvas.width, canvas.height );

  			console.warn( 'THREE.WebGLRenderer: image is too big (' + image.width + 'x' + image.height + '). Resized to ' + canvas.width + 'x' + canvas.height, image );

  			return canvas;

  		}

  		return image;

  	}

  	function isPowerOfTwo( image ) {

  		return _Math.isPowerOfTwo( image.width ) && _Math.isPowerOfTwo( image.height );

  	}

  	function makePowerOfTwo( image ) {

  		if ( image instanceof HTMLImageElement || image instanceof HTMLCanvasElement || image instanceof ImageBitmap ) {

  			if ( _canvas === undefined ) _canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );

  			_canvas.width = _Math.floorPowerOfTwo( image.width );
  			_canvas.height = _Math.floorPowerOfTwo( image.height );

  			var context = _canvas.getContext( '2d' );
  			context.drawImage( image, 0, 0, _canvas.width, _canvas.height );

  			console.warn( 'THREE.WebGLRenderer: image is not power of two (' + image.width + 'x' + image.height + '). Resized to ' + _canvas.width + 'x' + _canvas.height, image );

  			return _canvas;

  		}

  		return image;

  	}

  	function textureNeedsPowerOfTwo( texture ) {

  		return ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) ||
  			( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter );

  	}

  	function textureNeedsGenerateMipmaps( texture, isPowerOfTwo ) {

  		return texture.generateMipmaps && isPowerOfTwo &&
  			texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;

  	}

  	function generateMipmap( target, texture, width, height ) {

  		_gl.generateMipmap( target );

  		var textureProperties = properties.get( texture );

  		// Note: Math.log( x ) * Math.LOG2E used instead of Math.log2( x ) which is not supported by IE11
  		textureProperties.__maxMipLevel = Math.log( Math.max( width, height ) ) * Math.LOG2E;

  	}

  	// Fallback filters for non-power-of-2 textures

  	function filterFallback( f ) {

  		if ( f === NearestFilter || f === NearestMipMapNearestFilter || f === NearestMipMapLinearFilter ) {

  			return _gl.NEAREST;

  		}

  		return _gl.LINEAR;

  	}

  	//

  	function onTextureDispose( event ) {

  		var texture = event.target;

  		texture.removeEventListener( 'dispose', onTextureDispose );

  		deallocateTexture( texture );

  		if ( texture.isVideoTexture ) {

  			delete _videoTextures[ texture.id ];

  		}

  		info.memory.textures --;

  	}

  	function onRenderTargetDispose( event ) {

  		var renderTarget = event.target;

  		renderTarget.removeEventListener( 'dispose', onRenderTargetDispose );

  		deallocateRenderTarget( renderTarget );

  		info.memory.textures --;

  	}

  	//

  	function deallocateTexture( texture ) {

  		var textureProperties = properties.get( texture );

  		if ( texture.image && textureProperties.__image__webglTextureCube ) {

  			// cube texture

  			_gl.deleteTexture( textureProperties.__image__webglTextureCube );

  		} else {

  			// 2D texture

  			if ( textureProperties.__webglInit === undefined ) return;

  			_gl.deleteTexture( textureProperties.__webglTexture );

  		}

  		// remove all webgl properties
  		properties.remove( texture );

  	}

  	function deallocateRenderTarget( renderTarget ) {

  		var renderTargetProperties = properties.get( renderTarget );
  		var textureProperties = properties.get( renderTarget.texture );

  		if ( ! renderTarget ) return;

  		if ( textureProperties.__webglTexture !== undefined ) {

  			_gl.deleteTexture( textureProperties.__webglTexture );

  		}

  		if ( renderTarget.depthTexture ) {

  			renderTarget.depthTexture.dispose();

  		}

  		if ( renderTarget.isWebGLRenderTargetCube ) {

  			for ( var i = 0; i < 6; i ++ ) {

  				_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] );
  				if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] );

  			}

  		} else {

  			_gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer );
  			if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer );

  		}

  		properties.remove( renderTarget.texture );
  		properties.remove( renderTarget );

  	}

  	//



  	function setTexture2D( texture, slot ) {

  		var textureProperties = properties.get( texture );

  		if ( texture.isVideoTexture ) updateVideoTexture( texture );

  		if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

  			var image = texture.image;

  			if ( image === undefined ) {

  				console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is undefined', texture );

  			} else if ( image.complete === false ) {

  				console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete', texture );

  			} else {

  				uploadTexture( textureProperties, texture, slot );
  				return;

  			}

  		}

  		state.activeTexture( _gl.TEXTURE0 + slot );
  		state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );

  	}

  	function setTextureCube( texture, slot ) {

  		var textureProperties = properties.get( texture );

  		if ( texture.image.length === 6 ) {

  			if ( texture.version > 0 && textureProperties.__version !== texture.version ) {

  				if ( ! textureProperties.__image__webglTextureCube ) {

  					texture.addEventListener( 'dispose', onTextureDispose );

  					textureProperties.__image__webglTextureCube = _gl.createTexture();

  					info.memory.textures ++;

  				}

  				state.activeTexture( _gl.TEXTURE0 + slot );
  				state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube );

  				_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY );

  				var isCompressed = ( texture && texture.isCompressedTexture );
  				var isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture );

  				var cubeImage = [];

  				for ( var i = 0; i < 6; i ++ ) {

  					if ( ! isCompressed && ! isDataTexture ) {

  						cubeImage[ i ] = clampToMaxSize( texture.image[ i ], capabilities.maxCubemapSize );

  					} else {

  						cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ];

  					}

  				}

  				var image = cubeImage[ 0 ],
  					isPowerOfTwoImage = isPowerOfTwo( image ),
  					glFormat = utils.convert( texture.format ),
  					glType = utils.convert( texture.type );

  				setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture, isPowerOfTwoImage );

  				for ( var i = 0; i < 6; i ++ ) {

  					if ( ! isCompressed ) {

  						if ( isDataTexture ) {

  							state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data );

  						} else {

  							state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glFormat, glFormat, glType, cubeImage[ i ] );

  						}

  					} else {

  						var mipmap, mipmaps = cubeImage[ i ].mipmaps;

  						for ( var j = 0, jl = mipmaps.length; j < jl; j ++ ) {

  							mipmap = mipmaps[ j ];

  							if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {

  								if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) {

  									state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, mipmap.data );

  								} else {

  									console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' );

  								}

  							} else {

  								state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

  							}

  						}

  					}

  				}

  				if ( ! isCompressed ) {

  					textureProperties.__maxMipLevel = 0;

  				} else {

  					textureProperties.__maxMipLevel = mipmaps.length - 1;

  				}

  				if ( textureNeedsGenerateMipmaps( texture, isPowerOfTwoImage ) ) {

  					// We assume images for cube map have the same size.
  					generateMipmap( _gl.TEXTURE_CUBE_MAP, texture, image.width, image.height );

  				}

  				textureProperties.__version = texture.version;

  				if ( texture.onUpdate ) texture.onUpdate( texture );

  			} else {

  				state.activeTexture( _gl.TEXTURE0 + slot );
  				state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__image__webglTextureCube );

  			}

  		}

  	}

  	function setTextureCubeDynamic( texture, slot ) {

  		state.activeTexture( _gl.TEXTURE0 + slot );
  		state.bindTexture( _gl.TEXTURE_CUBE_MAP, properties.get( texture ).__webglTexture );

  	}

  	function setTextureParameters( textureType, texture, isPowerOfTwoImage ) {

  		var extension;

  		if ( isPowerOfTwoImage ) {

  			_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, utils.convert( texture.wrapS ) );
  			_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, utils.convert( texture.wrapT ) );

  			_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, utils.convert( texture.magFilter ) );
  			_gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, utils.convert( texture.minFilter ) );

  		} else {

  			_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE );
  			_gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE );

  			if ( texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping ) {

  				console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.', texture );

  			}

  			_gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterFallback( texture.magFilter ) );
  			_gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterFallback( texture.minFilter ) );

  			if ( texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) {

  				console.warn( 'THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.', texture );

  			}

  		}

  		extension = extensions.get( 'EXT_texture_filter_anisotropic' );

  		if ( extension ) {

  			if ( texture.type === FloatType && extensions.get( 'OES_texture_float_linear' ) === null ) return;
  			if ( texture.type === HalfFloatType && extensions.get( 'OES_texture_half_float_linear' ) === null ) return;

  			if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) {

  				_gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) );
  				properties.get( texture ).__currentAnisotropy = texture.anisotropy;

  			}

  		}

  	}

  	function uploadTexture( textureProperties, texture, slot ) {

  		if ( textureProperties.__webglInit === undefined ) {

  			textureProperties.__webglInit = true;

  			texture.addEventListener( 'dispose', onTextureDispose );

  			textureProperties.__webglTexture = _gl.createTexture();

  			info.memory.textures ++;

  		}

  		state.activeTexture( _gl.TEXTURE0 + slot );
  		state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );

  		_gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY );
  		_gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha );
  		_gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment );

  		var image = clampToMaxSize( texture.image, capabilities.maxTextureSize );

  		if ( textureNeedsPowerOfTwo( texture ) && isPowerOfTwo( image ) === false ) {

  			image = makePowerOfTwo( image );

  		}

  		var isPowerOfTwoImage = isPowerOfTwo( image ),
  			glFormat = utils.convert( texture.format ),
  			glType = utils.convert( texture.type );

  		setTextureParameters( _gl.TEXTURE_2D, texture, isPowerOfTwoImage );

  		var mipmap, mipmaps = texture.mipmaps;

  		if ( texture.isDepthTexture ) {

  			// populate depth texture with dummy data

  			var internalFormat = _gl.DEPTH_COMPONENT;

  			if ( texture.type === FloatType ) {

  				if ( ! _isWebGL2 ) throw new Error( 'Float Depth Texture only supported in WebGL2.0' );
  				internalFormat = _gl.DEPTH_COMPONENT32F;

  			} else if ( _isWebGL2 ) {

  				// WebGL 2.0 requires signed internalformat for glTexImage2D
  				internalFormat = _gl.DEPTH_COMPONENT16;

  			}

  			if ( texture.format === DepthFormat && internalFormat === _gl.DEPTH_COMPONENT ) {

  				// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
  				// DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
  				// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
  				if ( texture.type !== UnsignedShortType && texture.type !== UnsignedIntType ) {

  					console.warn( 'THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.' );

  					texture.type = UnsignedShortType;
  					glType = utils.convert( texture.type );

  				}

  			}

  			// Depth stencil textures need the DEPTH_STENCIL internal format
  			// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
  			if ( texture.format === DepthStencilFormat ) {

  				internalFormat = _gl.DEPTH_STENCIL;

  				// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
  				// DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
  				// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
  				if ( texture.type !== UnsignedInt248Type ) {

  					console.warn( 'THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.' );

  					texture.type = UnsignedInt248Type;
  					glType = utils.convert( texture.type );

  				}

  			}

  			state.texImage2D( _gl.TEXTURE_2D, 0, internalFormat, image.width, image.height, 0, glFormat, glType, null );

  		} else if ( texture.isDataTexture ) {

  			// use manually created mipmaps if available
  			// if there are no manual mipmaps
  			// set 0 level mipmap and then use GL to generate other mipmap levels

  			if ( mipmaps.length > 0 && isPowerOfTwoImage ) {

  				for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {

  					mipmap = mipmaps[ i ];
  					state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

  				}

  				texture.generateMipmaps = false;
  				textureProperties.__maxMipLevel = mipmaps.length - 1;

  			} else {

  				state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, image.width, image.height, 0, glFormat, glType, image.data );
  				textureProperties.__maxMipLevel = 0;

  			}

  		} else if ( texture.isCompressedTexture ) {

  			for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {

  				mipmap = mipmaps[ i ];

  				if ( texture.format !== RGBAFormat && texture.format !== RGBFormat ) {

  					if ( state.getCompressedTextureFormats().indexOf( glFormat ) > - 1 ) {

  						state.compressedTexImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, mipmap.data );

  					} else {

  						console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' );

  					}

  				} else {

  					state.texImage2D( _gl.TEXTURE_2D, i, glFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data );

  				}

  			}

  			textureProperties.__maxMipLevel = mipmaps.length - 1;

  		} else {

  			// regular Texture (image, video, canvas)

  			// use manually created mipmaps if available
  			// if there are no manual mipmaps
  			// set 0 level mipmap and then use GL to generate other mipmap levels

  			if ( mipmaps.length > 0 && isPowerOfTwoImage ) {

  				for ( var i = 0, il = mipmaps.length; i < il; i ++ ) {

  					mipmap = mipmaps[ i ];
  					state.texImage2D( _gl.TEXTURE_2D, i, glFormat, glFormat, glType, mipmap );

  				}

  				texture.generateMipmaps = false;
  				textureProperties.__maxMipLevel = mipmaps.length - 1;

  			} else {

  				state.texImage2D( _gl.TEXTURE_2D, 0, glFormat, glFormat, glType, image );
  				textureProperties.__maxMipLevel = 0;

  			}

  		}

  		if ( textureNeedsGenerateMipmaps( texture, isPowerOfTwoImage ) ) {

  			generateMipmap( _gl.TEXTURE_2D, texture, image.width, image.height );

  		}

  		textureProperties.__version = texture.version;

  		if ( texture.onUpdate ) texture.onUpdate( texture );

  	}

  	// Render targets

  	// Setup storage for target texture and bind it to correct framebuffer
  	function setupFrameBufferTexture( framebuffer, renderTarget, attachment, textureTarget ) {

  		var glFormat = utils.convert( renderTarget.texture.format );
  		var glType = utils.convert( renderTarget.texture.type );
  		state.texImage2D( textureTarget, 0, glFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null );
  		_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
  		_gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( renderTarget.texture ).__webglTexture, 0 );
  		_gl.bindFramebuffer( _gl.FRAMEBUFFER, null );

  	}

  	// Setup storage for internal depth/stencil buffers and bind to correct framebuffer
  	function setupRenderBufferStorage( renderbuffer, renderTarget ) {

  		_gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer );

  		if ( renderTarget.depthBuffer && ! renderTarget.stencilBuffer ) {

  			_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_COMPONENT16, renderTarget.width, renderTarget.height );
  			_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );

  		} else if ( renderTarget.depthBuffer && renderTarget.stencilBuffer ) {

  			_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height );
  			_gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer );

  		} else {

  			// FIXME: We don't support !depth !stencil
  			_gl.renderbufferStorage( _gl.RENDERBUFFER, _gl.RGBA4, renderTarget.width, renderTarget.height );

  		}

  		_gl.bindRenderbuffer( _gl.RENDERBUFFER, null );

  	}

  	// Setup resources for a Depth Texture for a FBO (needs an extension)
  	function setupDepthTexture( framebuffer, renderTarget ) {

  		var isCube = ( renderTarget && renderTarget.isWebGLRenderTargetCube );
  		if ( isCube ) throw new Error( 'Depth Texture with cube render targets is not supported' );

  		_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );

  		if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) {

  			throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' );

  		}

  		// upload an empty depth texture with framebuffer size
  		if ( ! properties.get( renderTarget.depthTexture ).__webglTexture ||
  				renderTarget.depthTexture.image.width !== renderTarget.width ||
  				renderTarget.depthTexture.image.height !== renderTarget.height ) {

  			renderTarget.depthTexture.image.width = renderTarget.width;
  			renderTarget.depthTexture.image.height = renderTarget.height;
  			renderTarget.depthTexture.needsUpdate = true;

  		}

  		setTexture2D( renderTarget.depthTexture, 0 );

  		var webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture;

  		if ( renderTarget.depthTexture.format === DepthFormat ) {

  			_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 );

  		} else if ( renderTarget.depthTexture.format === DepthStencilFormat ) {

  			_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 );

  		} else {

  			throw new Error( 'Unknown depthTexture format' );

  		}

  	}

  	// Setup GL resources for a non-texture depth buffer
  	function setupDepthRenderbuffer( renderTarget ) {

  		var renderTargetProperties = properties.get( renderTarget );

  		var isCube = ( renderTarget.isWebGLRenderTargetCube === true );

  		if ( renderTarget.depthTexture ) {

  			if ( isCube ) throw new Error( 'target.depthTexture not supported in Cube render targets' );

  			setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget );

  		} else {

  			if ( isCube ) {

  				renderTargetProperties.__webglDepthbuffer = [];

  				for ( var i = 0; i < 6; i ++ ) {

  					_gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] );
  					renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer();
  					setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget );

  				}

  			} else {

  				_gl.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer );
  				renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
  				setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget );

  			}

  		}

  		_gl.bindFramebuffer( _gl.FRAMEBUFFER, null );

  	}

  	// Set up GL resources for the render target
  	function setupRenderTarget( renderTarget ) {

  		var renderTargetProperties = properties.get( renderTarget );
  		var textureProperties = properties.get( renderTarget.texture );

  		renderTarget.addEventListener( 'dispose', onRenderTargetDispose );

  		textureProperties.__webglTexture = _gl.createTexture();

  		info.memory.textures ++;

  		var isCube = ( renderTarget.isWebGLRenderTargetCube === true );
  		var isTargetPowerOfTwo = isPowerOfTwo( renderTarget );

  		// Setup framebuffer

  		if ( isCube ) {

  			renderTargetProperties.__webglFramebuffer = [];

  			for ( var i = 0; i < 6; i ++ ) {

  				renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer();

  			}

  		} else {

  			renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();

  		}

  		// Setup color buffer

  		if ( isCube ) {

  			state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture );
  			setTextureParameters( _gl.TEXTURE_CUBE_MAP, renderTarget.texture, isTargetPowerOfTwo );

  			for ( var i = 0; i < 6; i ++ ) {

  				setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i );

  			}

  			if ( textureNeedsGenerateMipmaps( renderTarget.texture, isTargetPowerOfTwo ) ) {

  				generateMipmap( _gl.TEXTURE_CUBE_MAP, renderTarget.texture, renderTarget.width, renderTarget.height );

  			}

  			state.bindTexture( _gl.TEXTURE_CUBE_MAP, null );

  		} else {

  			state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture );
  			setTextureParameters( _gl.TEXTURE_2D, renderTarget.texture, isTargetPowerOfTwo );
  			setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D );

  			if ( textureNeedsGenerateMipmaps( renderTarget.texture, isTargetPowerOfTwo ) ) {

  				generateMipmap( _gl.TEXTURE_2D, renderTarget.texture, renderTarget.width, renderTarget.height );

  			}

  			state.bindTexture( _gl.TEXTURE_2D, null );

  		}

  		// Setup depth and stencil buffers

  		if ( renderTarget.depthBuffer ) {

  			setupDepthRenderbuffer( renderTarget );

  		}

  	}

  	function updateRenderTargetMipmap( renderTarget ) {

  		var texture = renderTarget.texture;
  		var isTargetPowerOfTwo = isPowerOfTwo( renderTarget );

  		if ( textureNeedsGenerateMipmaps( texture, isTargetPowerOfTwo ) ) {

  			var target = renderTarget.isWebGLRenderTargetCube ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D;
  			var webglTexture = properties.get( texture ).__webglTexture;

  			state.bindTexture( target, webglTexture );
  			generateMipmap( target, texture, renderTarget.width, renderTarget.height );
  			state.bindTexture( target, null );

  		}

  	}

  	function updateVideoTexture( texture ) {

  		var id = texture.id;
  		var frame = info.render.frame;

  		// Check the last frame we updated the VideoTexture

  		if ( _videoTextures[ id ] !== frame ) {

  			_videoTextures[ id ] = frame;
  			texture.update();

  		}

  	}

  	this.setTexture2D = setTexture2D;
  	this.setTextureCube = setTextureCube;
  	this.setTextureCubeDynamic = setTextureCubeDynamic;
  	this.setupRenderTarget = setupRenderTarget;
  	this.updateRenderTargetMipmap = updateRenderTargetMipmap;

  }

  /**
   * @author thespite / http://www.twitter.com/thespite
   */

  function WebGLUtils( gl, extensions ) {

  	function convert( p ) {

  		var extension;

  		if ( p === RepeatWrapping ) return gl.REPEAT;
  		if ( p === ClampToEdgeWrapping ) return gl.CLAMP_TO_EDGE;
  		if ( p === MirroredRepeatWrapping ) return gl.MIRRORED_REPEAT;

  		if ( p === NearestFilter ) return gl.NEAREST;
  		if ( p === NearestMipMapNearestFilter ) return gl.NEAREST_MIPMAP_NEAREST;
  		if ( p === NearestMipMapLinearFilter ) return gl.NEAREST_MIPMAP_LINEAR;

  		if ( p === LinearFilter ) return gl.LINEAR;
  		if ( p === LinearMipMapNearestFilter ) return gl.LINEAR_MIPMAP_NEAREST;
  		if ( p === LinearMipMapLinearFilter ) return gl.LINEAR_MIPMAP_LINEAR;

  		if ( p === UnsignedByteType ) return gl.UNSIGNED_BYTE;
  		if ( p === UnsignedShort4444Type ) return gl.UNSIGNED_SHORT_4_4_4_4;
  		if ( p === UnsignedShort5551Type ) return gl.UNSIGNED_SHORT_5_5_5_1;
  		if ( p === UnsignedShort565Type ) return gl.UNSIGNED_SHORT_5_6_5;

  		if ( p === ByteType ) return gl.BYTE;
  		if ( p === ShortType ) return gl.SHORT;
  		if ( p === UnsignedShortType ) return gl.UNSIGNED_SHORT;
  		if ( p === IntType ) return gl.INT;
  		if ( p === UnsignedIntType ) return gl.UNSIGNED_INT;
  		if ( p === FloatType ) return gl.FLOAT;

  		if ( p === HalfFloatType ) {

  			extension = extensions.get( 'OES_texture_half_float' );

  			if ( extension !== null ) return extension.HALF_FLOAT_OES;

  		}

  		if ( p === AlphaFormat ) return gl.ALPHA;
  		if ( p === RGBFormat ) return gl.RGB;
  		if ( p === RGBAFormat ) return gl.RGBA;
  		if ( p === LuminanceFormat ) return gl.LUMINANCE;
  		if ( p === LuminanceAlphaFormat ) return gl.LUMINANCE_ALPHA;
  		if ( p === DepthFormat ) return gl.DEPTH_COMPONENT;
  		if ( p === DepthStencilFormat ) return gl.DEPTH_STENCIL;

  		if ( p === AddEquation ) return gl.FUNC_ADD;
  		if ( p === SubtractEquation ) return gl.FUNC_SUBTRACT;
  		if ( p === ReverseSubtractEquation ) return gl.FUNC_REVERSE_SUBTRACT;

  		if ( p === ZeroFactor ) return gl.ZERO;
  		if ( p === OneFactor ) return gl.ONE;
  		if ( p === SrcColorFactor ) return gl.SRC_COLOR;
  		if ( p === OneMinusSrcColorFactor ) return gl.ONE_MINUS_SRC_COLOR;
  		if ( p === SrcAlphaFactor ) return gl.SRC_ALPHA;
  		if ( p === OneMinusSrcAlphaFactor ) return gl.ONE_MINUS_SRC_ALPHA;
  		if ( p === DstAlphaFactor ) return gl.DST_ALPHA;
  		if ( p === OneMinusDstAlphaFactor ) return gl.ONE_MINUS_DST_ALPHA;

  		if ( p === DstColorFactor ) return gl.DST_COLOR;
  		if ( p === OneMinusDstColorFactor ) return gl.ONE_MINUS_DST_COLOR;
  		if ( p === SrcAlphaSaturateFactor ) return gl.SRC_ALPHA_SATURATE;

  		if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format ||
  			p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) {

  			extension = extensions.get( 'WEBGL_compressed_texture_s3tc' );

  			if ( extension !== null ) {

  				if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
  				if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
  				if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
  				if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;

  			}

  		}

  		if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format ||
  			p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) {

  			extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' );

  			if ( extension !== null ) {

  				if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
  				if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
  				if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
  				if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;

  			}

  		}

  		if ( p === RGB_ETC1_Format ) {

  			extension = extensions.get( 'WEBGL_compressed_texture_etc1' );

  			if ( extension !== null ) return extension.COMPRESSED_RGB_ETC1_WEBGL;

  		}

  		if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format ||
  			p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format ||
  			p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format ||
  			p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format ||
  			p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ) {

  			extension = extensions.get( 'WEBGL_compressed_texture_astc' );

  			if ( extension !== null ) {

  				return p;

  			}

  		}

  		if ( p === MinEquation || p === MaxEquation ) {

  			extension = extensions.get( 'EXT_blend_minmax' );

  			if ( extension !== null ) {

  				if ( p === MinEquation ) return extension.MIN_EXT;
  				if ( p === MaxEquation ) return extension.MAX_EXT;

  			}

  		}

  		if ( p === UnsignedInt248Type ) {

  			extension = extensions.get( 'WEBGL_depth_texture' );

  			if ( extension !== null ) return extension.UNSIGNED_INT_24_8_WEBGL;

  		}

  		return 0;

  	}

  	return { convert: convert };

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author greggman / http://games.greggman.com/
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * @author tschw
   */

  function PerspectiveCamera( fov, aspect, near, far ) {

  	Camera.call( this );

  	this.type = 'PerspectiveCamera';

  	this.fov = fov !== undefined ? fov : 50;
  	this.zoom = 1;

  	this.near = near !== undefined ? near : 0.1;
  	this.far = far !== undefined ? far : 2000;
  	this.focus = 10;

  	this.aspect = aspect !== undefined ? aspect : 1;
  	this.view = null;

  	this.filmGauge = 35;	// width of the film (default in millimeters)
  	this.filmOffset = 0;	// horizontal film offset (same unit as gauge)

  	this.updateProjectionMatrix();

  }

  PerspectiveCamera.prototype = Object.assign( Object.create( Camera.prototype ), {

  	constructor: PerspectiveCamera,

  	isPerspectiveCamera: true,

  	copy: function ( source, recursive ) {

  		Camera.prototype.copy.call( this, source, recursive );

  		this.fov = source.fov;
  		this.zoom = source.zoom;

  		this.near = source.near;
  		this.far = source.far;
  		this.focus = source.focus;

  		this.aspect = source.aspect;
  		this.view = source.view === null ? null : Object.assign( {}, source.view );

  		this.filmGauge = source.filmGauge;
  		this.filmOffset = source.filmOffset;

  		return this;

  	},

  	/**
  	 * Sets the FOV by focal length in respect to the current .filmGauge.
  	 *
  	 * The default film gauge is 35, so that the focal length can be specified for
  	 * a 35mm (full frame) camera.
  	 *
  	 * Values for focal length and film gauge must have the same unit.
  	 */
  	setFocalLength: function ( focalLength ) {

  		// see http://www.bobatkins.com/photography/technical/field_of_view.html
  		var vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;

  		this.fov = _Math.RAD2DEG * 2 * Math.atan( vExtentSlope );
  		this.updateProjectionMatrix();

  	},

  	/**
  	 * Calculates the focal length from the current .fov and .filmGauge.
  	 */
  	getFocalLength: function () {

  		var vExtentSlope = Math.tan( _Math.DEG2RAD * 0.5 * this.fov );

  		return 0.5 * this.getFilmHeight() / vExtentSlope;

  	},

  	getEffectiveFOV: function () {

  		return _Math.RAD2DEG * 2 * Math.atan(
  			Math.tan( _Math.DEG2RAD * 0.5 * this.fov ) / this.zoom );

  	},

  	getFilmWidth: function () {

  		// film not completely covered in portrait format (aspect < 1)
  		return this.filmGauge * Math.min( this.aspect, 1 );

  	},

  	getFilmHeight: function () {

  		// film not completely covered in landscape format (aspect > 1)
  		return this.filmGauge / Math.max( this.aspect, 1 );

  	},

  	/**
  	 * Sets an offset in a larger frustum. This is useful for multi-window or
  	 * multi-monitor/multi-machine setups.
  	 *
  	 * For example, if you have 3x2 monitors and each monitor is 1920x1080 and
  	 * the monitors are in grid like this
  	 *
  	 *   +---+---+---+
  	 *   | A | B | C |
  	 *   +---+---+---+
  	 *   | D | E | F |
  	 *   +---+---+---+
  	 *
  	 * then for each monitor you would call it like this
  	 *
  	 *   var w = 1920;
  	 *   var h = 1080;
  	 *   var fullWidth = w * 3;
  	 *   var fullHeight = h * 2;
  	 *
  	 *   --A--
  	 *   camera.setOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
  	 *   --B--
  	 *   camera.setOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
  	 *   --C--
  	 *   camera.setOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
  	 *   --D--
  	 *   camera.setOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
  	 *   --E--
  	 *   camera.setOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
  	 *   --F--
  	 *   camera.setOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
  	 *
  	 *   Note there is no reason monitors have to be the same size or in a grid.
  	 */
  	setViewOffset: function ( fullWidth, fullHeight, x, y, width, height ) {

  		this.aspect = fullWidth / fullHeight;

  		if ( this.view === null ) {

  			this.view = {
  				enabled: true,
  				fullWidth: 1,
  				fullHeight: 1,
  				offsetX: 0,
  				offsetY: 0,
  				width: 1,
  				height: 1
  			};

  		}

  		this.view.enabled = true;
  		this.view.fullWidth = fullWidth;
  		this.view.fullHeight = fullHeight;
  		this.view.offsetX = x;
  		this.view.offsetY = y;
  		this.view.width = width;
  		this.view.height = height;

  		this.updateProjectionMatrix();

  	},

  	clearViewOffset: function () {

  		if ( this.view !== null ) {

  			this.view.enabled = false;

  		}

  		this.updateProjectionMatrix();

  	},

  	updateProjectionMatrix: function () {

  		var near = this.near,
  			top = near * Math.tan(
  				_Math.DEG2RAD * 0.5 * this.fov ) / this.zoom,
  			height = 2 * top,
  			width = this.aspect * height,
  			left = - 0.5 * width,
  			view = this.view;

  		if ( this.view !== null && this.view.enabled ) {

  			var fullWidth = view.fullWidth,
  				fullHeight = view.fullHeight;

  			left += view.offsetX * width / fullWidth;
  			top -= view.offsetY * height / fullHeight;
  			width *= view.width / fullWidth;
  			height *= view.height / fullHeight;

  		}

  		var skew = this.filmOffset;
  		if ( skew !== 0 ) left += near * skew / this.getFilmWidth();

  		this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far );

  	},

  	toJSON: function ( meta ) {

  		var data = Object3D.prototype.toJSON.call( this, meta );

  		data.object.fov = this.fov;
  		data.object.zoom = this.zoom;

  		data.object.near = this.near;
  		data.object.far = this.far;
  		data.object.focus = this.focus;

  		data.object.aspect = this.aspect;

  		if ( this.view !== null ) data.object.view = Object.assign( {}, this.view );

  		data.object.filmGauge = this.filmGauge;
  		data.object.filmOffset = this.filmOffset;

  		return data;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function ArrayCamera( array ) {

  	PerspectiveCamera.call( this );

  	this.cameras = array || [];

  }

  ArrayCamera.prototype = Object.assign( Object.create( PerspectiveCamera.prototype ), {

  	constructor: ArrayCamera,

  	isArrayCamera: true

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebVRManager( renderer ) {

  	var scope = this;

  	var device = null;
  	var frameData = null;

  	var poseTarget = null;

  	var standingMatrix = new Matrix4();
  	var standingMatrixInverse = new Matrix4();

  	if ( typeof window !== 'undefined' && 'VRFrameData' in window ) {

  		frameData = new window.VRFrameData();
  		window.addEventListener( 'vrdisplaypresentchange', onVRDisplayPresentChange, false );

  	}

  	var matrixWorldInverse = new Matrix4();
  	var tempQuaternion = new Quaternion();
  	var tempPosition = new Vector3();

  	var cameraL = new PerspectiveCamera();
  	cameraL.bounds = new Vector4( 0.0, 0.0, 0.5, 1.0 );
  	cameraL.layers.enable( 1 );

  	var cameraR = new PerspectiveCamera();
  	cameraR.bounds = new Vector4( 0.5, 0.0, 0.5, 1.0 );
  	cameraR.layers.enable( 2 );

  	var cameraVR = new ArrayCamera( [ cameraL, cameraR ] );
  	cameraVR.layers.enable( 1 );
  	cameraVR.layers.enable( 2 );

  	//

  	function isPresenting() {

  		return device !== null && device.isPresenting === true;

  	}

  	var currentSize, currentPixelRatio;

  	function onVRDisplayPresentChange() {

  		if ( isPresenting() ) {

  			var eyeParameters = device.getEyeParameters( 'left' );
  			var renderWidth = eyeParameters.renderWidth;
  			var renderHeight = eyeParameters.renderHeight;

  			currentPixelRatio = renderer.getPixelRatio();
  			currentSize = renderer.getSize();

  			renderer.setDrawingBufferSize( renderWidth * 2, renderHeight, 1 );

  			animation.start();

  		} else if ( scope.enabled ) {

  			renderer.setDrawingBufferSize( currentSize.width, currentSize.height, currentPixelRatio );

  			animation.stop();

  		}

  	}

  	//

  	this.enabled = false;
  	this.userHeight = 1.6;

  	this.getDevice = function () {

  		return device;

  	};

  	this.setDevice = function ( value ) {

  		if ( value !== undefined ) device = value;

  		animation.setContext( value );

  	};

  	this.setPoseTarget = function ( object ) {

  		if ( object !== undefined ) poseTarget = object;

  	};

  	this.getCamera = function ( camera ) {

  		if ( device === null ) return camera;

  		device.depthNear = camera.near;
  		device.depthFar = camera.far;

  		device.getFrameData( frameData );

  		//

  		var stageParameters = device.stageParameters;

  		if ( stageParameters ) {

  			standingMatrix.fromArray( stageParameters.sittingToStandingTransform );

  		} else {

  			standingMatrix.makeTranslation( 0, scope.userHeight, 0 );

  		}


  		var pose = frameData.pose;
  		var poseObject = poseTarget !== null ? poseTarget : camera;

  		// We want to manipulate poseObject by its position and quaternion components since users may rely on them.
  		poseObject.matrix.copy( standingMatrix );
  		poseObject.matrix.decompose( poseObject.position, poseObject.quaternion, poseObject.scale );

  		if ( pose.orientation !== null ) {

  			tempQuaternion.fromArray( pose.orientation );
  			poseObject.quaternion.multiply( tempQuaternion );

  		}

  		if ( pose.position !== null ) {

  			tempQuaternion.setFromRotationMatrix( standingMatrix );
  			tempPosition.fromArray( pose.position );
  			tempPosition.applyQuaternion( tempQuaternion );
  			poseObject.position.add( tempPosition );

  		}

  		poseObject.updateMatrixWorld();

  		if ( device.isPresenting === false ) return camera;

  		//

  		cameraL.near = camera.near;
  		cameraR.near = camera.near;

  		cameraL.far = camera.far;
  		cameraR.far = camera.far;

  		cameraVR.matrixWorld.copy( camera.matrixWorld );
  		cameraVR.matrixWorldInverse.copy( camera.matrixWorldInverse );

  		cameraL.matrixWorldInverse.fromArray( frameData.leftViewMatrix );
  		cameraR.matrixWorldInverse.fromArray( frameData.rightViewMatrix );

  		// TODO (mrdoob) Double check this code

  		standingMatrixInverse.getInverse( standingMatrix );

  		cameraL.matrixWorldInverse.multiply( standingMatrixInverse );
  		cameraR.matrixWorldInverse.multiply( standingMatrixInverse );

  		var parent = poseObject.parent;

  		if ( parent !== null ) {

  			matrixWorldInverse.getInverse( parent.matrixWorld );

  			cameraL.matrixWorldInverse.multiply( matrixWorldInverse );
  			cameraR.matrixWorldInverse.multiply( matrixWorldInverse );

  		}

  		// envMap and Mirror needs camera.matrixWorld

  		cameraL.matrixWorld.getInverse( cameraL.matrixWorldInverse );
  		cameraR.matrixWorld.getInverse( cameraR.matrixWorldInverse );

  		cameraL.projectionMatrix.fromArray( frameData.leftProjectionMatrix );
  		cameraR.projectionMatrix.fromArray( frameData.rightProjectionMatrix );

  		// HACK (mrdoob)
  		// https://github.com/w3c/webvr/issues/203

  		cameraVR.projectionMatrix.copy( cameraL.projectionMatrix );

  		//

  		var layers = device.getLayers();

  		if ( layers.length ) {

  			var layer = layers[ 0 ];

  			if ( layer.leftBounds !== null && layer.leftBounds.length === 4 ) {

  				cameraL.bounds.fromArray( layer.leftBounds );

  			}

  			if ( layer.rightBounds !== null && layer.rightBounds.length === 4 ) {

  				cameraR.bounds.fromArray( layer.rightBounds );

  			}

  		}

  		return cameraVR;

  	};

  	this.getStandingMatrix = function () {

  		return standingMatrix;

  	};

  	this.isPresenting = isPresenting;

  	// Animation Loop

  	var animation = new WebGLAnimation();

  	this.setAnimationLoop = function ( callback ) {

  		animation.setAnimationLoop( callback );

  	};

  	this.submitFrame = function () {

  		if ( isPresenting() ) device.submitFrame();

  	};

  	this.dispose = function () {

  		if ( typeof window !== 'undefined' ) {

  			window.removeEventListener( 'vrdisplaypresentchange', onVRDisplayPresentChange );

  		}

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function WebXRManager( renderer ) {

  	var gl = renderer.context;

  	var device = null;
  	var session = null;

  	var frameOfRef = null;

  	var pose = null;

  	function isPresenting() {

  		return session !== null && frameOfRef !== null;

  	}

  	//

  	var cameraL = new PerspectiveCamera();
  	cameraL.layers.enable( 1 );
  	cameraL.viewport = new Vector4();

  	var cameraR = new PerspectiveCamera();
  	cameraR.layers.enable( 2 );
  	cameraR.viewport = new Vector4();

  	var cameraVR = new ArrayCamera( [ cameraL, cameraR ] );
  	cameraVR.layers.enable( 1 );
  	cameraVR.layers.enable( 2 );

  	//

  	this.enabled = false;

  	this.getDevice = function () {

  		return device;

  	};

  	this.setDevice = function ( value ) {

  		if ( value !== undefined ) device = value;

  		gl.setCompatibleXRDevice( value );

  	};

  	//

  	this.setSession = function ( value, options ) {

  		session = value;

  		if ( session !== null ) {

  			session.addEventListener( 'end', function () {

  				renderer.setFramebuffer( null );
  				animation.stop();

  			} );

  			session.baseLayer = new XRWebGLLayer( session, gl );
  			session.requestFrameOfReference( options.frameOfReferenceType ).then( function ( value ) {

  				frameOfRef = value;

  				renderer.setFramebuffer( session.baseLayer.framebuffer );

  				animation.setContext( session );
  				animation.start();

  			} );

  		}

  	};

  	function updateCamera( camera, parent ) {

  		if ( parent === null ) {

  			camera.matrixWorld.copy( camera.matrix );

  		} else {

  			camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix );

  		}

  		camera.matrixWorldInverse.getInverse( camera.matrixWorld );

  	}

  	this.getCamera = function ( camera ) {

  		if ( isPresenting() ) {

  			var parent = camera.parent;
  			var cameras = cameraVR.cameras;

  			// apply camera.parent to cameraVR

  			updateCamera( cameraVR, parent );

  			for ( var i = 0; i < cameras.length; i ++ ) {

  				updateCamera( cameras[ i ], parent );

  			}

  			// update camera and its children

  			camera.matrixWorld.copy( cameraVR.matrixWorld );

  			var children = camera.children;

  			for ( var i = 0, l = children.length; i < l; i ++ ) {

  				children[ i ].updateMatrixWorld( true );

  			}

  			return cameraVR;

  		}

  		return camera;

  	};

  	this.isPresenting = isPresenting;

  	// Animation Loop

  	var onAnimationFrameCallback = null;

  	function onAnimationFrame( time, frame ) {

  		pose = frame.getDevicePose( frameOfRef );

  		var layer = session.baseLayer;
  		var views = frame.views;

  		for ( var i = 0; i < views.length; i ++ ) {

  			var view = views[ i ];
  			var viewport = layer.getViewport( view );
  			var viewMatrix = pose.getViewMatrix( view );

  			var camera = cameraVR.cameras[ i ];
  			camera.matrix.fromArray( viewMatrix ).getInverse( camera.matrix );
  			camera.projectionMatrix.fromArray( view.projectionMatrix );
  			camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height );

  			if ( i === 0 ) {

  				cameraVR.matrix.copy( camera.matrix );

  				// HACK (mrdoob)
  				// https://github.com/w3c/webvr/issues/203

  				cameraVR.projectionMatrix.copy( camera.projectionMatrix );

  			}

  		}

  		if ( onAnimationFrameCallback ) onAnimationFrameCallback();

  	}

  	var animation = new WebGLAnimation();
  	animation.setAnimationLoop( onAnimationFrame );

  	this.setAnimationLoop = function ( callback ) {

  		onAnimationFrameCallback = callback;

  	};

  	// DEPRECATED

  	this.getStandingMatrix = function () {

  		console.warn( 'THREE.WebXRManager: getStandingMatrix() is no longer needed.' );
  		return new THREE.Matrix4();

  	};

  	this.submitFrame = function () {};

  }

  /**
   * @author supereggbert / http://www.paulbrunt.co.uk/
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   * @author szimek / https://github.com/szimek/
   * @author tschw
   */

  function WebGLRenderer( parameters ) {

  	console.log( 'THREE.WebGLRenderer', REVISION );

  	parameters = parameters || {};

  	var _canvas = parameters.canvas !== undefined ? parameters.canvas : document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' ),
  		_context = parameters.context !== undefined ? parameters.context : null,

  		_alpha = parameters.alpha !== undefined ? parameters.alpha : false,
  		_depth = parameters.depth !== undefined ? parameters.depth : true,
  		_stencil = parameters.stencil !== undefined ? parameters.stencil : true,
  		_antialias = parameters.antialias !== undefined ? parameters.antialias : false,
  		_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
  		_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,
  		_powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default';

  	var currentRenderList = null;
  	var currentRenderState = null;

  	// public properties

  	this.domElement = _canvas;
  	this.context = null;

  	// clearing

  	this.autoClear = true;
  	this.autoClearColor = true;
  	this.autoClearDepth = true;
  	this.autoClearStencil = true;

  	// scene graph

  	this.sortObjects = true;

  	// user-defined clipping

  	this.clippingPlanes = [];
  	this.localClippingEnabled = false;

  	// physically based shading

  	this.gammaFactor = 2.0;	// for backwards compatibility
  	this.gammaInput = false;
  	this.gammaOutput = false;

  	// physical lights

  	this.physicallyCorrectLights = false;

  	// tone mapping

  	this.toneMapping = LinearToneMapping;
  	this.toneMappingExposure = 1.0;
  	this.toneMappingWhitePoint = 1.0;

  	// morphs

  	this.maxMorphTargets = 8;
  	this.maxMorphNormals = 4;

  	// internal properties

  	var _this = this,

  		_isContextLost = false,

  		// internal state cache

  		_framebuffer = null,

  		_currentRenderTarget = null,
  		_currentFramebuffer = null,
  		_currentMaterialId = - 1,
  		_currentGeometryProgram = '',

  		_currentCamera = null,
  		_currentArrayCamera = null,

  		_currentViewport = new Vector4(),
  		_currentScissor = new Vector4(),
  		_currentScissorTest = null,

  		//

  		_usedTextureUnits = 0,

  		//

  		_width = _canvas.width,
  		_height = _canvas.height,

  		_pixelRatio = 1,

  		_viewport = new Vector4( 0, 0, _width, _height ),
  		_scissor = new Vector4( 0, 0, _width, _height ),
  		_scissorTest = false,

  		// frustum

  		_frustum = new Frustum(),

  		// clipping

  		_clipping = new WebGLClipping(),
  		_clippingEnabled = false,
  		_localClippingEnabled = false,

  		// camera matrices cache

  		_projScreenMatrix = new Matrix4(),

  		_vector3 = new Vector3();

  	function getTargetPixelRatio() {

  		return _currentRenderTarget === null ? _pixelRatio : 1;

  	}

  	// initialize

  	var _gl;

  	try {

  		var contextAttributes = {
  			alpha: _alpha,
  			depth: _depth,
  			stencil: _stencil,
  			antialias: _antialias,
  			premultipliedAlpha: _premultipliedAlpha,
  			preserveDrawingBuffer: _preserveDrawingBuffer,
  			powerPreference: _powerPreference
  		};

  		// event listeners must be registered before WebGL context is created, see #12753

  		_canvas.addEventListener( 'webglcontextlost', onContextLost, false );
  		_canvas.addEventListener( 'webglcontextrestored', onContextRestore, false );

  		_gl = _context || _canvas.getContext( 'webgl', contextAttributes ) || _canvas.getContext( 'experimental-webgl', contextAttributes );

  		if ( _gl === null ) {

  			if ( _canvas.getContext( 'webgl' ) !== null ) {

  				throw new Error( 'Error creating WebGL context with your selected attributes.' );

  			} else {

  				throw new Error( 'Error creating WebGL context.' );

  			}

  		}

  		// Some experimental-webgl implementations do not have getShaderPrecisionFormat

  		if ( _gl.getShaderPrecisionFormat === undefined ) {

  			_gl.getShaderPrecisionFormat = function () {

  				return { 'rangeMin': 1, 'rangeMax': 1, 'precision': 1 };

  			};

  		}

  	} catch ( error ) {

  		console.error( 'THREE.WebGLRenderer: ' + error.message );

  	}

  	var extensions, capabilities, state, info;
  	var properties, textures, attributes, geometries, objects;
  	var programCache, renderLists, renderStates;

  	var background, morphtargets, bufferRenderer, indexedBufferRenderer;
  	var spriteRenderer;

  	var utils;

  	function initGLContext() {

  		extensions = new WebGLExtensions( _gl );
  		extensions.get( 'WEBGL_depth_texture' );
  		extensions.get( 'OES_texture_float' );
  		extensions.get( 'OES_texture_float_linear' );
  		extensions.get( 'OES_texture_half_float' );
  		extensions.get( 'OES_texture_half_float_linear' );
  		extensions.get( 'OES_standard_derivatives' );
  		extensions.get( 'OES_element_index_uint' );
  		extensions.get( 'ANGLE_instanced_arrays' );

  		utils = new WebGLUtils( _gl, extensions );

  		capabilities = new WebGLCapabilities( _gl, extensions, parameters );

  		state = new WebGLState( _gl, extensions, utils );
  		state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) );
  		state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) );

  		info = new WebGLInfo( _gl );
  		properties = new WebGLProperties();
  		textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info );
  		attributes = new WebGLAttributes( _gl );
  		geometries = new WebGLGeometries( _gl, attributes, info );
  		objects = new WebGLObjects( geometries, info );
  		morphtargets = new WebGLMorphtargets( _gl );
  		programCache = new WebGLPrograms( _this, extensions, capabilities );
  		renderLists = new WebGLRenderLists();
  		renderStates = new WebGLRenderStates();

  		background = new WebGLBackground( _this, state, objects, _premultipliedAlpha );

  		bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info );
  		indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info );

  		spriteRenderer = new WebGLSpriteRenderer( _this, _gl, state, textures, capabilities );

  		info.programs = programCache.programs;

  		_this.context = _gl;
  		_this.capabilities = capabilities;
  		_this.extensions = extensions;
  		_this.properties = properties;
  		_this.renderLists = renderLists;
  		_this.state = state;
  		_this.info = info;

  	}

  	initGLContext();

  	// vr

  	var vr = ( 'xr' in navigator ) ? new WebXRManager( _this ) : new WebVRManager( _this );

  	this.vr = vr;

  	// shadow map

  	var shadowMap = new WebGLShadowMap( _this, objects, capabilities.maxTextureSize );

  	this.shadowMap = shadowMap;

  	// API

  	this.getContext = function () {

  		return _gl;

  	};

  	this.getContextAttributes = function () {

  		return _gl.getContextAttributes();

  	};

  	this.forceContextLoss = function () {

  		var extension = extensions.get( 'WEBGL_lose_context' );
  		if ( extension ) extension.loseContext();

  	};

  	this.forceContextRestore = function () {

  		var extension = extensions.get( 'WEBGL_lose_context' );
  		if ( extension ) extension.restoreContext();

  	};

  	this.getPixelRatio = function () {

  		return _pixelRatio;

  	};

  	this.setPixelRatio = function ( value ) {

  		if ( value === undefined ) return;

  		_pixelRatio = value;

  		this.setSize( _width, _height, false );

  	};

  	this.getSize = function () {

  		return {
  			width: _width,
  			height: _height
  		};

  	};

  	this.setSize = function ( width, height, updateStyle ) {

  		if ( vr.isPresenting() ) {

  			console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' );
  			return;

  		}

  		_width = width;
  		_height = height;

  		_canvas.width = width * _pixelRatio;
  		_canvas.height = height * _pixelRatio;

  		if ( updateStyle !== false ) {

  			_canvas.style.width = width + 'px';
  			_canvas.style.height = height + 'px';

  		}

  		this.setViewport( 0, 0, width, height );

  	};

  	this.getDrawingBufferSize = function () {

  		return {
  			width: _width * _pixelRatio,
  			height: _height * _pixelRatio
  		};

  	};

  	this.setDrawingBufferSize = function ( width, height, pixelRatio ) {

  		_width = width;
  		_height = height;

  		_pixelRatio = pixelRatio;

  		_canvas.width = width * pixelRatio;
  		_canvas.height = height * pixelRatio;

  		this.setViewport( 0, 0, width, height );

  	};

  	this.getCurrentViewport = function () {

  		return _currentViewport;

  	};

  	this.setViewport = function ( x, y, width, height ) {

  		_viewport.set( x, _height - y - height, width, height );
  		state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ) );

  	};

  	this.setScissor = function ( x, y, width, height ) {

  		_scissor.set( x, _height - y - height, width, height );
  		state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ) );

  	};

  	this.setScissorTest = function ( boolean ) {

  		state.setScissorTest( _scissorTest = boolean );

  	};

  	// Clearing

  	this.getClearColor = function () {

  		return background.getClearColor();

  	};

  	this.setClearColor = function () {

  		background.setClearColor.apply( background, arguments );

  	};

  	this.getClearAlpha = function () {

  		return background.getClearAlpha();

  	};

  	this.setClearAlpha = function () {

  		background.setClearAlpha.apply( background, arguments );

  	};

  	this.clear = function ( color, depth, stencil ) {

  		var bits = 0;

  		if ( color === undefined || color ) bits |= _gl.COLOR_BUFFER_BIT;
  		if ( depth === undefined || depth ) bits |= _gl.DEPTH_BUFFER_BIT;
  		if ( stencil === undefined || stencil ) bits |= _gl.STENCIL_BUFFER_BIT;

  		_gl.clear( bits );

  	};

  	this.clearColor = function () {

  		this.clear( true, false, false );

  	};

  	this.clearDepth = function () {

  		this.clear( false, true, false );

  	};

  	this.clearStencil = function () {

  		this.clear( false, false, true );

  	};

  	this.clearTarget = function ( renderTarget, color, depth, stencil ) {

  		this.setRenderTarget( renderTarget );
  		this.clear( color, depth, stencil );

  	};

  	//

  	this.dispose = function () {

  		_canvas.removeEventListener( 'webglcontextlost', onContextLost, false );
  		_canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false );

  		renderLists.dispose();
  		renderStates.dispose();
  		properties.dispose();
  		objects.dispose();

  		vr.dispose();

  		animation.stop();

  	};

  	// Events

  	function onContextLost( event ) {

  		event.preventDefault();

  		console.log( 'THREE.WebGLRenderer: Context Lost.' );

  		_isContextLost = true;

  	}

  	function onContextRestore( /* event */ ) {

  		console.log( 'THREE.WebGLRenderer: Context Restored.' );

  		_isContextLost = false;

  		initGLContext();

  	}

  	function onMaterialDispose( event ) {

  		var material = event.target;

  		material.removeEventListener( 'dispose', onMaterialDispose );

  		deallocateMaterial( material );

  	}

  	// Buffer deallocation

  	function deallocateMaterial( material ) {

  		releaseMaterialProgramReference( material );

  		properties.remove( material );

  	}


  	function releaseMaterialProgramReference( material ) {

  		var programInfo = properties.get( material ).program;

  		material.program = undefined;

  		if ( programInfo !== undefined ) {

  			programCache.releaseProgram( programInfo );

  		}

  	}

  	// Buffer rendering

  	function renderObjectImmediate( object, program, material ) {

  		object.render( function ( object ) {

  			_this.renderBufferImmediate( object, program, material );

  		} );

  	}

  	this.renderBufferImmediate = function ( object, program, material ) {

  		state.initAttributes();

  		var buffers = properties.get( object );

  		if ( object.hasPositions && ! buffers.position ) buffers.position = _gl.createBuffer();
  		if ( object.hasNormals && ! buffers.normal ) buffers.normal = _gl.createBuffer();
  		if ( object.hasUvs && ! buffers.uv ) buffers.uv = _gl.createBuffer();
  		if ( object.hasColors && ! buffers.color ) buffers.color = _gl.createBuffer();

  		var programAttributes = program.getAttributes();

  		if ( object.hasPositions ) {

  			_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.position );
  			_gl.bufferData( _gl.ARRAY_BUFFER, object.positionArray, _gl.DYNAMIC_DRAW );

  			state.enableAttribute( programAttributes.position );
  			_gl.vertexAttribPointer( programAttributes.position, 3, _gl.FLOAT, false, 0, 0 );

  		}

  		if ( object.hasNormals ) {

  			_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.normal );

  			if ( ! material.isMeshPhongMaterial &&
  				! material.isMeshStandardMaterial &&
  				! material.isMeshNormalMaterial &&
  				material.flatShading === true ) {

  				for ( var i = 0, l = object.count * 3; i < l; i += 9 ) {

  					var array = object.normalArray;

  					var nx = ( array[ i + 0 ] + array[ i + 3 ] + array[ i + 6 ] ) / 3;
  					var ny = ( array[ i + 1 ] + array[ i + 4 ] + array[ i + 7 ] ) / 3;
  					var nz = ( array[ i + 2 ] + array[ i + 5 ] + array[ i + 8 ] ) / 3;

  					array[ i + 0 ] = nx;
  					array[ i + 1 ] = ny;
  					array[ i + 2 ] = nz;

  					array[ i + 3 ] = nx;
  					array[ i + 4 ] = ny;
  					array[ i + 5 ] = nz;

  					array[ i + 6 ] = nx;
  					array[ i + 7 ] = ny;
  					array[ i + 8 ] = nz;

  				}

  			}

  			_gl.bufferData( _gl.ARRAY_BUFFER, object.normalArray, _gl.DYNAMIC_DRAW );

  			state.enableAttribute( programAttributes.normal );

  			_gl.vertexAttribPointer( programAttributes.normal, 3, _gl.FLOAT, false, 0, 0 );

  		}

  		if ( object.hasUvs && material.map ) {

  			_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.uv );
  			_gl.bufferData( _gl.ARRAY_BUFFER, object.uvArray, _gl.DYNAMIC_DRAW );

  			state.enableAttribute( programAttributes.uv );

  			_gl.vertexAttribPointer( programAttributes.uv, 2, _gl.FLOAT, false, 0, 0 );

  		}

  		if ( object.hasColors && material.vertexColors !== NoColors ) {

  			_gl.bindBuffer( _gl.ARRAY_BUFFER, buffers.color );
  			_gl.bufferData( _gl.ARRAY_BUFFER, object.colorArray, _gl.DYNAMIC_DRAW );

  			state.enableAttribute( programAttributes.color );

  			_gl.vertexAttribPointer( programAttributes.color, 3, _gl.FLOAT, false, 0, 0 );

  		}

  		state.disableUnusedAttributes();

  		_gl.drawArrays( _gl.TRIANGLES, 0, object.count );

  		object.count = 0;

  	};

  	this.renderBufferDirect = function ( camera, fog, geometry, material, object, group ) {

  		var frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 );

  		state.setMaterial( material, frontFaceCW );

  		var program = setProgram( camera, fog, material, object );
  		var geometryProgram = geometry.id + '_' + program.id + '_' + ( material.wireframe === true );

  		var updateBuffers = false;

  		if ( geometryProgram !== _currentGeometryProgram ) {

  			_currentGeometryProgram = geometryProgram;
  			updateBuffers = true;

  		}

  		if ( object.morphTargetInfluences ) {

  			morphtargets.update( object, geometry, material, program );

  			updateBuffers = true;

  		}

  		//

  		var index = geometry.index;
  		var position = geometry.attributes.position;
  		var rangeFactor = 1;

  		if ( material.wireframe === true ) {

  			index = geometries.getWireframeAttribute( geometry );
  			rangeFactor = 2;

  		}

  		var attribute;
  		var renderer = bufferRenderer;

  		if ( index !== null ) {

  			attribute = attributes.get( index );

  			renderer = indexedBufferRenderer;
  			renderer.setIndex( attribute );

  		}

  		if ( updateBuffers ) {

  			setupVertexAttributes( material, program, geometry );

  			if ( index !== null ) {

  				_gl.bindBuffer( _gl.ELEMENT_ARRAY_BUFFER, attribute.buffer );

  			}

  		}

  		//

  		var dataCount = Infinity;

  		if ( index !== null ) {

  			dataCount = index.count;

  		} else if ( position !== undefined ) {

  			dataCount = position.count;

  		}

  		var rangeStart = geometry.drawRange.start * rangeFactor;
  		var rangeCount = geometry.drawRange.count * rangeFactor;

  		var groupStart = group !== null ? group.start * rangeFactor : 0;
  		var groupCount = group !== null ? group.count * rangeFactor : Infinity;

  		var drawStart = Math.max( rangeStart, groupStart );
  		var drawEnd = Math.min( dataCount, rangeStart + rangeCount, groupStart + groupCount ) - 1;

  		var drawCount = Math.max( 0, drawEnd - drawStart + 1 );

  		if ( drawCount === 0 ) return;

  		//

  		if ( object.isMesh ) {

  			if ( material.wireframe === true ) {

  				state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() );
  				renderer.setMode( _gl.LINES );

  			} else {

  				switch ( object.drawMode ) {

  					case TrianglesDrawMode:
  						renderer.setMode( _gl.TRIANGLES );
  						break;

  					case TriangleStripDrawMode:
  						renderer.setMode( _gl.TRIANGLE_STRIP );
  						break;

  					case TriangleFanDrawMode:
  						renderer.setMode( _gl.TRIANGLE_FAN );
  						break;

  				}

  			}


  		} else if ( object.isLine ) {

  			var lineWidth = material.linewidth;

  			if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material

  			state.setLineWidth( lineWidth * getTargetPixelRatio() );

  			if ( object.isLineSegments ) {

  				renderer.setMode( _gl.LINES );

  			} else if ( object.isLineLoop ) {

  				renderer.setMode( _gl.LINE_LOOP );

  			} else {

  				renderer.setMode( _gl.LINE_STRIP );

  			}

  		} else if ( object.isPoints ) {

  			renderer.setMode( _gl.POINTS );

  		}

  		if ( geometry && geometry.isInstancedBufferGeometry ) {

  			if ( geometry.maxInstancedCount > 0 ) {

  				renderer.renderInstances( geometry, drawStart, drawCount );

  			}

  		} else {

  			renderer.render( drawStart, drawCount );

  		}

  	};

  	function setupVertexAttributes( material, program, geometry ) {

  		if ( geometry && geometry.isInstancedBufferGeometry ) {

  			if ( extensions.get( 'ANGLE_instanced_arrays' ) === null ) {

  				console.error( 'THREE.WebGLRenderer.setupVertexAttributes: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.' );
  				return;

  			}

  		}

  		state.initAttributes();

  		var geometryAttributes = geometry.attributes;

  		var programAttributes = program.getAttributes();

  		var materialDefaultAttributeValues = material.defaultAttributeValues;

  		for ( var name in programAttributes ) {

  			var programAttribute = programAttributes[ name ];

  			if ( programAttribute >= 0 ) {

  				var geometryAttribute = geometryAttributes[ name ];

  				if ( geometryAttribute !== undefined ) {

  					var normalized = geometryAttribute.normalized;
  					var size = geometryAttribute.itemSize;

  					var attribute = attributes.get( geometryAttribute );

  					// TODO Attribute may not be available on context restore

  					if ( attribute === undefined ) continue;

  					var buffer = attribute.buffer;
  					var type = attribute.type;
  					var bytesPerElement = attribute.bytesPerElement;

  					if ( geometryAttribute.isInterleavedBufferAttribute ) {

  						var data = geometryAttribute.data;
  						var stride = data.stride;
  						var offset = geometryAttribute.offset;

  						if ( data && data.isInstancedInterleavedBuffer ) {

  							state.enableAttributeAndDivisor( programAttribute, data.meshPerAttribute );

  							if ( geometry.maxInstancedCount === undefined ) {

  								geometry.maxInstancedCount = data.meshPerAttribute * data.count;

  							}

  						} else {

  							state.enableAttribute( programAttribute );

  						}

  						_gl.bindBuffer( _gl.ARRAY_BUFFER, buffer );
  						_gl.vertexAttribPointer( programAttribute, size, type, normalized, stride * bytesPerElement, offset * bytesPerElement );

  					} else {

  						if ( geometryAttribute.isInstancedBufferAttribute ) {

  							state.enableAttributeAndDivisor( programAttribute, geometryAttribute.meshPerAttribute );

  							if ( geometry.maxInstancedCount === undefined ) {

  								geometry.maxInstancedCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;

  							}

  						} else {

  							state.enableAttribute( programAttribute );

  						}

  						_gl.bindBuffer( _gl.ARRAY_BUFFER, buffer );
  						_gl.vertexAttribPointer( programAttribute, size, type, normalized, 0, 0 );

  					}

  				} else if ( materialDefaultAttributeValues !== undefined ) {

  					var value = materialDefaultAttributeValues[ name ];

  					if ( value !== undefined ) {

  						switch ( value.length ) {

  							case 2:
  								_gl.vertexAttrib2fv( programAttribute, value );
  								break;

  							case 3:
  								_gl.vertexAttrib3fv( programAttribute, value );
  								break;

  							case 4:
  								_gl.vertexAttrib4fv( programAttribute, value );
  								break;

  							default:
  								_gl.vertexAttrib1fv( programAttribute, value );

  						}

  					}

  				}

  			}

  		}

  		state.disableUnusedAttributes();

  	}

  	// Compile

  	this.compile = function ( scene, camera ) {

  		currentRenderState = renderStates.get( scene, camera );
  		currentRenderState.init();

  		scene.traverse( function ( object ) {

  			if ( object.isLight ) {

  				currentRenderState.pushLight( object );

  				if ( object.castShadow ) {

  					currentRenderState.pushShadow( object );

  				}

  			}

  		} );

  		currentRenderState.setupLights( camera );

  		scene.traverse( function ( object ) {

  			if ( object.material ) {

  				if ( Array.isArray( object.material ) ) {

  					for ( var i = 0; i < object.material.length; i ++ ) {

  						initMaterial( object.material[ i ], scene.fog, object );

  					}

  				} else {

  					initMaterial( object.material, scene.fog, object );

  				}

  			}

  		} );

  	};

  	// Animation Loop

  	var onAnimationFrameCallback = null;

  	function onAnimationFrame() {

  		if ( vr.isPresenting() ) return;
  		if ( onAnimationFrameCallback ) onAnimationFrameCallback();

  	}

  	var animation = new WebGLAnimation();
  	animation.setAnimationLoop( onAnimationFrame );
  	animation.setContext( window );

  	this.setAnimationLoop = function ( callback ) {

  		onAnimationFrameCallback = callback;
  		vr.setAnimationLoop( callback );

  		animation.start();

  	};

  	// Rendering

  	this.render = function ( scene, camera, renderTarget, forceClear ) {

  		if ( ! ( camera && camera.isCamera ) ) {

  			console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' );
  			return;

  		}

  		if ( _isContextLost ) return;

  		// reset caching for this frame

  		_currentGeometryProgram = '';
  		_currentMaterialId = - 1;
  		_currentCamera = null;

  		// update scene graph

  		if ( scene.autoUpdate === true ) scene.updateMatrixWorld();

  		// update camera matrices and frustum

  		if ( camera.parent === null ) camera.updateMatrixWorld();

  		if ( vr.enabled ) {

  			camera = vr.getCamera( camera );

  		}

  		//

  		currentRenderState = renderStates.get( scene, camera );
  		currentRenderState.init();

  		scene.onBeforeRender( _this, scene, camera, renderTarget );

  		_projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse );
  		_frustum.setFromMatrix( _projScreenMatrix );

  		_localClippingEnabled = this.localClippingEnabled;
  		_clippingEnabled = _clipping.init( this.clippingPlanes, _localClippingEnabled, camera );

  		currentRenderList = renderLists.get( scene, camera );
  		currentRenderList.init();

  		projectObject( scene, camera, _this.sortObjects );

  		if ( _this.sortObjects === true ) {

  			currentRenderList.sort();

  		}

  		//

  		if ( _clippingEnabled ) _clipping.beginShadows();

  		var shadowsArray = currentRenderState.state.shadowsArray;

  		shadowMap.render( shadowsArray, scene, camera );

  		currentRenderState.setupLights( camera );

  		if ( _clippingEnabled ) _clipping.endShadows();

  		//

  		if ( this.info.autoReset ) this.info.reset();

  		if ( renderTarget === undefined ) {

  			renderTarget = null;

  		}

  		this.setRenderTarget( renderTarget );

  		//

  		background.render( currentRenderList, scene, camera, forceClear );

  		// render scene

  		var opaqueObjects = currentRenderList.opaque;
  		var transparentObjects = currentRenderList.transparent;

  		if ( scene.overrideMaterial ) {

  			var overrideMaterial = scene.overrideMaterial;

  			if ( opaqueObjects.length ) renderObjects( opaqueObjects, scene, camera, overrideMaterial );
  			if ( transparentObjects.length ) renderObjects( transparentObjects, scene, camera, overrideMaterial );

  		} else {

  			// opaque pass (front-to-back order)

  			if ( opaqueObjects.length ) renderObjects( opaqueObjects, scene, camera );

  			// transparent pass (back-to-front order)

  			if ( transparentObjects.length ) renderObjects( transparentObjects, scene, camera );

  		}

  		// custom renderers

  		var spritesArray = currentRenderState.state.spritesArray;

  		spriteRenderer.render( spritesArray, scene, camera );

  		// Generate mipmap if we're using any kind of mipmap filtering

  		if ( renderTarget ) {

  			textures.updateRenderTargetMipmap( renderTarget );

  		}

  		// Ensure depth buffer writing is enabled so it can be cleared on next render

  		state.buffers.depth.setTest( true );
  		state.buffers.depth.setMask( true );
  		state.buffers.color.setMask( true );

  		state.setPolygonOffset( false );

  		scene.onAfterRender( _this, scene, camera );

  		if ( vr.enabled ) {

  			vr.submitFrame();

  		}

  		// _gl.finish();

  		currentRenderList = null;
  		currentRenderState = null;

  	};

  	/*
  	// TODO Duplicated code (Frustum)

  	var _sphere = new Sphere();

  	function isObjectViewable( object ) {

  		var geometry = object.geometry;

  		if ( geometry.boundingSphere === null )
  			geometry.computeBoundingSphere();

  		_sphere.copy( geometry.boundingSphere ).
  		applyMatrix4( object.matrixWorld );

  		return isSphereViewable( _sphere );

  	}

  	function isSpriteViewable( sprite ) {

  		_sphere.center.set( 0, 0, 0 );
  		_sphere.radius = 0.7071067811865476;
  		_sphere.applyMatrix4( sprite.matrixWorld );

  		return isSphereViewable( _sphere );

  	}

  	function isSphereViewable( sphere ) {

  		if ( ! _frustum.intersectsSphere( sphere ) ) return false;

  		var numPlanes = _clipping.numPlanes;

  		if ( numPlanes === 0 ) return true;

  		var planes = _this.clippingPlanes,

  			center = sphere.center,
  			negRad = - sphere.radius,
  			i = 0;

  		do {

  			// out when deeper than radius in the negative halfspace
  			if ( planes[ i ].distanceToPoint( center ) < negRad ) return false;

  		} while ( ++ i !== numPlanes );

  		return true;

  	}
  	*/

  	function projectObject( object, camera, sortObjects ) {

  		if ( object.visible === false ) return;

  		var visible = object.layers.test( camera.layers );

  		if ( visible ) {

  			if ( object.isLight ) {

  				currentRenderState.pushLight( object );

  				if ( object.castShadow ) {

  					currentRenderState.pushShadow( object );

  				}

  			} else if ( object.isSprite ) {

  				if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) {

  					currentRenderState.pushSprite( object );

  				}

  			} else if ( object.isImmediateRenderObject ) {

  				if ( sortObjects ) {

  					_vector3.setFromMatrixPosition( object.matrixWorld )
  						.applyMatrix4( _projScreenMatrix );

  				}

  				currentRenderList.push( object, null, object.material, _vector3.z, null );

  			} else if ( object.isMesh || object.isLine || object.isPoints ) {

  				if ( object.isSkinnedMesh ) {

  					object.skeleton.update();

  				}

  				if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) {

  					if ( sortObjects ) {

  						_vector3.setFromMatrixPosition( object.matrixWorld )
  							.applyMatrix4( _projScreenMatrix );

  					}

  					var geometry = objects.update( object );
  					var material = object.material;

  					if ( Array.isArray( material ) ) {

  						var groups = geometry.groups;

  						for ( var i = 0, l = groups.length; i < l; i ++ ) {

  							var group = groups[ i ];
  							var groupMaterial = material[ group.materialIndex ];

  							if ( groupMaterial && groupMaterial.visible ) {

  								currentRenderList.push( object, geometry, groupMaterial, _vector3.z, group );

  							}

  						}

  					} else if ( material.visible ) {

  						currentRenderList.push( object, geometry, material, _vector3.z, null );

  					}

  				}

  			}

  		}

  		var children = object.children;

  		for ( var i = 0, l = children.length; i < l; i ++ ) {

  			projectObject( children[ i ], camera, sortObjects );

  		}

  	}

  	function renderObjects( renderList, scene, camera, overrideMaterial ) {

  		for ( var i = 0, l = renderList.length; i < l; i ++ ) {

  			var renderItem = renderList[ i ];

  			var object = renderItem.object;
  			var geometry = renderItem.geometry;
  			var material = overrideMaterial === undefined ? renderItem.material : overrideMaterial;
  			var group = renderItem.group;

  			if ( camera.isArrayCamera ) {

  				_currentArrayCamera = camera;

  				var cameras = camera.cameras;

  				for ( var j = 0, jl = cameras.length; j < jl; j ++ ) {

  					var camera2 = cameras[ j ];

  					if ( object.layers.test( camera2.layers ) ) {

  						if ( 'viewport' in camera2 ) { // XR

  							state.viewport( _currentViewport.copy( camera2.viewport ) );

  						} else {

  							var bounds = camera2.bounds;

  							var x = bounds.x * _width;
  							var y = bounds.y * _height;
  							var width = bounds.z * _width;
  							var height = bounds.w * _height;

  							state.viewport( _currentViewport.set( x, y, width, height ).multiplyScalar( _pixelRatio ) );

  						}

  						renderObject( object, scene, camera2, geometry, material, group );

  					}

  				}

  			} else {

  				_currentArrayCamera = null;

  				renderObject( object, scene, camera, geometry, material, group );

  			}

  		}

  	}

  	function renderObject( object, scene, camera, geometry, material, group ) {

  		object.onBeforeRender( _this, scene, camera, geometry, material, group );
  		currentRenderState = renderStates.get( scene, _currentArrayCamera || camera );

  		object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld );
  		object.normalMatrix.getNormalMatrix( object.modelViewMatrix );

  		if ( object.isImmediateRenderObject ) {

  			var frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 );

  			state.setMaterial( material, frontFaceCW );

  			var program = setProgram( camera, scene.fog, material, object );

  			_currentGeometryProgram = '';

  			renderObjectImmediate( object, program, material );

  		} else {

  			_this.renderBufferDirect( camera, scene.fog, geometry, material, object, group );

  		}

  		object.onAfterRender( _this, scene, camera, geometry, material, group );
  		currentRenderState = renderStates.get( scene, _currentArrayCamera || camera );

  	}

  	function initMaterial( material, fog, object ) {

  		var materialProperties = properties.get( material );

  		var lights = currentRenderState.state.lights;
  		var shadowsArray = currentRenderState.state.shadowsArray;

  		var parameters = programCache.getParameters(
  			material, lights.state, shadowsArray, fog, _clipping.numPlanes, _clipping.numIntersection, object );

  		var code = programCache.getProgramCode( material, parameters );

  		var program = materialProperties.program;
  		var programChange = true;

  		if ( program === undefined ) {

  			// new material
  			material.addEventListener( 'dispose', onMaterialDispose );

  		} else if ( program.code !== code ) {

  			// changed glsl or parameters
  			releaseMaterialProgramReference( material );

  		} else if ( materialProperties.lightsHash !== lights.state.hash ) {

  			properties.update( material, 'lightsHash', lights.state.hash );
  			programChange = false;

  		} else if ( parameters.shaderID !== undefined ) {

  			// same glsl and uniform list
  			return;

  		} else {

  			// only rebuild uniform list
  			programChange = false;

  		}

  		if ( programChange ) {

  			if ( parameters.shaderID ) {

  				var shader = ShaderLib[ parameters.shaderID ];

  				materialProperties.shader = {
  					name: material.type,
  					uniforms: UniformsUtils.clone( shader.uniforms ),
  					vertexShader: shader.vertexShader,
  					fragmentShader: shader.fragmentShader
  				};

  			} else {

  				materialProperties.shader = {
  					name: material.type,
  					uniforms: material.uniforms,
  					vertexShader: material.vertexShader,
  					fragmentShader: material.fragmentShader
  				};

  			}

  			material.onBeforeCompile( materialProperties.shader, _this );

  			program = programCache.acquireProgram( material, materialProperties.shader, parameters, code );

  			materialProperties.program = program;
  			material.program = program;

  		}

  		var programAttributes = program.getAttributes();

  		if ( material.morphTargets ) {

  			material.numSupportedMorphTargets = 0;

  			for ( var i = 0; i < _this.maxMorphTargets; i ++ ) {

  				if ( programAttributes[ 'morphTarget' + i ] >= 0 ) {

  					material.numSupportedMorphTargets ++;

  				}

  			}

  		}

  		if ( material.morphNormals ) {

  			material.numSupportedMorphNormals = 0;

  			for ( var i = 0; i < _this.maxMorphNormals; i ++ ) {

  				if ( programAttributes[ 'morphNormal' + i ] >= 0 ) {

  					material.numSupportedMorphNormals ++;

  				}

  			}

  		}

  		var uniforms = materialProperties.shader.uniforms;

  		if ( ! material.isShaderMaterial &&
  			! material.isRawShaderMaterial ||
  			material.clipping === true ) {

  			materialProperties.numClippingPlanes = _clipping.numPlanes;
  			materialProperties.numIntersection = _clipping.numIntersection;
  			uniforms.clippingPlanes = _clipping.uniform;

  		}

  		materialProperties.fog = fog;

  		// store the light setup it was created for

  		materialProperties.lightsHash = lights.state.hash;

  		if ( material.lights ) {

  			// wire up the material to this renderer's lighting state

  			uniforms.ambientLightColor.value = lights.state.ambient;
  			uniforms.directionalLights.value = lights.state.directional;
  			uniforms.spotLights.value = lights.state.spot;
  			uniforms.rectAreaLights.value = lights.state.rectArea;
  			uniforms.pointLights.value = lights.state.point;
  			uniforms.hemisphereLights.value = lights.state.hemi;

  			uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
  			uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
  			uniforms.spotShadowMap.value = lights.state.spotShadowMap;
  			uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix;
  			uniforms.pointShadowMap.value = lights.state.pointShadowMap;
  			uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix;
  			// TODO (abelnation): add area lights shadow info to uniforms

  		}

  		var progUniforms = materialProperties.program.getUniforms(),
  			uniformsList =
  				WebGLUniforms.seqWithValue( progUniforms.seq, uniforms );

  		materialProperties.uniformsList = uniformsList;

  	}

  	function setProgram( camera, fog, material, object ) {

  		_usedTextureUnits = 0;

  		var materialProperties = properties.get( material );
  		var lights = currentRenderState.state.lights;

  		if ( _clippingEnabled ) {

  			if ( _localClippingEnabled || camera !== _currentCamera ) {

  				var useCache =
  					camera === _currentCamera &&
  					material.id === _currentMaterialId;

  				// we might want to call this function with some ClippingGroup
  				// object instead of the material, once it becomes feasible
  				// (#8465, #8379)
  				_clipping.setState(
  					material.clippingPlanes, material.clipIntersection, material.clipShadows,
  					camera, materialProperties, useCache );

  			}

  		}

  		if ( material.needsUpdate === false ) {

  			if ( materialProperties.program === undefined ) {

  				material.needsUpdate = true;

  			} else if ( material.fog && materialProperties.fog !== fog ) {

  				material.needsUpdate = true;

  			} else if ( material.lights && materialProperties.lightsHash !== lights.state.hash ) {

  				material.needsUpdate = true;

  			} else if ( materialProperties.numClippingPlanes !== undefined &&
  				( materialProperties.numClippingPlanes !== _clipping.numPlanes ||
  				materialProperties.numIntersection !== _clipping.numIntersection ) ) {

  				material.needsUpdate = true;

  			}

  		}

  		if ( material.needsUpdate ) {

  			initMaterial( material, fog, object );
  			material.needsUpdate = false;

  		}

  		var refreshProgram = false;
  		var refreshMaterial = false;
  		var refreshLights = false;

  		var program = materialProperties.program,
  			p_uniforms = program.getUniforms(),
  			m_uniforms = materialProperties.shader.uniforms;

  		if ( state.useProgram( program.program ) ) {

  			refreshProgram = true;
  			refreshMaterial = true;
  			refreshLights = true;

  		}

  		if ( material.id !== _currentMaterialId ) {

  			_currentMaterialId = material.id;

  			refreshMaterial = true;

  		}

  		if ( refreshProgram || camera !== _currentCamera ) {

  			p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix );

  			if ( capabilities.logarithmicDepthBuffer ) {

  				p_uniforms.setValue( _gl, 'logDepthBufFC',
  					2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) );

  			}

  			// Avoid unneeded uniform updates per ArrayCamera's sub-camera

  			if ( _currentCamera !== ( _currentArrayCamera || camera ) ) {

  				_currentCamera = ( _currentArrayCamera || camera );

  				// lighting uniforms depend on the camera so enforce an update
  				// now, in case this material supports lights - or later, when
  				// the next material that does gets activated:

  				refreshMaterial = true;		// set to true on material change
  				refreshLights = true;		// remains set until update done

  			}

  			// load material specific uniforms
  			// (shader material also gets them for the sake of genericity)

  			if ( material.isShaderMaterial ||
  				material.isMeshPhongMaterial ||
  				material.isMeshStandardMaterial ||
  				material.envMap ) {

  				var uCamPos = p_uniforms.map.cameraPosition;

  				if ( uCamPos !== undefined ) {

  					uCamPos.setValue( _gl,
  						_vector3.setFromMatrixPosition( camera.matrixWorld ) );

  				}

  			}

  			if ( material.isMeshPhongMaterial ||
  				material.isMeshLambertMaterial ||
  				material.isMeshBasicMaterial ||
  				material.isMeshStandardMaterial ||
  				material.isShaderMaterial ||
  				material.skinning ) {

  				p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse );

  			}

  		}

  		// skinning uniforms must be set even if material didn't change
  		// auto-setting of texture unit for bone texture must go before other textures
  		// not sure why, but otherwise weird things happen

  		if ( material.skinning ) {

  			p_uniforms.setOptional( _gl, object, 'bindMatrix' );
  			p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' );

  			var skeleton = object.skeleton;

  			if ( skeleton ) {

  				var bones = skeleton.bones;

  				if ( capabilities.floatVertexTextures ) {

  					if ( skeleton.boneTexture === undefined ) {

  						// layout (1 matrix = 4 pixels)
  						//      RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
  						//  with  8x8  pixel texture max   16 bones * 4 pixels =  (8 * 8)
  						//       16x16 pixel texture max   64 bones * 4 pixels = (16 * 16)
  						//       32x32 pixel texture max  256 bones * 4 pixels = (32 * 32)
  						//       64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)


  						var size = Math.sqrt( bones.length * 4 ); // 4 pixels needed for 1 matrix
  						size = _Math.ceilPowerOfTwo( size );
  						size = Math.max( size, 4 );

  						var boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel
  						boneMatrices.set( skeleton.boneMatrices ); // copy current values

  						var boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType );
  						boneTexture.needsUpdate = true;

  						skeleton.boneMatrices = boneMatrices;
  						skeleton.boneTexture = boneTexture;
  						skeleton.boneTextureSize = size;

  					}

  					p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture );
  					p_uniforms.setValue( _gl, 'boneTextureSize', skeleton.boneTextureSize );

  				} else {

  					p_uniforms.setOptional( _gl, skeleton, 'boneMatrices' );

  				}

  			}

  		}

  		if ( refreshMaterial ) {

  			p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure );
  			p_uniforms.setValue( _gl, 'toneMappingWhitePoint', _this.toneMappingWhitePoint );

  			if ( material.lights ) {

  				// the current material requires lighting info

  				// note: all lighting uniforms are always set correctly
  				// they simply reference the renderer's state for their
  				// values
  				//
  				// use the current material's .needsUpdate flags to set
  				// the GL state when required

  				markUniformsLightsNeedsUpdate( m_uniforms, refreshLights );

  			}

  			// refresh uniforms common to several materials

  			if ( fog && material.fog ) {

  				refreshUniformsFog( m_uniforms, fog );

  			}

  			if ( material.isMeshBasicMaterial ) {

  				refreshUniformsCommon( m_uniforms, material );

  			} else if ( material.isMeshLambertMaterial ) {

  				refreshUniformsCommon( m_uniforms, material );
  				refreshUniformsLambert( m_uniforms, material );

  			} else if ( material.isMeshPhongMaterial ) {

  				refreshUniformsCommon( m_uniforms, material );

  				if ( material.isMeshToonMaterial ) {

  					refreshUniformsToon( m_uniforms, material );

  				} else {

  					refreshUniformsPhong( m_uniforms, material );

  				}

  			} else if ( material.isMeshStandardMaterial ) {

  				refreshUniformsCommon( m_uniforms, material );

  				if ( material.isMeshPhysicalMaterial ) {

  					refreshUniformsPhysical( m_uniforms, material );

  				} else {

  					refreshUniformsStandard( m_uniforms, material );

  				}

  			} else if ( material.isMeshDepthMaterial ) {

  				refreshUniformsCommon( m_uniforms, material );
  				refreshUniformsDepth( m_uniforms, material );

  			} else if ( material.isMeshDistanceMaterial ) {

  				refreshUniformsCommon( m_uniforms, material );
  				refreshUniformsDistance( m_uniforms, material );

  			} else if ( material.isMeshNormalMaterial ) {

  				refreshUniformsCommon( m_uniforms, material );
  				refreshUniformsNormal( m_uniforms, material );

  			} else if ( material.isLineBasicMaterial ) {

  				refreshUniformsLine( m_uniforms, material );

  				if ( material.isLineDashedMaterial ) {

  					refreshUniformsDash( m_uniforms, material );

  				}

  			} else if ( material.isPointsMaterial ) {

  				refreshUniformsPoints( m_uniforms, material );

  			} else if ( material.isShadowMaterial ) {

  				m_uniforms.color.value = material.color;
  				m_uniforms.opacity.value = material.opacity;

  			}

  			// RectAreaLight Texture
  			// TODO (mrdoob): Find a nicer implementation

  			if ( m_uniforms.ltc_1 !== undefined ) m_uniforms.ltc_1.value = UniformsLib.LTC_1;
  			if ( m_uniforms.ltc_2 !== undefined ) m_uniforms.ltc_2.value = UniformsLib.LTC_2;

  			WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, _this );

  		}

  		if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) {

  			WebGLUniforms.upload( _gl, materialProperties.uniformsList, m_uniforms, _this );
  			material.uniformsNeedUpdate = false;

  		}

  		// common matrices

  		p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix );
  		p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix );
  		p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld );

  		return program;

  	}

  	// Uniforms (refresh uniforms objects)

  	function refreshUniformsCommon( uniforms, material ) {

  		uniforms.opacity.value = material.opacity;

  		if ( material.color ) {

  			uniforms.diffuse.value = material.color;

  		}

  		if ( material.emissive ) {

  			uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity );

  		}

  		if ( material.map ) {

  			uniforms.map.value = material.map;

  		}

  		if ( material.alphaMap ) {

  			uniforms.alphaMap.value = material.alphaMap;

  		}

  		if ( material.specularMap ) {

  			uniforms.specularMap.value = material.specularMap;

  		}

  		if ( material.envMap ) {

  			uniforms.envMap.value = material.envMap;

  			// don't flip CubeTexture envMaps, flip everything else:
  			//  WebGLRenderTargetCube will be flipped for backwards compatibility
  			//  WebGLRenderTargetCube.texture will be flipped because it's a Texture and NOT a CubeTexture
  			// this check must be handled differently, or removed entirely, if WebGLRenderTargetCube uses a CubeTexture in the future
  			uniforms.flipEnvMap.value = ( ! ( material.envMap && material.envMap.isCubeTexture ) ) ? 1 : - 1;

  			uniforms.reflectivity.value = material.reflectivity;
  			uniforms.refractionRatio.value = material.refractionRatio;

  			uniforms.maxMipLevel.value = properties.get( material.envMap ).__maxMipLevel;

  		}

  		if ( material.lightMap ) {

  			uniforms.lightMap.value = material.lightMap;
  			uniforms.lightMapIntensity.value = material.lightMapIntensity;

  		}

  		if ( material.aoMap ) {

  			uniforms.aoMap.value = material.aoMap;
  			uniforms.aoMapIntensity.value = material.aoMapIntensity;

  		}

  		// uv repeat and offset setting priorities
  		// 1. color map
  		// 2. specular map
  		// 3. normal map
  		// 4. bump map
  		// 5. alpha map
  		// 6. emissive map

  		var uvScaleMap;

  		if ( material.map ) {

  			uvScaleMap = material.map;

  		} else if ( material.specularMap ) {

  			uvScaleMap = material.specularMap;

  		} else if ( material.displacementMap ) {

  			uvScaleMap = material.displacementMap;

  		} else if ( material.normalMap ) {

  			uvScaleMap = material.normalMap;

  		} else if ( material.bumpMap ) {

  			uvScaleMap = material.bumpMap;

  		} else if ( material.roughnessMap ) {

  			uvScaleMap = material.roughnessMap;

  		} else if ( material.metalnessMap ) {

  			uvScaleMap = material.metalnessMap;

  		} else if ( material.alphaMap ) {

  			uvScaleMap = material.alphaMap;

  		} else if ( material.emissiveMap ) {

  			uvScaleMap = material.emissiveMap;

  		}

  		if ( uvScaleMap !== undefined ) {

  			// backwards compatibility
  			if ( uvScaleMap.isWebGLRenderTarget ) {

  				uvScaleMap = uvScaleMap.texture;

  			}

  			if ( uvScaleMap.matrixAutoUpdate === true ) {

  				uvScaleMap.updateMatrix();

  			}

  			uniforms.uvTransform.value.copy( uvScaleMap.matrix );

  		}

  	}

  	function refreshUniformsLine( uniforms, material ) {

  		uniforms.diffuse.value = material.color;
  		uniforms.opacity.value = material.opacity;

  	}

  	function refreshUniformsDash( uniforms, material ) {

  		uniforms.dashSize.value = material.dashSize;
  		uniforms.totalSize.value = material.dashSize + material.gapSize;
  		uniforms.scale.value = material.scale;

  	}

  	function refreshUniformsPoints( uniforms, material ) {

  		uniforms.diffuse.value = material.color;
  		uniforms.opacity.value = material.opacity;
  		uniforms.size.value = material.size * _pixelRatio;
  		uniforms.scale.value = _height * 0.5;

  		uniforms.map.value = material.map;

  		if ( material.map !== null ) {

  			if ( material.map.matrixAutoUpdate === true ) {

  				material.map.updateMatrix();

  			}

  			uniforms.uvTransform.value.copy( material.map.matrix );

  		}

  	}

  	function refreshUniformsFog( uniforms, fog ) {

  		uniforms.fogColor.value = fog.color;

  		if ( fog.isFog ) {

  			uniforms.fogNear.value = fog.near;
  			uniforms.fogFar.value = fog.far;

  		} else if ( fog.isFogExp2 ) {

  			uniforms.fogDensity.value = fog.density;

  		}

  	}

  	function refreshUniformsLambert( uniforms, material ) {

  		if ( material.emissiveMap ) {

  			uniforms.emissiveMap.value = material.emissiveMap;

  		}

  	}

  	function refreshUniformsPhong( uniforms, material ) {

  		uniforms.specular.value = material.specular;
  		uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 )

  		if ( material.emissiveMap ) {

  			uniforms.emissiveMap.value = material.emissiveMap;

  		}

  		if ( material.bumpMap ) {

  			uniforms.bumpMap.value = material.bumpMap;
  			uniforms.bumpScale.value = material.bumpScale;
  			if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;

  		}

  		if ( material.normalMap ) {

  			uniforms.normalMap.value = material.normalMap;
  			uniforms.normalScale.value.copy( material.normalScale );
  			if ( material.side === BackSide ) uniforms.normalScale.value.negate();

  		}

  		if ( material.displacementMap ) {

  			uniforms.displacementMap.value = material.displacementMap;
  			uniforms.displacementScale.value = material.displacementScale;
  			uniforms.displacementBias.value = material.displacementBias;

  		}

  	}

  	function refreshUniformsToon( uniforms, material ) {

  		refreshUniformsPhong( uniforms, material );

  		if ( material.gradientMap ) {

  			uniforms.gradientMap.value = material.gradientMap;

  		}

  	}

  	function refreshUniformsStandard( uniforms, material ) {

  		uniforms.roughness.value = material.roughness;
  		uniforms.metalness.value = material.metalness;

  		if ( material.roughnessMap ) {

  			uniforms.roughnessMap.value = material.roughnessMap;

  		}

  		if ( material.metalnessMap ) {

  			uniforms.metalnessMap.value = material.metalnessMap;

  		}

  		if ( material.emissiveMap ) {

  			uniforms.emissiveMap.value = material.emissiveMap;

  		}

  		if ( material.bumpMap ) {

  			uniforms.bumpMap.value = material.bumpMap;
  			uniforms.bumpScale.value = material.bumpScale;
  			if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;

  		}

  		if ( material.normalMap ) {

  			uniforms.normalMap.value = material.normalMap;
  			uniforms.normalScale.value.copy( material.normalScale );
  			if ( material.side === BackSide ) uniforms.normalScale.value.negate();

  		}

  		if ( material.displacementMap ) {

  			uniforms.displacementMap.value = material.displacementMap;
  			uniforms.displacementScale.value = material.displacementScale;
  			uniforms.displacementBias.value = material.displacementBias;

  		}

  		if ( material.envMap ) {

  			//uniforms.envMap.value = material.envMap; // part of uniforms common
  			uniforms.envMapIntensity.value = material.envMapIntensity;

  		}

  	}

  	function refreshUniformsPhysical( uniforms, material ) {

  		uniforms.clearCoat.value = material.clearCoat;
  		uniforms.clearCoatRoughness.value = material.clearCoatRoughness;

  		refreshUniformsStandard( uniforms, material );

  	}

  	function refreshUniformsDepth( uniforms, material ) {

  		if ( material.displacementMap ) {

  			uniforms.displacementMap.value = material.displacementMap;
  			uniforms.displacementScale.value = material.displacementScale;
  			uniforms.displacementBias.value = material.displacementBias;

  		}

  	}

  	function refreshUniformsDistance( uniforms, material ) {

  		if ( material.displacementMap ) {

  			uniforms.displacementMap.value = material.displacementMap;
  			uniforms.displacementScale.value = material.displacementScale;
  			uniforms.displacementBias.value = material.displacementBias;

  		}

  		uniforms.referencePosition.value.copy( material.referencePosition );
  		uniforms.nearDistance.value = material.nearDistance;
  		uniforms.farDistance.value = material.farDistance;

  	}

  	function refreshUniformsNormal( uniforms, material ) {

  		if ( material.bumpMap ) {

  			uniforms.bumpMap.value = material.bumpMap;
  			uniforms.bumpScale.value = material.bumpScale;
  			if ( material.side === BackSide ) uniforms.bumpScale.value *= - 1;

  		}

  		if ( material.normalMap ) {

  			uniforms.normalMap.value = material.normalMap;
  			uniforms.normalScale.value.copy( material.normalScale );
  			if ( material.side === BackSide ) uniforms.normalScale.value.negate();

  		}

  		if ( material.displacementMap ) {

  			uniforms.displacementMap.value = material.displacementMap;
  			uniforms.displacementScale.value = material.displacementScale;
  			uniforms.displacementBias.value = material.displacementBias;

  		}

  	}

  	// If uniforms are marked as clean, they don't need to be loaded to the GPU.

  	function markUniformsLightsNeedsUpdate( uniforms, value ) {

  		uniforms.ambientLightColor.needsUpdate = value;

  		uniforms.directionalLights.needsUpdate = value;
  		uniforms.pointLights.needsUpdate = value;
  		uniforms.spotLights.needsUpdate = value;
  		uniforms.rectAreaLights.needsUpdate = value;
  		uniforms.hemisphereLights.needsUpdate = value;

  	}

  	// Textures

  	function allocTextureUnit() {

  		var textureUnit = _usedTextureUnits;

  		if ( textureUnit >= capabilities.maxTextures ) {

  			console.warn( 'THREE.WebGLRenderer: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures );

  		}

  		_usedTextureUnits += 1;

  		return textureUnit;

  	}

  	this.allocTextureUnit = allocTextureUnit;

  	// this.setTexture2D = setTexture2D;
  	this.setTexture2D = ( function () {

  		var warned = false;

  		// backwards compatibility: peel texture.texture
  		return function setTexture2D( texture, slot ) {

  			if ( texture && texture.isWebGLRenderTarget ) {

  				if ( ! warned ) {

  					console.warn( "THREE.WebGLRenderer.setTexture2D: don't use render targets as textures. Use their .texture property instead." );
  					warned = true;

  				}

  				texture = texture.texture;

  			}

  			textures.setTexture2D( texture, slot );

  		};

  	}() );

  	this.setTexture = ( function () {

  		var warned = false;

  		return function setTexture( texture, slot ) {

  			if ( ! warned ) {

  				console.warn( "THREE.WebGLRenderer: .setTexture is deprecated, use setTexture2D instead." );
  				warned = true;

  			}

  			textures.setTexture2D( texture, slot );

  		};

  	}() );

  	this.setTextureCube = ( function () {

  		var warned = false;

  		return function setTextureCube( texture, slot ) {

  			// backwards compatibility: peel texture.texture
  			if ( texture && texture.isWebGLRenderTargetCube ) {

  				if ( ! warned ) {

  					console.warn( "THREE.WebGLRenderer.setTextureCube: don't use cube render targets as textures. Use their .texture property instead." );
  					warned = true;

  				}

  				texture = texture.texture;

  			}

  			// currently relying on the fact that WebGLRenderTargetCube.texture is a Texture and NOT a CubeTexture
  			// TODO: unify these code paths
  			if ( ( texture && texture.isCubeTexture ) ||
  				( Array.isArray( texture.image ) && texture.image.length === 6 ) ) {

  				// CompressedTexture can have Array in image :/

  				// this function alone should take care of cube textures
  				textures.setTextureCube( texture, slot );

  			} else {

  				// assumed: texture property of THREE.WebGLRenderTargetCube

  				textures.setTextureCubeDynamic( texture, slot );

  			}

  		};

  	}() );

  	//

  	this.setFramebuffer = function ( value ) {

  		_framebuffer = value;

  	};

  	this.getRenderTarget = function () {

  		return _currentRenderTarget;

  	};

  	this.setRenderTarget = function ( renderTarget ) {

  		_currentRenderTarget = renderTarget;

  		if ( renderTarget && properties.get( renderTarget ).__webglFramebuffer === undefined ) {

  			textures.setupRenderTarget( renderTarget );

  		}

  		var framebuffer = _framebuffer;
  		var isCube = false;

  		if ( renderTarget ) {

  			var __webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer;

  			if ( renderTarget.isWebGLRenderTargetCube ) {

  				framebuffer = __webglFramebuffer[ renderTarget.activeCubeFace ];
  				isCube = true;

  			} else {

  				framebuffer = __webglFramebuffer;

  			}

  			_currentViewport.copy( renderTarget.viewport );
  			_currentScissor.copy( renderTarget.scissor );
  			_currentScissorTest = renderTarget.scissorTest;

  		} else {

  			_currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio );
  			_currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio );
  			_currentScissorTest = _scissorTest;

  		}

  		if ( _currentFramebuffer !== framebuffer ) {

  			_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );
  			_currentFramebuffer = framebuffer;

  		}

  		state.viewport( _currentViewport );
  		state.scissor( _currentScissor );
  		state.setScissorTest( _currentScissorTest );

  		if ( isCube ) {

  			var textureProperties = properties.get( renderTarget.texture );
  			_gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + renderTarget.activeCubeFace, textureProperties.__webglTexture, renderTarget.activeMipMapLevel );

  		}

  	};

  	this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer ) {

  		if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) {

  			console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' );
  			return;

  		}

  		var framebuffer = properties.get( renderTarget ).__webglFramebuffer;

  		if ( framebuffer ) {

  			var restore = false;

  			if ( framebuffer !== _currentFramebuffer ) {

  				_gl.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer );

  				restore = true;

  			}

  			try {

  				var texture = renderTarget.texture;
  				var textureFormat = texture.format;
  				var textureType = texture.type;

  				if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) {

  					console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' );
  					return;

  				}

  				if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== _gl.getParameter( _gl.IMPLEMENTATION_COLOR_READ_TYPE ) && // IE11, Edge and Chrome Mac < 52 (#9513)
  					! ( textureType === FloatType && ( extensions.get( 'OES_texture_float' ) || extensions.get( 'WEBGL_color_buffer_float' ) ) ) && // Chrome Mac >= 52 and Firefox
  					! ( textureType === HalfFloatType && extensions.get( 'EXT_color_buffer_half_float' ) ) ) {

  					console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' );
  					return;

  				}

  				if ( _gl.checkFramebufferStatus( _gl.FRAMEBUFFER ) === _gl.FRAMEBUFFER_COMPLETE ) {

  					// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)

  					if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) {

  						_gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer );

  					}

  				} else {

  					console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.' );

  				}

  			} finally {

  				if ( restore ) {

  					_gl.bindFramebuffer( _gl.FRAMEBUFFER, _currentFramebuffer );

  				}

  			}

  		}

  	};

  	this.copyFramebufferToTexture = function ( position, texture, level ) {

  		var width = texture.image.width;
  		var height = texture.image.height;
  		var glFormat = utils.convert( texture.format );

  		this.setTexture2D( texture, 0 );

  		_gl.copyTexImage2D( _gl.TEXTURE_2D, level || 0, glFormat, position.x, position.y, width, height, 0 );

  	};

  	this.copyTextureToTexture = function ( position, srcTexture, dstTexture, level ) {

  		var width = srcTexture.image.width;
  		var height = srcTexture.image.height;
  		var glFormat = utils.convert( dstTexture.format );
  		var glType = utils.convert( dstTexture.type );

  		this.setTexture2D( dstTexture, 0 );

  		if ( srcTexture.isDataTexture ) {

  			_gl.texSubImage2D( _gl.TEXTURE_2D, level || 0, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data );

  		} else {

  			_gl.texSubImage2D( _gl.TEXTURE_2D, level || 0, position.x, position.y, glFormat, glType, srcTexture.image );

  		}

  	};

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  function FogExp2( color, density ) {

  	this.name = '';

  	this.color = new Color( color );
  	this.density = ( density !== undefined ) ? density : 0.00025;

  }

  FogExp2.prototype.isFogExp2 = true;

  FogExp2.prototype.clone = function () {

  	return new FogExp2( this.color, this.density );

  };

  FogExp2.prototype.toJSON = function ( /* meta */ ) {

  	return {
  		type: 'FogExp2',
  		color: this.color.getHex(),
  		density: this.density
  	};

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  function Fog( color, near, far ) {

  	this.name = '';

  	this.color = new Color( color );

  	this.near = ( near !== undefined ) ? near : 1;
  	this.far = ( far !== undefined ) ? far : 1000;

  }

  Fog.prototype.isFog = true;

  Fog.prototype.clone = function () {

  	return new Fog( this.color, this.near, this.far );

  };

  Fog.prototype.toJSON = function ( /* meta */ ) {

  	return {
  		type: 'Fog',
  		color: this.color.getHex(),
  		near: this.near,
  		far: this.far
  	};

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function Scene() {

  	Object3D.call( this );

  	this.type = 'Scene';

  	this.background = null;
  	this.fog = null;
  	this.overrideMaterial = null;

  	this.autoUpdate = true; // checked by the renderer

  }

  Scene.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Scene,

  	copy: function ( source, recursive ) {

  		Object3D.prototype.copy.call( this, source, recursive );

  		if ( source.background !== null ) this.background = source.background.clone();
  		if ( source.fog !== null ) this.fog = source.fog.clone();
  		if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone();

  		this.autoUpdate = source.autoUpdate;
  		this.matrixAutoUpdate = source.matrixAutoUpdate;

  		return this;

  	},

  	toJSON: function ( meta ) {

  		var data = Object3D.prototype.toJSON.call( this, meta );

  		if ( this.background !== null ) data.object.background = this.background.toJSON( meta );
  		if ( this.fog !== null ) data.object.fog = this.fog.toJSON();

  		return data;

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  opacity: <float>,
   *  map: new THREE.Texture( <Image> ),
   *
   *	uvOffset: new THREE.Vector2(),
   *	uvScale: new THREE.Vector2()
   * }
   */

  function SpriteMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'SpriteMaterial';

  	this.color = new Color( 0xffffff );
  	this.map = null;

  	this.rotation = 0;

  	this.fog = false;
  	this.lights = false;

  	this.setValues( parameters );

  }

  SpriteMaterial.prototype = Object.create( Material.prototype );
  SpriteMaterial.prototype.constructor = SpriteMaterial;
  SpriteMaterial.prototype.isSpriteMaterial = true;

  SpriteMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );
  	this.map = source.map;

  	this.rotation = source.rotation;

  	return this;

  };

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   */

  function Sprite( material ) {

  	Object3D.call( this );

  	this.type = 'Sprite';

  	this.material = ( material !== undefined ) ? material : new SpriteMaterial();

  	this.center = new Vector2( 0.5, 0.5 );

  }

  Sprite.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Sprite,

  	isSprite: true,

  	raycast: ( function () {

  		var intersectPoint = new Vector3();
  		var worldPosition = new Vector3();
  		var worldScale = new Vector3();

  		return function raycast( raycaster, intersects ) {

  			worldPosition.setFromMatrixPosition( this.matrixWorld );
  			raycaster.ray.closestPointToPoint( worldPosition, intersectPoint );

  			worldScale.setFromMatrixScale( this.matrixWorld );
  			var guessSizeSq = worldScale.x * worldScale.y / 4;

  			if ( worldPosition.distanceToSquared( intersectPoint ) > guessSizeSq ) return;

  			var distance = raycaster.ray.origin.distanceTo( intersectPoint );

  			if ( distance < raycaster.near || distance > raycaster.far ) return;

  			intersects.push( {

  				distance: distance,
  				point: intersectPoint.clone(),
  				face: null,
  				object: this

  			} );

  		};

  	}() ),

  	clone: function () {

  		return new this.constructor( this.material ).copy( this );

  	},

  	copy: function ( source ) {

  		Object3D.prototype.copy.call( this, source );

  		if ( source.center !== undefined ) this.center.copy( source.center );

  		return this;

  	}


  } );

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   */

  function LOD() {

  	Object3D.call( this );

  	this.type = 'LOD';

  	Object.defineProperties( this, {
  		levels: {
  			enumerable: true,
  			value: []
  		}
  	} );

  }

  LOD.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: LOD,

  	copy: function ( source ) {

  		Object3D.prototype.copy.call( this, source, false );

  		var levels = source.levels;

  		for ( var i = 0, l = levels.length; i < l; i ++ ) {

  			var level = levels[ i ];

  			this.addLevel( level.object.clone(), level.distance );

  		}

  		return this;

  	},

  	addLevel: function ( object, distance ) {

  		if ( distance === undefined ) distance = 0;

  		distance = Math.abs( distance );

  		var levels = this.levels;

  		for ( var l = 0; l < levels.length; l ++ ) {

  			if ( distance < levels[ l ].distance ) {

  				break;

  			}

  		}

  		levels.splice( l, 0, { distance: distance, object: object } );

  		this.add( object );

  	},

  	getObjectForDistance: function ( distance ) {

  		var levels = this.levels;

  		for ( var i = 1, l = levels.length; i < l; i ++ ) {

  			if ( distance < levels[ i ].distance ) {

  				break;

  			}

  		}

  		return levels[ i - 1 ].object;

  	},

  	raycast: ( function () {

  		var matrixPosition = new Vector3();

  		return function raycast( raycaster, intersects ) {

  			matrixPosition.setFromMatrixPosition( this.matrixWorld );

  			var distance = raycaster.ray.origin.distanceTo( matrixPosition );

  			this.getObjectForDistance( distance ).raycast( raycaster, intersects );

  		};

  	}() ),

  	update: function () {

  		var v1 = new Vector3();
  		var v2 = new Vector3();

  		return function update( camera ) {

  			var levels = this.levels;

  			if ( levels.length > 1 ) {

  				v1.setFromMatrixPosition( camera.matrixWorld );
  				v2.setFromMatrixPosition( this.matrixWorld );

  				var distance = v1.distanceTo( v2 );

  				levels[ 0 ].object.visible = true;

  				for ( var i = 1, l = levels.length; i < l; i ++ ) {

  					if ( distance >= levels[ i ].distance ) {

  						levels[ i - 1 ].object.visible = false;
  						levels[ i ].object.visible = true;

  					} else {

  						break;

  					}

  				}

  				for ( ; i < l; i ++ ) {

  					levels[ i ].object.visible = false;

  				}

  			}

  		};

  	}(),

  	toJSON: function ( meta ) {

  		var data = Object3D.prototype.toJSON.call( this, meta );

  		data.object.levels = [];

  		var levels = this.levels;

  		for ( var i = 0, l = levels.length; i < l; i ++ ) {

  			var level = levels[ i ];

  			data.object.levels.push( {
  				object: level.object.uuid,
  				distance: level.distance
  			} );

  		}

  		return data;

  	}

  } );

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   * @author michael guerrero / http://realitymeltdown.com
   * @author ikerr / http://verold.com
   */

  function Skeleton( bones, boneInverses ) {

  	// copy the bone array

  	bones = bones || [];

  	this.bones = bones.slice( 0 );
  	this.boneMatrices = new Float32Array( this.bones.length * 16 );

  	// use the supplied bone inverses or calculate the inverses

  	if ( boneInverses === undefined ) {

  		this.calculateInverses();

  	} else {

  		if ( this.bones.length === boneInverses.length ) {

  			this.boneInverses = boneInverses.slice( 0 );

  		} else {

  			console.warn( 'THREE.Skeleton boneInverses is the wrong length.' );

  			this.boneInverses = [];

  			for ( var i = 0, il = this.bones.length; i < il; i ++ ) {

  				this.boneInverses.push( new Matrix4() );

  			}

  		}

  	}

  }

  Object.assign( Skeleton.prototype, {

  	calculateInverses: function () {

  		this.boneInverses = [];

  		for ( var i = 0, il = this.bones.length; i < il; i ++ ) {

  			var inverse = new Matrix4();

  			if ( this.bones[ i ] ) {

  				inverse.getInverse( this.bones[ i ].matrixWorld );

  			}

  			this.boneInverses.push( inverse );

  		}

  	},

  	pose: function () {

  		var bone, i, il;

  		// recover the bind-time world matrices

  		for ( i = 0, il = this.bones.length; i < il; i ++ ) {

  			bone = this.bones[ i ];

  			if ( bone ) {

  				bone.matrixWorld.getInverse( this.boneInverses[ i ] );

  			}

  		}

  		// compute the local matrices, positions, rotations and scales

  		for ( i = 0, il = this.bones.length; i < il; i ++ ) {

  			bone = this.bones[ i ];

  			if ( bone ) {

  				if ( bone.parent && bone.parent.isBone ) {

  					bone.matrix.getInverse( bone.parent.matrixWorld );
  					bone.matrix.multiply( bone.matrixWorld );

  				} else {

  					bone.matrix.copy( bone.matrixWorld );

  				}

  				bone.matrix.decompose( bone.position, bone.quaternion, bone.scale );

  			}

  		}

  	},

  	update: ( function () {

  		var offsetMatrix = new Matrix4();
  		var identityMatrix = new Matrix4();

  		return function update() {

  			var bones = this.bones;
  			var boneInverses = this.boneInverses;
  			var boneMatrices = this.boneMatrices;
  			var boneTexture = this.boneTexture;

  			// flatten bone matrices to array

  			for ( var i = 0, il = bones.length; i < il; i ++ ) {

  				// compute the offset between the current and the original transform

  				var matrix = bones[ i ] ? bones[ i ].matrixWorld : identityMatrix;

  				offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] );
  				offsetMatrix.toArray( boneMatrices, i * 16 );

  			}

  			if ( boneTexture !== undefined ) {

  				boneTexture.needsUpdate = true;

  			}

  		};

  	} )(),

  	clone: function () {

  		return new Skeleton( this.bones, this.boneInverses );

  	},

  	getBoneByName: function ( name ) {

  		for ( var i = 0, il = this.bones.length; i < il; i ++ ) {

  			var bone = this.bones[ i ];

  			if ( bone.name === name ) {

  				return bone;

  			}

  		}

  		return undefined;

  	}

  } );

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   * @author ikerr / http://verold.com
   */

  function Bone() {

  	Object3D.call( this );

  	this.type = 'Bone';

  }

  Bone.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Bone,

  	isBone: true

  } );

  /**
   * @author mikael emtinger / http://gomo.se/
   * @author alteredq / http://alteredqualia.com/
   * @author ikerr / http://verold.com
   */

  function SkinnedMesh( geometry, material ) {

  	Mesh.call( this, geometry, material );

  	this.type = 'SkinnedMesh';

  	this.bindMode = 'attached';
  	this.bindMatrix = new Matrix4();
  	this.bindMatrixInverse = new Matrix4();

  	var bones = this.initBones();
  	var skeleton = new Skeleton( bones );

  	this.bind( skeleton, this.matrixWorld );

  	this.normalizeSkinWeights();

  }

  SkinnedMesh.prototype = Object.assign( Object.create( Mesh.prototype ), {

  	constructor: SkinnedMesh,

  	isSkinnedMesh: true,

  	initBones: function () {

  		var bones = [], bone, gbone;
  		var i, il;

  		if ( this.geometry && this.geometry.bones !== undefined ) {

  			// first, create array of 'Bone' objects from geometry data

  			for ( i = 0, il = this.geometry.bones.length; i < il; i ++ ) {

  				gbone = this.geometry.bones[ i ];

  				// create new 'Bone' object

  				bone = new Bone();
  				bones.push( bone );

  				// apply values

  				bone.name = gbone.name;
  				bone.position.fromArray( gbone.pos );
  				bone.quaternion.fromArray( gbone.rotq );
  				if ( gbone.scl !== undefined ) bone.scale.fromArray( gbone.scl );

  			}

  			// second, create bone hierarchy

  			for ( i = 0, il = this.geometry.bones.length; i < il; i ++ ) {

  				gbone = this.geometry.bones[ i ];

  				if ( ( gbone.parent !== - 1 ) && ( gbone.parent !== null ) && ( bones[ gbone.parent ] !== undefined ) ) {

  					// subsequent bones in the hierarchy

  					bones[ gbone.parent ].add( bones[ i ] );

  				} else {

  					// topmost bone, immediate child of the skinned mesh

  					this.add( bones[ i ] );

  				}

  			}

  		}

  		// now the bones are part of the scene graph and children of the skinned mesh.
  		// let's update the corresponding matrices

  		this.updateMatrixWorld( true );

  		return bones;

  	},

  	bind: function ( skeleton, bindMatrix ) {

  		this.skeleton = skeleton;

  		if ( bindMatrix === undefined ) {

  			this.updateMatrixWorld( true );

  			this.skeleton.calculateInverses();

  			bindMatrix = this.matrixWorld;

  		}

  		this.bindMatrix.copy( bindMatrix );
  		this.bindMatrixInverse.getInverse( bindMatrix );

  	},

  	pose: function () {

  		this.skeleton.pose();

  	},

  	normalizeSkinWeights: function () {

  		var scale, i;

  		if ( this.geometry && this.geometry.isGeometry ) {

  			for ( i = 0; i < this.geometry.skinWeights.length; i ++ ) {

  				var sw = this.geometry.skinWeights[ i ];

  				scale = 1.0 / sw.manhattanLength();

  				if ( scale !== Infinity ) {

  					sw.multiplyScalar( scale );

  				} else {

  					sw.set( 1, 0, 0, 0 ); // do something reasonable

  				}

  			}

  		} else if ( this.geometry && this.geometry.isBufferGeometry ) {

  			var vec = new Vector4();

  			var skinWeight = this.geometry.attributes.skinWeight;

  			for ( i = 0; i < skinWeight.count; i ++ ) {

  				vec.x = skinWeight.getX( i );
  				vec.y = skinWeight.getY( i );
  				vec.z = skinWeight.getZ( i );
  				vec.w = skinWeight.getW( i );

  				scale = 1.0 / vec.manhattanLength();

  				if ( scale !== Infinity ) {

  					vec.multiplyScalar( scale );

  				} else {

  					vec.set( 1, 0, 0, 0 ); // do something reasonable

  				}

  				skinWeight.setXYZW( i, vec.x, vec.y, vec.z, vec.w );

  			}

  		}

  	},

  	updateMatrixWorld: function ( force ) {

  		Mesh.prototype.updateMatrixWorld.call( this, force );

  		if ( this.bindMode === 'attached' ) {

  			this.bindMatrixInverse.getInverse( this.matrixWorld );

  		} else if ( this.bindMode === 'detached' ) {

  			this.bindMatrixInverse.getInverse( this.bindMatrix );

  		} else {

  			console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode );

  		}

  	},

  	clone: function () {

  		return new this.constructor( this.geometry, this.material ).copy( this );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  opacity: <float>,
   *
   *  linewidth: <float>,
   *  linecap: "round",
   *  linejoin: "round"
   * }
   */

  function LineBasicMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'LineBasicMaterial';

  	this.color = new Color( 0xffffff );

  	this.linewidth = 1;
  	this.linecap = 'round';
  	this.linejoin = 'round';

  	this.lights = false;

  	this.setValues( parameters );

  }

  LineBasicMaterial.prototype = Object.create( Material.prototype );
  LineBasicMaterial.prototype.constructor = LineBasicMaterial;

  LineBasicMaterial.prototype.isLineBasicMaterial = true;

  LineBasicMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );

  	this.linewidth = source.linewidth;
  	this.linecap = source.linecap;
  	this.linejoin = source.linejoin;

  	return this;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function Line( geometry, material, mode ) {

  	if ( mode === 1 ) {

  		console.warn( 'THREE.Line: parameter THREE.LinePieces no longer supported. Created THREE.LineSegments instead.' );
  		return new LineSegments( geometry, material );

  	}

  	Object3D.call( this );

  	this.type = 'Line';

  	this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
  	this.material = material !== undefined ? material : new LineBasicMaterial( { color: Math.random() * 0xffffff } );

  }

  Line.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Line,

  	isLine: true,

  	computeLineDistances: ( function () {

  		var start = new Vector3();
  		var end = new Vector3();

  		return function computeLineDistances() {

  			var geometry = this.geometry;

  			if ( geometry.isBufferGeometry ) {

  				// we assume non-indexed geometry

  				if ( geometry.index === null ) {

  					var positionAttribute = geometry.attributes.position;
  					var lineDistances = [ 0 ];

  					for ( var i = 1, l = positionAttribute.count; i < l; i ++ ) {

  						start.fromBufferAttribute( positionAttribute, i - 1 );
  						end.fromBufferAttribute( positionAttribute, i );

  						lineDistances[ i ] = lineDistances[ i - 1 ];
  						lineDistances[ i ] += start.distanceTo( end );

  					}

  					geometry.addAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );

  				} else {

  					console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );

  				}

  			} else if ( geometry.isGeometry ) {

  				var vertices = geometry.vertices;
  				var lineDistances = geometry.lineDistances;

  				lineDistances[ 0 ] = 0;

  				for ( var i = 1, l = vertices.length; i < l; i ++ ) {

  					lineDistances[ i ] = lineDistances[ i - 1 ];
  					lineDistances[ i ] += vertices[ i - 1 ].distanceTo( vertices[ i ] );

  				}

  			}

  			return this;

  		};

  	}() ),

  	raycast: ( function () {

  		var inverseMatrix = new Matrix4();
  		var ray = new Ray();
  		var sphere = new Sphere();

  		return function raycast( raycaster, intersects ) {

  			var precision = raycaster.linePrecision;
  			var precisionSq = precision * precision;

  			var geometry = this.geometry;
  			var matrixWorld = this.matrixWorld;

  			// Checking boundingSphere distance to ray

  			if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

  			sphere.copy( geometry.boundingSphere );
  			sphere.applyMatrix4( matrixWorld );

  			if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;

  			//

  			inverseMatrix.getInverse( matrixWorld );
  			ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );

  			var vStart = new Vector3();
  			var vEnd = new Vector3();
  			var interSegment = new Vector3();
  			var interRay = new Vector3();
  			var step = ( this && this.isLineSegments ) ? 2 : 1;

  			if ( geometry.isBufferGeometry ) {

  				var index = geometry.index;
  				var attributes = geometry.attributes;
  				var positions = attributes.position.array;

  				if ( index !== null ) {

  					var indices = index.array;

  					for ( var i = 0, l = indices.length - 1; i < l; i += step ) {

  						var a = indices[ i ];
  						var b = indices[ i + 1 ];

  						vStart.fromArray( positions, a * 3 );
  						vEnd.fromArray( positions, b * 3 );

  						var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );

  						if ( distSq > precisionSq ) continue;

  						interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

  						var distance = raycaster.ray.origin.distanceTo( interRay );

  						if ( distance < raycaster.near || distance > raycaster.far ) continue;

  						intersects.push( {

  							distance: distance,
  							// What do we want? intersection point on the ray or on the segment??
  							// point: raycaster.ray.at( distance ),
  							point: interSegment.clone().applyMatrix4( this.matrixWorld ),
  							index: i,
  							face: null,
  							faceIndex: null,
  							object: this

  						} );

  					}

  				} else {

  					for ( var i = 0, l = positions.length / 3 - 1; i < l; i += step ) {

  						vStart.fromArray( positions, 3 * i );
  						vEnd.fromArray( positions, 3 * i + 3 );

  						var distSq = ray.distanceSqToSegment( vStart, vEnd, interRay, interSegment );

  						if ( distSq > precisionSq ) continue;

  						interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

  						var distance = raycaster.ray.origin.distanceTo( interRay );

  						if ( distance < raycaster.near || distance > raycaster.far ) continue;

  						intersects.push( {

  							distance: distance,
  							// What do we want? intersection point on the ray or on the segment??
  							// point: raycaster.ray.at( distance ),
  							point: interSegment.clone().applyMatrix4( this.matrixWorld ),
  							index: i,
  							face: null,
  							faceIndex: null,
  							object: this

  						} );

  					}

  				}

  			} else if ( geometry.isGeometry ) {

  				var vertices = geometry.vertices;
  				var nbVertices = vertices.length;

  				for ( var i = 0; i < nbVertices - 1; i += step ) {

  					var distSq = ray.distanceSqToSegment( vertices[ i ], vertices[ i + 1 ], interRay, interSegment );

  					if ( distSq > precisionSq ) continue;

  					interRay.applyMatrix4( this.matrixWorld ); //Move back to world space for distance calculation

  					var distance = raycaster.ray.origin.distanceTo( interRay );

  					if ( distance < raycaster.near || distance > raycaster.far ) continue;

  					intersects.push( {

  						distance: distance,
  						// What do we want? intersection point on the ray or on the segment??
  						// point: raycaster.ray.at( distance ),
  						point: interSegment.clone().applyMatrix4( this.matrixWorld ),
  						index: i,
  						face: null,
  						faceIndex: null,
  						object: this

  					} );

  				}

  			}

  		};

  	}() ),

  	clone: function () {

  		return new this.constructor( this.geometry, this.material ).copy( this );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function LineSegments( geometry, material ) {

  	Line.call( this, geometry, material );

  	this.type = 'LineSegments';

  }

  LineSegments.prototype = Object.assign( Object.create( Line.prototype ), {

  	constructor: LineSegments,

  	isLineSegments: true,

  	computeLineDistances: ( function () {

  		var start = new Vector3();
  		var end = new Vector3();

  		return function computeLineDistances() {

  			var geometry = this.geometry;

  			if ( geometry.isBufferGeometry ) {

  				// we assume non-indexed geometry

  				if ( geometry.index === null ) {

  					var positionAttribute = geometry.attributes.position;
  					var lineDistances = [];

  					for ( var i = 0, l = positionAttribute.count; i < l; i += 2 ) {

  						start.fromBufferAttribute( positionAttribute, i );
  						end.fromBufferAttribute( positionAttribute, i + 1 );

  						lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ];
  						lineDistances[ i + 1 ] = lineDistances[ i ] + start.distanceTo( end );

  					}

  					geometry.addAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) );

  				} else {

  					console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' );

  				}

  			} else if ( geometry.isGeometry ) {

  				var vertices = geometry.vertices;
  				var lineDistances = geometry.lineDistances;

  				for ( var i = 0, l = vertices.length; i < l; i += 2 ) {

  					start.copy( vertices[ i ] );
  					end.copy( vertices[ i + 1 ] );

  					lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ];
  					lineDistances[ i + 1 ] = lineDistances[ i ] + start.distanceTo( end );

  				}

  			}

  			return this;

  		};

  	}() )

  } );

  /**
   * @author mgreter / http://github.com/mgreter
   */

  function LineLoop( geometry, material ) {

  	Line.call( this, geometry, material );

  	this.type = 'LineLoop';

  }

  LineLoop.prototype = Object.assign( Object.create( Line.prototype ), {

  	constructor: LineLoop,

  	isLineLoop: true,

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  opacity: <float>,
   *  map: new THREE.Texture( <Image> ),
   *
   *  size: <float>,
   *  sizeAttenuation: <bool>
   *
   *  morphTargets: <bool>
   * }
   */

  function PointsMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'PointsMaterial';

  	this.color = new Color( 0xffffff );

  	this.map = null;

  	this.size = 1;
  	this.sizeAttenuation = true;

  	this.morphTargets = false;

  	this.lights = false;

  	this.setValues( parameters );

  }

  PointsMaterial.prototype = Object.create( Material.prototype );
  PointsMaterial.prototype.constructor = PointsMaterial;

  PointsMaterial.prototype.isPointsMaterial = true;

  PointsMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );

  	this.map = source.map;

  	this.size = source.size;
  	this.sizeAttenuation = source.sizeAttenuation;

  	this.morphTargets = source.morphTargets;

  	return this;

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function Points( geometry, material ) {

  	Object3D.call( this );

  	this.type = 'Points';

  	this.geometry = geometry !== undefined ? geometry : new BufferGeometry();
  	this.material = material !== undefined ? material : new PointsMaterial( { color: Math.random() * 0xffffff } );

  }

  Points.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Points,

  	isPoints: true,

  	raycast: ( function () {

  		var inverseMatrix = new Matrix4();
  		var ray = new Ray();
  		var sphere = new Sphere();

  		return function raycast( raycaster, intersects ) {

  			var object = this;
  			var geometry = this.geometry;
  			var matrixWorld = this.matrixWorld;
  			var threshold = raycaster.params.Points.threshold;

  			// Checking boundingSphere distance to ray

  			if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere();

  			sphere.copy( geometry.boundingSphere );
  			sphere.applyMatrix4( matrixWorld );
  			sphere.radius += threshold;

  			if ( raycaster.ray.intersectsSphere( sphere ) === false ) return;

  			//

  			inverseMatrix.getInverse( matrixWorld );
  			ray.copy( raycaster.ray ).applyMatrix4( inverseMatrix );

  			var localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 );
  			var localThresholdSq = localThreshold * localThreshold;
  			var position = new Vector3();
  			var intersectPoint = new Vector3();

  			function testPoint( point, index ) {

  				var rayPointDistanceSq = ray.distanceSqToPoint( point );

  				if ( rayPointDistanceSq < localThresholdSq ) {

  					ray.closestPointToPoint( point, intersectPoint );
  					intersectPoint.applyMatrix4( matrixWorld );

  					var distance = raycaster.ray.origin.distanceTo( intersectPoint );

  					if ( distance < raycaster.near || distance > raycaster.far ) return;

  					intersects.push( {

  						distance: distance,
  						distanceToRay: Math.sqrt( rayPointDistanceSq ),
  						point: intersectPoint.clone(),
  						index: index,
  						face: null,
  						object: object

  					} );

  				}

  			}

  			if ( geometry.isBufferGeometry ) {

  				var index = geometry.index;
  				var attributes = geometry.attributes;
  				var positions = attributes.position.array;

  				if ( index !== null ) {

  					var indices = index.array;

  					for ( var i = 0, il = indices.length; i < il; i ++ ) {

  						var a = indices[ i ];

  						position.fromArray( positions, a * 3 );

  						testPoint( position, a );

  					}

  				} else {

  					for ( var i = 0, l = positions.length / 3; i < l; i ++ ) {

  						position.fromArray( positions, i * 3 );

  						testPoint( position, i );

  					}

  				}

  			} else {

  				var vertices = geometry.vertices;

  				for ( var i = 0, l = vertices.length; i < l; i ++ ) {

  					testPoint( vertices[ i ], i );

  				}

  			}

  		};

  	}() ),

  	clone: function () {

  		return new this.constructor( this.geometry, this.material ).copy( this );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function Group() {

  	Object3D.call( this );

  	this.type = 'Group';

  }

  Group.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Group,

  	isGroup: true

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function VideoTexture( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) {

  	Texture.call( this, video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

  	this.generateMipmaps = false;

  }

  VideoTexture.prototype = Object.assign( Object.create( Texture.prototype ), {

  	constructor: VideoTexture,

  	isVideoTexture: true,

  	update: function () {

  		var video = this.image;

  		if ( video.readyState >= video.HAVE_CURRENT_DATA ) {

  			this.needsUpdate = true;

  		}

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function CompressedTexture( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {

  	Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );

  	this.image = { width: width, height: height };
  	this.mipmaps = mipmaps;

  	// no flipping for cube textures
  	// (also flipping doesn't work for compressed textures )

  	this.flipY = false;

  	// can't generate mipmaps for compressed textures
  	// mips must be embedded in DDS files

  	this.generateMipmaps = false;

  }

  CompressedTexture.prototype = Object.create( Texture.prototype );
  CompressedTexture.prototype.constructor = CompressedTexture;

  CompressedTexture.prototype.isCompressedTexture = true;

  /**
   * @author Matt DesLauriers / @mattdesl
   * @author atix / arthursilber.de
   */

  function DepthTexture( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format ) {

  	format = format !== undefined ? format : DepthFormat;

  	if ( format !== DepthFormat && format !== DepthStencilFormat ) {

  		throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' );

  	}

  	if ( type === undefined && format === DepthFormat ) type = UnsignedShortType;
  	if ( type === undefined && format === DepthStencilFormat ) type = UnsignedInt248Type;

  	Texture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy );

  	this.image = { width: width, height: height };

  	this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
  	this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;

  	this.flipY = false;
  	this.generateMipmaps	= false;

  }

  DepthTexture.prototype = Object.create( Texture.prototype );
  DepthTexture.prototype.constructor = DepthTexture;
  DepthTexture.prototype.isDepthTexture = true;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / https://github.com/Mugen87
   */

  function WireframeGeometry( geometry ) {

  	BufferGeometry.call( this );

  	this.type = 'WireframeGeometry';

  	// buffer

  	var vertices = [];

  	// helper variables

  	var i, j, l, o, ol;
  	var edge = [ 0, 0 ], edges = {}, e, edge1, edge2;
  	var key, keys = [ 'a', 'b', 'c' ];
  	var vertex;

  	// different logic for Geometry and BufferGeometry

  	if ( geometry && geometry.isGeometry ) {

  		// create a data structure that contains all edges without duplicates

  		var faces = geometry.faces;

  		for ( i = 0, l = faces.length; i < l; i ++ ) {

  			var face = faces[ i ];

  			for ( j = 0; j < 3; j ++ ) {

  				edge1 = face[ keys[ j ] ];
  				edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
  				edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
  				edge[ 1 ] = Math.max( edge1, edge2 );

  				key = edge[ 0 ] + ',' + edge[ 1 ];

  				if ( edges[ key ] === undefined ) {

  					edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };

  				}

  			}

  		}

  		// generate vertices

  		for ( key in edges ) {

  			e = edges[ key ];

  			vertex = geometry.vertices[ e.index1 ];
  			vertices.push( vertex.x, vertex.y, vertex.z );

  			vertex = geometry.vertices[ e.index2 ];
  			vertices.push( vertex.x, vertex.y, vertex.z );

  		}

  	} else if ( geometry && geometry.isBufferGeometry ) {

  		var position, indices, groups;
  		var group, start, count;
  		var index1, index2;

  		vertex = new Vector3();

  		if ( geometry.index !== null ) {

  			// indexed BufferGeometry

  			position = geometry.attributes.position;
  			indices = geometry.index;
  			groups = geometry.groups;

  			if ( groups.length === 0 ) {

  				groups = [ { start: 0, count: indices.count, materialIndex: 0 } ];

  			}

  			// create a data structure that contains all eges without duplicates

  			for ( o = 0, ol = groups.length; o < ol; ++ o ) {

  				group = groups[ o ];

  				start = group.start;
  				count = group.count;

  				for ( i = start, l = ( start + count ); i < l; i += 3 ) {

  					for ( j = 0; j < 3; j ++ ) {

  						edge1 = indices.getX( i + j );
  						edge2 = indices.getX( i + ( j + 1 ) % 3 );
  						edge[ 0 ] = Math.min( edge1, edge2 ); // sorting prevents duplicates
  						edge[ 1 ] = Math.max( edge1, edge2 );

  						key = edge[ 0 ] + ',' + edge[ 1 ];

  						if ( edges[ key ] === undefined ) {

  							edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ] };

  						}

  					}

  				}

  			}

  			// generate vertices

  			for ( key in edges ) {

  				e = edges[ key ];

  				vertex.fromBufferAttribute( position, e.index1 );
  				vertices.push( vertex.x, vertex.y, vertex.z );

  				vertex.fromBufferAttribute( position, e.index2 );
  				vertices.push( vertex.x, vertex.y, vertex.z );

  			}

  		} else {

  			// non-indexed BufferGeometry

  			position = geometry.attributes.position;

  			for ( i = 0, l = ( position.count / 3 ); i < l; i ++ ) {

  				for ( j = 0; j < 3; j ++ ) {

  					// three edges per triangle, an edge is represented as (index1, index2)
  					// e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)

  					index1 = 3 * i + j;
  					vertex.fromBufferAttribute( position, index1 );
  					vertices.push( vertex.x, vertex.y, vertex.z );

  					index2 = 3 * i + ( ( j + 1 ) % 3 );
  					vertex.fromBufferAttribute( position, index2 );
  					vertices.push( vertex.x, vertex.y, vertex.z );

  				}

  			}

  		}

  	}

  	// build geometry

  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );

  }

  WireframeGeometry.prototype = Object.create( BufferGeometry.prototype );
  WireframeGeometry.prototype.constructor = WireframeGeometry;

  /**
   * @author zz85 / https://github.com/zz85
   * @author Mugen87 / https://github.com/Mugen87
   *
   * Parametric Surfaces Geometry
   * based on the brilliant article by @prideout http://prideout.net/blog/?p=44
   */

  // ParametricGeometry

  function ParametricGeometry( func, slices, stacks ) {

  	Geometry.call( this );

  	this.type = 'ParametricGeometry';

  	this.parameters = {
  		func: func,
  		slices: slices,
  		stacks: stacks
  	};

  	this.fromBufferGeometry( new ParametricBufferGeometry( func, slices, stacks ) );
  	this.mergeVertices();

  }

  ParametricGeometry.prototype = Object.create( Geometry.prototype );
  ParametricGeometry.prototype.constructor = ParametricGeometry;

  // ParametricBufferGeometry

  function ParametricBufferGeometry( func, slices, stacks ) {

  	BufferGeometry.call( this );

  	this.type = 'ParametricBufferGeometry';

  	this.parameters = {
  		func: func,
  		slices: slices,
  		stacks: stacks
  	};

  	// buffers

  	var indices = [];
  	var vertices = [];
  	var normals = [];
  	var uvs = [];

  	var EPS = 0.00001;

  	var normal = new Vector3();

  	var p0 = new Vector3(), p1 = new Vector3();
  	var pu = new Vector3(), pv = new Vector3();

  	var i, j;

  	if ( func.length < 3 ) {

  		console.error( 'THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.' );

  	}

  	// generate vertices, normals and uvs

  	var sliceCount = slices + 1;

  	for ( i = 0; i <= stacks; i ++ ) {

  		var v = i / stacks;

  		for ( j = 0; j <= slices; j ++ ) {

  			var u = j / slices;

  			// vertex

  			func( u, v, p0 );
  			vertices.push( p0.x, p0.y, p0.z );

  			// normal

  			// approximate tangent vectors via finite differences

  			if ( u - EPS >= 0 ) {

  				func( u - EPS, v, p1 );
  				pu.subVectors( p0, p1 );

  			} else {

  				func( u + EPS, v, p1 );
  				pu.subVectors( p1, p0 );

  			}

  			if ( v - EPS >= 0 ) {

  				func( u, v - EPS, p1 );
  				pv.subVectors( p0, p1 );

  			} else {

  				func( u, v + EPS, p1 );
  				pv.subVectors( p1, p0 );

  			}

  			// cross product of tangent vectors returns surface normal

  			normal.crossVectors( pu, pv ).normalize();
  			normals.push( normal.x, normal.y, normal.z );

  			// uv

  			uvs.push( u, v );

  		}

  	}

  	// generate indices

  	for ( i = 0; i < stacks; i ++ ) {

  		for ( j = 0; j < slices; j ++ ) {

  			var a = i * sliceCount + j;
  			var b = i * sliceCount + j + 1;
  			var c = ( i + 1 ) * sliceCount + j + 1;
  			var d = ( i + 1 ) * sliceCount + j;

  			// faces one and two

  			indices.push( a, b, d );
  			indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  }

  ParametricBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  ParametricBufferGeometry.prototype.constructor = ParametricBufferGeometry;

  /**
   * @author clockworkgeek / https://github.com/clockworkgeek
   * @author timothypratley / https://github.com/timothypratley
   * @author WestLangley / http://github.com/WestLangley
   * @author Mugen87 / https://github.com/Mugen87
   */

  // PolyhedronGeometry

  function PolyhedronGeometry( vertices, indices, radius, detail ) {

  	Geometry.call( this );

  	this.type = 'PolyhedronGeometry';

  	this.parameters = {
  		vertices: vertices,
  		indices: indices,
  		radius: radius,
  		detail: detail
  	};

  	this.fromBufferGeometry( new PolyhedronBufferGeometry( vertices, indices, radius, detail ) );
  	this.mergeVertices();

  }

  PolyhedronGeometry.prototype = Object.create( Geometry.prototype );
  PolyhedronGeometry.prototype.constructor = PolyhedronGeometry;

  // PolyhedronBufferGeometry

  function PolyhedronBufferGeometry( vertices, indices, radius, detail ) {

  	BufferGeometry.call( this );

  	this.type = 'PolyhedronBufferGeometry';

  	this.parameters = {
  		vertices: vertices,
  		indices: indices,
  		radius: radius,
  		detail: detail
  	};

  	radius = radius || 1;
  	detail = detail || 0;

  	// default buffer data

  	var vertexBuffer = [];
  	var uvBuffer = [];

  	// the subdivision creates the vertex buffer data

  	subdivide( detail );

  	// all vertices should lie on a conceptual sphere with a given radius

  	appplyRadius( radius );

  	// finally, create the uv data

  	generateUVs();

  	// build non-indexed geometry

  	this.addAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) );
  	this.addAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) );

  	if ( detail === 0 ) {

  		this.computeVertexNormals(); // flat normals

  	} else {

  		this.normalizeNormals(); // smooth normals

  	}

  	// helper functions

  	function subdivide( detail ) {

  		var a = new Vector3();
  		var b = new Vector3();
  		var c = new Vector3();

  		// iterate over all faces and apply a subdivison with the given detail value

  		for ( var i = 0; i < indices.length; i += 3 ) {

  			// get the vertices of the face

  			getVertexByIndex( indices[ i + 0 ], a );
  			getVertexByIndex( indices[ i + 1 ], b );
  			getVertexByIndex( indices[ i + 2 ], c );

  			// perform subdivision

  			subdivideFace( a, b, c, detail );

  		}

  	}

  	function subdivideFace( a, b, c, detail ) {

  		var cols = Math.pow( 2, detail );

  		// we use this multidimensional array as a data structure for creating the subdivision

  		var v = [];

  		var i, j;

  		// construct all of the vertices for this subdivision

  		for ( i = 0; i <= cols; i ++ ) {

  			v[ i ] = [];

  			var aj = a.clone().lerp( c, i / cols );
  			var bj = b.clone().lerp( c, i / cols );

  			var rows = cols - i;

  			for ( j = 0; j <= rows; j ++ ) {

  				if ( j === 0 && i === cols ) {

  					v[ i ][ j ] = aj;

  				} else {

  					v[ i ][ j ] = aj.clone().lerp( bj, j / rows );

  				}

  			}

  		}

  		// construct all of the faces

  		for ( i = 0; i < cols; i ++ ) {

  			for ( j = 0; j < 2 * ( cols - i ) - 1; j ++ ) {

  				var k = Math.floor( j / 2 );

  				if ( j % 2 === 0 ) {

  					pushVertex( v[ i ][ k + 1 ] );
  					pushVertex( v[ i + 1 ][ k ] );
  					pushVertex( v[ i ][ k ] );

  				} else {

  					pushVertex( v[ i ][ k + 1 ] );
  					pushVertex( v[ i + 1 ][ k + 1 ] );
  					pushVertex( v[ i + 1 ][ k ] );

  				}

  			}

  		}

  	}

  	function appplyRadius( radius ) {

  		var vertex = new Vector3();

  		// iterate over the entire buffer and apply the radius to each vertex

  		for ( var i = 0; i < vertexBuffer.length; i += 3 ) {

  			vertex.x = vertexBuffer[ i + 0 ];
  			vertex.y = vertexBuffer[ i + 1 ];
  			vertex.z = vertexBuffer[ i + 2 ];

  			vertex.normalize().multiplyScalar( radius );

  			vertexBuffer[ i + 0 ] = vertex.x;
  			vertexBuffer[ i + 1 ] = vertex.y;
  			vertexBuffer[ i + 2 ] = vertex.z;

  		}

  	}

  	function generateUVs() {

  		var vertex = new Vector3();

  		for ( var i = 0; i < vertexBuffer.length; i += 3 ) {

  			vertex.x = vertexBuffer[ i + 0 ];
  			vertex.y = vertexBuffer[ i + 1 ];
  			vertex.z = vertexBuffer[ i + 2 ];

  			var u = azimuth( vertex ) / 2 / Math.PI + 0.5;
  			var v = inclination( vertex ) / Math.PI + 0.5;
  			uvBuffer.push( u, 1 - v );

  		}

  		correctUVs();

  		correctSeam();

  	}

  	function correctSeam() {

  		// handle case when face straddles the seam, see #3269

  		for ( var i = 0; i < uvBuffer.length; i += 6 ) {

  			// uv data of a single face

  			var x0 = uvBuffer[ i + 0 ];
  			var x1 = uvBuffer[ i + 2 ];
  			var x2 = uvBuffer[ i + 4 ];

  			var max = Math.max( x0, x1, x2 );
  			var min = Math.min( x0, x1, x2 );

  			// 0.9 is somewhat arbitrary

  			if ( max > 0.9 && min < 0.1 ) {

  				if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1;
  				if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1;
  				if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1;

  			}

  		}

  	}

  	function pushVertex( vertex ) {

  		vertexBuffer.push( vertex.x, vertex.y, vertex.z );

  	}

  	function getVertexByIndex( index, vertex ) {

  		var stride = index * 3;

  		vertex.x = vertices[ stride + 0 ];
  		vertex.y = vertices[ stride + 1 ];
  		vertex.z = vertices[ stride + 2 ];

  	}

  	function correctUVs() {

  		var a = new Vector3();
  		var b = new Vector3();
  		var c = new Vector3();

  		var centroid = new Vector3();

  		var uvA = new Vector2();
  		var uvB = new Vector2();
  		var uvC = new Vector2();

  		for ( var i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) {

  			a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] );
  			b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] );
  			c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] );

  			uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] );
  			uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] );
  			uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] );

  			centroid.copy( a ).add( b ).add( c ).divideScalar( 3 );

  			var azi = azimuth( centroid );

  			correctUV( uvA, j + 0, a, azi );
  			correctUV( uvB, j + 2, b, azi );
  			correctUV( uvC, j + 4, c, azi );

  		}

  	}

  	function correctUV( uv, stride, vector, azimuth ) {

  		if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) {

  			uvBuffer[ stride ] = uv.x - 1;

  		}

  		if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) {

  			uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5;

  		}

  	}

  	// Angle around the Y axis, counter-clockwise when looking from above.

  	function azimuth( vector ) {

  		return Math.atan2( vector.z, - vector.x );

  	}


  	// Angle above the XZ plane.

  	function inclination( vector ) {

  		return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) );

  	}

  }

  PolyhedronBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  PolyhedronBufferGeometry.prototype.constructor = PolyhedronBufferGeometry;

  /**
   * @author timothypratley / https://github.com/timothypratley
   * @author Mugen87 / https://github.com/Mugen87
   */

  // TetrahedronGeometry

  function TetrahedronGeometry( radius, detail ) {

  	Geometry.call( this );

  	this.type = 'TetrahedronGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  	this.fromBufferGeometry( new TetrahedronBufferGeometry( radius, detail ) );
  	this.mergeVertices();

  }

  TetrahedronGeometry.prototype = Object.create( Geometry.prototype );
  TetrahedronGeometry.prototype.constructor = TetrahedronGeometry;

  // TetrahedronBufferGeometry

  function TetrahedronBufferGeometry( radius, detail ) {

  	var vertices = [
  		1, 1, 1, 	- 1, - 1, 1, 	- 1, 1, - 1, 	1, - 1, - 1
  	];

  	var indices = [
  		2, 1, 0, 	0, 3, 2,	1, 3, 0,	2, 3, 1
  	];

  	PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

  	this.type = 'TetrahedronBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  }

  TetrahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
  TetrahedronBufferGeometry.prototype.constructor = TetrahedronBufferGeometry;

  /**
   * @author timothypratley / https://github.com/timothypratley
   * @author Mugen87 / https://github.com/Mugen87
   */

  // OctahedronGeometry

  function OctahedronGeometry( radius, detail ) {

  	Geometry.call( this );

  	this.type = 'OctahedronGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  	this.fromBufferGeometry( new OctahedronBufferGeometry( radius, detail ) );
  	this.mergeVertices();

  }

  OctahedronGeometry.prototype = Object.create( Geometry.prototype );
  OctahedronGeometry.prototype.constructor = OctahedronGeometry;

  // OctahedronBufferGeometry

  function OctahedronBufferGeometry( radius, detail ) {

  	var vertices = [
  		1, 0, 0, 	- 1, 0, 0,	0, 1, 0,
  		0, - 1, 0, 	0, 0, 1,	0, 0, - 1
  	];

  	var indices = [
  		0, 2, 4,	0, 4, 3,	0, 3, 5,
  		0, 5, 2,	1, 2, 5,	1, 5, 3,
  		1, 3, 4,	1, 4, 2
  	];

  	PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

  	this.type = 'OctahedronBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  }

  OctahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
  OctahedronBufferGeometry.prototype.constructor = OctahedronBufferGeometry;

  /**
   * @author timothypratley / https://github.com/timothypratley
   * @author Mugen87 / https://github.com/Mugen87
   */

  // IcosahedronGeometry

  function IcosahedronGeometry( radius, detail ) {

  	Geometry.call( this );

  	this.type = 'IcosahedronGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  	this.fromBufferGeometry( new IcosahedronBufferGeometry( radius, detail ) );
  	this.mergeVertices();

  }

  IcosahedronGeometry.prototype = Object.create( Geometry.prototype );
  IcosahedronGeometry.prototype.constructor = IcosahedronGeometry;

  // IcosahedronBufferGeometry

  function IcosahedronBufferGeometry( radius, detail ) {

  	var t = ( 1 + Math.sqrt( 5 ) ) / 2;

  	var vertices = [
  		- 1, t, 0, 	1, t, 0, 	- 1, - t, 0, 	1, - t, 0,
  		 0, - 1, t, 	0, 1, t,	0, - 1, - t, 	0, 1, - t,
  		 t, 0, - 1, 	t, 0, 1, 	- t, 0, - 1, 	- t, 0, 1
  	];

  	var indices = [
  		 0, 11, 5, 	0, 5, 1, 	0, 1, 7, 	0, 7, 10, 	0, 10, 11,
  		 1, 5, 9, 	5, 11, 4,	11, 10, 2,	10, 7, 6,	7, 1, 8,
  		 3, 9, 4, 	3, 4, 2,	3, 2, 6,	3, 6, 8,	3, 8, 9,
  		 4, 9, 5, 	2, 4, 11,	6, 2, 10,	8, 6, 7,	9, 8, 1
  	];

  	PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

  	this.type = 'IcosahedronBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  }

  IcosahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
  IcosahedronBufferGeometry.prototype.constructor = IcosahedronBufferGeometry;

  /**
   * @author Abe Pazos / https://hamoid.com
   * @author Mugen87 / https://github.com/Mugen87
   */

  // DodecahedronGeometry

  function DodecahedronGeometry( radius, detail ) {

  	Geometry.call( this );

  	this.type = 'DodecahedronGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  	this.fromBufferGeometry( new DodecahedronBufferGeometry( radius, detail ) );
  	this.mergeVertices();

  }

  DodecahedronGeometry.prototype = Object.create( Geometry.prototype );
  DodecahedronGeometry.prototype.constructor = DodecahedronGeometry;

  // DodecahedronBufferGeometry

  function DodecahedronBufferGeometry( radius, detail ) {

  	var t = ( 1 + Math.sqrt( 5 ) ) / 2;
  	var r = 1 / t;

  	var vertices = [

  		// (±1, ±1, ±1)
  		- 1, - 1, - 1,	- 1, - 1, 1,
  		- 1, 1, - 1, - 1, 1, 1,
  		1, - 1, - 1, 1, - 1, 1,
  		1, 1, - 1, 1, 1, 1,

  		// (0, ±1/φ, ±φ)
  		 0, - r, - t, 0, - r, t,
  		 0, r, - t, 0, r, t,

  		// (±1/φ, ±φ, 0)
  		- r, - t, 0, - r, t, 0,
  		 r, - t, 0, r, t, 0,

  		// (±φ, 0, ±1/φ)
  		- t, 0, - r, t, 0, - r,
  		- t, 0, r, t, 0, r
  	];

  	var indices = [
  		3, 11, 7, 	3, 7, 15, 	3, 15, 13,
  		7, 19, 17, 	7, 17, 6, 	7, 6, 15,
  		17, 4, 8, 	17, 8, 10, 	17, 10, 6,
  		8, 0, 16, 	8, 16, 2, 	8, 2, 10,
  		0, 12, 1, 	0, 1, 18, 	0, 18, 16,
  		6, 10, 2, 	6, 2, 13, 	6, 13, 15,
  		2, 16, 18, 	2, 18, 3, 	2, 3, 13,
  		18, 1, 9, 	18, 9, 11, 	18, 11, 3,
  		4, 14, 12, 	4, 12, 0, 	4, 0, 8,
  		11, 9, 5, 	11, 5, 19, 	11, 19, 7,
  		19, 5, 14, 	19, 14, 4, 	19, 4, 17,
  		1, 12, 14, 	1, 14, 5, 	1, 5, 9
  	];

  	PolyhedronBufferGeometry.call( this, vertices, indices, radius, detail );

  	this.type = 'DodecahedronBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		detail: detail
  	};

  }

  DodecahedronBufferGeometry.prototype = Object.create( PolyhedronBufferGeometry.prototype );
  DodecahedronBufferGeometry.prototype.constructor = DodecahedronBufferGeometry;

  /**
   * @author oosmoxiecode / https://github.com/oosmoxiecode
   * @author WestLangley / https://github.com/WestLangley
   * @author zz85 / https://github.com/zz85
   * @author miningold / https://github.com/miningold
   * @author jonobr1 / https://github.com/jonobr1
   * @author Mugen87 / https://github.com/Mugen87
   *
   */

  // TubeGeometry

  function TubeGeometry( path, tubularSegments, radius, radialSegments, closed, taper ) {

  	Geometry.call( this );

  	this.type = 'TubeGeometry';

  	this.parameters = {
  		path: path,
  		tubularSegments: tubularSegments,
  		radius: radius,
  		radialSegments: radialSegments,
  		closed: closed
  	};

  	if ( taper !== undefined ) console.warn( 'THREE.TubeGeometry: taper has been removed.' );

  	var bufferGeometry = new TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed );

  	// expose internals

  	this.tangents = bufferGeometry.tangents;
  	this.normals = bufferGeometry.normals;
  	this.binormals = bufferGeometry.binormals;

  	// create geometry

  	this.fromBufferGeometry( bufferGeometry );
  	this.mergeVertices();

  }

  TubeGeometry.prototype = Object.create( Geometry.prototype );
  TubeGeometry.prototype.constructor = TubeGeometry;

  // TubeBufferGeometry

  function TubeBufferGeometry( path, tubularSegments, radius, radialSegments, closed ) {

  	BufferGeometry.call( this );

  	this.type = 'TubeBufferGeometry';

  	this.parameters = {
  		path: path,
  		tubularSegments: tubularSegments,
  		radius: radius,
  		radialSegments: radialSegments,
  		closed: closed
  	};

  	tubularSegments = tubularSegments || 64;
  	radius = radius || 1;
  	radialSegments = radialSegments || 8;
  	closed = closed || false;

  	var frames = path.computeFrenetFrames( tubularSegments, closed );

  	// expose internals

  	this.tangents = frames.tangents;
  	this.normals = frames.normals;
  	this.binormals = frames.binormals;

  	// helper variables

  	var vertex = new Vector3();
  	var normal = new Vector3();
  	var uv = new Vector2();
  	var P = new Vector3();

  	var i, j;

  	// buffer

  	var vertices = [];
  	var normals = [];
  	var uvs = [];
  	var indices = [];

  	// create buffer data

  	generateBufferData();

  	// build geometry

  	this.setIndex( indices );
  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  	// functions

  	function generateBufferData() {

  		for ( i = 0; i < tubularSegments; i ++ ) {

  			generateSegment( i );

  		}

  		// if the geometry is not closed, generate the last row of vertices and normals
  		// at the regular position on the given path
  		//
  		// if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)

  		generateSegment( ( closed === false ) ? tubularSegments : 0 );

  		// uvs are generated in a separate function.
  		// this makes it easy compute correct values for closed geometries

  		generateUVs();

  		// finally create faces

  		generateIndices();

  	}

  	function generateSegment( i ) {

  		// we use getPointAt to sample evenly distributed points from the given path

  		P = path.getPointAt( i / tubularSegments, P );

  		// retrieve corresponding normal and binormal

  		var N = frames.normals[ i ];
  		var B = frames.binormals[ i ];

  		// generate normals and vertices for the current segment

  		for ( j = 0; j <= radialSegments; j ++ ) {

  			var v = j / radialSegments * Math.PI * 2;

  			var sin = Math.sin( v );
  			var cos = - Math.cos( v );

  			// normal

  			normal.x = ( cos * N.x + sin * B.x );
  			normal.y = ( cos * N.y + sin * B.y );
  			normal.z = ( cos * N.z + sin * B.z );
  			normal.normalize();

  			normals.push( normal.x, normal.y, normal.z );

  			// vertex

  			vertex.x = P.x + radius * normal.x;
  			vertex.y = P.y + radius * normal.y;
  			vertex.z = P.z + radius * normal.z;

  			vertices.push( vertex.x, vertex.y, vertex.z );

  		}

  	}

  	function generateIndices() {

  		for ( j = 1; j <= tubularSegments; j ++ ) {

  			for ( i = 1; i <= radialSegments; i ++ ) {

  				var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
  				var b = ( radialSegments + 1 ) * j + ( i - 1 );
  				var c = ( radialSegments + 1 ) * j + i;
  				var d = ( radialSegments + 1 ) * ( j - 1 ) + i;

  				// faces

  				indices.push( a, b, d );
  				indices.push( b, c, d );

  			}

  		}

  	}

  	function generateUVs() {

  		for ( i = 0; i <= tubularSegments; i ++ ) {

  			for ( j = 0; j <= radialSegments; j ++ ) {

  				uv.x = i / tubularSegments;
  				uv.y = j / radialSegments;

  				uvs.push( uv.x, uv.y );

  			}

  		}

  	}

  }

  TubeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  TubeBufferGeometry.prototype.constructor = TubeBufferGeometry;

  /**
   * @author oosmoxiecode
   * @author Mugen87 / https://github.com/Mugen87
   *
   * based on http://www.blackpawn.com/texts/pqtorus/
   */

  // TorusKnotGeometry

  function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) {

  	Geometry.call( this );

  	this.type = 'TorusKnotGeometry';

  	this.parameters = {
  		radius: radius,
  		tube: tube,
  		tubularSegments: tubularSegments,
  		radialSegments: radialSegments,
  		p: p,
  		q: q
  	};

  	if ( heightScale !== undefined ) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' );

  	this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) );
  	this.mergeVertices();

  }

  TorusKnotGeometry.prototype = Object.create( Geometry.prototype );
  TorusKnotGeometry.prototype.constructor = TorusKnotGeometry;

  // TorusKnotBufferGeometry

  function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) {

  	BufferGeometry.call( this );

  	this.type = 'TorusKnotBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		tube: tube,
  		tubularSegments: tubularSegments,
  		radialSegments: radialSegments,
  		p: p,
  		q: q
  	};

  	radius = radius || 1;
  	tube = tube || 0.4;
  	tubularSegments = Math.floor( tubularSegments ) || 64;
  	radialSegments = Math.floor( radialSegments ) || 8;
  	p = p || 2;
  	q = q || 3;

  	// buffers

  	var indices = [];
  	var vertices = [];
  	var normals = [];
  	var uvs = [];

  	// helper variables

  	var i, j;

  	var vertex = new Vector3();
  	var normal = new Vector3();

  	var P1 = new Vector3();
  	var P2 = new Vector3();

  	var B = new Vector3();
  	var T = new Vector3();
  	var N = new Vector3();

  	// generate vertices, normals and uvs

  	for ( i = 0; i <= tubularSegments; ++ i ) {

  		// the radian "u" is used to calculate the position on the torus curve of the current tubular segement

  		var u = i / tubularSegments * p * Math.PI * 2;

  		// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
  		// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions

  		calculatePositionOnCurve( u, p, q, radius, P1 );
  		calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );

  		// calculate orthonormal basis

  		T.subVectors( P2, P1 );
  		N.addVectors( P2, P1 );
  		B.crossVectors( T, N );
  		N.crossVectors( B, T );

  		// normalize B, N. T can be ignored, we don't use it

  		B.normalize();
  		N.normalize();

  		for ( j = 0; j <= radialSegments; ++ j ) {

  			// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
  			// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.

  			var v = j / radialSegments * Math.PI * 2;
  			var cx = - tube * Math.cos( v );
  			var cy = tube * Math.sin( v );

  			// now calculate the final vertex position.
  			// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve

  			vertex.x = P1.x + ( cx * N.x + cy * B.x );
  			vertex.y = P1.y + ( cx * N.y + cy * B.y );
  			vertex.z = P1.z + ( cx * N.z + cy * B.z );

  			vertices.push( vertex.x, vertex.y, vertex.z );

  			// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)

  			normal.subVectors( vertex, P1 ).normalize();

  			normals.push( normal.x, normal.y, normal.z );

  			// uv

  			uvs.push( i / tubularSegments );
  			uvs.push( j / radialSegments );

  		}

  	}

  	// generate indices

  	for ( j = 1; j <= tubularSegments; j ++ ) {

  		for ( i = 1; i <= radialSegments; i ++ ) {

  			// indices

  			var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
  			var b = ( radialSegments + 1 ) * j + ( i - 1 );
  			var c = ( radialSegments + 1 ) * j + i;
  			var d = ( radialSegments + 1 ) * ( j - 1 ) + i;

  			// faces

  			indices.push( a, b, d );
  			indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  	// this function calculates the current position on the torus curve

  	function calculatePositionOnCurve( u, p, q, radius, position ) {

  		var cu = Math.cos( u );
  		var su = Math.sin( u );
  		var quOverP = q / p * u;
  		var cs = Math.cos( quOverP );

  		position.x = radius * ( 2 + cs ) * 0.5 * cu;
  		position.y = radius * ( 2 + cs ) * su * 0.5;
  		position.z = radius * Math.sin( quOverP ) * 0.5;

  	}

  }

  TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry;

  /**
   * @author oosmoxiecode
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / https://github.com/Mugen87
   */

  // TorusGeometry

  function TorusGeometry( radius, tube, radialSegments, tubularSegments, arc ) {

  	Geometry.call( this );

  	this.type = 'TorusGeometry';

  	this.parameters = {
  		radius: radius,
  		tube: tube,
  		radialSegments: radialSegments,
  		tubularSegments: tubularSegments,
  		arc: arc
  	};

  	this.fromBufferGeometry( new TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) );
  	this.mergeVertices();

  }

  TorusGeometry.prototype = Object.create( Geometry.prototype );
  TorusGeometry.prototype.constructor = TorusGeometry;

  // TorusBufferGeometry

  function TorusBufferGeometry( radius, tube, radialSegments, tubularSegments, arc ) {

  	BufferGeometry.call( this );

  	this.type = 'TorusBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		tube: tube,
  		radialSegments: radialSegments,
  		tubularSegments: tubularSegments,
  		arc: arc
  	};

  	radius = radius || 1;
  	tube = tube || 0.4;
  	radialSegments = Math.floor( radialSegments ) || 8;
  	tubularSegments = Math.floor( tubularSegments ) || 6;
  	arc = arc || Math.PI * 2;

  	// buffers

  	var indices = [];
  	var vertices = [];
  	var normals = [];
  	var uvs = [];

  	// helper variables

  	var center = new Vector3();
  	var vertex = new Vector3();
  	var normal = new Vector3();

  	var j, i;

  	// generate vertices, normals and uvs

  	for ( j = 0; j <= radialSegments; j ++ ) {

  		for ( i = 0; i <= tubularSegments; i ++ ) {

  			var u = i / tubularSegments * arc;
  			var v = j / radialSegments * Math.PI * 2;

  			// vertex

  			vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u );
  			vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u );
  			vertex.z = tube * Math.sin( v );

  			vertices.push( vertex.x, vertex.y, vertex.z );

  			// normal

  			center.x = radius * Math.cos( u );
  			center.y = radius * Math.sin( u );
  			normal.subVectors( vertex, center ).normalize();

  			normals.push( normal.x, normal.y, normal.z );

  			// uv

  			uvs.push( i / tubularSegments );
  			uvs.push( j / radialSegments );

  		}

  	}

  	// generate indices

  	for ( j = 1; j <= radialSegments; j ++ ) {

  		for ( i = 1; i <= tubularSegments; i ++ ) {

  			// indices

  			var a = ( tubularSegments + 1 ) * j + i - 1;
  			var b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1;
  			var c = ( tubularSegments + 1 ) * ( j - 1 ) + i;
  			var d = ( tubularSegments + 1 ) * j + i;

  			// faces

  			indices.push( a, b, d );
  			indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  }

  TorusBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  TorusBufferGeometry.prototype.constructor = TorusBufferGeometry;

  /**
   * @author Mugen87 / https://github.com/Mugen87
   * Port from https://github.com/mapbox/earcut (v2.1.2)
   */

  var Earcut = {

  	triangulate: function ( data, holeIndices, dim ) {

  		dim = dim || 2;

  		var hasHoles = holeIndices && holeIndices.length,
  			outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length,
  			outerNode = linkedList( data, 0, outerLen, dim, true ),
  			triangles = [];

  		if ( ! outerNode ) return triangles;

  		var minX, minY, maxX, maxY, x, y, invSize;

  		if ( hasHoles ) outerNode = eliminateHoles( data, holeIndices, outerNode, dim );

  		// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox

  		if ( data.length > 80 * dim ) {

  			minX = maxX = data[ 0 ];
  			minY = maxY = data[ 1 ];

  			for ( var i = dim; i < outerLen; i += dim ) {

  				x = data[ i ];
  				y = data[ i + 1 ];
  				if ( x < minX ) minX = x;
  				if ( y < minY ) minY = y;
  				if ( x > maxX ) maxX = x;
  				if ( y > maxY ) maxY = y;

  			}

  			// minX, minY and invSize are later used to transform coords into integers for z-order calculation

  			invSize = Math.max( maxX - minX, maxY - minY );
  			invSize = invSize !== 0 ? 1 / invSize : 0;

  		}

  		earcutLinked( outerNode, triangles, dim, minX, minY, invSize );

  		return triangles;

  	}

  };

  // create a circular doubly linked list from polygon points in the specified winding order

  function linkedList( data, start, end, dim, clockwise ) {

  	var i, last;

  	if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) {

  		for ( i = start; i < end; i += dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last );

  	} else {

  		for ( i = end - dim; i >= start; i -= dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last );

  	}

  	if ( last && equals( last, last.next ) ) {

  		removeNode( last );
  		last = last.next;

  	}

  	return last;

  }

  // eliminate colinear or duplicate points

  function filterPoints( start, end ) {

  	if ( ! start ) return start;
  	if ( ! end ) end = start;

  	var p = start, again;

  	do {

  		again = false;

  		if ( ! p.steiner && ( equals( p, p.next ) || area( p.prev, p, p.next ) === 0 ) ) {

  			removeNode( p );
  			p = end = p.prev;
  			if ( p === p.next ) break;
  			again = true;

  		} else {

  			p = p.next;

  		}

  	} while ( again || p !== end );

  	return end;

  }

  // main ear slicing loop which triangulates a polygon (given as a linked list)

  function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) {

  	if ( ! ear ) return;

  	// interlink polygon nodes in z-order

  	if ( ! pass && invSize ) indexCurve( ear, minX, minY, invSize );

  	var stop = ear, prev, next;

  	// iterate through ears, slicing them one by one

  	while ( ear.prev !== ear.next ) {

  		prev = ear.prev;
  		next = ear.next;

  		if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) {

  			// cut off the triangle
  			triangles.push( prev.i / dim );
  			triangles.push( ear.i / dim );
  			triangles.push( next.i / dim );

  			removeNode( ear );

  			// skipping the next vertice leads to less sliver triangles
  			ear = next.next;
  			stop = next.next;

  			continue;

  		}

  		ear = next;

  		// if we looped through the whole remaining polygon and can't find any more ears

  		if ( ear === stop ) {

  			// try filtering points and slicing again

  			if ( ! pass ) {

  				earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 );

  				// if this didn't work, try curing all small self-intersections locally

  			} else if ( pass === 1 ) {

  				ear = cureLocalIntersections( ear, triangles, dim );
  				earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 );

  			// as a last resort, try splitting the remaining polygon into two

  			} else if ( pass === 2 ) {

  				splitEarcut( ear, triangles, dim, minX, minY, invSize );

  			}

  			break;

  		}

  	}

  }

  // check whether a polygon node forms a valid ear with adjacent nodes

  function isEar( ear ) {

  	var a = ear.prev,
  		b = ear,
  		c = ear.next;

  	if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear

  	// now make sure we don't have other points inside the potential ear
  	var p = ear.next.next;

  	while ( p !== ear.prev ) {

  		if ( pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) {

  			return false;

  		}

  		p = p.next;

  	}

  	return true;

  }

  function isEarHashed( ear, minX, minY, invSize ) {

  	var a = ear.prev,
  		b = ear,
  		c = ear.next;

  	if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear

  	// triangle bbox; min & max are calculated like this for speed

  	var minTX = a.x < b.x ? ( a.x < c.x ? a.x : c.x ) : ( b.x < c.x ? b.x : c.x ),
  		minTY = a.y < b.y ? ( a.y < c.y ? a.y : c.y ) : ( b.y < c.y ? b.y : c.y ),
  		maxTX = a.x > b.x ? ( a.x > c.x ? a.x : c.x ) : ( b.x > c.x ? b.x : c.x ),
  		maxTY = a.y > b.y ? ( a.y > c.y ? a.y : c.y ) : ( b.y > c.y ? b.y : c.y );

  	// z-order range for the current triangle bbox;

  	var minZ = zOrder( minTX, minTY, minX, minY, invSize ),
  		maxZ = zOrder( maxTX, maxTY, minX, minY, invSize );

  	// first look for points inside the triangle in increasing z-order

  	var p = ear.nextZ;

  	while ( p && p.z <= maxZ ) {

  		if ( p !== ear.prev && p !== ear.next &&
  				pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
  				area( p.prev, p, p.next ) >= 0 ) return false;
  		p = p.nextZ;

  	}

  	// then look for points in decreasing z-order

  	p = ear.prevZ;

  	while ( p && p.z >= minZ ) {

  		if ( p !== ear.prev && p !== ear.next &&
  				pointInTriangle( a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y ) &&
  				area( p.prev, p, p.next ) >= 0 ) return false;

  		p = p.prevZ;

  	}

  	return true;

  }

  // go through all polygon nodes and cure small local self-intersections

  function cureLocalIntersections( start, triangles, dim ) {

  	var p = start;

  	do {

  		var a = p.prev, b = p.next.next;

  		if ( ! equals( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) {

  			triangles.push( a.i / dim );
  			triangles.push( p.i / dim );
  			triangles.push( b.i / dim );

  			// remove two nodes involved

  			removeNode( p );
  			removeNode( p.next );

  			p = start = b;

  		}

  		p = p.next;

  	} while ( p !== start );

  	return p;

  }

  // try splitting polygon into two and triangulate them independently

  function splitEarcut( start, triangles, dim, minX, minY, invSize ) {

  	// look for a valid diagonal that divides the polygon into two

  	var a = start;

  	do {

  		var b = a.next.next;

  		while ( b !== a.prev ) {

  			if ( a.i !== b.i && isValidDiagonal( a, b ) ) {

  				// split the polygon in two by the diagonal

  				var c = splitPolygon( a, b );

  				// filter colinear points around the cuts

  				a = filterPoints( a, a.next );
  				c = filterPoints( c, c.next );

  				// run earcut on each half

  				earcutLinked( a, triangles, dim, minX, minY, invSize );
  				earcutLinked( c, triangles, dim, minX, minY, invSize );
  				return;

  			}

  			b = b.next;

  		}

  		a = a.next;

  	} while ( a !== start );

  }

  // link every hole into the outer loop, producing a single-ring polygon without holes

  function eliminateHoles( data, holeIndices, outerNode, dim ) {

  	var queue = [], i, len, start, end, list;

  	for ( i = 0, len = holeIndices.length; i < len; i ++ ) {

  		start = holeIndices[ i ] * dim;
  		end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length;
  		list = linkedList( data, start, end, dim, false );
  		if ( list === list.next ) list.steiner = true;
  		queue.push( getLeftmost( list ) );

  	}

  	queue.sort( compareX );

  	// process holes from left to right

  	for ( i = 0; i < queue.length; i ++ ) {

  		eliminateHole( queue[ i ], outerNode );
  		outerNode = filterPoints( outerNode, outerNode.next );

  	}

  	return outerNode;

  }

  function compareX( a, b ) {

  	return a.x - b.x;

  }

  // find a bridge between vertices that connects hole with an outer ring and and link it

  function eliminateHole( hole, outerNode ) {

  	outerNode = findHoleBridge( hole, outerNode );

  	if ( outerNode ) {

  		var b = splitPolygon( outerNode, hole );

  		filterPoints( b, b.next );

  	}

  }

  // David Eberly's algorithm for finding a bridge between hole and outer polygon

  function findHoleBridge( hole, outerNode ) {

  	var p = outerNode,
  		hx = hole.x,
  		hy = hole.y,
  		qx = - Infinity,
  		m;

  	// find a segment intersected by a ray from the hole's leftmost point to the left;
  	// segment's endpoint with lesser x will be potential connection point

  	do {

  		if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) {

  			var x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y );

  			if ( x <= hx && x > qx ) {

  				qx = x;

  				if ( x === hx ) {

  					if ( hy === p.y ) return p;
  					if ( hy === p.next.y ) return p.next;

  				}

  				m = p.x < p.next.x ? p : p.next;

  			}

  		}

  		p = p.next;

  	} while ( p !== outerNode );

  	if ( ! m ) return null;

  	if ( hx === qx ) return m.prev; // hole touches outer segment; pick lower endpoint

  	// look for points inside the triangle of hole point, segment intersection and endpoint;
  	// if there are no points found, we have a valid connection;
  	// otherwise choose the point of the minimum angle with the ray as connection point

  	var stop = m,
  		mx = m.x,
  		my = m.y,
  		tanMin = Infinity,
  		tan;

  	p = m.next;

  	while ( p !== stop ) {

  		if ( hx >= p.x && p.x >= mx && hx !== p.x &&
  						pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) {

  			tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential

  			if ( ( tan < tanMin || ( tan === tanMin && p.x > m.x ) ) && locallyInside( p, hole ) ) {

  				m = p;
  				tanMin = tan;

  			}

  		}

  		p = p.next;

  	}

  	return m;

  }

  // interlink polygon nodes in z-order

  function indexCurve( start, minX, minY, invSize ) {

  	var p = start;

  	do {

  		if ( p.z === null ) p.z = zOrder( p.x, p.y, minX, minY, invSize );
  		p.prevZ = p.prev;
  		p.nextZ = p.next;
  		p = p.next;

  	} while ( p !== start );

  	p.prevZ.nextZ = null;
  	p.prevZ = null;

  	sortLinked( p );

  }

  // Simon Tatham's linked list merge sort algorithm
  // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html

  function sortLinked( list ) {

  	var i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1;

  	do {

  		p = list;
  		list = null;
  		tail = null;
  		numMerges = 0;

  		while ( p ) {

  			numMerges ++;
  			q = p;
  			pSize = 0;

  			for ( i = 0; i < inSize; i ++ ) {

  				pSize ++;
  				q = q.nextZ;
  				if ( ! q ) break;

  			}

  			qSize = inSize;

  			while ( pSize > 0 || ( qSize > 0 && q ) ) {

  				if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) {

  					e = p;
  					p = p.nextZ;
  					pSize --;

  				} else {

  					e = q;
  					q = q.nextZ;
  					qSize --;

  				}

  				if ( tail ) tail.nextZ = e;
  				else list = e;

  				e.prevZ = tail;
  				tail = e;

  			}

  			p = q;

  		}

  		tail.nextZ = null;
  		inSize *= 2;

  	} while ( numMerges > 1 );

  	return list;

  }

  // z-order of a point given coords and inverse of the longer side of data bbox

  function zOrder( x, y, minX, minY, invSize ) {

  	// coords are transformed into non-negative 15-bit integer range

  	x = 32767 * ( x - minX ) * invSize;
  	y = 32767 * ( y - minY ) * invSize;

  	x = ( x | ( x << 8 ) ) & 0x00FF00FF;
  	x = ( x | ( x << 4 ) ) & 0x0F0F0F0F;
  	x = ( x | ( x << 2 ) ) & 0x33333333;
  	x = ( x | ( x << 1 ) ) & 0x55555555;

  	y = ( y | ( y << 8 ) ) & 0x00FF00FF;
  	y = ( y | ( y << 4 ) ) & 0x0F0F0F0F;
  	y = ( y | ( y << 2 ) ) & 0x33333333;
  	y = ( y | ( y << 1 ) ) & 0x55555555;

  	return x | ( y << 1 );

  }

  // find the leftmost node of a polygon ring

  function getLeftmost( start ) {

  	var p = start, leftmost = start;

  	do {

  		if ( p.x < leftmost.x ) leftmost = p;
  		p = p.next;

  	} while ( p !== start );

  	return leftmost;

  }

  // check if a point lies within a convex triangle

  function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) {

  	return ( cx - px ) * ( ay - py ) - ( ax - px ) * ( cy - py ) >= 0 &&
  	 ( ax - px ) * ( by - py ) - ( bx - px ) * ( ay - py ) >= 0 &&
  	 ( bx - px ) * ( cy - py ) - ( cx - px ) * ( by - py ) >= 0;

  }

  // check if a diagonal between two polygon nodes is valid (lies in polygon interior)

  function isValidDiagonal( a, b ) {

  	return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) &&
  		locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b );

  }

  // signed area of a triangle

  function area( p, q, r ) {

  	return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y );

  }

  // check if two points are equal

  function equals( p1, p2 ) {

  	return p1.x === p2.x && p1.y === p2.y;

  }

  // check if two segments intersect

  function intersects( p1, q1, p2, q2 ) {

  	if ( ( equals( p1, q1 ) && equals( p2, q2 ) ) ||
  			( equals( p1, q2 ) && equals( p2, q1 ) ) ) return true;

  	return area( p1, q1, p2 ) > 0 !== area( p1, q1, q2 ) > 0 &&
  				 area( p2, q2, p1 ) > 0 !== area( p2, q2, q1 ) > 0;

  }

  // check if a polygon diagonal intersects any polygon segments

  function intersectsPolygon( a, b ) {

  	var p = a;

  	do {

  		if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i &&
  						intersects( p, p.next, a, b ) ) {

  			return true;

  		}

  		p = p.next;

  	} while ( p !== a );

  	return false;

  }

  // check if a polygon diagonal is locally inside the polygon

  function locallyInside( a, b ) {

  	return area( a.prev, a, a.next ) < 0 ?
  		area( a, b, a.next ) >= 0 && area( a, a.prev, b ) >= 0 :
  		area( a, b, a.prev ) < 0 || area( a, a.next, b ) < 0;

  }

  // check if the middle point of a polygon diagonal is inside the polygon

  function middleInside( a, b ) {

  	var p = a,
  		inside = false,
  		px = ( a.x + b.x ) / 2,
  		py = ( a.y + b.y ) / 2;

  	do {

  		if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y &&
  						( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) ) {

  			inside = ! inside;

  		}

  		p = p.next;

  	} while ( p !== a );

  	return inside;

  }

  // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
  // if one belongs to the outer ring and another to a hole, it merges it into a single ring

  function splitPolygon( a, b ) {

  	var a2 = new Node( a.i, a.x, a.y ),
  		b2 = new Node( b.i, b.x, b.y ),
  		an = a.next,
  		bp = b.prev;

  	a.next = b;
  	b.prev = a;

  	a2.next = an;
  	an.prev = a2;

  	b2.next = a2;
  	a2.prev = b2;

  	bp.next = b2;
  	b2.prev = bp;

  	return b2;

  }

  // create a node and optionally link it with previous one (in a circular doubly linked list)

  function insertNode( i, x, y, last ) {

  	var p = new Node( i, x, y );

  	if ( ! last ) {

  		p.prev = p;
  		p.next = p;

  	} else {

  		p.next = last.next;
  		p.prev = last;
  		last.next.prev = p;
  		last.next = p;

  	}

  	return p;

  }

  function removeNode( p ) {

  	p.next.prev = p.prev;
  	p.prev.next = p.next;

  	if ( p.prevZ ) p.prevZ.nextZ = p.nextZ;
  	if ( p.nextZ ) p.nextZ.prevZ = p.prevZ;

  }

  function Node( i, x, y ) {

  	// vertice index in coordinates array
  	this.i = i;

  	// vertex coordinates
  	this.x = x;
  	this.y = y;

  	// previous and next vertice nodes in a polygon ring
  	this.prev = null;
  	this.next = null;

  	// z-order curve value
  	this.z = null;

  	// previous and next nodes in z-order
  	this.prevZ = null;
  	this.nextZ = null;

  	// indicates whether this is a steiner point
  	this.steiner = false;

  }

  function signedArea( data, start, end, dim ) {

  	var sum = 0;

  	for ( var i = start, j = end - dim; i < end; i += dim ) {

  		sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] );
  		j = i;

  	}

  	return sum;

  }

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   */

  var ShapeUtils = {

  	// calculate area of the contour polygon

  	area: function ( contour ) {

  		var n = contour.length;
  		var a = 0.0;

  		for ( var p = n - 1, q = 0; q < n; p = q ++ ) {

  			a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y;

  		}

  		return a * 0.5;

  	},

  	isClockWise: function ( pts ) {

  		return ShapeUtils.area( pts ) < 0;

  	},

  	triangulateShape: function ( contour, holes ) {

  		var vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
  		var holeIndices = []; // array of hole indices
  		var faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]

  		removeDupEndPts( contour );
  		addContour( vertices, contour );

  		//

  		var holeIndex = contour.length;

  		holes.forEach( removeDupEndPts );

  		for ( var i = 0; i < holes.length; i ++ ) {

  			holeIndices.push( holeIndex );
  			holeIndex += holes[ i ].length;
  			addContour( vertices, holes[ i ] );

  		}

  		//

  		var triangles = Earcut.triangulate( vertices, holeIndices );

  		//

  		for ( var i = 0; i < triangles.length; i += 3 ) {

  			faces.push( triangles.slice( i, i + 3 ) );

  		}

  		return faces;

  	}

  };

  function removeDupEndPts( points ) {

  	var l = points.length;

  	if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) {

  		points.pop();

  	}

  }

  function addContour( vertices, contour ) {

  	for ( var i = 0; i < contour.length; i ++ ) {

  		vertices.push( contour[ i ].x );
  		vertices.push( contour[ i ].y );

  	}

  }

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   *
   * Creates extruded geometry from a path shape.
   *
   * parameters = {
   *
   *  curveSegments: <int>, // number of points on the curves
   *  steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
   *  depth: <float>, // Depth to extrude the shape
   *
   *  bevelEnabled: <bool>, // turn on bevel
   *  bevelThickness: <float>, // how deep into the original shape bevel goes
   *  bevelSize: <float>, // how far from shape outline is bevel
   *  bevelSegments: <int>, // number of bevel layers
   *
   *  extrudePath: <THREE.Curve> // curve to extrude shape along
   *
   *  UVGenerator: <Object> // object that provides UV generator functions
   *
   * }
   */

  // ExtrudeGeometry

  function ExtrudeGeometry( shapes, options ) {

  	Geometry.call( this );

  	this.type = 'ExtrudeGeometry';

  	this.parameters = {
  		shapes: shapes,
  		options: options
  	};

  	this.fromBufferGeometry( new ExtrudeBufferGeometry( shapes, options ) );
  	this.mergeVertices();

  }

  ExtrudeGeometry.prototype = Object.create( Geometry.prototype );
  ExtrudeGeometry.prototype.constructor = ExtrudeGeometry;

  ExtrudeGeometry.prototype.toJSON = function () {

  	var data = Geometry.prototype.toJSON.call( this );

  	var shapes = this.parameters.shapes;
  	var options = this.parameters.options;

  	return toJSON( shapes, options, data );

  };

  // ExtrudeBufferGeometry

  function ExtrudeBufferGeometry( shapes, options ) {

  	BufferGeometry.call( this );

  	this.type = 'ExtrudeBufferGeometry';

  	this.parameters = {
  		shapes: shapes,
  		options: options
  	};

  	shapes = Array.isArray( shapes ) ? shapes : [ shapes ];

  	var scope = this;

  	var verticesArray = [];
  	var uvArray = [];

  	for ( var i = 0, l = shapes.length; i < l; i ++ ) {

  		var shape = shapes[ i ];
  		addShape( shape );

  	}

  	// build geometry

  	this.addAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) );

  	this.computeVertexNormals();

  	// functions

  	function addShape( shape ) {

  		var placeholder = [];

  		// options

  		var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
  		var steps = options.steps !== undefined ? options.steps : 1;
  		var depth = options.depth !== undefined ? options.depth : 100;

  		var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
  		var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6;
  		var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2;
  		var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;

  		var extrudePath = options.extrudePath;

  		var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator;

  		// deprecated options

  		if ( options.amount !== undefined ) {

  			console.warn( 'THREE.ExtrudeBufferGeometry: amount has been renamed to depth.' );
  			depth = options.amount;

  		}

  		//

  		var extrudePts, extrudeByPath = false;
  		var splineTube, binormal, normal, position2;

  		if ( extrudePath ) {

  			extrudePts = extrudePath.getSpacedPoints( steps );

  			extrudeByPath = true;
  			bevelEnabled = false; // bevels not supported for path extrusion

  			// SETUP TNB variables

  			// TODO1 - have a .isClosed in spline?

  			splineTube = extrudePath.computeFrenetFrames( steps, false );

  			// console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);

  			binormal = new Vector3();
  			normal = new Vector3();
  			position2 = new Vector3();

  		}

  		// Safeguards if bevels are not enabled

  		if ( ! bevelEnabled ) {

  			bevelSegments = 0;
  			bevelThickness = 0;
  			bevelSize = 0;

  		}

  		// Variables initialization

  		var ahole, h, hl; // looping of holes

  		var shapePoints = shape.extractPoints( curveSegments );

  		var vertices = shapePoints.shape;
  		var holes = shapePoints.holes;

  		var reverse = ! ShapeUtils.isClockWise( vertices );

  		if ( reverse ) {

  			vertices = vertices.reverse();

  			// Maybe we should also check if holes are in the opposite direction, just to be safe ...

  			for ( h = 0, hl = holes.length; h < hl; h ++ ) {

  				ahole = holes[ h ];

  				if ( ShapeUtils.isClockWise( ahole ) ) {

  					holes[ h ] = ahole.reverse();

  				}

  			}

  		}


  		var faces = ShapeUtils.triangulateShape( vertices, holes );

  		/* Vertices */

  		var contour = vertices; // vertices has all points but contour has only points of circumference

  		for ( h = 0, hl = holes.length; h < hl; h ++ ) {

  			ahole = holes[ h ];

  			vertices = vertices.concat( ahole );

  		}


  		function scalePt2( pt, vec, size ) {

  			if ( ! vec ) console.error( "THREE.ExtrudeGeometry: vec does not exist" );

  			return vec.clone().multiplyScalar( size ).add( pt );

  		}

  		var b, bs, t, z,
  			vert, vlen = vertices.length,
  			face, flen = faces.length;


  		// Find directions for point movement


  		function getBevelVec( inPt, inPrev, inNext ) {

  			// computes for inPt the corresponding point inPt' on a new contour
  			//   shifted by 1 unit (length of normalized vector) to the left
  			// if we walk along contour clockwise, this new contour is outside the old one
  			//
  			// inPt' is the intersection of the two lines parallel to the two
  			//  adjacent edges of inPt at a distance of 1 unit on the left side.

  			var v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt

  			// good reading for geometry algorithms (here: line-line intersection)
  			// http://geomalgorithms.com/a05-_intersect-1.html

  			var v_prev_x = inPt.x - inPrev.x,
  				v_prev_y = inPt.y - inPrev.y;
  			var v_next_x = inNext.x - inPt.x,
  				v_next_y = inNext.y - inPt.y;

  			var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y );

  			// check for collinear edges
  			var collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x );

  			if ( Math.abs( collinear0 ) > Number.EPSILON ) {

  				// not collinear

  				// length of vectors for normalizing

  				var v_prev_len = Math.sqrt( v_prev_lensq );
  				var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y );

  				// shift adjacent points by unit vectors to the left

  				var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len );
  				var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len );

  				var ptNextShift_x = ( inNext.x - v_next_y / v_next_len );
  				var ptNextShift_y = ( inNext.y + v_next_x / v_next_len );

  				// scaling factor for v_prev to intersection point

  				var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y -
  						( ptNextShift_y - ptPrevShift_y ) * v_next_x ) /
  					( v_prev_x * v_next_y - v_prev_y * v_next_x );

  				// vector from inPt to intersection point

  				v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x );
  				v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y );

  				// Don't normalize!, otherwise sharp corners become ugly
  				//  but prevent crazy spikes
  				var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y );
  				if ( v_trans_lensq <= 2 ) {

  					return new Vector2( v_trans_x, v_trans_y );

  				} else {

  					shrink_by = Math.sqrt( v_trans_lensq / 2 );

  				}

  			} else {

  				// handle special case of collinear edges

  				var direction_eq = false; // assumes: opposite
  				if ( v_prev_x > Number.EPSILON ) {

  					if ( v_next_x > Number.EPSILON ) {

  						direction_eq = true;

  					}

  				} else {

  					if ( v_prev_x < - Number.EPSILON ) {

  						if ( v_next_x < - Number.EPSILON ) {

  							direction_eq = true;

  						}

  					} else {

  						if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) {

  							direction_eq = true;

  						}

  					}

  				}

  				if ( direction_eq ) {

  					// console.log("Warning: lines are a straight sequence");
  					v_trans_x = - v_prev_y;
  					v_trans_y = v_prev_x;
  					shrink_by = Math.sqrt( v_prev_lensq );

  				} else {

  					// console.log("Warning: lines are a straight spike");
  					v_trans_x = v_prev_x;
  					v_trans_y = v_prev_y;
  					shrink_by = Math.sqrt( v_prev_lensq / 2 );

  				}

  			}

  			return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by );

  		}


  		var contourMovements = [];

  		for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {

  			if ( j === il ) j = 0;
  			if ( k === il ) k = 0;

  			//  (j)---(i)---(k)
  			// console.log('i,j,k', i, j , k)

  			contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] );

  		}

  		var holesMovements = [],
  			oneHoleMovements, verticesMovements = contourMovements.concat();

  		for ( h = 0, hl = holes.length; h < hl; h ++ ) {

  			ahole = holes[ h ];

  			oneHoleMovements = [];

  			for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) {

  				if ( j === il ) j = 0;
  				if ( k === il ) k = 0;

  				//  (j)---(i)---(k)
  				oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] );

  			}

  			holesMovements.push( oneHoleMovements );
  			verticesMovements = verticesMovements.concat( oneHoleMovements );

  		}


  		// Loop bevelSegments, 1 for the front, 1 for the back

  		for ( b = 0; b < bevelSegments; b ++ ) {

  			//for ( b = bevelSegments; b > 0; b -- ) {

  			t = b / bevelSegments;
  			z = bevelThickness * Math.cos( t * Math.PI / 2 );
  			bs = bevelSize * Math.sin( t * Math.PI / 2 );

  			// contract shape

  			for ( i = 0, il = contour.length; i < il; i ++ ) {

  				vert = scalePt2( contour[ i ], contourMovements[ i ], bs );

  				v( vert.x, vert.y, - z );

  			}

  			// expand holes

  			for ( h = 0, hl = holes.length; h < hl; h ++ ) {

  				ahole = holes[ h ];
  				oneHoleMovements = holesMovements[ h ];

  				for ( i = 0, il = ahole.length; i < il; i ++ ) {

  					vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );

  					v( vert.x, vert.y, - z );

  				}

  			}

  		}

  		bs = bevelSize;

  		// Back facing vertices

  		for ( i = 0; i < vlen; i ++ ) {

  			vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];

  			if ( ! extrudeByPath ) {

  				v( vert.x, vert.y, 0 );

  			} else {

  				// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );

  				normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x );
  				binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y );

  				position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal );

  				v( position2.x, position2.y, position2.z );

  			}

  		}

  		// Add stepped vertices...
  		// Including front facing vertices

  		var s;

  		for ( s = 1; s <= steps; s ++ ) {

  			for ( i = 0; i < vlen; i ++ ) {

  				vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ];

  				if ( ! extrudeByPath ) {

  					v( vert.x, vert.y, depth / steps * s );

  				} else {

  					// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );

  					normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x );
  					binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y );

  					position2.copy( extrudePts[ s ] ).add( normal ).add( binormal );

  					v( position2.x, position2.y, position2.z );

  				}

  			}

  		}


  		// Add bevel segments planes

  		//for ( b = 1; b <= bevelSegments; b ++ ) {
  		for ( b = bevelSegments - 1; b >= 0; b -- ) {

  			t = b / bevelSegments;
  			z = bevelThickness * Math.cos( t * Math.PI / 2 );
  			bs = bevelSize * Math.sin( t * Math.PI / 2 );

  			// contract shape

  			for ( i = 0, il = contour.length; i < il; i ++ ) {

  				vert = scalePt2( contour[ i ], contourMovements[ i ], bs );
  				v( vert.x, vert.y, depth + z );

  			}

  			// expand holes

  			for ( h = 0, hl = holes.length; h < hl; h ++ ) {

  				ahole = holes[ h ];
  				oneHoleMovements = holesMovements[ h ];

  				for ( i = 0, il = ahole.length; i < il; i ++ ) {

  					vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs );

  					if ( ! extrudeByPath ) {

  						v( vert.x, vert.y, depth + z );

  					} else {

  						v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z );

  					}

  				}

  			}

  		}

  		/* Faces */

  		// Top and bottom faces

  		buildLidFaces();

  		// Sides faces

  		buildSideFaces();


  		/////  Internal functions

  		function buildLidFaces() {

  			var start = verticesArray.length / 3;

  			if ( bevelEnabled ) {

  				var layer = 0; // steps + 1
  				var offset = vlen * layer;

  				// Bottom faces

  				for ( i = 0; i < flen; i ++ ) {

  					face = faces[ i ];
  					f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset );

  				}

  				layer = steps + bevelSegments * 2;
  				offset = vlen * layer;

  				// Top faces

  				for ( i = 0; i < flen; i ++ ) {

  					face = faces[ i ];
  					f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset );

  				}

  			} else {

  				// Bottom faces

  				for ( i = 0; i < flen; i ++ ) {

  					face = faces[ i ];
  					f3( face[ 2 ], face[ 1 ], face[ 0 ] );

  				}

  				// Top faces

  				for ( i = 0; i < flen; i ++ ) {

  					face = faces[ i ];
  					f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps );

  				}

  			}

  			scope.addGroup( start, verticesArray.length / 3 - start, 0 );

  		}

  		// Create faces for the z-sides of the shape

  		function buildSideFaces() {

  			var start = verticesArray.length / 3;
  			var layeroffset = 0;
  			sidewalls( contour, layeroffset );
  			layeroffset += contour.length;

  			for ( h = 0, hl = holes.length; h < hl; h ++ ) {

  				ahole = holes[ h ];
  				sidewalls( ahole, layeroffset );

  				//, true
  				layeroffset += ahole.length;

  			}


  			scope.addGroup( start, verticesArray.length / 3 - start, 1 );


  		}

  		function sidewalls( contour, layeroffset ) {

  			var j, k;
  			i = contour.length;

  			while ( -- i >= 0 ) {

  				j = i;
  				k = i - 1;
  				if ( k < 0 ) k = contour.length - 1;

  				//console.log('b', i,j, i-1, k,vertices.length);

  				var s = 0,
  					sl = steps + bevelSegments * 2;

  				for ( s = 0; s < sl; s ++ ) {

  					var slen1 = vlen * s;
  					var slen2 = vlen * ( s + 1 );

  					var a = layeroffset + j + slen1,
  						b = layeroffset + k + slen1,
  						c = layeroffset + k + slen2,
  						d = layeroffset + j + slen2;

  					f4( a, b, c, d );

  				}

  			}

  		}

  		function v( x, y, z ) {

  			placeholder.push( x );
  			placeholder.push( y );
  			placeholder.push( z );

  		}


  		function f3( a, b, c ) {

  			addVertex( a );
  			addVertex( b );
  			addVertex( c );

  			var nextIndex = verticesArray.length / 3;
  			var uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 );

  			addUV( uvs[ 0 ] );
  			addUV( uvs[ 1 ] );
  			addUV( uvs[ 2 ] );

  		}

  		function f4( a, b, c, d ) {

  			addVertex( a );
  			addVertex( b );
  			addVertex( d );

  			addVertex( b );
  			addVertex( c );
  			addVertex( d );


  			var nextIndex = verticesArray.length / 3;
  			var uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 );

  			addUV( uvs[ 0 ] );
  			addUV( uvs[ 1 ] );
  			addUV( uvs[ 3 ] );

  			addUV( uvs[ 1 ] );
  			addUV( uvs[ 2 ] );
  			addUV( uvs[ 3 ] );

  		}

  		function addVertex( index ) {

  			verticesArray.push( placeholder[ index * 3 + 0 ] );
  			verticesArray.push( placeholder[ index * 3 + 1 ] );
  			verticesArray.push( placeholder[ index * 3 + 2 ] );

  		}


  		function addUV( vector2 ) {

  			uvArray.push( vector2.x );
  			uvArray.push( vector2.y );

  		}

  	}

  }

  ExtrudeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  ExtrudeBufferGeometry.prototype.constructor = ExtrudeBufferGeometry;

  ExtrudeBufferGeometry.prototype.toJSON = function () {

  	var data = BufferGeometry.prototype.toJSON.call( this );

  	var shapes = this.parameters.shapes;
  	var options = this.parameters.options;

  	return toJSON( shapes, options, data );

  };

  //

  var WorldUVGenerator = {

  	generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) {

  		var a_x = vertices[ indexA * 3 ];
  		var a_y = vertices[ indexA * 3 + 1 ];
  		var b_x = vertices[ indexB * 3 ];
  		var b_y = vertices[ indexB * 3 + 1 ];
  		var c_x = vertices[ indexC * 3 ];
  		var c_y = vertices[ indexC * 3 + 1 ];

  		return [
  			new Vector2( a_x, a_y ),
  			new Vector2( b_x, b_y ),
  			new Vector2( c_x, c_y )
  		];

  	},

  	generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) {

  		var a_x = vertices[ indexA * 3 ];
  		var a_y = vertices[ indexA * 3 + 1 ];
  		var a_z = vertices[ indexA * 3 + 2 ];
  		var b_x = vertices[ indexB * 3 ];
  		var b_y = vertices[ indexB * 3 + 1 ];
  		var b_z = vertices[ indexB * 3 + 2 ];
  		var c_x = vertices[ indexC * 3 ];
  		var c_y = vertices[ indexC * 3 + 1 ];
  		var c_z = vertices[ indexC * 3 + 2 ];
  		var d_x = vertices[ indexD * 3 ];
  		var d_y = vertices[ indexD * 3 + 1 ];
  		var d_z = vertices[ indexD * 3 + 2 ];

  		if ( Math.abs( a_y - b_y ) < 0.01 ) {

  			return [
  				new Vector2( a_x, 1 - a_z ),
  				new Vector2( b_x, 1 - b_z ),
  				new Vector2( c_x, 1 - c_z ),
  				new Vector2( d_x, 1 - d_z )
  			];

  		} else {

  			return [
  				new Vector2( a_y, 1 - a_z ),
  				new Vector2( b_y, 1 - b_z ),
  				new Vector2( c_y, 1 - c_z ),
  				new Vector2( d_y, 1 - d_z )
  			];

  		}

  	}
  };

  function toJSON( shapes, options, data ) {

  	//

  	data.shapes = [];

  	if ( Array.isArray( shapes ) ) {

  		for ( var i = 0, l = shapes.length; i < l; i ++ ) {

  			var shape = shapes[ i ];

  			data.shapes.push( shape.uuid );

  		}

  	} else {

  		data.shapes.push( shapes.uuid );

  	}

  	//

  	if ( options.extrudePath !== undefined ) data.options.extrudePath = options.extrudePath.toJSON();

  	return data;

  }

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * @author alteredq / http://alteredqualia.com/
   *
   * Text = 3D Text
   *
   * parameters = {
   *  font: <THREE.Font>, // font
   *
   *  size: <float>, // size of the text
   *  height: <float>, // thickness to extrude text
   *  curveSegments: <int>, // number of points on the curves
   *
   *  bevelEnabled: <bool>, // turn on bevel
   *  bevelThickness: <float>, // how deep into text bevel goes
   *  bevelSize: <float> // how far from text outline is bevel
   * }
   */

  // TextGeometry

  function TextGeometry( text, parameters ) {

  	Geometry.call( this );

  	this.type = 'TextGeometry';

  	this.parameters = {
  		text: text,
  		parameters: parameters
  	};

  	this.fromBufferGeometry( new TextBufferGeometry( text, parameters ) );
  	this.mergeVertices();

  }

  TextGeometry.prototype = Object.create( Geometry.prototype );
  TextGeometry.prototype.constructor = TextGeometry;

  // TextBufferGeometry

  function TextBufferGeometry( text, parameters ) {

  	parameters = parameters || {};

  	var font = parameters.font;

  	if ( ! ( font && font.isFont ) ) {

  		console.error( 'THREE.TextGeometry: font parameter is not an instance of THREE.Font.' );
  		return new Geometry();

  	}

  	var shapes = font.generateShapes( text, parameters.size, parameters.curveSegments );

  	// translate parameters to ExtrudeGeometry API

  	parameters.depth = parameters.height !== undefined ? parameters.height : 50;

  	// defaults

  	if ( parameters.bevelThickness === undefined ) parameters.bevelThickness = 10;
  	if ( parameters.bevelSize === undefined ) parameters.bevelSize = 8;
  	if ( parameters.bevelEnabled === undefined ) parameters.bevelEnabled = false;

  	ExtrudeBufferGeometry.call( this, shapes, parameters );

  	this.type = 'TextBufferGeometry';

  }

  TextBufferGeometry.prototype = Object.create( ExtrudeBufferGeometry.prototype );
  TextBufferGeometry.prototype.constructor = TextBufferGeometry;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author benaadams / https://twitter.com/ben_a_adams
   * @author Mugen87 / https://github.com/Mugen87
   */

  // SphereGeometry

  function SphereGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {

  	Geometry.call( this );

  	this.type = 'SphereGeometry';

  	this.parameters = {
  		radius: radius,
  		widthSegments: widthSegments,
  		heightSegments: heightSegments,
  		phiStart: phiStart,
  		phiLength: phiLength,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	this.fromBufferGeometry( new SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) );
  	this.mergeVertices();

  }

  SphereGeometry.prototype = Object.create( Geometry.prototype );
  SphereGeometry.prototype.constructor = SphereGeometry;

  // SphereBufferGeometry

  function SphereBufferGeometry( radius, widthSegments, heightSegments, phiStart, phiLength, thetaStart, thetaLength ) {

  	BufferGeometry.call( this );

  	this.type = 'SphereBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		widthSegments: widthSegments,
  		heightSegments: heightSegments,
  		phiStart: phiStart,
  		phiLength: phiLength,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	radius = radius || 1;

  	widthSegments = Math.max( 3, Math.floor( widthSegments ) || 8 );
  	heightSegments = Math.max( 2, Math.floor( heightSegments ) || 6 );

  	phiStart = phiStart !== undefined ? phiStart : 0;
  	phiLength = phiLength !== undefined ? phiLength : Math.PI * 2;

  	thetaStart = thetaStart !== undefined ? thetaStart : 0;
  	thetaLength = thetaLength !== undefined ? thetaLength : Math.PI;

  	var thetaEnd = thetaStart + thetaLength;

  	var ix, iy;

  	var index = 0;
  	var grid = [];

  	var vertex = new Vector3();
  	var normal = new Vector3();

  	// buffers

  	var indices = [];
  	var vertices = [];
  	var normals = [];
  	var uvs = [];

  	// generate vertices, normals and uvs

  	for ( iy = 0; iy <= heightSegments; iy ++ ) {

  		var verticesRow = [];

  		var v = iy / heightSegments;

  		for ( ix = 0; ix <= widthSegments; ix ++ ) {

  			var u = ix / widthSegments;

  			// vertex

  			vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );
  			vertex.y = radius * Math.cos( thetaStart + v * thetaLength );
  			vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength );

  			vertices.push( vertex.x, vertex.y, vertex.z );

  			// normal

  			normal.set( vertex.x, vertex.y, vertex.z ).normalize();
  			normals.push( normal.x, normal.y, normal.z );

  			// uv

  			uvs.push( u, 1 - v );

  			verticesRow.push( index ++ );

  		}

  		grid.push( verticesRow );

  	}

  	// indices

  	for ( iy = 0; iy < heightSegments; iy ++ ) {

  		for ( ix = 0; ix < widthSegments; ix ++ ) {

  			var a = grid[ iy ][ ix + 1 ];
  			var b = grid[ iy ][ ix ];
  			var c = grid[ iy + 1 ][ ix ];
  			var d = grid[ iy + 1 ][ ix + 1 ];

  			if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d );
  			if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  }

  SphereBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  SphereBufferGeometry.prototype.constructor = SphereBufferGeometry;

  /**
   * @author Kaleb Murphy
   * @author Mugen87 / https://github.com/Mugen87
   */

  // RingGeometry

  function RingGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {

  	Geometry.call( this );

  	this.type = 'RingGeometry';

  	this.parameters = {
  		innerRadius: innerRadius,
  		outerRadius: outerRadius,
  		thetaSegments: thetaSegments,
  		phiSegments: phiSegments,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	this.fromBufferGeometry( new RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) );
  	this.mergeVertices();

  }

  RingGeometry.prototype = Object.create( Geometry.prototype );
  RingGeometry.prototype.constructor = RingGeometry;

  // RingBufferGeometry

  function RingBufferGeometry( innerRadius, outerRadius, thetaSegments, phiSegments, thetaStart, thetaLength ) {

  	BufferGeometry.call( this );

  	this.type = 'RingBufferGeometry';

  	this.parameters = {
  		innerRadius: innerRadius,
  		outerRadius: outerRadius,
  		thetaSegments: thetaSegments,
  		phiSegments: phiSegments,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	innerRadius = innerRadius || 0.5;
  	outerRadius = outerRadius || 1;

  	thetaStart = thetaStart !== undefined ? thetaStart : 0;
  	thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

  	thetaSegments = thetaSegments !== undefined ? Math.max( 3, thetaSegments ) : 8;
  	phiSegments = phiSegments !== undefined ? Math.max( 1, phiSegments ) : 1;

  	// buffers

  	var indices = [];
  	var vertices = [];
  	var normals = [];
  	var uvs = [];

  	// some helper variables

  	var segment;
  	var radius = innerRadius;
  	var radiusStep = ( ( outerRadius - innerRadius ) / phiSegments );
  	var vertex = new Vector3();
  	var uv = new Vector2();
  	var j, i;

  	// generate vertices, normals and uvs

  	for ( j = 0; j <= phiSegments; j ++ ) {

  		for ( i = 0; i <= thetaSegments; i ++ ) {

  			// values are generate from the inside of the ring to the outside

  			segment = thetaStart + i / thetaSegments * thetaLength;

  			// vertex

  			vertex.x = radius * Math.cos( segment );
  			vertex.y = radius * Math.sin( segment );

  			vertices.push( vertex.x, vertex.y, vertex.z );

  			// normal

  			normals.push( 0, 0, 1 );

  			// uv

  			uv.x = ( vertex.x / outerRadius + 1 ) / 2;
  			uv.y = ( vertex.y / outerRadius + 1 ) / 2;

  			uvs.push( uv.x, uv.y );

  		}

  		// increase the radius for next row of vertices

  		radius += radiusStep;

  	}

  	// indices

  	for ( j = 0; j < phiSegments; j ++ ) {

  		var thetaSegmentLevel = j * ( thetaSegments + 1 );

  		for ( i = 0; i < thetaSegments; i ++ ) {

  			segment = i + thetaSegmentLevel;

  			var a = segment;
  			var b = segment + thetaSegments + 1;
  			var c = segment + thetaSegments + 2;
  			var d = segment + 1;

  			// faces

  			indices.push( a, b, d );
  			indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  }

  RingBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  RingBufferGeometry.prototype.constructor = RingBufferGeometry;

  /**
   * @author astrodud / http://astrodud.isgreat.org/
   * @author zz85 / https://github.com/zz85
   * @author bhouston / http://clara.io
   * @author Mugen87 / https://github.com/Mugen87
   */

  // LatheGeometry

  function LatheGeometry( points, segments, phiStart, phiLength ) {

  	Geometry.call( this );

  	this.type = 'LatheGeometry';

  	this.parameters = {
  		points: points,
  		segments: segments,
  		phiStart: phiStart,
  		phiLength: phiLength
  	};

  	this.fromBufferGeometry( new LatheBufferGeometry( points, segments, phiStart, phiLength ) );
  	this.mergeVertices();

  }

  LatheGeometry.prototype = Object.create( Geometry.prototype );
  LatheGeometry.prototype.constructor = LatheGeometry;

  // LatheBufferGeometry

  function LatheBufferGeometry( points, segments, phiStart, phiLength ) {

  	BufferGeometry.call( this );

  	this.type = 'LatheBufferGeometry';

  	this.parameters = {
  		points: points,
  		segments: segments,
  		phiStart: phiStart,
  		phiLength: phiLength
  	};

  	segments = Math.floor( segments ) || 12;
  	phiStart = phiStart || 0;
  	phiLength = phiLength || Math.PI * 2;

  	// clamp phiLength so it's in range of [ 0, 2PI ]

  	phiLength = _Math.clamp( phiLength, 0, Math.PI * 2 );


  	// buffers

  	var indices = [];
  	var vertices = [];
  	var uvs = [];

  	// helper variables

  	var base;
  	var inverseSegments = 1.0 / segments;
  	var vertex = new Vector3();
  	var uv = new Vector2();
  	var i, j;

  	// generate vertices and uvs

  	for ( i = 0; i <= segments; i ++ ) {

  		var phi = phiStart + i * inverseSegments * phiLength;

  		var sin = Math.sin( phi );
  		var cos = Math.cos( phi );

  		for ( j = 0; j <= ( points.length - 1 ); j ++ ) {

  			// vertex

  			vertex.x = points[ j ].x * sin;
  			vertex.y = points[ j ].y;
  			vertex.z = points[ j ].x * cos;

  			vertices.push( vertex.x, vertex.y, vertex.z );

  			// uv

  			uv.x = i / segments;
  			uv.y = j / ( points.length - 1 );

  			uvs.push( uv.x, uv.y );


  		}

  	}

  	// indices

  	for ( i = 0; i < segments; i ++ ) {

  		for ( j = 0; j < ( points.length - 1 ); j ++ ) {

  			base = j + i * points.length;

  			var a = base;
  			var b = base + points.length;
  			var c = base + points.length + 1;
  			var d = base + 1;

  			// faces

  			indices.push( a, b, d );
  			indices.push( b, c, d );

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  	// generate normals

  	this.computeVertexNormals();

  	// if the geometry is closed, we need to average the normals along the seam.
  	// because the corresponding vertices are identical (but still have different UVs).

  	if ( phiLength === Math.PI * 2 ) {

  		var normals = this.attributes.normal.array;
  		var n1 = new Vector3();
  		var n2 = new Vector3();
  		var n = new Vector3();

  		// this is the buffer offset for the last line of vertices

  		base = segments * points.length * 3;

  		for ( i = 0, j = 0; i < points.length; i ++, j += 3 ) {

  			// select the normal of the vertex in the first line

  			n1.x = normals[ j + 0 ];
  			n1.y = normals[ j + 1 ];
  			n1.z = normals[ j + 2 ];

  			// select the normal of the vertex in the last line

  			n2.x = normals[ base + j + 0 ];
  			n2.y = normals[ base + j + 1 ];
  			n2.z = normals[ base + j + 2 ];

  			// average normals

  			n.addVectors( n1, n2 ).normalize();

  			// assign the new values to both normals

  			normals[ j + 0 ] = normals[ base + j + 0 ] = n.x;
  			normals[ j + 1 ] = normals[ base + j + 1 ] = n.y;
  			normals[ j + 2 ] = normals[ base + j + 2 ] = n.z;

  		}

  	}

  }

  LatheBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  LatheBufferGeometry.prototype.constructor = LatheBufferGeometry;

  /**
   * @author jonobr1 / http://jonobr1.com
   * @author Mugen87 / https://github.com/Mugen87
   */

  // ShapeGeometry

  function ShapeGeometry( shapes, curveSegments ) {

  	Geometry.call( this );

  	this.type = 'ShapeGeometry';

  	if ( typeof curveSegments === 'object' ) {

  		console.warn( 'THREE.ShapeGeometry: Options parameter has been removed.' );

  		curveSegments = curveSegments.curveSegments;

  	}

  	this.parameters = {
  		shapes: shapes,
  		curveSegments: curveSegments
  	};

  	this.fromBufferGeometry( new ShapeBufferGeometry( shapes, curveSegments ) );
  	this.mergeVertices();

  }

  ShapeGeometry.prototype = Object.create( Geometry.prototype );
  ShapeGeometry.prototype.constructor = ShapeGeometry;

  ShapeGeometry.prototype.toJSON = function () {

  	var data = Geometry.prototype.toJSON.call( this );

  	var shapes = this.parameters.shapes;

  	return toJSON$1( shapes, data );

  };

  // ShapeBufferGeometry

  function ShapeBufferGeometry( shapes, curveSegments ) {

  	BufferGeometry.call( this );

  	this.type = 'ShapeBufferGeometry';

  	this.parameters = {
  		shapes: shapes,
  		curveSegments: curveSegments
  	};

  	curveSegments = curveSegments || 12;

  	// buffers

  	var indices = [];
  	var vertices = [];
  	var normals = [];
  	var uvs = [];

  	// helper variables

  	var groupStart = 0;
  	var groupCount = 0;

  	// allow single and array values for "shapes" parameter

  	if ( Array.isArray( shapes ) === false ) {

  		addShape( shapes );

  	} else {

  		for ( var i = 0; i < shapes.length; i ++ ) {

  			addShape( shapes[ i ] );

  			this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support

  			groupStart += groupCount;
  			groupCount = 0;

  		}

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );


  	// helper functions

  	function addShape( shape ) {

  		var i, l, shapeHole;

  		var indexOffset = vertices.length / 3;
  		var points = shape.extractPoints( curveSegments );

  		var shapeVertices = points.shape;
  		var shapeHoles = points.holes;

  		// check direction of vertices

  		if ( ShapeUtils.isClockWise( shapeVertices ) === false ) {

  			shapeVertices = shapeVertices.reverse();

  			// also check if holes are in the opposite direction

  			for ( i = 0, l = shapeHoles.length; i < l; i ++ ) {

  				shapeHole = shapeHoles[ i ];

  				if ( ShapeUtils.isClockWise( shapeHole ) === true ) {

  					shapeHoles[ i ] = shapeHole.reverse();

  				}

  			}

  		}

  		var faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles );

  		// join vertices of inner and outer paths to a single array

  		for ( i = 0, l = shapeHoles.length; i < l; i ++ ) {

  			shapeHole = shapeHoles[ i ];
  			shapeVertices = shapeVertices.concat( shapeHole );

  		}

  		// vertices, normals, uvs

  		for ( i = 0, l = shapeVertices.length; i < l; i ++ ) {

  			var vertex = shapeVertices[ i ];

  			vertices.push( vertex.x, vertex.y, 0 );
  			normals.push( 0, 0, 1 );
  			uvs.push( vertex.x, vertex.y ); // world uvs

  		}

  		// incides

  		for ( i = 0, l = faces.length; i < l; i ++ ) {

  			var face = faces[ i ];

  			var a = face[ 0 ] + indexOffset;
  			var b = face[ 1 ] + indexOffset;
  			var c = face[ 2 ] + indexOffset;

  			indices.push( a, b, c );
  			groupCount += 3;

  		}

  	}

  }

  ShapeBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  ShapeBufferGeometry.prototype.constructor = ShapeBufferGeometry;

  ShapeBufferGeometry.prototype.toJSON = function () {

  	var data = BufferGeometry.prototype.toJSON.call( this );

  	var shapes = this.parameters.shapes;

  	return toJSON$1( shapes, data );

  };

  //

  function toJSON$1( shapes, data ) {

  	data.shapes = [];

  	if ( Array.isArray( shapes ) ) {

  		for ( var i = 0, l = shapes.length; i < l; i ++ ) {

  			var shape = shapes[ i ];

  			data.shapes.push( shape.uuid );

  		}

  	} else {

  		data.shapes.push( shapes.uuid );

  	}

  	return data;

  }

  /**
   * @author WestLangley / http://github.com/WestLangley
   * @author Mugen87 / https://github.com/Mugen87
   */

  function EdgesGeometry( geometry, thresholdAngle ) {

  	BufferGeometry.call( this );

  	this.type = 'EdgesGeometry';

  	this.parameters = {
  		thresholdAngle: thresholdAngle
  	};

  	thresholdAngle = ( thresholdAngle !== undefined ) ? thresholdAngle : 1;

  	// buffer

  	var vertices = [];

  	// helper variables

  	var thresholdDot = Math.cos( _Math.DEG2RAD * thresholdAngle );
  	var edge = [ 0, 0 ], edges = {}, edge1, edge2;
  	var key, keys = [ 'a', 'b', 'c' ];

  	// prepare source geometry

  	var geometry2;

  	if ( geometry.isBufferGeometry ) {

  		geometry2 = new Geometry();
  		geometry2.fromBufferGeometry( geometry );

  	} else {

  		geometry2 = geometry.clone();

  	}

  	geometry2.mergeVertices();
  	geometry2.computeFaceNormals();

  	var sourceVertices = geometry2.vertices;
  	var faces = geometry2.faces;

  	// now create a data structure where each entry represents an edge with its adjoining faces

  	for ( var i = 0, l = faces.length; i < l; i ++ ) {

  		var face = faces[ i ];

  		for ( var j = 0; j < 3; j ++ ) {

  			edge1 = face[ keys[ j ] ];
  			edge2 = face[ keys[ ( j + 1 ) % 3 ] ];
  			edge[ 0 ] = Math.min( edge1, edge2 );
  			edge[ 1 ] = Math.max( edge1, edge2 );

  			key = edge[ 0 ] + ',' + edge[ 1 ];

  			if ( edges[ key ] === undefined ) {

  				edges[ key ] = { index1: edge[ 0 ], index2: edge[ 1 ], face1: i, face2: undefined };

  			} else {

  				edges[ key ].face2 = i;

  			}

  		}

  	}

  	// generate vertices

  	for ( key in edges ) {

  		var e = edges[ key ];

  		// an edge is only rendered if the angle (in degrees) between the face normals of the adjoining faces exceeds this value. default = 1 degree.

  		if ( e.face2 === undefined || faces[ e.face1 ].normal.dot( faces[ e.face2 ].normal ) <= thresholdDot ) {

  			var vertex = sourceVertices[ e.index1 ];
  			vertices.push( vertex.x, vertex.y, vertex.z );

  			vertex = sourceVertices[ e.index2 ];
  			vertices.push( vertex.x, vertex.y, vertex.z );

  		}

  	}

  	// build geometry

  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );

  }

  EdgesGeometry.prototype = Object.create( BufferGeometry.prototype );
  EdgesGeometry.prototype.constructor = EdgesGeometry;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / https://github.com/Mugen87
   */

  // CylinderGeometry

  function CylinderGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

  	Geometry.call( this );

  	this.type = 'CylinderGeometry';

  	this.parameters = {
  		radiusTop: radiusTop,
  		radiusBottom: radiusBottom,
  		height: height,
  		radialSegments: radialSegments,
  		heightSegments: heightSegments,
  		openEnded: openEnded,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	this.fromBufferGeometry( new CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) );
  	this.mergeVertices();

  }

  CylinderGeometry.prototype = Object.create( Geometry.prototype );
  CylinderGeometry.prototype.constructor = CylinderGeometry;

  // CylinderBufferGeometry

  function CylinderBufferGeometry( radiusTop, radiusBottom, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

  	BufferGeometry.call( this );

  	this.type = 'CylinderBufferGeometry';

  	this.parameters = {
  		radiusTop: radiusTop,
  		radiusBottom: radiusBottom,
  		height: height,
  		radialSegments: radialSegments,
  		heightSegments: heightSegments,
  		openEnded: openEnded,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	var scope = this;

  	radiusTop = radiusTop !== undefined ? radiusTop : 1;
  	radiusBottom = radiusBottom !== undefined ? radiusBottom : 1;
  	height = height || 1;

  	radialSegments = Math.floor( radialSegments ) || 8;
  	heightSegments = Math.floor( heightSegments ) || 1;

  	openEnded = openEnded !== undefined ? openEnded : false;
  	thetaStart = thetaStart !== undefined ? thetaStart : 0.0;
  	thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

  	// buffers

  	var indices = [];
  	var vertices = [];
  	var normals = [];
  	var uvs = [];

  	// helper variables

  	var index = 0;
  	var indexArray = [];
  	var halfHeight = height / 2;
  	var groupStart = 0;

  	// generate geometry

  	generateTorso();

  	if ( openEnded === false ) {

  		if ( radiusTop > 0 ) generateCap( true );
  		if ( radiusBottom > 0 ) generateCap( false );

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  	function generateTorso() {

  		var x, y;
  		var normal = new Vector3();
  		var vertex = new Vector3();

  		var groupCount = 0;

  		// this will be used to calculate the normal
  		var slope = ( radiusBottom - radiusTop ) / height;

  		// generate vertices, normals and uvs

  		for ( y = 0; y <= heightSegments; y ++ ) {

  			var indexRow = [];

  			var v = y / heightSegments;

  			// calculate the radius of the current row

  			var radius = v * ( radiusBottom - radiusTop ) + radiusTop;

  			for ( x = 0; x <= radialSegments; x ++ ) {

  				var u = x / radialSegments;

  				var theta = u * thetaLength + thetaStart;

  				var sinTheta = Math.sin( theta );
  				var cosTheta = Math.cos( theta );

  				// vertex

  				vertex.x = radius * sinTheta;
  				vertex.y = - v * height + halfHeight;
  				vertex.z = radius * cosTheta;
  				vertices.push( vertex.x, vertex.y, vertex.z );

  				// normal

  				normal.set( sinTheta, slope, cosTheta ).normalize();
  				normals.push( normal.x, normal.y, normal.z );

  				// uv

  				uvs.push( u, 1 - v );

  				// save index of vertex in respective row

  				indexRow.push( index ++ );

  			}

  			// now save vertices of the row in our index array

  			indexArray.push( indexRow );

  		}

  		// generate indices

  		for ( x = 0; x < radialSegments; x ++ ) {

  			for ( y = 0; y < heightSegments; y ++ ) {

  				// we use the index array to access the correct indices

  				var a = indexArray[ y ][ x ];
  				var b = indexArray[ y + 1 ][ x ];
  				var c = indexArray[ y + 1 ][ x + 1 ];
  				var d = indexArray[ y ][ x + 1 ];

  				// faces

  				indices.push( a, b, d );
  				indices.push( b, c, d );

  				// update group counter

  				groupCount += 6;

  			}

  		}

  		// add a group to the geometry. this will ensure multi material support

  		scope.addGroup( groupStart, groupCount, 0 );

  		// calculate new start value for groups

  		groupStart += groupCount;

  	}

  	function generateCap( top ) {

  		var x, centerIndexStart, centerIndexEnd;

  		var uv = new Vector2();
  		var vertex = new Vector3();

  		var groupCount = 0;

  		var radius = ( top === true ) ? radiusTop : radiusBottom;
  		var sign = ( top === true ) ? 1 : - 1;

  		// save the index of the first center vertex
  		centerIndexStart = index;

  		// first we generate the center vertex data of the cap.
  		// because the geometry needs one set of uvs per face,
  		// we must generate a center vertex per face/segment

  		for ( x = 1; x <= radialSegments; x ++ ) {

  			// vertex

  			vertices.push( 0, halfHeight * sign, 0 );

  			// normal

  			normals.push( 0, sign, 0 );

  			// uv

  			uvs.push( 0.5, 0.5 );

  			// increase index

  			index ++;

  		}

  		// save the index of the last center vertex

  		centerIndexEnd = index;

  		// now we generate the surrounding vertices, normals and uvs

  		for ( x = 0; x <= radialSegments; x ++ ) {

  			var u = x / radialSegments;
  			var theta = u * thetaLength + thetaStart;

  			var cosTheta = Math.cos( theta );
  			var sinTheta = Math.sin( theta );

  			// vertex

  			vertex.x = radius * sinTheta;
  			vertex.y = halfHeight * sign;
  			vertex.z = radius * cosTheta;
  			vertices.push( vertex.x, vertex.y, vertex.z );

  			// normal

  			normals.push( 0, sign, 0 );

  			// uv

  			uv.x = ( cosTheta * 0.5 ) + 0.5;
  			uv.y = ( sinTheta * 0.5 * sign ) + 0.5;
  			uvs.push( uv.x, uv.y );

  			// increase index

  			index ++;

  		}

  		// generate indices

  		for ( x = 0; x < radialSegments; x ++ ) {

  			var c = centerIndexStart + x;
  			var i = centerIndexEnd + x;

  			if ( top === true ) {

  				// face top

  				indices.push( i, i + 1, c );

  			} else {

  				// face bottom

  				indices.push( i + 1, i, c );

  			}

  			groupCount += 3;

  		}

  		// add a group to the geometry. this will ensure multi material support

  		scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 );

  		// calculate new start value for groups

  		groupStart += groupCount;

  	}

  }

  CylinderBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  CylinderBufferGeometry.prototype.constructor = CylinderBufferGeometry;

  /**
   * @author abelnation / http://github.com/abelnation
   */

  // ConeGeometry

  function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

  	CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );

  	this.type = 'ConeGeometry';

  	this.parameters = {
  		radius: radius,
  		height: height,
  		radialSegments: radialSegments,
  		heightSegments: heightSegments,
  		openEnded: openEnded,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  }

  ConeGeometry.prototype = Object.create( CylinderGeometry.prototype );
  ConeGeometry.prototype.constructor = ConeGeometry;

  // ConeBufferGeometry

  function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) {

  	CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength );

  	this.type = 'ConeBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		height: height,
  		radialSegments: radialSegments,
  		heightSegments: heightSegments,
  		openEnded: openEnded,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  }

  ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype );
  ConeBufferGeometry.prototype.constructor = ConeBufferGeometry;

  /**
   * @author benaadams / https://twitter.com/ben_a_adams
   * @author Mugen87 / https://github.com/Mugen87
   * @author hughes
   */

  // CircleGeometry

  function CircleGeometry( radius, segments, thetaStart, thetaLength ) {

  	Geometry.call( this );

  	this.type = 'CircleGeometry';

  	this.parameters = {
  		radius: radius,
  		segments: segments,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	this.fromBufferGeometry( new CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) );
  	this.mergeVertices();

  }

  CircleGeometry.prototype = Object.create( Geometry.prototype );
  CircleGeometry.prototype.constructor = CircleGeometry;

  // CircleBufferGeometry

  function CircleBufferGeometry( radius, segments, thetaStart, thetaLength ) {

  	BufferGeometry.call( this );

  	this.type = 'CircleBufferGeometry';

  	this.parameters = {
  		radius: radius,
  		segments: segments,
  		thetaStart: thetaStart,
  		thetaLength: thetaLength
  	};

  	radius = radius || 1;
  	segments = segments !== undefined ? Math.max( 3, segments ) : 8;

  	thetaStart = thetaStart !== undefined ? thetaStart : 0;
  	thetaLength = thetaLength !== undefined ? thetaLength : Math.PI * 2;

  	// buffers

  	var indices = [];
  	var vertices = [];
  	var normals = [];
  	var uvs = [];

  	// helper variables

  	var i, s;
  	var vertex = new Vector3();
  	var uv = new Vector2();

  	// center point

  	vertices.push( 0, 0, 0 );
  	normals.push( 0, 0, 1 );
  	uvs.push( 0.5, 0.5 );

  	for ( s = 0, i = 3; s <= segments; s ++, i += 3 ) {

  		var segment = thetaStart + s / segments * thetaLength;

  		// vertex

  		vertex.x = radius * Math.cos( segment );
  		vertex.y = radius * Math.sin( segment );

  		vertices.push( vertex.x, vertex.y, vertex.z );

  		// normal

  		normals.push( 0, 0, 1 );

  		// uvs

  		uv.x = ( vertices[ i ] / radius + 1 ) / 2;
  		uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2;

  		uvs.push( uv.x, uv.y );

  	}

  	// indices

  	for ( i = 1; i <= segments; i ++ ) {

  		indices.push( i, i + 1, 0 );

  	}

  	// build geometry

  	this.setIndex( indices );
  	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
  	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

  }

  CircleBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  CircleBufferGeometry.prototype.constructor = CircleBufferGeometry;



  var Geometries = /*#__PURE__*/Object.freeze({
  	WireframeGeometry: WireframeGeometry,
  	ParametricGeometry: ParametricGeometry,
  	ParametricBufferGeometry: ParametricBufferGeometry,
  	TetrahedronGeometry: TetrahedronGeometry,
  	TetrahedronBufferGeometry: TetrahedronBufferGeometry,
  	OctahedronGeometry: OctahedronGeometry,
  	OctahedronBufferGeometry: OctahedronBufferGeometry,
  	IcosahedronGeometry: IcosahedronGeometry,
  	IcosahedronBufferGeometry: IcosahedronBufferGeometry,
  	DodecahedronGeometry: DodecahedronGeometry,
  	DodecahedronBufferGeometry: DodecahedronBufferGeometry,
  	PolyhedronGeometry: PolyhedronGeometry,
  	PolyhedronBufferGeometry: PolyhedronBufferGeometry,
  	TubeGeometry: TubeGeometry,
  	TubeBufferGeometry: TubeBufferGeometry,
  	TorusKnotGeometry: TorusKnotGeometry,
  	TorusKnotBufferGeometry: TorusKnotBufferGeometry,
  	TorusGeometry: TorusGeometry,
  	TorusBufferGeometry: TorusBufferGeometry,
  	TextGeometry: TextGeometry,
  	TextBufferGeometry: TextBufferGeometry,
  	SphereGeometry: SphereGeometry,
  	SphereBufferGeometry: SphereBufferGeometry,
  	RingGeometry: RingGeometry,
  	RingBufferGeometry: RingBufferGeometry,
  	PlaneGeometry: PlaneGeometry,
  	PlaneBufferGeometry: PlaneBufferGeometry,
  	LatheGeometry: LatheGeometry,
  	LatheBufferGeometry: LatheBufferGeometry,
  	ShapeGeometry: ShapeGeometry,
  	ShapeBufferGeometry: ShapeBufferGeometry,
  	ExtrudeGeometry: ExtrudeGeometry,
  	ExtrudeBufferGeometry: ExtrudeBufferGeometry,
  	EdgesGeometry: EdgesGeometry,
  	ConeGeometry: ConeGeometry,
  	ConeBufferGeometry: ConeBufferGeometry,
  	CylinderGeometry: CylinderGeometry,
  	CylinderBufferGeometry: CylinderBufferGeometry,
  	CircleGeometry: CircleGeometry,
  	CircleBufferGeometry: CircleBufferGeometry,
  	BoxGeometry: BoxGeometry,
  	BoxBufferGeometry: BoxBufferGeometry
  });

  /**
   * @author mrdoob / http://mrdoob.com/
   *
   * parameters = {
   *  color: <THREE.Color>
   * }
   */

  function ShadowMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'ShadowMaterial';

  	this.color = new Color( 0x000000 );
  	this.transparent = true;

  	this.setValues( parameters );

  }

  ShadowMaterial.prototype = Object.create( Material.prototype );
  ShadowMaterial.prototype.constructor = ShadowMaterial;

  ShadowMaterial.prototype.isShadowMaterial = true;

  ShadowMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );

  	return this;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function RawShaderMaterial( parameters ) {

  	ShaderMaterial.call( this, parameters );

  	this.type = 'RawShaderMaterial';

  }

  RawShaderMaterial.prototype = Object.create( ShaderMaterial.prototype );
  RawShaderMaterial.prototype.constructor = RawShaderMaterial;

  RawShaderMaterial.prototype.isRawShaderMaterial = true;

  /**
   * @author WestLangley / http://github.com/WestLangley
   *
   * parameters = {
   *  color: <hex>,
   *  roughness: <float>,
   *  metalness: <float>,
   *  opacity: <float>,
   *
   *  map: new THREE.Texture( <Image> ),
   *
   *  lightMap: new THREE.Texture( <Image> ),
   *  lightMapIntensity: <float>
   *
   *  aoMap: new THREE.Texture( <Image> ),
   *  aoMapIntensity: <float>
   *
   *  emissive: <hex>,
   *  emissiveIntensity: <float>
   *  emissiveMap: new THREE.Texture( <Image> ),
   *
   *  bumpMap: new THREE.Texture( <Image> ),
   *  bumpScale: <float>,
   *
   *  normalMap: new THREE.Texture( <Image> ),
   *  normalScale: <Vector2>,
   *
   *  displacementMap: new THREE.Texture( <Image> ),
   *  displacementScale: <float>,
   *  displacementBias: <float>,
   *
   *  roughnessMap: new THREE.Texture( <Image> ),
   *
   *  metalnessMap: new THREE.Texture( <Image> ),
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
   *  envMapIntensity: <float>
   *
   *  refractionRatio: <float>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *  morphNormals: <bool>
   * }
   */

  function MeshStandardMaterial( parameters ) {

  	Material.call( this );

  	this.defines = { 'STANDARD': '' };

  	this.type = 'MeshStandardMaterial';

  	this.color = new Color( 0xffffff ); // diffuse
  	this.roughness = 0.5;
  	this.metalness = 0.5;

  	this.map = null;

  	this.lightMap = null;
  	this.lightMapIntensity = 1.0;

  	this.aoMap = null;
  	this.aoMapIntensity = 1.0;

  	this.emissive = new Color( 0x000000 );
  	this.emissiveIntensity = 1.0;
  	this.emissiveMap = null;

  	this.bumpMap = null;
  	this.bumpScale = 1;

  	this.normalMap = null;
  	this.normalScale = new Vector2( 1, 1 );

  	this.displacementMap = null;
  	this.displacementScale = 1;
  	this.displacementBias = 0;

  	this.roughnessMap = null;

  	this.metalnessMap = null;

  	this.alphaMap = null;

  	this.envMap = null;
  	this.envMapIntensity = 1.0;

  	this.refractionRatio = 0.98;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;
  	this.wireframeLinecap = 'round';
  	this.wireframeLinejoin = 'round';

  	this.skinning = false;
  	this.morphTargets = false;
  	this.morphNormals = false;

  	this.setValues( parameters );

  }

  MeshStandardMaterial.prototype = Object.create( Material.prototype );
  MeshStandardMaterial.prototype.constructor = MeshStandardMaterial;

  MeshStandardMaterial.prototype.isMeshStandardMaterial = true;

  MeshStandardMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.defines = { 'STANDARD': '' };

  	this.color.copy( source.color );
  	this.roughness = source.roughness;
  	this.metalness = source.metalness;

  	this.map = source.map;

  	this.lightMap = source.lightMap;
  	this.lightMapIntensity = source.lightMapIntensity;

  	this.aoMap = source.aoMap;
  	this.aoMapIntensity = source.aoMapIntensity;

  	this.emissive.copy( source.emissive );
  	this.emissiveMap = source.emissiveMap;
  	this.emissiveIntensity = source.emissiveIntensity;

  	this.bumpMap = source.bumpMap;
  	this.bumpScale = source.bumpScale;

  	this.normalMap = source.normalMap;
  	this.normalScale.copy( source.normalScale );

  	this.displacementMap = source.displacementMap;
  	this.displacementScale = source.displacementScale;
  	this.displacementBias = source.displacementBias;

  	this.roughnessMap = source.roughnessMap;

  	this.metalnessMap = source.metalnessMap;

  	this.alphaMap = source.alphaMap;

  	this.envMap = source.envMap;
  	this.envMapIntensity = source.envMapIntensity;

  	this.refractionRatio = source.refractionRatio;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;
  	this.wireframeLinecap = source.wireframeLinecap;
  	this.wireframeLinejoin = source.wireframeLinejoin;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;
  	this.morphNormals = source.morphNormals;

  	return this;

  };

  /**
   * @author WestLangley / http://github.com/WestLangley
   *
   * parameters = {
   *  reflectivity: <float>
   * }
   */

  function MeshPhysicalMaterial( parameters ) {

  	MeshStandardMaterial.call( this );

  	this.defines = { 'PHYSICAL': '' };

  	this.type = 'MeshPhysicalMaterial';

  	this.reflectivity = 0.5; // maps to F0 = 0.04

  	this.clearCoat = 0.0;
  	this.clearCoatRoughness = 0.0;

  	this.setValues( parameters );

  }

  MeshPhysicalMaterial.prototype = Object.create( MeshStandardMaterial.prototype );
  MeshPhysicalMaterial.prototype.constructor = MeshPhysicalMaterial;

  MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;

  MeshPhysicalMaterial.prototype.copy = function ( source ) {

  	MeshStandardMaterial.prototype.copy.call( this, source );

  	this.defines = { 'PHYSICAL': '' };

  	this.reflectivity = source.reflectivity;

  	this.clearCoat = source.clearCoat;
  	this.clearCoatRoughness = source.clearCoatRoughness;

  	return this;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  specular: <hex>,
   *  shininess: <float>,
   *  opacity: <float>,
   *
   *  map: new THREE.Texture( <Image> ),
   *
   *  lightMap: new THREE.Texture( <Image> ),
   *  lightMapIntensity: <float>
   *
   *  aoMap: new THREE.Texture( <Image> ),
   *  aoMapIntensity: <float>
   *
   *  emissive: <hex>,
   *  emissiveIntensity: <float>
   *  emissiveMap: new THREE.Texture( <Image> ),
   *
   *  bumpMap: new THREE.Texture( <Image> ),
   *  bumpScale: <float>,
   *
   *  normalMap: new THREE.Texture( <Image> ),
   *  normalScale: <Vector2>,
   *
   *  displacementMap: new THREE.Texture( <Image> ),
   *  displacementScale: <float>,
   *  displacementBias: <float>,
   *
   *  specularMap: new THREE.Texture( <Image> ),
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
   *  combine: THREE.Multiply,
   *  reflectivity: <float>,
   *  refractionRatio: <float>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *  morphNormals: <bool>
   * }
   */

  function MeshPhongMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'MeshPhongMaterial';

  	this.color = new Color( 0xffffff ); // diffuse
  	this.specular = new Color( 0x111111 );
  	this.shininess = 30;

  	this.map = null;

  	this.lightMap = null;
  	this.lightMapIntensity = 1.0;

  	this.aoMap = null;
  	this.aoMapIntensity = 1.0;

  	this.emissive = new Color( 0x000000 );
  	this.emissiveIntensity = 1.0;
  	this.emissiveMap = null;

  	this.bumpMap = null;
  	this.bumpScale = 1;

  	this.normalMap = null;
  	this.normalScale = new Vector2( 1, 1 );

  	this.displacementMap = null;
  	this.displacementScale = 1;
  	this.displacementBias = 0;

  	this.specularMap = null;

  	this.alphaMap = null;

  	this.envMap = null;
  	this.combine = MultiplyOperation;
  	this.reflectivity = 1;
  	this.refractionRatio = 0.98;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;
  	this.wireframeLinecap = 'round';
  	this.wireframeLinejoin = 'round';

  	this.skinning = false;
  	this.morphTargets = false;
  	this.morphNormals = false;

  	this.setValues( parameters );

  }

  MeshPhongMaterial.prototype = Object.create( Material.prototype );
  MeshPhongMaterial.prototype.constructor = MeshPhongMaterial;

  MeshPhongMaterial.prototype.isMeshPhongMaterial = true;

  MeshPhongMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );
  	this.specular.copy( source.specular );
  	this.shininess = source.shininess;

  	this.map = source.map;

  	this.lightMap = source.lightMap;
  	this.lightMapIntensity = source.lightMapIntensity;

  	this.aoMap = source.aoMap;
  	this.aoMapIntensity = source.aoMapIntensity;

  	this.emissive.copy( source.emissive );
  	this.emissiveMap = source.emissiveMap;
  	this.emissiveIntensity = source.emissiveIntensity;

  	this.bumpMap = source.bumpMap;
  	this.bumpScale = source.bumpScale;

  	this.normalMap = source.normalMap;
  	this.normalScale.copy( source.normalScale );

  	this.displacementMap = source.displacementMap;
  	this.displacementScale = source.displacementScale;
  	this.displacementBias = source.displacementBias;

  	this.specularMap = source.specularMap;

  	this.alphaMap = source.alphaMap;

  	this.envMap = source.envMap;
  	this.combine = source.combine;
  	this.reflectivity = source.reflectivity;
  	this.refractionRatio = source.refractionRatio;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;
  	this.wireframeLinecap = source.wireframeLinecap;
  	this.wireframeLinejoin = source.wireframeLinejoin;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;
  	this.morphNormals = source.morphNormals;

  	return this;

  };

  /**
   * @author takahirox / http://github.com/takahirox
   *
   * parameters = {
   *  gradientMap: new THREE.Texture( <Image> )
   * }
   */

  function MeshToonMaterial( parameters ) {

  	MeshPhongMaterial.call( this );

  	this.defines = { 'TOON': '' };

  	this.type = 'MeshToonMaterial';

  	this.gradientMap = null;

  	this.setValues( parameters );

  }

  MeshToonMaterial.prototype = Object.create( MeshPhongMaterial.prototype );
  MeshToonMaterial.prototype.constructor = MeshToonMaterial;

  MeshToonMaterial.prototype.isMeshToonMaterial = true;

  MeshToonMaterial.prototype.copy = function ( source ) {

  	MeshPhongMaterial.prototype.copy.call( this, source );

  	this.gradientMap = source.gradientMap;

  	return this;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author WestLangley / http://github.com/WestLangley
   *
   * parameters = {
   *  opacity: <float>,
   *
   *  bumpMap: new THREE.Texture( <Image> ),
   *  bumpScale: <float>,
   *
   *  normalMap: new THREE.Texture( <Image> ),
   *  normalScale: <Vector2>,
   *
   *  displacementMap: new THREE.Texture( <Image> ),
   *  displacementScale: <float>,
   *  displacementBias: <float>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *  morphNormals: <bool>
   * }
   */

  function MeshNormalMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'MeshNormalMaterial';

  	this.bumpMap = null;
  	this.bumpScale = 1;

  	this.normalMap = null;
  	this.normalScale = new Vector2( 1, 1 );

  	this.displacementMap = null;
  	this.displacementScale = 1;
  	this.displacementBias = 0;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;

  	this.fog = false;
  	this.lights = false;

  	this.skinning = false;
  	this.morphTargets = false;
  	this.morphNormals = false;

  	this.setValues( parameters );

  }

  MeshNormalMaterial.prototype = Object.create( Material.prototype );
  MeshNormalMaterial.prototype.constructor = MeshNormalMaterial;

  MeshNormalMaterial.prototype.isMeshNormalMaterial = true;

  MeshNormalMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.bumpMap = source.bumpMap;
  	this.bumpScale = source.bumpScale;

  	this.normalMap = source.normalMap;
  	this.normalScale.copy( source.normalScale );

  	this.displacementMap = source.displacementMap;
  	this.displacementScale = source.displacementScale;
  	this.displacementBias = source.displacementBias;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;
  	this.morphNormals = source.morphNormals;

  	return this;

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  opacity: <float>,
   *
   *  map: new THREE.Texture( <Image> ),
   *
   *  lightMap: new THREE.Texture( <Image> ),
   *  lightMapIntensity: <float>
   *
   *  aoMap: new THREE.Texture( <Image> ),
   *  aoMapIntensity: <float>
   *
   *  emissive: <hex>,
   *  emissiveIntensity: <float>
   *  emissiveMap: new THREE.Texture( <Image> ),
   *
   *  specularMap: new THREE.Texture( <Image> ),
   *
   *  alphaMap: new THREE.Texture( <Image> ),
   *
   *  envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
   *  combine: THREE.Multiply,
   *  reflectivity: <float>,
   *  refractionRatio: <float>,
   *
   *  wireframe: <boolean>,
   *  wireframeLinewidth: <float>,
   *
   *  skinning: <bool>,
   *  morphTargets: <bool>,
   *  morphNormals: <bool>
   * }
   */

  function MeshLambertMaterial( parameters ) {

  	Material.call( this );

  	this.type = 'MeshLambertMaterial';

  	this.color = new Color( 0xffffff ); // diffuse

  	this.map = null;

  	this.lightMap = null;
  	this.lightMapIntensity = 1.0;

  	this.aoMap = null;
  	this.aoMapIntensity = 1.0;

  	this.emissive = new Color( 0x000000 );
  	this.emissiveIntensity = 1.0;
  	this.emissiveMap = null;

  	this.specularMap = null;

  	this.alphaMap = null;

  	this.envMap = null;
  	this.combine = MultiplyOperation;
  	this.reflectivity = 1;
  	this.refractionRatio = 0.98;

  	this.wireframe = false;
  	this.wireframeLinewidth = 1;
  	this.wireframeLinecap = 'round';
  	this.wireframeLinejoin = 'round';

  	this.skinning = false;
  	this.morphTargets = false;
  	this.morphNormals = false;

  	this.setValues( parameters );

  }

  MeshLambertMaterial.prototype = Object.create( Material.prototype );
  MeshLambertMaterial.prototype.constructor = MeshLambertMaterial;

  MeshLambertMaterial.prototype.isMeshLambertMaterial = true;

  MeshLambertMaterial.prototype.copy = function ( source ) {

  	Material.prototype.copy.call( this, source );

  	this.color.copy( source.color );

  	this.map = source.map;

  	this.lightMap = source.lightMap;
  	this.lightMapIntensity = source.lightMapIntensity;

  	this.aoMap = source.aoMap;
  	this.aoMapIntensity = source.aoMapIntensity;

  	this.emissive.copy( source.emissive );
  	this.emissiveMap = source.emissiveMap;
  	this.emissiveIntensity = source.emissiveIntensity;

  	this.specularMap = source.specularMap;

  	this.alphaMap = source.alphaMap;

  	this.envMap = source.envMap;
  	this.combine = source.combine;
  	this.reflectivity = source.reflectivity;
  	this.refractionRatio = source.refractionRatio;

  	this.wireframe = source.wireframe;
  	this.wireframeLinewidth = source.wireframeLinewidth;
  	this.wireframeLinecap = source.wireframeLinecap;
  	this.wireframeLinejoin = source.wireframeLinejoin;

  	this.skinning = source.skinning;
  	this.morphTargets = source.morphTargets;
  	this.morphNormals = source.morphNormals;

  	return this;

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   *
   * parameters = {
   *  color: <hex>,
   *  opacity: <float>,
   *
   *  linewidth: <float>,
   *
   *  scale: <float>,
   *  dashSize: <float>,
   *  gapSize: <float>
   * }
   */

  function LineDashedMaterial( parameters ) {

  	LineBasicMaterial.call( this );

  	this.type = 'LineDashedMaterial';

  	this.scale = 1;
  	this.dashSize = 3;
  	this.gapSize = 1;

  	this.setValues( parameters );

  }

  LineDashedMaterial.prototype = Object.create( LineBasicMaterial.prototype );
  LineDashedMaterial.prototype.constructor = LineDashedMaterial;

  LineDashedMaterial.prototype.isLineDashedMaterial = true;

  LineDashedMaterial.prototype.copy = function ( source ) {

  	LineBasicMaterial.prototype.copy.call( this, source );

  	this.scale = source.scale;
  	this.dashSize = source.dashSize;
  	this.gapSize = source.gapSize;

  	return this;

  };



  var Materials = /*#__PURE__*/Object.freeze({
  	ShadowMaterial: ShadowMaterial,
  	SpriteMaterial: SpriteMaterial,
  	RawShaderMaterial: RawShaderMaterial,
  	ShaderMaterial: ShaderMaterial,
  	PointsMaterial: PointsMaterial,
  	MeshPhysicalMaterial: MeshPhysicalMaterial,
  	MeshStandardMaterial: MeshStandardMaterial,
  	MeshPhongMaterial: MeshPhongMaterial,
  	MeshToonMaterial: MeshToonMaterial,
  	MeshNormalMaterial: MeshNormalMaterial,
  	MeshLambertMaterial: MeshLambertMaterial,
  	MeshDepthMaterial: MeshDepthMaterial,
  	MeshDistanceMaterial: MeshDistanceMaterial,
  	MeshBasicMaterial: MeshBasicMaterial,
  	LineDashedMaterial: LineDashedMaterial,
  	LineBasicMaterial: LineBasicMaterial,
  	Material: Material
  });

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  var Cache = {

  	enabled: false,

  	files: {},

  	add: function ( key, file ) {

  		if ( this.enabled === false ) return;

  		// console.log( 'THREE.Cache', 'Adding key:', key );

  		this.files[ key ] = file;

  	},

  	get: function ( key ) {

  		if ( this.enabled === false ) return;

  		// console.log( 'THREE.Cache', 'Checking key:', key );

  		return this.files[ key ];

  	},

  	remove: function ( key ) {

  		delete this.files[ key ];

  	},

  	clear: function () {

  		this.files = {};

  	}

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function LoadingManager( onLoad, onProgress, onError ) {

  	var scope = this;

  	var isLoading = false;
  	var itemsLoaded = 0;
  	var itemsTotal = 0;
  	var urlModifier = undefined;

  	this.onStart = undefined;
  	this.onLoad = onLoad;
  	this.onProgress = onProgress;
  	this.onError = onError;

  	this.itemStart = function ( url ) {

  		itemsTotal ++;

  		if ( isLoading === false ) {

  			if ( scope.onStart !== undefined ) {

  				scope.onStart( url, itemsLoaded, itemsTotal );

  			}

  		}

  		isLoading = true;

  	};

  	this.itemEnd = function ( url ) {

  		itemsLoaded ++;

  		if ( scope.onProgress !== undefined ) {

  			scope.onProgress( url, itemsLoaded, itemsTotal );

  		}

  		if ( itemsLoaded === itemsTotal ) {

  			isLoading = false;

  			if ( scope.onLoad !== undefined ) {

  				scope.onLoad();

  			}

  		}

  	};

  	this.itemError = function ( url ) {

  		if ( scope.onError !== undefined ) {

  			scope.onError( url );

  		}

  	};

  	this.resolveURL = function ( url ) {

  		if ( urlModifier ) {

  			return urlModifier( url );

  		}

  		return url;

  	};

  	this.setURLModifier = function ( transform ) {

  		urlModifier = transform;
  		return this;

  	};

  }

  var DefaultLoadingManager = new LoadingManager();

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  var loading = {};

  function FileLoader( manager ) {

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

  }

  Object.assign( FileLoader.prototype, {

  	load: function ( url, onLoad, onProgress, onError ) {

  		if ( url === undefined ) url = '';

  		if ( this.path !== undefined ) url = this.path + url;

  		url = this.manager.resolveURL( url );

  		var scope = this;

  		var cached = Cache.get( url );

  		if ( cached !== undefined ) {

  			scope.manager.itemStart( url );

  			setTimeout( function () {

  				if ( onLoad ) onLoad( cached );

  				scope.manager.itemEnd( url );

  			}, 0 );

  			return cached;

  		}

  		// Check if request is duplicate

  		if ( loading[ url ] !== undefined ) {

  			loading[ url ].push( {

  				onLoad: onLoad,
  				onProgress: onProgress,
  				onError: onError

  			} );

  			return;

  		}

  		// Check for data: URI
  		var dataUriRegex = /^data:(.*?)(;base64)?,(.*)$/;
  		var dataUriRegexResult = url.match( dataUriRegex );

  		// Safari can not handle Data URIs through XMLHttpRequest so process manually
  		if ( dataUriRegexResult ) {

  			var mimeType = dataUriRegexResult[ 1 ];
  			var isBase64 = !! dataUriRegexResult[ 2 ];
  			var data = dataUriRegexResult[ 3 ];

  			data = window.decodeURIComponent( data );

  			if ( isBase64 ) data = window.atob( data );

  			try {

  				var response;
  				var responseType = ( this.responseType || '' ).toLowerCase();

  				switch ( responseType ) {

  					case 'arraybuffer':
  					case 'blob':

  						var view = new Uint8Array( data.length );

  						for ( var i = 0; i < data.length; i ++ ) {

  							view[ i ] = data.charCodeAt( i );

  						}

  						if ( responseType === 'blob' ) {

  							response = new Blob( [ view.buffer ], { type: mimeType } );

  						} else {

  							response = view.buffer;

  						}

  						break;

  					case 'document':

  						var parser = new DOMParser();
  						response = parser.parseFromString( data, mimeType );

  						break;

  					case 'json':

  						response = JSON.parse( data );

  						break;

  					default: // 'text' or other

  						response = data;

  						break;

  				}

  				// Wait for next browser tick like standard XMLHttpRequest event dispatching does
  				window.setTimeout( function () {

  					if ( onLoad ) onLoad( response );

  					scope.manager.itemEnd( url );

  				}, 0 );

  			} catch ( error ) {

  				// Wait for next browser tick like standard XMLHttpRequest event dispatching does
  				window.setTimeout( function () {

  					if ( onError ) onError( error );

  					scope.manager.itemEnd( url );
  					scope.manager.itemError( url );

  				}, 0 );

  			}

  		} else {

  			// Initialise array for duplicate requests

  			loading[ url ] = [];

  			loading[ url ].push( {

  				onLoad: onLoad,
  				onProgress: onProgress,
  				onError: onError

  			} );

  			var request = new XMLHttpRequest();

  			request.open( 'GET', url, true );

  			request.addEventListener( 'load', function ( event ) {

  				var response = this.response;

  				Cache.add( url, response );

  				var callbacks = loading[ url ];

  				delete loading[ url ];

  				if ( this.status === 200 || this.status === 0 ) {

  					// Some browsers return HTTP Status 0 when using non-http protocol
  					// e.g. 'file://' or 'data://'. Handle as success.

  					if ( this.status === 0 ) console.warn( 'THREE.FileLoader: HTTP Status 0 received.' );

  					for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

  						var callback = callbacks[ i ];
  						if ( callback.onLoad ) callback.onLoad( response );

  					}

  					scope.manager.itemEnd( url );

  				} else {

  					for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

  						var callback = callbacks[ i ];
  						if ( callback.onError ) callback.onError( event );

  					}

  					scope.manager.itemEnd( url );
  					scope.manager.itemError( url );

  				}

  			}, false );

  			request.addEventListener( 'progress', function ( event ) {

  				var callbacks = loading[ url ];

  				for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

  					var callback = callbacks[ i ];
  					if ( callback.onProgress ) callback.onProgress( event );

  				}

  			}, false );

  			request.addEventListener( 'error', function ( event ) {

  				var callbacks = loading[ url ];

  				delete loading[ url ];

  				for ( var i = 0, il = callbacks.length; i < il; i ++ ) {

  					var callback = callbacks[ i ];
  					if ( callback.onError ) callback.onError( event );

  				}

  				scope.manager.itemEnd( url );
  				scope.manager.itemError( url );

  			}, false );

  			if ( this.responseType !== undefined ) request.responseType = this.responseType;
  			if ( this.withCredentials !== undefined ) request.withCredentials = this.withCredentials;

  			if ( request.overrideMimeType ) request.overrideMimeType( this.mimeType !== undefined ? this.mimeType : 'text/plain' );

  			for ( var header in this.requestHeader ) {

  				request.setRequestHeader( header, this.requestHeader[ header ] );

  			}

  			request.send( null );

  		}

  		scope.manager.itemStart( url );

  		return request;

  	},

  	setPath: function ( value ) {

  		this.path = value;
  		return this;

  	},

  	setResponseType: function ( value ) {

  		this.responseType = value;
  		return this;

  	},

  	setWithCredentials: function ( value ) {

  		this.withCredentials = value;
  		return this;

  	},

  	setMimeType: function ( value ) {

  		this.mimeType = value;
  		return this;

  	},

  	setRequestHeader: function ( value ) {

  		this.requestHeader = value;
  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   *
   * Abstract Base class to block based textures loader (dds, pvr, ...)
   */

  function CompressedTextureLoader( manager ) {

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

  	// override in sub classes
  	this._parser = null;

  }

  Object.assign( CompressedTextureLoader.prototype, {

  	load: function ( url, onLoad, onProgress, onError ) {

  		var scope = this;

  		var images = [];

  		var texture = new CompressedTexture();
  		texture.image = images;

  		var loader = new FileLoader( this.manager );
  		loader.setPath( this.path );
  		loader.setResponseType( 'arraybuffer' );

  		function loadTexture( i ) {

  			loader.load( url[ i ], function ( buffer ) {

  				var texDatas = scope._parser( buffer, true );

  				images[ i ] = {
  					width: texDatas.width,
  					height: texDatas.height,
  					format: texDatas.format,
  					mipmaps: texDatas.mipmaps
  				};

  				loaded += 1;

  				if ( loaded === 6 ) {

  					if ( texDatas.mipmapCount === 1 )
  						texture.minFilter = LinearFilter;

  					texture.format = texDatas.format;
  					texture.needsUpdate = true;

  					if ( onLoad ) onLoad( texture );

  				}

  			}, onProgress, onError );

  		}

  		if ( Array.isArray( url ) ) {

  			var loaded = 0;

  			for ( var i = 0, il = url.length; i < il; ++ i ) {

  				loadTexture( i );

  			}

  		} else {

  			// compressed cubemap texture stored in a single DDS file

  			loader.load( url, function ( buffer ) {

  				var texDatas = scope._parser( buffer, true );

  				if ( texDatas.isCubemap ) {

  					var faces = texDatas.mipmaps.length / texDatas.mipmapCount;

  					for ( var f = 0; f < faces; f ++ ) {

  						images[ f ] = { mipmaps: [] };

  						for ( var i = 0; i < texDatas.mipmapCount; i ++ ) {

  							images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] );
  							images[ f ].format = texDatas.format;
  							images[ f ].width = texDatas.width;
  							images[ f ].height = texDatas.height;

  						}

  					}

  				} else {

  					texture.image.width = texDatas.width;
  					texture.image.height = texDatas.height;
  					texture.mipmaps = texDatas.mipmaps;

  				}

  				if ( texDatas.mipmapCount === 1 ) {

  					texture.minFilter = LinearFilter;

  				}

  				texture.format = texDatas.format;
  				texture.needsUpdate = true;

  				if ( onLoad ) onLoad( texture );

  			}, onProgress, onError );

  		}

  		return texture;

  	},

  	setPath: function ( value ) {

  		this.path = value;
  		return this;

  	}

  } );

  /**
   * @author Nikos M. / https://github.com/foo123/
   *
   * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
   */

  function DataTextureLoader( manager ) {

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

  	// override in sub classes
  	this._parser = null;

  }

  Object.assign( DataTextureLoader.prototype, {

  	load: function ( url, onLoad, onProgress, onError ) {

  		var scope = this;

  		var texture = new DataTexture();

  		var loader = new FileLoader( this.manager );
  		loader.setResponseType( 'arraybuffer' );

  		loader.load( url, function ( buffer ) {

  			var texData = scope._parser( buffer );

  			if ( ! texData ) return;

  			if ( undefined !== texData.image ) {

  				texture.image = texData.image;

  			} else if ( undefined !== texData.data ) {

  				texture.image.width = texData.width;
  				texture.image.height = texData.height;
  				texture.image.data = texData.data;

  			}

  			texture.wrapS = undefined !== texData.wrapS ? texData.wrapS : ClampToEdgeWrapping;
  			texture.wrapT = undefined !== texData.wrapT ? texData.wrapT : ClampToEdgeWrapping;

  			texture.magFilter = undefined !== texData.magFilter ? texData.magFilter : LinearFilter;
  			texture.minFilter = undefined !== texData.minFilter ? texData.minFilter : LinearMipMapLinearFilter;

  			texture.anisotropy = undefined !== texData.anisotropy ? texData.anisotropy : 1;

  			if ( undefined !== texData.format ) {

  				texture.format = texData.format;

  			}
  			if ( undefined !== texData.type ) {

  				texture.type = texData.type;

  			}

  			if ( undefined !== texData.mipmaps ) {

  				texture.mipmaps = texData.mipmaps;

  			}

  			if ( 1 === texData.mipmapCount ) {

  				texture.minFilter = LinearFilter;

  			}

  			texture.needsUpdate = true;

  			if ( onLoad ) onLoad( texture, texData );

  		}, onProgress, onError );


  		return texture;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */


  function ImageLoader( manager ) {

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

  }

  Object.assign( ImageLoader.prototype, {

  	crossOrigin: 'Anonymous',

  	load: function ( url, onLoad, onProgress, onError ) {

  		if ( url === undefined ) url = '';

  		if ( this.path !== undefined ) url = this.path + url;

  		url = this.manager.resolveURL( url );

  		var scope = this;

  		var cached = Cache.get( url );

  		if ( cached !== undefined ) {

  			scope.manager.itemStart( url );

  			setTimeout( function () {

  				if ( onLoad ) onLoad( cached );

  				scope.manager.itemEnd( url );

  			}, 0 );

  			return cached;

  		}

  		var image = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'img' );

  		function onImageLoad() {

  			image.removeEventListener( 'load', onImageLoad, false );
  			image.removeEventListener( 'error', onImageError, false );

  			Cache.add( url, this );

  			if ( onLoad ) onLoad( this );

  			scope.manager.itemEnd( url );

  		}

  		function onImageError( event ) {

  			image.removeEventListener( 'load', onImageLoad, false );
  			image.removeEventListener( 'error', onImageError, false );

  			if ( onError ) onError( event );

  			scope.manager.itemEnd( url );
  			scope.manager.itemError( url );

  		}

  		image.addEventListener( 'load', onImageLoad, false );
  		image.addEventListener( 'error', onImageError, false );

  		if ( url.substr( 0, 5 ) !== 'data:' ) {

  			if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin;

  		}

  		scope.manager.itemStart( url );

  		image.src = url;

  		return image;

  	},

  	setCrossOrigin: function ( value ) {

  		this.crossOrigin = value;
  		return this;

  	},

  	setPath: function ( value ) {

  		this.path = value;
  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */


  function CubeTextureLoader( manager ) {

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

  }

  Object.assign( CubeTextureLoader.prototype, {

  	crossOrigin: 'Anonymous',

  	load: function ( urls, onLoad, onProgress, onError ) {

  		var texture = new CubeTexture();

  		var loader = new ImageLoader( this.manager );
  		loader.setCrossOrigin( this.crossOrigin );
  		loader.setPath( this.path );

  		var loaded = 0;

  		function loadTexture( i ) {

  			loader.load( urls[ i ], function ( image ) {

  				texture.images[ i ] = image;

  				loaded ++;

  				if ( loaded === 6 ) {

  					texture.needsUpdate = true;

  					if ( onLoad ) onLoad( texture );

  				}

  			}, undefined, onError );

  		}

  		for ( var i = 0; i < urls.length; ++ i ) {

  			loadTexture( i );

  		}

  		return texture;

  	},

  	setCrossOrigin: function ( value ) {

  		this.crossOrigin = value;
  		return this;

  	},

  	setPath: function ( value ) {

  		this.path = value;
  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */


  function TextureLoader( manager ) {

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

  }

  Object.assign( TextureLoader.prototype, {

  	crossOrigin: 'Anonymous',

  	load: function ( url, onLoad, onProgress, onError ) {

  		var texture = new Texture();

  		var loader = new ImageLoader( this.manager );
  		loader.setCrossOrigin( this.crossOrigin );
  		loader.setPath( this.path );

  		loader.load( url, function ( image ) {

  			texture.image = image;

  			// JPEGs can't have an alpha channel, so memory can be saved by storing them as RGB.
  			var isJPEG = url.search( /\.(jpg|jpeg)$/ ) > 0 || url.search( /^data\:image\/jpeg/ ) === 0;

  			texture.format = isJPEG ? RGBFormat : RGBAFormat;
  			texture.needsUpdate = true;

  			if ( onLoad !== undefined ) {

  				onLoad( texture );

  			}

  		}, onProgress, onError );

  		return texture;

  	},

  	setCrossOrigin: function ( value ) {

  		this.crossOrigin = value;
  		return this;

  	},

  	setPath: function ( value ) {

  		this.path = value;
  		return this;

  	}

  } );

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * Extensible curve object
   *
   * Some common of curve methods:
   * .getPoint( t, optionalTarget ), .getTangent( t )
   * .getPointAt( u, optionalTarget ), .getTangentAt( u )
   * .getPoints(), .getSpacedPoints()
   * .getLength()
   * .updateArcLengths()
   *
   * This following curves inherit from THREE.Curve:
   *
   * -- 2D curves --
   * THREE.ArcCurve
   * THREE.CubicBezierCurve
   * THREE.EllipseCurve
   * THREE.LineCurve
   * THREE.QuadraticBezierCurve
   * THREE.SplineCurve
   *
   * -- 3D curves --
   * THREE.CatmullRomCurve3
   * THREE.CubicBezierCurve3
   * THREE.LineCurve3
   * THREE.QuadraticBezierCurve3
   *
   * A series of curves can be represented as a THREE.CurvePath.
   *
   **/

  /**************************************************************
   *	Abstract Curve base class
   **************************************************************/

  function Curve() {

  	this.type = 'Curve';

  	this.arcLengthDivisions = 200;

  }

  Object.assign( Curve.prototype, {

  	// Virtual base class method to overwrite and implement in subclasses
  	//	- t [0 .. 1]

  	getPoint: function ( /* t, optionalTarget */ ) {

  		console.warn( 'THREE.Curve: .getPoint() not implemented.' );
  		return null;

  	},

  	// Get point at relative position in curve according to arc length
  	// - u [0 .. 1]

  	getPointAt: function ( u, optionalTarget ) {

  		var t = this.getUtoTmapping( u );
  		return this.getPoint( t, optionalTarget );

  	},

  	// Get sequence of points using getPoint( t )

  	getPoints: function ( divisions ) {

  		if ( divisions === undefined ) divisions = 5;

  		var points = [];

  		for ( var d = 0; d <= divisions; d ++ ) {

  			points.push( this.getPoint( d / divisions ) );

  		}

  		return points;

  	},

  	// Get sequence of points using getPointAt( u )

  	getSpacedPoints: function ( divisions ) {

  		if ( divisions === undefined ) divisions = 5;

  		var points = [];

  		for ( var d = 0; d <= divisions; d ++ ) {

  			points.push( this.getPointAt( d / divisions ) );

  		}

  		return points;

  	},

  	// Get total curve arc length

  	getLength: function () {

  		var lengths = this.getLengths();
  		return lengths[ lengths.length - 1 ];

  	},

  	// Get list of cumulative segment lengths

  	getLengths: function ( divisions ) {

  		if ( divisions === undefined ) divisions = this.arcLengthDivisions;

  		if ( this.cacheArcLengths &&
  			( this.cacheArcLengths.length === divisions + 1 ) &&
  			! this.needsUpdate ) {

  			return this.cacheArcLengths;

  		}

  		this.needsUpdate = false;

  		var cache = [];
  		var current, last = this.getPoint( 0 );
  		var p, sum = 0;

  		cache.push( 0 );

  		for ( p = 1; p <= divisions; p ++ ) {

  			current = this.getPoint( p / divisions );
  			sum += current.distanceTo( last );
  			cache.push( sum );
  			last = current;

  		}

  		this.cacheArcLengths = cache;

  		return cache; // { sums: cache, sum: sum }; Sum is in the last element.

  	},

  	updateArcLengths: function () {

  		this.needsUpdate = true;
  		this.getLengths();

  	},

  	// Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant

  	getUtoTmapping: function ( u, distance ) {

  		var arcLengths = this.getLengths();

  		var i = 0, il = arcLengths.length;

  		var targetArcLength; // The targeted u distance value to get

  		if ( distance ) {

  			targetArcLength = distance;

  		} else {

  			targetArcLength = u * arcLengths[ il - 1 ];

  		}

  		// binary search for the index with largest value smaller than target u distance

  		var low = 0, high = il - 1, comparison;

  		while ( low <= high ) {

  			i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats

  			comparison = arcLengths[ i ] - targetArcLength;

  			if ( comparison < 0 ) {

  				low = i + 1;

  			} else if ( comparison > 0 ) {

  				high = i - 1;

  			} else {

  				high = i;
  				break;

  				// DONE

  			}

  		}

  		i = high;

  		if ( arcLengths[ i ] === targetArcLength ) {

  			return i / ( il - 1 );

  		}

  		// we could get finer grain at lengths, or use simple interpolation between two points

  		var lengthBefore = arcLengths[ i ];
  		var lengthAfter = arcLengths[ i + 1 ];

  		var segmentLength = lengthAfter - lengthBefore;

  		// determine where we are between the 'before' and 'after' points

  		var segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength;

  		// add that fractional amount to t

  		var t = ( i + segmentFraction ) / ( il - 1 );

  		return t;

  	},

  	// Returns a unit vector tangent at t
  	// In case any sub curve does not implement its tangent derivation,
  	// 2 points a small delta apart will be used to find its gradient
  	// which seems to give a reasonable approximation

  	getTangent: function ( t ) {

  		var delta = 0.0001;
  		var t1 = t - delta;
  		var t2 = t + delta;

  		// Capping in case of danger

  		if ( t1 < 0 ) t1 = 0;
  		if ( t2 > 1 ) t2 = 1;

  		var pt1 = this.getPoint( t1 );
  		var pt2 = this.getPoint( t2 );

  		var vec = pt2.clone().sub( pt1 );
  		return vec.normalize();

  	},

  	getTangentAt: function ( u ) {

  		var t = this.getUtoTmapping( u );
  		return this.getTangent( t );

  	},

  	computeFrenetFrames: function ( segments, closed ) {

  		// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf

  		var normal = new Vector3();

  		var tangents = [];
  		var normals = [];
  		var binormals = [];

  		var vec = new Vector3();
  		var mat = new Matrix4();

  		var i, u, theta;

  		// compute the tangent vectors for each segment on the curve

  		for ( i = 0; i <= segments; i ++ ) {

  			u = i / segments;

  			tangents[ i ] = this.getTangentAt( u );
  			tangents[ i ].normalize();

  		}

  		// select an initial normal vector perpendicular to the first tangent vector,
  		// and in the direction of the minimum tangent xyz component

  		normals[ 0 ] = new Vector3();
  		binormals[ 0 ] = new Vector3();
  		var min = Number.MAX_VALUE;
  		var tx = Math.abs( tangents[ 0 ].x );
  		var ty = Math.abs( tangents[ 0 ].y );
  		var tz = Math.abs( tangents[ 0 ].z );

  		if ( tx <= min ) {

  			min = tx;
  			normal.set( 1, 0, 0 );

  		}

  		if ( ty <= min ) {

  			min = ty;
  			normal.set( 0, 1, 0 );

  		}

  		if ( tz <= min ) {

  			normal.set( 0, 0, 1 );

  		}

  		vec.crossVectors( tangents[ 0 ], normal ).normalize();

  		normals[ 0 ].crossVectors( tangents[ 0 ], vec );
  		binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] );


  		// compute the slowly-varying normal and binormal vectors for each segment on the curve

  		for ( i = 1; i <= segments; i ++ ) {

  			normals[ i ] = normals[ i - 1 ].clone();

  			binormals[ i ] = binormals[ i - 1 ].clone();

  			vec.crossVectors( tangents[ i - 1 ], tangents[ i ] );

  			if ( vec.length() > Number.EPSILON ) {

  				vec.normalize();

  				theta = Math.acos( _Math.clamp( tangents[ i - 1 ].dot( tangents[ i ] ), - 1, 1 ) ); // clamp for floating pt errors

  				normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) );

  			}

  			binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );

  		}

  		// if the curve is closed, postprocess the vectors so the first and last normal vectors are the same

  		if ( closed === true ) {

  			theta = Math.acos( _Math.clamp( normals[ 0 ].dot( normals[ segments ] ), - 1, 1 ) );
  			theta /= segments;

  			if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) {

  				theta = - theta;

  			}

  			for ( i = 1; i <= segments; i ++ ) {

  				// twist a little...
  				normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) );
  				binormals[ i ].crossVectors( tangents[ i ], normals[ i ] );

  			}

  		}

  		return {
  			tangents: tangents,
  			normals: normals,
  			binormals: binormals
  		};

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( source ) {

  		this.arcLengthDivisions = source.arcLengthDivisions;

  		return this;

  	},

  	toJSON: function () {

  		var data = {
  			metadata: {
  				version: 4.5,
  				type: 'Curve',
  				generator: 'Curve.toJSON'
  			}
  		};

  		data.arcLengthDivisions = this.arcLengthDivisions;
  		data.type = this.type;

  		return data;

  	},

  	fromJSON: function ( json ) {

  		this.arcLengthDivisions = json.arcLengthDivisions;

  		return this;

  	}

  } );

  function EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

  	Curve.call( this );

  	this.type = 'EllipseCurve';

  	this.aX = aX || 0;
  	this.aY = aY || 0;

  	this.xRadius = xRadius || 1;
  	this.yRadius = yRadius || 1;

  	this.aStartAngle = aStartAngle || 0;
  	this.aEndAngle = aEndAngle || 2 * Math.PI;

  	this.aClockwise = aClockwise || false;

  	this.aRotation = aRotation || 0;

  }

  EllipseCurve.prototype = Object.create( Curve.prototype );
  EllipseCurve.prototype.constructor = EllipseCurve;

  EllipseCurve.prototype.isEllipseCurve = true;

  EllipseCurve.prototype.getPoint = function ( t, optionalTarget ) {

  	var point = optionalTarget || new Vector2();

  	var twoPi = Math.PI * 2;
  	var deltaAngle = this.aEndAngle - this.aStartAngle;
  	var samePoints = Math.abs( deltaAngle ) < Number.EPSILON;

  	// ensures that deltaAngle is 0 .. 2 PI
  	while ( deltaAngle < 0 ) deltaAngle += twoPi;
  	while ( deltaAngle > twoPi ) deltaAngle -= twoPi;

  	if ( deltaAngle < Number.EPSILON ) {

  		if ( samePoints ) {

  			deltaAngle = 0;

  		} else {

  			deltaAngle = twoPi;

  		}

  	}

  	if ( this.aClockwise === true && ! samePoints ) {

  		if ( deltaAngle === twoPi ) {

  			deltaAngle = - twoPi;

  		} else {

  			deltaAngle = deltaAngle - twoPi;

  		}

  	}

  	var angle = this.aStartAngle + t * deltaAngle;
  	var x = this.aX + this.xRadius * Math.cos( angle );
  	var y = this.aY + this.yRadius * Math.sin( angle );

  	if ( this.aRotation !== 0 ) {

  		var cos = Math.cos( this.aRotation );
  		var sin = Math.sin( this.aRotation );

  		var tx = x - this.aX;
  		var ty = y - this.aY;

  		// Rotate the point about the center of the ellipse.
  		x = tx * cos - ty * sin + this.aX;
  		y = tx * sin + ty * cos + this.aY;

  	}

  	return point.set( x, y );

  };

  EllipseCurve.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.aX = source.aX;
  	this.aY = source.aY;

  	this.xRadius = source.xRadius;
  	this.yRadius = source.yRadius;

  	this.aStartAngle = source.aStartAngle;
  	this.aEndAngle = source.aEndAngle;

  	this.aClockwise = source.aClockwise;

  	this.aRotation = source.aRotation;

  	return this;

  };


  EllipseCurve.prototype.toJSON = function () {

  	var data = Curve.prototype.toJSON.call( this );

  	data.aX = this.aX;
  	data.aY = this.aY;

  	data.xRadius = this.xRadius;
  	data.yRadius = this.yRadius;

  	data.aStartAngle = this.aStartAngle;
  	data.aEndAngle = this.aEndAngle;

  	data.aClockwise = this.aClockwise;

  	data.aRotation = this.aRotation;

  	return data;

  };

  EllipseCurve.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.aX = json.aX;
  	this.aY = json.aY;

  	this.xRadius = json.xRadius;
  	this.yRadius = json.yRadius;

  	this.aStartAngle = json.aStartAngle;
  	this.aEndAngle = json.aEndAngle;

  	this.aClockwise = json.aClockwise;

  	this.aRotation = json.aRotation;

  	return this;

  };

  function ArcCurve( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

  	EllipseCurve.call( this, aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );

  	this.type = 'ArcCurve';

  }

  ArcCurve.prototype = Object.create( EllipseCurve.prototype );
  ArcCurve.prototype.constructor = ArcCurve;

  ArcCurve.prototype.isArcCurve = true;

  /**
   * @author zz85 https://github.com/zz85
   *
   * Centripetal CatmullRom Curve - which is useful for avoiding
   * cusps and self-intersections in non-uniform catmull rom curves.
   * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
   *
   * curve.type accepts centripetal(default), chordal and catmullrom
   * curve.tension is used for catmullrom which defaults to 0.5
   */


  /*
  Based on an optimized c++ solution in
   - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
   - http://ideone.com/NoEbVM

  This CubicPoly class could be used for reusing some variables and calculations,
  but for three.js curve use, it could be possible inlined and flatten into a single function call
  which can be placed in CurveUtils.
  */

  function CubicPoly() {

  	var c0 = 0, c1 = 0, c2 = 0, c3 = 0;

  	/*
  	 * Compute coefficients for a cubic polynomial
  	 *   p(s) = c0 + c1*s + c2*s^2 + c3*s^3
  	 * such that
  	 *   p(0) = x0, p(1) = x1
  	 *  and
  	 *   p'(0) = t0, p'(1) = t1.
  	 */
  	function init( x0, x1, t0, t1 ) {

  		c0 = x0;
  		c1 = t0;
  		c2 = - 3 * x0 + 3 * x1 - 2 * t0 - t1;
  		c3 = 2 * x0 - 2 * x1 + t0 + t1;

  	}

  	return {

  		initCatmullRom: function ( x0, x1, x2, x3, tension ) {

  			init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) );

  		},

  		initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) {

  			// compute tangents when parameterized in [t1,t2]
  			var t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1;
  			var t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2;

  			// rescale tangents for parametrization in [0,1]
  			t1 *= dt1;
  			t2 *= dt1;

  			init( x1, x2, t1, t2 );

  		},

  		calc: function ( t ) {

  			var t2 = t * t;
  			var t3 = t2 * t;
  			return c0 + c1 * t + c2 * t2 + c3 * t3;

  		}

  	};

  }

  //

  var tmp = new Vector3();
  var px = new CubicPoly(), py = new CubicPoly(), pz = new CubicPoly();

  function CatmullRomCurve3( points, closed, curveType, tension ) {

  	Curve.call( this );

  	this.type = 'CatmullRomCurve3';

  	this.points = points || [];
  	this.closed = closed || false;
  	this.curveType = curveType || 'centripetal';
  	this.tension = tension || 0.5;

  }

  CatmullRomCurve3.prototype = Object.create( Curve.prototype );
  CatmullRomCurve3.prototype.constructor = CatmullRomCurve3;

  CatmullRomCurve3.prototype.isCatmullRomCurve3 = true;

  CatmullRomCurve3.prototype.getPoint = function ( t, optionalTarget ) {

  	var point = optionalTarget || new Vector3();

  	var points = this.points;
  	var l = points.length;

  	var p = ( l - ( this.closed ? 0 : 1 ) ) * t;
  	var intPoint = Math.floor( p );
  	var weight = p - intPoint;

  	if ( this.closed ) {

  		intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l;

  	} else if ( weight === 0 && intPoint === l - 1 ) {

  		intPoint = l - 2;
  		weight = 1;

  	}

  	var p0, p1, p2, p3; // 4 points

  	if ( this.closed || intPoint > 0 ) {

  		p0 = points[ ( intPoint - 1 ) % l ];

  	} else {

  		// extrapolate first point
  		tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] );
  		p0 = tmp;

  	}

  	p1 = points[ intPoint % l ];
  	p2 = points[ ( intPoint + 1 ) % l ];

  	if ( this.closed || intPoint + 2 < l ) {

  		p3 = points[ ( intPoint + 2 ) % l ];

  	} else {

  		// extrapolate last point
  		tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] );
  		p3 = tmp;

  	}

  	if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) {

  		// init Centripetal / Chordal Catmull-Rom
  		var pow = this.curveType === 'chordal' ? 0.5 : 0.25;
  		var dt0 = Math.pow( p0.distanceToSquared( p1 ), pow );
  		var dt1 = Math.pow( p1.distanceToSquared( p2 ), pow );
  		var dt2 = Math.pow( p2.distanceToSquared( p3 ), pow );

  		// safety check for repeated points
  		if ( dt1 < 1e-4 ) dt1 = 1.0;
  		if ( dt0 < 1e-4 ) dt0 = dt1;
  		if ( dt2 < 1e-4 ) dt2 = dt1;

  		px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 );
  		py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 );
  		pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 );

  	} else if ( this.curveType === 'catmullrom' ) {

  		px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension );
  		py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension );
  		pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension );

  	}

  	point.set(
  		px.calc( weight ),
  		py.calc( weight ),
  		pz.calc( weight )
  	);

  	return point;

  };

  CatmullRomCurve3.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.points = [];

  	for ( var i = 0, l = source.points.length; i < l; i ++ ) {

  		var point = source.points[ i ];

  		this.points.push( point.clone() );

  	}

  	this.closed = source.closed;
  	this.curveType = source.curveType;
  	this.tension = source.tension;

  	return this;

  };

  CatmullRomCurve3.prototype.toJSON = function () {

  	var data = Curve.prototype.toJSON.call( this );

  	data.points = [];

  	for ( var i = 0, l = this.points.length; i < l; i ++ ) {

  		var point = this.points[ i ];
  		data.points.push( point.toArray() );

  	}

  	data.closed = this.closed;
  	data.curveType = this.curveType;
  	data.tension = this.tension;

  	return data;

  };

  CatmullRomCurve3.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.points = [];

  	for ( var i = 0, l = json.points.length; i < l; i ++ ) {

  		var point = json.points[ i ];
  		this.points.push( new Vector3().fromArray( point ) );

  	}

  	this.closed = json.closed;
  	this.curveType = json.curveType;
  	this.tension = json.tension;

  	return this;

  };

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   *
   * Bezier Curves formulas obtained from
   * http://en.wikipedia.org/wiki/Bézier_curve
   */

  function CatmullRom( t, p0, p1, p2, p3 ) {

  	var v0 = ( p2 - p0 ) * 0.5;
  	var v1 = ( p3 - p1 ) * 0.5;
  	var t2 = t * t;
  	var t3 = t * t2;
  	return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( - 3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1;

  }

  //

  function QuadraticBezierP0( t, p ) {

  	var k = 1 - t;
  	return k * k * p;

  }

  function QuadraticBezierP1( t, p ) {

  	return 2 * ( 1 - t ) * t * p;

  }

  function QuadraticBezierP2( t, p ) {

  	return t * t * p;

  }

  function QuadraticBezier( t, p0, p1, p2 ) {

  	return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) +
  		QuadraticBezierP2( t, p2 );

  }

  //

  function CubicBezierP0( t, p ) {

  	var k = 1 - t;
  	return k * k * k * p;

  }

  function CubicBezierP1( t, p ) {

  	var k = 1 - t;
  	return 3 * k * k * t * p;

  }

  function CubicBezierP2( t, p ) {

  	return 3 * ( 1 - t ) * t * t * p;

  }

  function CubicBezierP3( t, p ) {

  	return t * t * t * p;

  }

  function CubicBezier( t, p0, p1, p2, p3 ) {

  	return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) +
  		CubicBezierP3( t, p3 );

  }

  function CubicBezierCurve( v0, v1, v2, v3 ) {

  	Curve.call( this );

  	this.type = 'CubicBezierCurve';

  	this.v0 = v0 || new Vector2();
  	this.v1 = v1 || new Vector2();
  	this.v2 = v2 || new Vector2();
  	this.v3 = v3 || new Vector2();

  }

  CubicBezierCurve.prototype = Object.create( Curve.prototype );
  CubicBezierCurve.prototype.constructor = CubicBezierCurve;

  CubicBezierCurve.prototype.isCubicBezierCurve = true;

  CubicBezierCurve.prototype.getPoint = function ( t, optionalTarget ) {

  	var point = optionalTarget || new Vector2();

  	var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;

  	point.set(
  		CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
  		CubicBezier( t, v0.y, v1.y, v2.y, v3.y )
  	);

  	return point;

  };

  CubicBezierCurve.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.v0.copy( source.v0 );
  	this.v1.copy( source.v1 );
  	this.v2.copy( source.v2 );
  	this.v3.copy( source.v3 );

  	return this;

  };

  CubicBezierCurve.prototype.toJSON = function () {

  	var data = Curve.prototype.toJSON.call( this );

  	data.v0 = this.v0.toArray();
  	data.v1 = this.v1.toArray();
  	data.v2 = this.v2.toArray();
  	data.v3 = this.v3.toArray();

  	return data;

  };

  CubicBezierCurve.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.v0.fromArray( json.v0 );
  	this.v1.fromArray( json.v1 );
  	this.v2.fromArray( json.v2 );
  	this.v3.fromArray( json.v3 );

  	return this;

  };

  function CubicBezierCurve3( v0, v1, v2, v3 ) {

  	Curve.call( this );

  	this.type = 'CubicBezierCurve3';

  	this.v0 = v0 || new Vector3();
  	this.v1 = v1 || new Vector3();
  	this.v2 = v2 || new Vector3();
  	this.v3 = v3 || new Vector3();

  }

  CubicBezierCurve3.prototype = Object.create( Curve.prototype );
  CubicBezierCurve3.prototype.constructor = CubicBezierCurve3;

  CubicBezierCurve3.prototype.isCubicBezierCurve3 = true;

  CubicBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) {

  	var point = optionalTarget || new Vector3();

  	var v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3;

  	point.set(
  		CubicBezier( t, v0.x, v1.x, v2.x, v3.x ),
  		CubicBezier( t, v0.y, v1.y, v2.y, v3.y ),
  		CubicBezier( t, v0.z, v1.z, v2.z, v3.z )
  	);

  	return point;

  };

  CubicBezierCurve3.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.v0.copy( source.v0 );
  	this.v1.copy( source.v1 );
  	this.v2.copy( source.v2 );
  	this.v3.copy( source.v3 );

  	return this;

  };

  CubicBezierCurve3.prototype.toJSON = function () {

  	var data = Curve.prototype.toJSON.call( this );

  	data.v0 = this.v0.toArray();
  	data.v1 = this.v1.toArray();
  	data.v2 = this.v2.toArray();
  	data.v3 = this.v3.toArray();

  	return data;

  };

  CubicBezierCurve3.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.v0.fromArray( json.v0 );
  	this.v1.fromArray( json.v1 );
  	this.v2.fromArray( json.v2 );
  	this.v3.fromArray( json.v3 );

  	return this;

  };

  function LineCurve( v1, v2 ) {

  	Curve.call( this );

  	this.type = 'LineCurve';

  	this.v1 = v1 || new Vector2();
  	this.v2 = v2 || new Vector2();

  }

  LineCurve.prototype = Object.create( Curve.prototype );
  LineCurve.prototype.constructor = LineCurve;

  LineCurve.prototype.isLineCurve = true;

  LineCurve.prototype.getPoint = function ( t, optionalTarget ) {

  	var point = optionalTarget || new Vector2();

  	if ( t === 1 ) {

  		point.copy( this.v2 );

  	} else {

  		point.copy( this.v2 ).sub( this.v1 );
  		point.multiplyScalar( t ).add( this.v1 );

  	}

  	return point;

  };

  // Line curve is linear, so we can overwrite default getPointAt

  LineCurve.prototype.getPointAt = function ( u, optionalTarget ) {

  	return this.getPoint( u, optionalTarget );

  };

  LineCurve.prototype.getTangent = function ( /* t */ ) {

  	var tangent = this.v2.clone().sub( this.v1 );

  	return tangent.normalize();

  };

  LineCurve.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.v1.copy( source.v1 );
  	this.v2.copy( source.v2 );

  	return this;

  };

  LineCurve.prototype.toJSON = function () {

  	var data = Curve.prototype.toJSON.call( this );

  	data.v1 = this.v1.toArray();
  	data.v2 = this.v2.toArray();

  	return data;

  };

  LineCurve.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.v1.fromArray( json.v1 );
  	this.v2.fromArray( json.v2 );

  	return this;

  };

  function LineCurve3( v1, v2 ) {

  	Curve.call( this );

  	this.type = 'LineCurve3';

  	this.v1 = v1 || new Vector3();
  	this.v2 = v2 || new Vector3();

  }

  LineCurve3.prototype = Object.create( Curve.prototype );
  LineCurve3.prototype.constructor = LineCurve3;

  LineCurve3.prototype.isLineCurve3 = true;

  LineCurve3.prototype.getPoint = function ( t, optionalTarget ) {

  	var point = optionalTarget || new Vector3();

  	if ( t === 1 ) {

  		point.copy( this.v2 );

  	} else {

  		point.copy( this.v2 ).sub( this.v1 );
  		point.multiplyScalar( t ).add( this.v1 );

  	}

  	return point;

  };

  // Line curve is linear, so we can overwrite default getPointAt

  LineCurve3.prototype.getPointAt = function ( u, optionalTarget ) {

  	return this.getPoint( u, optionalTarget );

  };

  LineCurve3.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.v1.copy( source.v1 );
  	this.v2.copy( source.v2 );

  	return this;

  };

  LineCurve3.prototype.toJSON = function () {

  	var data = Curve.prototype.toJSON.call( this );

  	data.v1 = this.v1.toArray();
  	data.v2 = this.v2.toArray();

  	return data;

  };

  LineCurve3.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.v1.fromArray( json.v1 );
  	this.v2.fromArray( json.v2 );

  	return this;

  };

  function QuadraticBezierCurve( v0, v1, v2 ) {

  	Curve.call( this );

  	this.type = 'QuadraticBezierCurve';

  	this.v0 = v0 || new Vector2();
  	this.v1 = v1 || new Vector2();
  	this.v2 = v2 || new Vector2();

  }

  QuadraticBezierCurve.prototype = Object.create( Curve.prototype );
  QuadraticBezierCurve.prototype.constructor = QuadraticBezierCurve;

  QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true;

  QuadraticBezierCurve.prototype.getPoint = function ( t, optionalTarget ) {

  	var point = optionalTarget || new Vector2();

  	var v0 = this.v0, v1 = this.v1, v2 = this.v2;

  	point.set(
  		QuadraticBezier( t, v0.x, v1.x, v2.x ),
  		QuadraticBezier( t, v0.y, v1.y, v2.y )
  	);

  	return point;

  };

  QuadraticBezierCurve.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.v0.copy( source.v0 );
  	this.v1.copy( source.v1 );
  	this.v2.copy( source.v2 );

  	return this;

  };

  QuadraticBezierCurve.prototype.toJSON = function () {

  	var data = Curve.prototype.toJSON.call( this );

  	data.v0 = this.v0.toArray();
  	data.v1 = this.v1.toArray();
  	data.v2 = this.v2.toArray();

  	return data;

  };

  QuadraticBezierCurve.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.v0.fromArray( json.v0 );
  	this.v1.fromArray( json.v1 );
  	this.v2.fromArray( json.v2 );

  	return this;

  };

  function QuadraticBezierCurve3( v0, v1, v2 ) {

  	Curve.call( this );

  	this.type = 'QuadraticBezierCurve3';

  	this.v0 = v0 || new Vector3();
  	this.v1 = v1 || new Vector3();
  	this.v2 = v2 || new Vector3();

  }

  QuadraticBezierCurve3.prototype = Object.create( Curve.prototype );
  QuadraticBezierCurve3.prototype.constructor = QuadraticBezierCurve3;

  QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true;

  QuadraticBezierCurve3.prototype.getPoint = function ( t, optionalTarget ) {

  	var point = optionalTarget || new Vector3();

  	var v0 = this.v0, v1 = this.v1, v2 = this.v2;

  	point.set(
  		QuadraticBezier( t, v0.x, v1.x, v2.x ),
  		QuadraticBezier( t, v0.y, v1.y, v2.y ),
  		QuadraticBezier( t, v0.z, v1.z, v2.z )
  	);

  	return point;

  };

  QuadraticBezierCurve3.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.v0.copy( source.v0 );
  	this.v1.copy( source.v1 );
  	this.v2.copy( source.v2 );

  	return this;

  };

  QuadraticBezierCurve3.prototype.toJSON = function () {

  	var data = Curve.prototype.toJSON.call( this );

  	data.v0 = this.v0.toArray();
  	data.v1 = this.v1.toArray();
  	data.v2 = this.v2.toArray();

  	return data;

  };

  QuadraticBezierCurve3.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.v0.fromArray( json.v0 );
  	this.v1.fromArray( json.v1 );
  	this.v2.fromArray( json.v2 );

  	return this;

  };

  function SplineCurve( points /* array of Vector2 */ ) {

  	Curve.call( this );

  	this.type = 'SplineCurve';

  	this.points = points || [];

  }

  SplineCurve.prototype = Object.create( Curve.prototype );
  SplineCurve.prototype.constructor = SplineCurve;

  SplineCurve.prototype.isSplineCurve = true;

  SplineCurve.prototype.getPoint = function ( t, optionalTarget ) {

  	var point = optionalTarget || new Vector2();

  	var points = this.points;
  	var p = ( points.length - 1 ) * t;

  	var intPoint = Math.floor( p );
  	var weight = p - intPoint;

  	var p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ];
  	var p1 = points[ intPoint ];
  	var p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ];
  	var p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ];

  	point.set(
  		CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ),
  		CatmullRom( weight, p0.y, p1.y, p2.y, p3.y )
  	);

  	return point;

  };

  SplineCurve.prototype.copy = function ( source ) {

  	Curve.prototype.copy.call( this, source );

  	this.points = [];

  	for ( var i = 0, l = source.points.length; i < l; i ++ ) {

  		var point = source.points[ i ];

  		this.points.push( point.clone() );

  	}

  	return this;

  };

  SplineCurve.prototype.toJSON = function () {

  	var data = Curve.prototype.toJSON.call( this );

  	data.points = [];

  	for ( var i = 0, l = this.points.length; i < l; i ++ ) {

  		var point = this.points[ i ];
  		data.points.push( point.toArray() );

  	}

  	return data;

  };

  SplineCurve.prototype.fromJSON = function ( json ) {

  	Curve.prototype.fromJSON.call( this, json );

  	this.points = [];

  	for ( var i = 0, l = json.points.length; i < l; i ++ ) {

  		var point = json.points[ i ];
  		this.points.push( new Vector2().fromArray( point ) );

  	}

  	return this;

  };



  var Curves = /*#__PURE__*/Object.freeze({
  	ArcCurve: ArcCurve,
  	CatmullRomCurve3: CatmullRomCurve3,
  	CubicBezierCurve: CubicBezierCurve,
  	CubicBezierCurve3: CubicBezierCurve3,
  	EllipseCurve: EllipseCurve,
  	LineCurve: LineCurve,
  	LineCurve3: LineCurve3,
  	QuadraticBezierCurve: QuadraticBezierCurve,
  	QuadraticBezierCurve3: QuadraticBezierCurve3,
  	SplineCurve: SplineCurve
  });

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   *
   **/

  /**************************************************************
   *	Curved Path - a curve path is simply a array of connected
   *  curves, but retains the api of a curve
   **************************************************************/

  function CurvePath() {

  	Curve.call( this );

  	this.type = 'CurvePath';

  	this.curves = [];
  	this.autoClose = false; // Automatically closes the path

  }

  CurvePath.prototype = Object.assign( Object.create( Curve.prototype ), {

  	constructor: CurvePath,

  	add: function ( curve ) {

  		this.curves.push( curve );

  	},

  	closePath: function () {

  		// Add a line curve if start and end of lines are not connected
  		var startPoint = this.curves[ 0 ].getPoint( 0 );
  		var endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 );

  		if ( ! startPoint.equals( endPoint ) ) {

  			this.curves.push( new LineCurve( endPoint, startPoint ) );

  		}

  	},

  	// To get accurate point with reference to
  	// entire path distance at time t,
  	// following has to be done:

  	// 1. Length of each sub path have to be known
  	// 2. Locate and identify type of curve
  	// 3. Get t for the curve
  	// 4. Return curve.getPointAt(t')

  	getPoint: function ( t ) {

  		var d = t * this.getLength();
  		var curveLengths = this.getCurveLengths();
  		var i = 0;

  		// To think about boundaries points.

  		while ( i < curveLengths.length ) {

  			if ( curveLengths[ i ] >= d ) {

  				var diff = curveLengths[ i ] - d;
  				var curve = this.curves[ i ];

  				var segmentLength = curve.getLength();
  				var u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;

  				return curve.getPointAt( u );

  			}

  			i ++;

  		}

  		return null;

  		// loop where sum != 0, sum > d , sum+1 <d

  	},

  	// We cannot use the default THREE.Curve getPoint() with getLength() because in
  	// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
  	// getPoint() depends on getLength

  	getLength: function () {

  		var lens = this.getCurveLengths();
  		return lens[ lens.length - 1 ];

  	},

  	// cacheLengths must be recalculated.
  	updateArcLengths: function () {

  		this.needsUpdate = true;
  		this.cacheLengths = null;
  		this.getCurveLengths();

  	},

  	// Compute lengths and cache them
  	// We cannot overwrite getLengths() because UtoT mapping uses it.

  	getCurveLengths: function () {

  		// We use cache values if curves and cache array are same length

  		if ( this.cacheLengths && this.cacheLengths.length === this.curves.length ) {

  			return this.cacheLengths;

  		}

  		// Get length of sub-curve
  		// Push sums into cached array

  		var lengths = [], sums = 0;

  		for ( var i = 0, l = this.curves.length; i < l; i ++ ) {

  			sums += this.curves[ i ].getLength();
  			lengths.push( sums );

  		}

  		this.cacheLengths = lengths;

  		return lengths;

  	},

  	getSpacedPoints: function ( divisions ) {

  		if ( divisions === undefined ) divisions = 40;

  		var points = [];

  		for ( var i = 0; i <= divisions; i ++ ) {

  			points.push( this.getPoint( i / divisions ) );

  		}

  		if ( this.autoClose ) {

  			points.push( points[ 0 ] );

  		}

  		return points;

  	},

  	getPoints: function ( divisions ) {

  		divisions = divisions || 12;

  		var points = [], last;

  		for ( var i = 0, curves = this.curves; i < curves.length; i ++ ) {

  			var curve = curves[ i ];
  			var resolution = ( curve && curve.isEllipseCurve ) ? divisions * 2
  				: ( curve && curve.isLineCurve ) ? 1
  					: ( curve && curve.isSplineCurve ) ? divisions * curve.points.length
  						: divisions;

  			var pts = curve.getPoints( resolution );

  			for ( var j = 0; j < pts.length; j ++ ) {

  				var point = pts[ j ];

  				if ( last && last.equals( point ) ) continue; // ensures no consecutive points are duplicates

  				points.push( point );
  				last = point;

  			}

  		}

  		if ( this.autoClose && points.length > 1 && ! points[ points.length - 1 ].equals( points[ 0 ] ) ) {

  			points.push( points[ 0 ] );

  		}

  		return points;

  	},

  	copy: function ( source ) {

  		Curve.prototype.copy.call( this, source );

  		this.curves = [];

  		for ( var i = 0, l = source.curves.length; i < l; i ++ ) {

  			var curve = source.curves[ i ];

  			this.curves.push( curve.clone() );

  		}

  		this.autoClose = source.autoClose;

  		return this;

  	},

  	toJSON: function () {

  		var data = Curve.prototype.toJSON.call( this );

  		data.autoClose = this.autoClose;
  		data.curves = [];

  		for ( var i = 0, l = this.curves.length; i < l; i ++ ) {

  			var curve = this.curves[ i ];
  			data.curves.push( curve.toJSON() );

  		}

  		return data;

  	},

  	fromJSON: function ( json ) {

  		Curve.prototype.fromJSON.call( this, json );

  		this.autoClose = json.autoClose;
  		this.curves = [];

  		for ( var i = 0, l = json.curves.length; i < l; i ++ ) {

  			var curve = json.curves[ i ];
  			this.curves.push( new Curves[ curve.type ]().fromJSON( curve ) );

  		}

  		return this;

  	}

  } );

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * Creates free form 2d path using series of points, lines or curves.
   **/

  function Path( points ) {

  	CurvePath.call( this );

  	this.type = 'Path';

  	this.currentPoint = new Vector2();

  	if ( points ) {

  		this.setFromPoints( points );

  	}

  }

  Path.prototype = Object.assign( Object.create( CurvePath.prototype ), {

  	constructor: Path,

  	setFromPoints: function ( points ) {

  		this.moveTo( points[ 0 ].x, points[ 0 ].y );

  		for ( var i = 1, l = points.length; i < l; i ++ ) {

  			this.lineTo( points[ i ].x, points[ i ].y );

  		}

  	},

  	moveTo: function ( x, y ) {

  		this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying?

  	},

  	lineTo: function ( x, y ) {

  		var curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) );
  		this.curves.push( curve );

  		this.currentPoint.set( x, y );

  	},

  	quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {

  		var curve = new QuadraticBezierCurve(
  			this.currentPoint.clone(),
  			new Vector2( aCPx, aCPy ),
  			new Vector2( aX, aY )
  		);

  		this.curves.push( curve );

  		this.currentPoint.set( aX, aY );

  	},

  	bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {

  		var curve = new CubicBezierCurve(
  			this.currentPoint.clone(),
  			new Vector2( aCP1x, aCP1y ),
  			new Vector2( aCP2x, aCP2y ),
  			new Vector2( aX, aY )
  		);

  		this.curves.push( curve );

  		this.currentPoint.set( aX, aY );

  	},

  	splineThru: function ( pts /*Array of Vector*/ ) {

  		var npts = [ this.currentPoint.clone() ].concat( pts );

  		var curve = new SplineCurve( npts );
  		this.curves.push( curve );

  		this.currentPoint.copy( pts[ pts.length - 1 ] );

  	},

  	arc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

  		var x0 = this.currentPoint.x;
  		var y0 = this.currentPoint.y;

  		this.absarc( aX + x0, aY + y0, aRadius,
  			aStartAngle, aEndAngle, aClockwise );

  	},

  	absarc: function ( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) {

  		this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise );

  	},

  	ellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

  		var x0 = this.currentPoint.x;
  		var y0 = this.currentPoint.y;

  		this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );

  	},

  	absellipse: function ( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) {

  		var curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation );

  		if ( this.curves.length > 0 ) {

  			// if a previous curve is present, attempt to join
  			var firstPoint = curve.getPoint( 0 );

  			if ( ! firstPoint.equals( this.currentPoint ) ) {

  				this.lineTo( firstPoint.x, firstPoint.y );

  			}

  		}

  		this.curves.push( curve );

  		var lastPoint = curve.getPoint( 1 );
  		this.currentPoint.copy( lastPoint );

  	},

  	copy: function ( source ) {

  		CurvePath.prototype.copy.call( this, source );

  		this.currentPoint.copy( source.currentPoint );

  		return this;

  	},

  	toJSON: function () {

  		var data = CurvePath.prototype.toJSON.call( this );

  		data.currentPoint = this.currentPoint.toArray();

  		return data;

  	},

  	fromJSON: function ( json ) {

  		CurvePath.prototype.fromJSON.call( this, json );

  		this.currentPoint.fromArray( json.currentPoint );

  		return this;

  	}

  } );

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * Defines a 2d shape plane using paths.
   **/

  // STEP 1 Create a path.
  // STEP 2 Turn path into shape.
  // STEP 3 ExtrudeGeometry takes in Shape/Shapes
  // STEP 3a - Extract points from each shape, turn to vertices
  // STEP 3b - Triangulate each shape, add faces.

  function Shape( points ) {

  	Path.call( this, points );

  	this.uuid = _Math.generateUUID();

  	this.type = 'Shape';

  	this.holes = [];

  }

  Shape.prototype = Object.assign( Object.create( Path.prototype ), {

  	constructor: Shape,

  	getPointsHoles: function ( divisions ) {

  		var holesPts = [];

  		for ( var i = 0, l = this.holes.length; i < l; i ++ ) {

  			holesPts[ i ] = this.holes[ i ].getPoints( divisions );

  		}

  		return holesPts;

  	},

  	// get points of shape and holes (keypoints based on segments parameter)

  	extractPoints: function ( divisions ) {

  		return {

  			shape: this.getPoints( divisions ),
  			holes: this.getPointsHoles( divisions )

  		};

  	},

  	copy: function ( source ) {

  		Path.prototype.copy.call( this, source );

  		this.holes = [];

  		for ( var i = 0, l = source.holes.length; i < l; i ++ ) {

  			var hole = source.holes[ i ];

  			this.holes.push( hole.clone() );

  		}

  		return this;

  	},

  	toJSON: function () {

  		var data = Path.prototype.toJSON.call( this );

  		data.uuid = this.uuid;
  		data.holes = [];

  		for ( var i = 0, l = this.holes.length; i < l; i ++ ) {

  			var hole = this.holes[ i ];
  			data.holes.push( hole.toJSON() );

  		}

  		return data;

  	},

  	fromJSON: function ( json ) {

  		Path.prototype.fromJSON.call( this, json );

  		this.uuid = json.uuid;
  		this.holes = [];

  		for ( var i = 0, l = json.holes.length; i < l; i ++ ) {

  			var hole = json.holes[ i ];
  			this.holes.push( new Path().fromJSON( hole ) );

  		}

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  function Light( color, intensity ) {

  	Object3D.call( this );

  	this.type = 'Light';

  	this.color = new Color( color );
  	this.intensity = intensity !== undefined ? intensity : 1;

  	this.receiveShadow = undefined;

  }

  Light.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Light,

  	isLight: true,

  	copy: function ( source ) {

  		Object3D.prototype.copy.call( this, source );

  		this.color.copy( source.color );
  		this.intensity = source.intensity;

  		return this;

  	},

  	toJSON: function ( meta ) {

  		var data = Object3D.prototype.toJSON.call( this, meta );

  		data.object.color = this.color.getHex();
  		data.object.intensity = this.intensity;

  		if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex();

  		if ( this.distance !== undefined ) data.object.distance = this.distance;
  		if ( this.angle !== undefined ) data.object.angle = this.angle;
  		if ( this.decay !== undefined ) data.object.decay = this.decay;
  		if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra;

  		if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON();

  		return data;

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function HemisphereLight( skyColor, groundColor, intensity ) {

  	Light.call( this, skyColor, intensity );

  	this.type = 'HemisphereLight';

  	this.castShadow = undefined;

  	this.position.copy( Object3D.DefaultUp );
  	this.updateMatrix();

  	this.groundColor = new Color( groundColor );

  }

  HemisphereLight.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: HemisphereLight,

  	isHemisphereLight: true,

  	copy: function ( source ) {

  		Light.prototype.copy.call( this, source );

  		this.groundColor.copy( source.groundColor );

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function LightShadow( camera ) {

  	this.camera = camera;

  	this.bias = 0;
  	this.radius = 1;

  	this.mapSize = new Vector2( 512, 512 );

  	this.map = null;
  	this.matrix = new Matrix4();

  }

  Object.assign( LightShadow.prototype, {

  	copy: function ( source ) {

  		this.camera = source.camera.clone();

  		this.bias = source.bias;
  		this.radius = source.radius;

  		this.mapSize.copy( source.mapSize );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	toJSON: function () {

  		var object = {};

  		if ( this.bias !== 0 ) object.bias = this.bias;
  		if ( this.radius !== 1 ) object.radius = this.radius;
  		if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray();

  		object.camera = this.camera.toJSON( false ).object;
  		delete object.camera.matrix;

  		return object;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function SpotLightShadow() {

  	LightShadow.call( this, new PerspectiveCamera( 50, 1, 0.5, 500 ) );

  }

  SpotLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {

  	constructor: SpotLightShadow,

  	isSpotLightShadow: true,

  	update: function ( light ) {

  		var camera = this.camera;

  		var fov = _Math.RAD2DEG * 2 * light.angle;
  		var aspect = this.mapSize.width / this.mapSize.height;
  		var far = light.distance || camera.far;

  		if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) {

  			camera.fov = fov;
  			camera.aspect = aspect;
  			camera.far = far;
  			camera.updateProjectionMatrix();

  		}

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function SpotLight( color, intensity, distance, angle, penumbra, decay ) {

  	Light.call( this, color, intensity );

  	this.type = 'SpotLight';

  	this.position.copy( Object3D.DefaultUp );
  	this.updateMatrix();

  	this.target = new Object3D();

  	Object.defineProperty( this, 'power', {
  		get: function () {

  			// intensity = power per solid angle.
  			// ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
  			return this.intensity * Math.PI;

  		},
  		set: function ( power ) {

  			// intensity = power per solid angle.
  			// ref: equation (17) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
  			this.intensity = power / Math.PI;

  		}
  	} );

  	this.distance = ( distance !== undefined ) ? distance : 0;
  	this.angle = ( angle !== undefined ) ? angle : Math.PI / 3;
  	this.penumbra = ( penumbra !== undefined ) ? penumbra : 0;
  	this.decay = ( decay !== undefined ) ? decay : 1;	// for physically correct lights, should be 2.

  	this.shadow = new SpotLightShadow();

  }

  SpotLight.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: SpotLight,

  	isSpotLight: true,

  	copy: function ( source ) {

  		Light.prototype.copy.call( this, source );

  		this.distance = source.distance;
  		this.angle = source.angle;
  		this.penumbra = source.penumbra;
  		this.decay = source.decay;

  		this.target = source.target.clone();

  		this.shadow = source.shadow.clone();

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */


  function PointLight( color, intensity, distance, decay ) {

  	Light.call( this, color, intensity );

  	this.type = 'PointLight';

  	Object.defineProperty( this, 'power', {
  		get: function () {

  			// intensity = power per solid angle.
  			// ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
  			return this.intensity * 4 * Math.PI;

  		},
  		set: function ( power ) {

  			// intensity = power per solid angle.
  			// ref: equation (15) from https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
  			this.intensity = power / ( 4 * Math.PI );

  		}
  	} );

  	this.distance = ( distance !== undefined ) ? distance : 0;
  	this.decay = ( decay !== undefined ) ? decay : 1;	// for physically correct lights, should be 2.

  	this.shadow = new LightShadow( new PerspectiveCamera( 90, 1, 0.5, 500 ) );

  }

  PointLight.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: PointLight,

  	isPointLight: true,

  	copy: function ( source ) {

  		Light.prototype.copy.call( this, source );

  		this.distance = source.distance;
  		this.decay = source.decay;

  		this.shadow = source.shadow.clone();

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function DirectionalLightShadow( ) {

  	LightShadow.call( this, new OrthographicCamera( - 5, 5, 5, - 5, 0.5, 500 ) );

  }

  DirectionalLightShadow.prototype = Object.assign( Object.create( LightShadow.prototype ), {

  	constructor: DirectionalLightShadow

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  function DirectionalLight( color, intensity ) {

  	Light.call( this, color, intensity );

  	this.type = 'DirectionalLight';

  	this.position.copy( Object3D.DefaultUp );
  	this.updateMatrix();

  	this.target = new Object3D();

  	this.shadow = new DirectionalLightShadow();

  }

  DirectionalLight.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: DirectionalLight,

  	isDirectionalLight: true,

  	copy: function ( source ) {

  		Light.prototype.copy.call( this, source );

  		this.target = source.target.clone();

  		this.shadow = source.shadow.clone();

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function AmbientLight( color, intensity ) {

  	Light.call( this, color, intensity );

  	this.type = 'AmbientLight';

  	this.castShadow = undefined;

  }

  AmbientLight.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: AmbientLight,

  	isAmbientLight: true

  } );

  /**
   * @author abelnation / http://github.com/abelnation
   */

  function RectAreaLight( color, intensity, width, height ) {

  	Light.call( this, color, intensity );

  	this.type = 'RectAreaLight';

  	this.width = ( width !== undefined ) ? width : 10;
  	this.height = ( height !== undefined ) ? height : 10;

  }

  RectAreaLight.prototype = Object.assign( Object.create( Light.prototype ), {

  	constructor: RectAreaLight,

  	isRectAreaLight: true,

  	copy: function ( source ) {

  		Light.prototype.copy.call( this, source );

  		this.width = source.width;
  		this.height = source.height;

  		return this;

  	},

  	toJSON: function ( meta ) {

  		var data = Light.prototype.toJSON.call( this, meta );

  		data.object.width = this.width;
  		data.object.height = this.height;

  		return data;

  	}

  } );

  /**
   *
   * A Track that interpolates Strings
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function StringKeyframeTrack( name, times, values, interpolation ) {

  	KeyframeTrack.call( this, name, times, values, interpolation );

  }

  StringKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

  	constructor: StringKeyframeTrack,

  	ValueTypeName: 'string',
  	ValueBufferType: Array,

  	DefaultInterpolation: InterpolateDiscrete,

  	InterpolantFactoryMethodLinear: undefined,

  	InterpolantFactoryMethodSmooth: undefined

  } );

  /**
   *
   * A Track of Boolean keyframe values.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function BooleanKeyframeTrack( name, times, values ) {

  	KeyframeTrack.call( this, name, times, values );

  }

  BooleanKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

  	constructor: BooleanKeyframeTrack,

  	ValueTypeName: 'bool',
  	ValueBufferType: Array,

  	DefaultInterpolation: InterpolateDiscrete,

  	InterpolantFactoryMethodLinear: undefined,
  	InterpolantFactoryMethodSmooth: undefined

  	// Note: Actually this track could have a optimized / compressed
  	// representation of a single value and a custom interpolant that
  	// computes "firstValue ^ isOdd( index )".

  } );

  /**
   * Abstract base class of interpolants over parametric samples.
   *
   * The parameter domain is one dimensional, typically the time or a path
   * along a curve defined by the data.
   *
   * The sample values can have any dimensionality and derived classes may
   * apply special interpretations to the data.
   *
   * This class provides the interval seek in a Template Method, deferring
   * the actual interpolation to derived classes.
   *
   * Time complexity is O(1) for linear access crossing at most two points
   * and O(log N) for random access, where N is the number of positions.
   *
   * References:
   *
   * 		http://www.oodesign.com/template-method-pattern.html
   *
   * @author tschw
   */

  function Interpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

  	this.parameterPositions = parameterPositions;
  	this._cachedIndex = 0;

  	this.resultBuffer = resultBuffer !== undefined ?
  		resultBuffer : new sampleValues.constructor( sampleSize );
  	this.sampleValues = sampleValues;
  	this.valueSize = sampleSize;

  }

  Object.assign( Interpolant.prototype, {

  	evaluate: function ( t ) {

  		var pp = this.parameterPositions,
  			i1 = this._cachedIndex,

  			t1 = pp[ i1 ],
  			t0 = pp[ i1 - 1 ];

  		validate_interval: {

  			seek: {

  				var right;

  				linear_scan: {

  					//- See http://jsperf.com/comparison-to-undefined/3
  					//- slower code:
  					//-
  					//- 				if ( t >= t1 || t1 === undefined ) {
  					forward_scan: if ( ! ( t < t1 ) ) {

  						for ( var giveUpAt = i1 + 2; ; ) {

  							if ( t1 === undefined ) {

  								if ( t < t0 ) break forward_scan;

  								// after end

  								i1 = pp.length;
  								this._cachedIndex = i1;
  								return this.afterEnd_( i1 - 1, t, t0 );

  							}

  							if ( i1 === giveUpAt ) break; // this loop

  							t0 = t1;
  							t1 = pp[ ++ i1 ];

  							if ( t < t1 ) {

  								// we have arrived at the sought interval
  								break seek;

  							}

  						}

  						// prepare binary search on the right side of the index
  						right = pp.length;
  						break linear_scan;

  					}

  					//- slower code:
  					//-					if ( t < t0 || t0 === undefined ) {
  					if ( ! ( t >= t0 ) ) {

  						// looping?

  						var t1global = pp[ 1 ];

  						if ( t < t1global ) {

  							i1 = 2; // + 1, using the scan for the details
  							t0 = t1global;

  						}

  						// linear reverse scan

  						for ( var giveUpAt = i1 - 2; ; ) {

  							if ( t0 === undefined ) {

  								// before start

  								this._cachedIndex = 0;
  								return this.beforeStart_( 0, t, t1 );

  							}

  							if ( i1 === giveUpAt ) break; // this loop

  							t1 = t0;
  							t0 = pp[ -- i1 - 1 ];

  							if ( t >= t0 ) {

  								// we have arrived at the sought interval
  								break seek;

  							}

  						}

  						// prepare binary search on the left side of the index
  						right = i1;
  						i1 = 0;
  						break linear_scan;

  					}

  					// the interval is valid

  					break validate_interval;

  				} // linear scan

  				// binary search

  				while ( i1 < right ) {

  					var mid = ( i1 + right ) >>> 1;

  					if ( t < pp[ mid ] ) {

  						right = mid;

  					} else {

  						i1 = mid + 1;

  					}

  				}

  				t1 = pp[ i1 ];
  				t0 = pp[ i1 - 1 ];

  				// check boundary cases, again

  				if ( t0 === undefined ) {

  					this._cachedIndex = 0;
  					return this.beforeStart_( 0, t, t1 );

  				}

  				if ( t1 === undefined ) {

  					i1 = pp.length;
  					this._cachedIndex = i1;
  					return this.afterEnd_( i1 - 1, t0, t );

  				}

  			} // seek

  			this._cachedIndex = i1;

  			this.intervalChanged_( i1, t0, t1 );

  		} // validate_interval

  		return this.interpolate_( i1, t0, t, t1 );

  	},

  	settings: null, // optional, subclass-specific settings structure
  	// Note: The indirection allows central control of many interpolants.

  	// --- Protected interface

  	DefaultSettings_: {},

  	getSettings_: function () {

  		return this.settings || this.DefaultSettings_;

  	},

  	copySampleValue_: function ( index ) {

  		// copies a sample value to the result buffer

  		var result = this.resultBuffer,
  			values = this.sampleValues,
  			stride = this.valueSize,
  			offset = index * stride;

  		for ( var i = 0; i !== stride; ++ i ) {

  			result[ i ] = values[ offset + i ];

  		}

  		return result;

  	},

  	// Template methods for derived classes:

  	interpolate_: function ( /* i1, t0, t, t1 */ ) {

  		throw new Error( 'call to abstract method' );
  		// implementations shall return this.resultBuffer

  	},

  	intervalChanged_: function ( /* i1, t0, t1 */ ) {

  		// empty

  	}

  } );

  //!\ DECLARE ALIAS AFTER assign prototype !
  Object.assign( Interpolant.prototype, {

  	//( 0, t, t0 ), returns this.resultBuffer
  	beforeStart_: Interpolant.prototype.copySampleValue_,

  	//( N-1, tN-1, t ), returns this.resultBuffer
  	afterEnd_: Interpolant.prototype.copySampleValue_,

  } );

  /**
   * Spherical linear unit quaternion interpolant.
   *
   * @author tschw
   */

  function QuaternionLinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

  	Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

  }

  QuaternionLinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

  	constructor: QuaternionLinearInterpolant,

  	interpolate_: function ( i1, t0, t, t1 ) {

  		var result = this.resultBuffer,
  			values = this.sampleValues,
  			stride = this.valueSize,

  			offset = i1 * stride,

  			alpha = ( t - t0 ) / ( t1 - t0 );

  		for ( var end = offset + stride; offset !== end; offset += 4 ) {

  			Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha );

  		}

  		return result;

  	}

  } );

  /**
   *
   * A Track of quaternion keyframe values.
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function QuaternionKeyframeTrack( name, times, values, interpolation ) {

  	KeyframeTrack.call( this, name, times, values, interpolation );

  }

  QuaternionKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

  	constructor: QuaternionKeyframeTrack,

  	ValueTypeName: 'quaternion',

  	// ValueBufferType is inherited

  	DefaultInterpolation: InterpolateLinear,

  	InterpolantFactoryMethodLinear: function ( result ) {

  		return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result );

  	},

  	InterpolantFactoryMethodSmooth: undefined // not yet implemented

  } );

  /**
   *
   * A Track of keyframe values that represent color.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function ColorKeyframeTrack( name, times, values, interpolation ) {

  	KeyframeTrack.call( this, name, times, values, interpolation );

  }

  ColorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

  	constructor: ColorKeyframeTrack,

  	ValueTypeName: 'color'

  	// ValueBufferType is inherited

  	// DefaultInterpolation is inherited

  	// Note: Very basic implementation and nothing special yet.
  	// However, this is the place for color space parameterization.

  } );

  /**
   *
   * A Track of numeric keyframe values.
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function NumberKeyframeTrack( name, times, values, interpolation ) {

  	KeyframeTrack.call( this, name, times, values, interpolation );

  }

  NumberKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

  	constructor: NumberKeyframeTrack,

  	ValueTypeName: 'number'

  	// ValueBufferType is inherited

  	// DefaultInterpolation is inherited

  } );

  /**
   * Fast and simple cubic spline interpolant.
   *
   * It was derived from a Hermitian construction setting the first derivative
   * at each sample position to the linear slope between neighboring positions
   * over their parameter interval.
   *
   * @author tschw
   */

  function CubicInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

  	Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

  	this._weightPrev = - 0;
  	this._offsetPrev = - 0;
  	this._weightNext = - 0;
  	this._offsetNext = - 0;

  }

  CubicInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

  	constructor: CubicInterpolant,

  	DefaultSettings_: {

  		endingStart: ZeroCurvatureEnding,
  		endingEnd: ZeroCurvatureEnding

  	},

  	intervalChanged_: function ( i1, t0, t1 ) {

  		var pp = this.parameterPositions,
  			iPrev = i1 - 2,
  			iNext = i1 + 1,

  			tPrev = pp[ iPrev ],
  			tNext = pp[ iNext ];

  		if ( tPrev === undefined ) {

  			switch ( this.getSettings_().endingStart ) {

  				case ZeroSlopeEnding:

  					// f'(t0) = 0
  					iPrev = i1;
  					tPrev = 2 * t0 - t1;

  					break;

  				case WrapAroundEnding:

  					// use the other end of the curve
  					iPrev = pp.length - 2;
  					tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ];

  					break;

  				default: // ZeroCurvatureEnding

  					// f''(t0) = 0 a.k.a. Natural Spline
  					iPrev = i1;
  					tPrev = t1;

  			}

  		}

  		if ( tNext === undefined ) {

  			switch ( this.getSettings_().endingEnd ) {

  				case ZeroSlopeEnding:

  					// f'(tN) = 0
  					iNext = i1;
  					tNext = 2 * t1 - t0;

  					break;

  				case WrapAroundEnding:

  					// use the other end of the curve
  					iNext = 1;
  					tNext = t1 + pp[ 1 ] - pp[ 0 ];

  					break;

  				default: // ZeroCurvatureEnding

  					// f''(tN) = 0, a.k.a. Natural Spline
  					iNext = i1 - 1;
  					tNext = t0;

  			}

  		}

  		var halfDt = ( t1 - t0 ) * 0.5,
  			stride = this.valueSize;

  		this._weightPrev = halfDt / ( t0 - tPrev );
  		this._weightNext = halfDt / ( tNext - t1 );
  		this._offsetPrev = iPrev * stride;
  		this._offsetNext = iNext * stride;

  	},

  	interpolate_: function ( i1, t0, t, t1 ) {

  		var result = this.resultBuffer,
  			values = this.sampleValues,
  			stride = this.valueSize,

  			o1 = i1 * stride,		o0 = o1 - stride,
  			oP = this._offsetPrev, 	oN = this._offsetNext,
  			wP = this._weightPrev,	wN = this._weightNext,

  			p = ( t - t0 ) / ( t1 - t0 ),
  			pp = p * p,
  			ppp = pp * p;

  		// evaluate polynomials

  		var sP = - wP * ppp + 2 * wP * pp - wP * p;
  		var s0 = ( 1 + wP ) * ppp + ( - 1.5 - 2 * wP ) * pp + ( - 0.5 + wP ) * p + 1;
  		var s1 = ( - 1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p;
  		var sN = wN * ppp - wN * pp;

  		// combine data linearly

  		for ( var i = 0; i !== stride; ++ i ) {

  			result[ i ] =
  					sP * values[ oP + i ] +
  					s0 * values[ o0 + i ] +
  					s1 * values[ o1 + i ] +
  					sN * values[ oN + i ];

  		}

  		return result;

  	}

  } );

  /**
   * @author tschw
   */

  function LinearInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

  	Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

  }

  LinearInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

  	constructor: LinearInterpolant,

  	interpolate_: function ( i1, t0, t, t1 ) {

  		var result = this.resultBuffer,
  			values = this.sampleValues,
  			stride = this.valueSize,

  			offset1 = i1 * stride,
  			offset0 = offset1 - stride,

  			weight1 = ( t - t0 ) / ( t1 - t0 ),
  			weight0 = 1 - weight1;

  		for ( var i = 0; i !== stride; ++ i ) {

  			result[ i ] =
  					values[ offset0 + i ] * weight0 +
  					values[ offset1 + i ] * weight1;

  		}

  		return result;

  	}

  } );

  /**
   *
   * Interpolant that evaluates to the sample value at the position preceeding
   * the parameter.
   *
   * @author tschw
   */

  function DiscreteInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

  	Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

  }

  DiscreteInterpolant.prototype = Object.assign( Object.create( Interpolant.prototype ), {

  	constructor: DiscreteInterpolant,

  	interpolate_: function ( i1 /*, t0, t, t1 */ ) {

  		return this.copySampleValue_( i1 - 1 );

  	}

  } );

  /**
   * @author tschw
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   */

  var AnimationUtils = {

  	// same as Array.prototype.slice, but also works on typed arrays
  	arraySlice: function ( array, from, to ) {

  		if ( AnimationUtils.isTypedArray( array ) ) {

  			// in ios9 array.subarray(from, undefined) will return empty array
  			// but array.subarray(from) or array.subarray(from, len) is correct
  			return new array.constructor( array.subarray( from, to !== undefined ? to : array.length ) );

  		}

  		return array.slice( from, to );

  	},

  	// converts an array to a specific type
  	convertArray: function ( array, type, forceClone ) {

  		if ( ! array || // let 'undefined' and 'null' pass
  				! forceClone && array.constructor === type ) return array;

  		if ( typeof type.BYTES_PER_ELEMENT === 'number' ) {

  			return new type( array ); // create typed array

  		}

  		return Array.prototype.slice.call( array ); // create Array

  	},

  	isTypedArray: function ( object ) {

  		return ArrayBuffer.isView( object ) &&
  				! ( object instanceof DataView );

  	},

  	// returns an array by which times and values can be sorted
  	getKeyframeOrder: function ( times ) {

  		function compareTime( i, j ) {

  			return times[ i ] - times[ j ];

  		}

  		var n = times.length;
  		var result = new Array( n );
  		for ( var i = 0; i !== n; ++ i ) result[ i ] = i;

  		result.sort( compareTime );

  		return result;

  	},

  	// uses the array previously returned by 'getKeyframeOrder' to sort data
  	sortedArray: function ( values, stride, order ) {

  		var nValues = values.length;
  		var result = new values.constructor( nValues );

  		for ( var i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) {

  			var srcOffset = order[ i ] * stride;

  			for ( var j = 0; j !== stride; ++ j ) {

  				result[ dstOffset ++ ] = values[ srcOffset + j ];

  			}

  		}

  		return result;

  	},

  	// function for parsing AOS keyframe formats
  	flattenJSON: function ( jsonKeys, times, values, valuePropertyName ) {

  		var i = 1, key = jsonKeys[ 0 ];

  		while ( key !== undefined && key[ valuePropertyName ] === undefined ) {

  			key = jsonKeys[ i ++ ];

  		}

  		if ( key === undefined ) return; // no data

  		var value = key[ valuePropertyName ];
  		if ( value === undefined ) return; // no data

  		if ( Array.isArray( value ) ) {

  			do {

  				value = key[ valuePropertyName ];

  				if ( value !== undefined ) {

  					times.push( key.time );
  					values.push.apply( values, value ); // push all elements

  				}

  				key = jsonKeys[ i ++ ];

  			} while ( key !== undefined );

  		} else if ( value.toArray !== undefined ) {

  			// ...assume THREE.Math-ish

  			do {

  				value = key[ valuePropertyName ];

  				if ( value !== undefined ) {

  					times.push( key.time );
  					value.toArray( values, values.length );

  				}

  				key = jsonKeys[ i ++ ];

  			} while ( key !== undefined );

  		} else {

  			// otherwise push as-is

  			do {

  				value = key[ valuePropertyName ];

  				if ( value !== undefined ) {

  					times.push( key.time );
  					values.push( value );

  				}

  				key = jsonKeys[ i ++ ];

  			} while ( key !== undefined );

  		}

  	}

  };

  /**
   *
   * A timed sequence of keyframes for a specific property.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function KeyframeTrack( name, times, values, interpolation ) {

  	if ( name === undefined ) throw new Error( 'THREE.KeyframeTrack: track name is undefined' );
  	if ( times === undefined || times.length === 0 ) throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name );

  	this.name = name;

  	this.times = AnimationUtils.convertArray( times, this.TimeBufferType );
  	this.values = AnimationUtils.convertArray( values, this.ValueBufferType );

  	this.setInterpolation( interpolation || this.DefaultInterpolation );

  	this.validate();
  	this.optimize();

  }

  // Static methods:

  Object.assign( KeyframeTrack, {

  	// Serialization (in static context, because of constructor invocation
  	// and automatic invocation of .toJSON):

  	parse: function ( json ) {

  		if ( json.type === undefined ) {

  			throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' );

  		}

  		var trackType = KeyframeTrack._getTrackTypeForValueTypeName( json.type );

  		if ( json.times === undefined ) {

  			var times = [], values = [];

  			AnimationUtils.flattenJSON( json.keys, times, values, 'value' );

  			json.times = times;
  			json.values = values;

  		}

  		// derived classes can define a static parse method
  		if ( trackType.parse !== undefined ) {

  			return trackType.parse( json );

  		} else {

  			// by default, we assume a constructor compatible with the base
  			return new trackType( json.name, json.times, json.values, json.interpolation );

  		}

  	},

  	toJSON: function ( track ) {

  		var trackType = track.constructor;

  		var json;

  		// derived classes can define a static toJSON method
  		if ( trackType.toJSON !== undefined ) {

  			json = trackType.toJSON( track );

  		} else {

  			// by default, we assume the data can be serialized as-is
  			json = {

  				'name': track.name,
  				'times': AnimationUtils.convertArray( track.times, Array ),
  				'values': AnimationUtils.convertArray( track.values, Array )

  			};

  			var interpolation = track.getInterpolation();

  			if ( interpolation !== track.DefaultInterpolation ) {

  				json.interpolation = interpolation;

  			}

  		}

  		json.type = track.ValueTypeName; // mandatory

  		return json;

  	},

  	_getTrackTypeForValueTypeName: function ( typeName ) {

  		switch ( typeName.toLowerCase() ) {

  			case 'scalar':
  			case 'double':
  			case 'float':
  			case 'number':
  			case 'integer':

  				return NumberKeyframeTrack;

  			case 'vector':
  			case 'vector2':
  			case 'vector3':
  			case 'vector4':

  				return VectorKeyframeTrack;

  			case 'color':

  				return ColorKeyframeTrack;

  			case 'quaternion':

  				return QuaternionKeyframeTrack;

  			case 'bool':
  			case 'boolean':

  				return BooleanKeyframeTrack;

  			case 'string':

  				return StringKeyframeTrack;

  		}

  		throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName );

  	}

  } );

  Object.assign( KeyframeTrack.prototype, {

  	constructor: KeyframeTrack,

  	TimeBufferType: Float32Array,

  	ValueBufferType: Float32Array,

  	DefaultInterpolation: InterpolateLinear,

  	InterpolantFactoryMethodDiscrete: function ( result ) {

  		return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result );

  	},

  	InterpolantFactoryMethodLinear: function ( result ) {

  		return new LinearInterpolant( this.times, this.values, this.getValueSize(), result );

  	},

  	InterpolantFactoryMethodSmooth: function ( result ) {

  		return new CubicInterpolant( this.times, this.values, this.getValueSize(), result );

  	},

  	setInterpolation: function ( interpolation ) {

  		var factoryMethod;

  		switch ( interpolation ) {

  			case InterpolateDiscrete:

  				factoryMethod = this.InterpolantFactoryMethodDiscrete;

  				break;

  			case InterpolateLinear:

  				factoryMethod = this.InterpolantFactoryMethodLinear;

  				break;

  			case InterpolateSmooth:

  				factoryMethod = this.InterpolantFactoryMethodSmooth;

  				break;

  		}

  		if ( factoryMethod === undefined ) {

  			var message = "unsupported interpolation for " +
  				this.ValueTypeName + " keyframe track named " + this.name;

  			if ( this.createInterpolant === undefined ) {

  				// fall back to default, unless the default itself is messed up
  				if ( interpolation !== this.DefaultInterpolation ) {

  					this.setInterpolation( this.DefaultInterpolation );

  				} else {

  					throw new Error( message ); // fatal, in this case

  				}

  			}

  			console.warn( 'THREE.KeyframeTrack:', message );
  			return;

  		}

  		this.createInterpolant = factoryMethod;

  	},

  	getInterpolation: function () {

  		switch ( this.createInterpolant ) {

  			case this.InterpolantFactoryMethodDiscrete:

  				return InterpolateDiscrete;

  			case this.InterpolantFactoryMethodLinear:

  				return InterpolateLinear;

  			case this.InterpolantFactoryMethodSmooth:

  				return InterpolateSmooth;

  		}

  	},

  	getValueSize: function () {

  		return this.values.length / this.times.length;

  	},

  	// move all keyframes either forwards or backwards in time
  	shift: function ( timeOffset ) {

  		if ( timeOffset !== 0.0 ) {

  			var times = this.times;

  			for ( var i = 0, n = times.length; i !== n; ++ i ) {

  				times[ i ] += timeOffset;

  			}

  		}

  		return this;

  	},

  	// scale all keyframe times by a factor (useful for frame <-> seconds conversions)
  	scale: function ( timeScale ) {

  		if ( timeScale !== 1.0 ) {

  			var times = this.times;

  			for ( var i = 0, n = times.length; i !== n; ++ i ) {

  				times[ i ] *= timeScale;

  			}

  		}

  		return this;

  	},

  	// removes keyframes before and after animation without changing any values within the range [startTime, endTime].
  	// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
  	trim: function ( startTime, endTime ) {

  		var times = this.times,
  			nKeys = times.length,
  			from = 0,
  			to = nKeys - 1;

  		while ( from !== nKeys && times[ from ] < startTime ) {

  			++ from;

  		}

  		while ( to !== - 1 && times[ to ] > endTime ) {

  			-- to;

  		}

  		++ to; // inclusive -> exclusive bound

  		if ( from !== 0 || to !== nKeys ) {

  			// empty tracks are forbidden, so keep at least one keyframe
  			if ( from >= to ) to = Math.max( to, 1 ), from = to - 1;

  			var stride = this.getValueSize();
  			this.times = AnimationUtils.arraySlice( times, from, to );
  			this.values = AnimationUtils.arraySlice( this.values, from * stride, to * stride );

  		}

  		return this;

  	},

  	// ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
  	validate: function () {

  		var valid = true;

  		var valueSize = this.getValueSize();
  		if ( valueSize - Math.floor( valueSize ) !== 0 ) {

  			console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this );
  			valid = false;

  		}

  		var times = this.times,
  			values = this.values,

  			nKeys = times.length;

  		if ( nKeys === 0 ) {

  			console.error( 'THREE.KeyframeTrack: Track is empty.', this );
  			valid = false;

  		}

  		var prevTime = null;

  		for ( var i = 0; i !== nKeys; i ++ ) {

  			var currTime = times[ i ];

  			if ( typeof currTime === 'number' && isNaN( currTime ) ) {

  				console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime );
  				valid = false;
  				break;

  			}

  			if ( prevTime !== null && prevTime > currTime ) {

  				console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime );
  				valid = false;
  				break;

  			}

  			prevTime = currTime;

  		}

  		if ( values !== undefined ) {

  			if ( AnimationUtils.isTypedArray( values ) ) {

  				for ( var i = 0, n = values.length; i !== n; ++ i ) {

  					var value = values[ i ];

  					if ( isNaN( value ) ) {

  						console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i, value );
  						valid = false;
  						break;

  					}

  				}

  			}

  		}

  		return valid;

  	},

  	// removes equivalent sequential keys as common in morph target sequences
  	// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
  	optimize: function () {

  		var times = this.times,
  			values = this.values,
  			stride = this.getValueSize(),

  			smoothInterpolation = this.getInterpolation() === InterpolateSmooth,

  			writeIndex = 1,
  			lastIndex = times.length - 1;

  		for ( var i = 1; i < lastIndex; ++ i ) {

  			var keep = false;

  			var time = times[ i ];
  			var timeNext = times[ i + 1 ];

  			// remove adjacent keyframes scheduled at the same time

  			if ( time !== timeNext && ( i !== 1 || time !== time[ 0 ] ) ) {

  				if ( ! smoothInterpolation ) {

  					// remove unnecessary keyframes same as their neighbors

  					var offset = i * stride,
  						offsetP = offset - stride,
  						offsetN = offset + stride;

  					for ( var j = 0; j !== stride; ++ j ) {

  						var value = values[ offset + j ];

  						if ( value !== values[ offsetP + j ] ||
  							value !== values[ offsetN + j ] ) {

  							keep = true;
  							break;

  						}

  					}

  				} else {

  					keep = true;

  				}

  			}

  			// in-place compaction

  			if ( keep ) {

  				if ( i !== writeIndex ) {

  					times[ writeIndex ] = times[ i ];

  					var readOffset = i * stride,
  						writeOffset = writeIndex * stride;

  					for ( var j = 0; j !== stride; ++ j ) {

  						values[ writeOffset + j ] = values[ readOffset + j ];

  					}

  				}

  				++ writeIndex;

  			}

  		}

  		// flush last keyframe (compaction looks ahead)

  		if ( lastIndex > 0 ) {

  			times[ writeIndex ] = times[ lastIndex ];

  			for ( var readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) {

  				values[ writeOffset + j ] = values[ readOffset + j ];

  			}

  			++ writeIndex;

  		}

  		if ( writeIndex !== times.length ) {

  			this.times = AnimationUtils.arraySlice( times, 0, writeIndex );
  			this.values = AnimationUtils.arraySlice( values, 0, writeIndex * stride );

  		}

  		return this;

  	}

  } );

  /**
   *
   * A Track of vectored keyframe values.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function VectorKeyframeTrack( name, times, values, interpolation ) {

  	KeyframeTrack.call( this, name, times, values, interpolation );

  }

  VectorKeyframeTrack.prototype = Object.assign( Object.create( KeyframeTrack.prototype ), {

  	constructor: VectorKeyframeTrack,

  	ValueTypeName: 'vector'

  	// ValueBufferType is inherited

  	// DefaultInterpolation is inherited

  } );

  /**
   *
   * Reusable set of Tracks that represent an animation.
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   */

  function AnimationClip( name, duration, tracks ) {

  	this.name = name;
  	this.tracks = tracks;
  	this.duration = ( duration !== undefined ) ? duration : - 1;

  	this.uuid = _Math.generateUUID();

  	// this means it should figure out its duration by scanning the tracks
  	if ( this.duration < 0 ) {

  		this.resetDuration();

  	}

  	this.optimize();

  }

  Object.assign( AnimationClip, {

  	parse: function ( json ) {

  		var tracks = [],
  			jsonTracks = json.tracks,
  			frameTime = 1.0 / ( json.fps || 1.0 );

  		for ( var i = 0, n = jsonTracks.length; i !== n; ++ i ) {

  			tracks.push( KeyframeTrack.parse( jsonTracks[ i ] ).scale( frameTime ) );

  		}

  		return new AnimationClip( json.name, json.duration, tracks );

  	},

  	toJSON: function ( clip ) {

  		var tracks = [],
  			clipTracks = clip.tracks;

  		var json = {

  			'name': clip.name,
  			'duration': clip.duration,
  			'tracks': tracks,
  			'uuid': clip.uuid

  		};

  		for ( var i = 0, n = clipTracks.length; i !== n; ++ i ) {

  			tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) );

  		}

  		return json;

  	},

  	CreateFromMorphTargetSequence: function ( name, morphTargetSequence, fps, noLoop ) {

  		var numMorphTargets = morphTargetSequence.length;
  		var tracks = [];

  		for ( var i = 0; i < numMorphTargets; i ++ ) {

  			var times = [];
  			var values = [];

  			times.push(
  				( i + numMorphTargets - 1 ) % numMorphTargets,
  				i,
  				( i + 1 ) % numMorphTargets );

  			values.push( 0, 1, 0 );

  			var order = AnimationUtils.getKeyframeOrder( times );
  			times = AnimationUtils.sortedArray( times, 1, order );
  			values = AnimationUtils.sortedArray( values, 1, order );

  			// if there is a key at the first frame, duplicate it as the
  			// last frame as well for perfect loop.
  			if ( ! noLoop && times[ 0 ] === 0 ) {

  				times.push( numMorphTargets );
  				values.push( values[ 0 ] );

  			}

  			tracks.push(
  				new NumberKeyframeTrack(
  					'.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']',
  					times, values
  				).scale( 1.0 / fps ) );

  		}

  		return new AnimationClip( name, - 1, tracks );

  	},

  	findByName: function ( objectOrClipArray, name ) {

  		var clipArray = objectOrClipArray;

  		if ( ! Array.isArray( objectOrClipArray ) ) {

  			var o = objectOrClipArray;
  			clipArray = o.geometry && o.geometry.animations || o.animations;

  		}

  		for ( var i = 0; i < clipArray.length; i ++ ) {

  			if ( clipArray[ i ].name === name ) {

  				return clipArray[ i ];

  			}

  		}

  		return null;

  	},

  	CreateClipsFromMorphTargetSequences: function ( morphTargets, fps, noLoop ) {

  		var animationToMorphTargets = {};

  		// tested with https://regex101.com/ on trick sequences
  		// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
  		var pattern = /^([\w-]*?)([\d]+)$/;

  		// sort morph target names into animation groups based
  		// patterns like Walk_001, Walk_002, Run_001, Run_002
  		for ( var i = 0, il = morphTargets.length; i < il; i ++ ) {

  			var morphTarget = morphTargets[ i ];
  			var parts = morphTarget.name.match( pattern );

  			if ( parts && parts.length > 1 ) {

  				var name = parts[ 1 ];

  				var animationMorphTargets = animationToMorphTargets[ name ];
  				if ( ! animationMorphTargets ) {

  					animationToMorphTargets[ name ] = animationMorphTargets = [];

  				}

  				animationMorphTargets.push( morphTarget );

  			}

  		}

  		var clips = [];

  		for ( var name in animationToMorphTargets ) {

  			clips.push( AnimationClip.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) );

  		}

  		return clips;

  	},

  	// parse the animation.hierarchy format
  	parseAnimation: function ( animation, bones ) {

  		if ( ! animation ) {

  			console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' );
  			return null;

  		}

  		var addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) {

  			// only return track if there are actually keys.
  			if ( animationKeys.length !== 0 ) {

  				var times = [];
  				var values = [];

  				AnimationUtils.flattenJSON( animationKeys, times, values, propertyName );

  				// empty keys are filtered out, so check again
  				if ( times.length !== 0 ) {

  					destTracks.push( new trackType( trackName, times, values ) );

  				}

  			}

  		};

  		var tracks = [];

  		var clipName = animation.name || 'default';
  		// automatic length determination in AnimationClip.
  		var duration = animation.length || - 1;
  		var fps = animation.fps || 30;

  		var hierarchyTracks = animation.hierarchy || [];

  		for ( var h = 0; h < hierarchyTracks.length; h ++ ) {

  			var animationKeys = hierarchyTracks[ h ].keys;

  			// skip empty tracks
  			if ( ! animationKeys || animationKeys.length === 0 ) continue;

  			// process morph targets
  			if ( animationKeys[ 0 ].morphTargets ) {

  				// figure out all morph targets used in this track
  				var morphTargetNames = {};

  				for ( var k = 0; k < animationKeys.length; k ++ ) {

  					if ( animationKeys[ k ].morphTargets ) {

  						for ( var m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) {

  							morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = - 1;

  						}

  					}

  				}

  				// create a track for each morph target with all zero
  				// morphTargetInfluences except for the keys in which
  				// the morphTarget is named.
  				for ( var morphTargetName in morphTargetNames ) {

  					var times = [];
  					var values = [];

  					for ( var m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) {

  						var animationKey = animationKeys[ k ];

  						times.push( animationKey.time );
  						values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 );

  					}

  					tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) );

  				}

  				duration = morphTargetNames.length * ( fps || 1.0 );

  			} else {

  				// ...assume skeletal animation

  				var boneName = '.bones[' + bones[ h ].name + ']';

  				addNonemptyTrack(
  					VectorKeyframeTrack, boneName + '.position',
  					animationKeys, 'pos', tracks );

  				addNonemptyTrack(
  					QuaternionKeyframeTrack, boneName + '.quaternion',
  					animationKeys, 'rot', tracks );

  				addNonemptyTrack(
  					VectorKeyframeTrack, boneName + '.scale',
  					animationKeys, 'scl', tracks );

  			}

  		}

  		if ( tracks.length === 0 ) {

  			return null;

  		}

  		var clip = new AnimationClip( clipName, duration, tracks );

  		return clip;

  	}

  } );

  Object.assign( AnimationClip.prototype, {

  	resetDuration: function () {

  		var tracks = this.tracks, duration = 0;

  		for ( var i = 0, n = tracks.length; i !== n; ++ i ) {

  			var track = this.tracks[ i ];

  			duration = Math.max( duration, track.times[ track.times.length - 1 ] );

  		}

  		this.duration = duration;

  	},

  	trim: function () {

  		for ( var i = 0; i < this.tracks.length; i ++ ) {

  			this.tracks[ i ].trim( 0, this.duration );

  		}

  		return this;

  	},

  	optimize: function () {

  		for ( var i = 0; i < this.tracks.length; i ++ ) {

  			this.tracks[ i ].optimize();

  		}

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function MaterialLoader( manager ) {

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
  	this.textures = {};

  }

  Object.assign( MaterialLoader.prototype, {

  	load: function ( url, onLoad, onProgress, onError ) {

  		var scope = this;

  		var loader = new FileLoader( scope.manager );
  		loader.load( url, function ( text ) {

  			onLoad( scope.parse( JSON.parse( text ) ) );

  		}, onProgress, onError );

  	},

  	setTextures: function ( value ) {

  		this.textures = value;

  	},

  	parse: function ( json ) {

  		var textures = this.textures;

  		function getTexture( name ) {

  			if ( textures[ name ] === undefined ) {

  				console.warn( 'THREE.MaterialLoader: Undefined texture', name );

  			}

  			return textures[ name ];

  		}

  		var material = new Materials[ json.type ]();

  		if ( json.uuid !== undefined ) material.uuid = json.uuid;
  		if ( json.name !== undefined ) material.name = json.name;
  		if ( json.color !== undefined ) material.color.setHex( json.color );
  		if ( json.roughness !== undefined ) material.roughness = json.roughness;
  		if ( json.metalness !== undefined ) material.metalness = json.metalness;
  		if ( json.emissive !== undefined ) material.emissive.setHex( json.emissive );
  		if ( json.specular !== undefined ) material.specular.setHex( json.specular );
  		if ( json.shininess !== undefined ) material.shininess = json.shininess;
  		if ( json.clearCoat !== undefined ) material.clearCoat = json.clearCoat;
  		if ( json.clearCoatRoughness !== undefined ) material.clearCoatRoughness = json.clearCoatRoughness;
  		if ( json.uniforms !== undefined ) material.uniforms = json.uniforms;
  		if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader;
  		if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader;
  		if ( json.vertexColors !== undefined ) material.vertexColors = json.vertexColors;
  		if ( json.fog !== undefined ) material.fog = json.fog;
  		if ( json.flatShading !== undefined ) material.flatShading = json.flatShading;
  		if ( json.blending !== undefined ) material.blending = json.blending;
  		if ( json.side !== undefined ) material.side = json.side;
  		if ( json.opacity !== undefined ) material.opacity = json.opacity;
  		if ( json.transparent !== undefined ) material.transparent = json.transparent;
  		if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest;
  		if ( json.depthTest !== undefined ) material.depthTest = json.depthTest;
  		if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite;
  		if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite;
  		if ( json.wireframe !== undefined ) material.wireframe = json.wireframe;
  		if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth;
  		if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap;
  		if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin;

  		if ( json.rotation !== undefined ) material.rotation = json.rotation;

  		if ( json.linewidth !== 1 ) material.linewidth = json.linewidth;
  		if ( json.dashSize !== undefined ) material.dashSize = json.dashSize;
  		if ( json.gapSize !== undefined ) material.gapSize = json.gapSize;
  		if ( json.scale !== undefined ) material.scale = json.scale;

  		if ( json.polygonOffset !== undefined ) material.polygonOffset = json.polygonOffset;
  		if ( json.polygonOffsetFactor !== undefined ) material.polygonOffsetFactor = json.polygonOffsetFactor;
  		if ( json.polygonOffsetUnits !== undefined ) material.polygonOffsetUnits = json.polygonOffsetUnits;

  		if ( json.skinning !== undefined ) material.skinning = json.skinning;
  		if ( json.morphTargets !== undefined ) material.morphTargets = json.morphTargets;
  		if ( json.dithering !== undefined ) material.dithering = json.dithering;

  		if ( json.visible !== undefined ) material.visible = json.visible;
  		if ( json.userData !== undefined ) material.userData = json.userData;

  		// Deprecated

  		if ( json.shading !== undefined ) material.flatShading = json.shading === 1; // THREE.FlatShading

  		// for PointsMaterial

  		if ( json.size !== undefined ) material.size = json.size;
  		if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation;

  		// maps

  		if ( json.map !== undefined ) material.map = getTexture( json.map );

  		if ( json.alphaMap !== undefined ) {

  			material.alphaMap = getTexture( json.alphaMap );
  			material.transparent = true;

  		}

  		if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap );
  		if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale;

  		if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap );
  		if ( json.normalScale !== undefined ) {

  			var normalScale = json.normalScale;

  			if ( Array.isArray( normalScale ) === false ) {

  				// Blender exporter used to export a scalar. See #7459

  				normalScale = [ normalScale, normalScale ];

  			}

  			material.normalScale = new Vector2().fromArray( normalScale );

  		}

  		if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap );
  		if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale;
  		if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias;

  		if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap );
  		if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap );

  		if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap );
  		if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity;

  		if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap );

  		if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap );

  		if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity;

  		if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap );
  		if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity;

  		if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap );
  		if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity;

  		if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap );

  		return material;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function BufferGeometryLoader( manager ) {

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

  }

  Object.assign( BufferGeometryLoader.prototype, {

  	load: function ( url, onLoad, onProgress, onError ) {

  		var scope = this;

  		var loader = new FileLoader( scope.manager );
  		loader.load( url, function ( text ) {

  			onLoad( scope.parse( JSON.parse( text ) ) );

  		}, onProgress, onError );

  	},

  	parse: function ( json ) {

  		var geometry = new BufferGeometry();

  		var index = json.data.index;

  		if ( index !== undefined ) {

  			var typedArray = new TYPED_ARRAYS[ index.type ]( index.array );
  			geometry.setIndex( new BufferAttribute( typedArray, 1 ) );

  		}

  		var attributes = json.data.attributes;

  		for ( var key in attributes ) {

  			var attribute = attributes[ key ];
  			var typedArray = new TYPED_ARRAYS[ attribute.type ]( attribute.array );

  			geometry.addAttribute( key, new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized ) );

  		}

  		var groups = json.data.groups || json.data.drawcalls || json.data.offsets;

  		if ( groups !== undefined ) {

  			for ( var i = 0, n = groups.length; i !== n; ++ i ) {

  				var group = groups[ i ];

  				geometry.addGroup( group.start, group.count, group.materialIndex );

  			}

  		}

  		var boundingSphere = json.data.boundingSphere;

  		if ( boundingSphere !== undefined ) {

  			var center = new Vector3();

  			if ( boundingSphere.center !== undefined ) {

  				center.fromArray( boundingSphere.center );

  			}

  			geometry.boundingSphere = new Sphere( center, boundingSphere.radius );

  		}

  		return geometry;

  	}

  } );

  var TYPED_ARRAYS = {
  	Int8Array: Int8Array,
  	Uint8Array: Uint8Array,
  	// Workaround for IE11 pre KB2929437. See #11440
  	Uint8ClampedArray: typeof Uint8ClampedArray !== 'undefined' ? Uint8ClampedArray : Uint8Array,
  	Int16Array: Int16Array,
  	Uint16Array: Uint16Array,
  	Int32Array: Int32Array,
  	Uint32Array: Uint32Array,
  	Float32Array: Float32Array,
  	Float64Array: Float64Array
  };

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function Loader() {}

  Loader.Handlers = {

  	handlers: [],

  	add: function ( regex, loader ) {

  		this.handlers.push( regex, loader );

  	},

  	get: function ( file ) {

  		var handlers = this.handlers;

  		for ( var i = 0, l = handlers.length; i < l; i += 2 ) {

  			var regex = handlers[ i ];
  			var loader = handlers[ i + 1 ];

  			if ( regex.test( file ) ) {

  				return loader;

  			}

  		}

  		return null;

  	}

  };

  Object.assign( Loader.prototype, {

  	crossOrigin: undefined,

  	onLoadStart: function () {},

  	onLoadProgress: function () {},

  	onLoadComplete: function () {},

  	initMaterials: function ( materials, texturePath, crossOrigin ) {

  		var array = [];

  		for ( var i = 0; i < materials.length; ++ i ) {

  			array[ i ] = this.createMaterial( materials[ i ], texturePath, crossOrigin );

  		}

  		return array;

  	},

  	createMaterial: ( function () {

  		var BlendingMode = {
  			NoBlending: NoBlending,
  			NormalBlending: NormalBlending,
  			AdditiveBlending: AdditiveBlending,
  			SubtractiveBlending: SubtractiveBlending,
  			MultiplyBlending: MultiplyBlending,
  			CustomBlending: CustomBlending
  		};

  		var color = new Color();
  		var textureLoader = new TextureLoader();
  		var materialLoader = new MaterialLoader();

  		return function createMaterial( m, texturePath, crossOrigin ) {

  			// convert from old material format

  			var textures = {};

  			function loadTexture( path, repeat, offset, wrap, anisotropy ) {

  				var fullPath = texturePath + path;
  				var loader = Loader.Handlers.get( fullPath );

  				var texture;

  				if ( loader !== null ) {

  					texture = loader.load( fullPath );

  				} else {

  					textureLoader.setCrossOrigin( crossOrigin );
  					texture = textureLoader.load( fullPath );

  				}

  				if ( repeat !== undefined ) {

  					texture.repeat.fromArray( repeat );

  					if ( repeat[ 0 ] !== 1 ) texture.wrapS = RepeatWrapping;
  					if ( repeat[ 1 ] !== 1 ) texture.wrapT = RepeatWrapping;

  				}

  				if ( offset !== undefined ) {

  					texture.offset.fromArray( offset );

  				}

  				if ( wrap !== undefined ) {

  					if ( wrap[ 0 ] === 'repeat' ) texture.wrapS = RepeatWrapping;
  					if ( wrap[ 0 ] === 'mirror' ) texture.wrapS = MirroredRepeatWrapping;

  					if ( wrap[ 1 ] === 'repeat' ) texture.wrapT = RepeatWrapping;
  					if ( wrap[ 1 ] === 'mirror' ) texture.wrapT = MirroredRepeatWrapping;

  				}

  				if ( anisotropy !== undefined ) {

  					texture.anisotropy = anisotropy;

  				}

  				var uuid = _Math.generateUUID();

  				textures[ uuid ] = texture;

  				return uuid;

  			}

  			//

  			var json = {
  				uuid: _Math.generateUUID(),
  				type: 'MeshLambertMaterial'
  			};

  			for ( var name in m ) {

  				var value = m[ name ];

  				switch ( name ) {

  					case 'DbgColor':
  					case 'DbgIndex':
  					case 'opticalDensity':
  					case 'illumination':
  						break;
  					case 'DbgName':
  						json.name = value;
  						break;
  					case 'blending':
  						json.blending = BlendingMode[ value ];
  						break;
  					case 'colorAmbient':
  					case 'mapAmbient':
  						console.warn( 'THREE.Loader.createMaterial:', name, 'is no longer supported.' );
  						break;
  					case 'colorDiffuse':
  						json.color = color.fromArray( value ).getHex();
  						break;
  					case 'colorSpecular':
  						json.specular = color.fromArray( value ).getHex();
  						break;
  					case 'colorEmissive':
  						json.emissive = color.fromArray( value ).getHex();
  						break;
  					case 'specularCoef':
  						json.shininess = value;
  						break;
  					case 'shading':
  						if ( value.toLowerCase() === 'basic' ) json.type = 'MeshBasicMaterial';
  						if ( value.toLowerCase() === 'phong' ) json.type = 'MeshPhongMaterial';
  						if ( value.toLowerCase() === 'standard' ) json.type = 'MeshStandardMaterial';
  						break;
  					case 'mapDiffuse':
  						json.map = loadTexture( value, m.mapDiffuseRepeat, m.mapDiffuseOffset, m.mapDiffuseWrap, m.mapDiffuseAnisotropy );
  						break;
  					case 'mapDiffuseRepeat':
  					case 'mapDiffuseOffset':
  					case 'mapDiffuseWrap':
  					case 'mapDiffuseAnisotropy':
  						break;
  					case 'mapEmissive':
  						json.emissiveMap = loadTexture( value, m.mapEmissiveRepeat, m.mapEmissiveOffset, m.mapEmissiveWrap, m.mapEmissiveAnisotropy );
  						break;
  					case 'mapEmissiveRepeat':
  					case 'mapEmissiveOffset':
  					case 'mapEmissiveWrap':
  					case 'mapEmissiveAnisotropy':
  						break;
  					case 'mapLight':
  						json.lightMap = loadTexture( value, m.mapLightRepeat, m.mapLightOffset, m.mapLightWrap, m.mapLightAnisotropy );
  						break;
  					case 'mapLightRepeat':
  					case 'mapLightOffset':
  					case 'mapLightWrap':
  					case 'mapLightAnisotropy':
  						break;
  					case 'mapAO':
  						json.aoMap = loadTexture( value, m.mapAORepeat, m.mapAOOffset, m.mapAOWrap, m.mapAOAnisotropy );
  						break;
  					case 'mapAORepeat':
  					case 'mapAOOffset':
  					case 'mapAOWrap':
  					case 'mapAOAnisotropy':
  						break;
  					case 'mapBump':
  						json.bumpMap = loadTexture( value, m.mapBumpRepeat, m.mapBumpOffset, m.mapBumpWrap, m.mapBumpAnisotropy );
  						break;
  					case 'mapBumpScale':
  						json.bumpScale = value;
  						break;
  					case 'mapBumpRepeat':
  					case 'mapBumpOffset':
  					case 'mapBumpWrap':
  					case 'mapBumpAnisotropy':
  						break;
  					case 'mapNormal':
  						json.normalMap = loadTexture( value, m.mapNormalRepeat, m.mapNormalOffset, m.mapNormalWrap, m.mapNormalAnisotropy );
  						break;
  					case 'mapNormalFactor':
  						json.normalScale = value;
  						break;
  					case 'mapNormalRepeat':
  					case 'mapNormalOffset':
  					case 'mapNormalWrap':
  					case 'mapNormalAnisotropy':
  						break;
  					case 'mapSpecular':
  						json.specularMap = loadTexture( value, m.mapSpecularRepeat, m.mapSpecularOffset, m.mapSpecularWrap, m.mapSpecularAnisotropy );
  						break;
  					case 'mapSpecularRepeat':
  					case 'mapSpecularOffset':
  					case 'mapSpecularWrap':
  					case 'mapSpecularAnisotropy':
  						break;
  					case 'mapMetalness':
  						json.metalnessMap = loadTexture( value, m.mapMetalnessRepeat, m.mapMetalnessOffset, m.mapMetalnessWrap, m.mapMetalnessAnisotropy );
  						break;
  					case 'mapMetalnessRepeat':
  					case 'mapMetalnessOffset':
  					case 'mapMetalnessWrap':
  					case 'mapMetalnessAnisotropy':
  						break;
  					case 'mapRoughness':
  						json.roughnessMap = loadTexture( value, m.mapRoughnessRepeat, m.mapRoughnessOffset, m.mapRoughnessWrap, m.mapRoughnessAnisotropy );
  						break;
  					case 'mapRoughnessRepeat':
  					case 'mapRoughnessOffset':
  					case 'mapRoughnessWrap':
  					case 'mapRoughnessAnisotropy':
  						break;
  					case 'mapAlpha':
  						json.alphaMap = loadTexture( value, m.mapAlphaRepeat, m.mapAlphaOffset, m.mapAlphaWrap, m.mapAlphaAnisotropy );
  						break;
  					case 'mapAlphaRepeat':
  					case 'mapAlphaOffset':
  					case 'mapAlphaWrap':
  					case 'mapAlphaAnisotropy':
  						break;
  					case 'flipSided':
  						json.side = BackSide;
  						break;
  					case 'doubleSided':
  						json.side = DoubleSide;
  						break;
  					case 'transparency':
  						console.warn( 'THREE.Loader.createMaterial: transparency has been renamed to opacity' );
  						json.opacity = value;
  						break;
  					case 'depthTest':
  					case 'depthWrite':
  					case 'colorWrite':
  					case 'opacity':
  					case 'reflectivity':
  					case 'transparent':
  					case 'visible':
  					case 'wireframe':
  						json[ name ] = value;
  						break;
  					case 'vertexColors':
  						if ( value === true ) json.vertexColors = VertexColors;
  						if ( value === 'face' ) json.vertexColors = FaceColors;
  						break;
  					default:
  						console.error( 'THREE.Loader.createMaterial: Unsupported', name, value );
  						break;

  				}

  			}

  			if ( json.type === 'MeshBasicMaterial' ) delete json.emissive;
  			if ( json.type !== 'MeshPhongMaterial' ) delete json.specular;

  			if ( json.opacity < 1 ) json.transparent = true;

  			materialLoader.setTextures( textures );

  			return materialLoader.parse( json );

  		};

  	} )()

  } );

  /**
   * @author Don McCurdy / https://www.donmccurdy.com
   */

  var LoaderUtils = {

  	decodeText: function ( array ) {

  		if ( typeof TextDecoder !== 'undefined' ) {

  			return new TextDecoder().decode( array );

  		}

  		// Avoid the String.fromCharCode.apply(null, array) shortcut, which
  		// throws a "maximum call stack size exceeded" error for large arrays.

  		var s = '';

  		for ( var i = 0, il = array.length; i < il; i ++ ) {

  			// Implicitly assumes little-endian.
  			s += String.fromCharCode( array[ i ] );

  		}

  		// Merges multi-byte utf-8 characters.
  		return decodeURIComponent( escape( s ) );

  	},

  	extractUrlBase: function ( url ) {

  		var index = url.lastIndexOf( '/' );

  		if ( index === - 1 ) return './';

  		return url.substr( 0, index + 1 );

  	}

  };

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author alteredq / http://alteredqualia.com/
   */

  function JSONLoader( manager ) {

  	if ( typeof manager === 'boolean' ) {

  		console.warn( 'THREE.JSONLoader: showStatus parameter has been removed from constructor.' );
  		manager = undefined;

  	}

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

  	this.withCredentials = false;

  }

  Object.assign( JSONLoader.prototype, {

  	load: function ( url, onLoad, onProgress, onError ) {

  		var scope = this;

  		var texturePath = this.texturePath && ( typeof this.texturePath === 'string' ) ? this.texturePath : LoaderUtils.extractUrlBase( url );

  		var loader = new FileLoader( this.manager );
  		loader.setWithCredentials( this.withCredentials );
  		loader.load( url, function ( text ) {

  			var json = JSON.parse( text );
  			var metadata = json.metadata;

  			if ( metadata !== undefined ) {

  				var type = metadata.type;

  				if ( type !== undefined ) {

  					if ( type.toLowerCase() === 'object' ) {

  						console.error( 'THREE.JSONLoader: ' + url + ' should be loaded with THREE.ObjectLoader instead.' );
  						return;

  					}

  				}

  			}

  			var object = scope.parse( json, texturePath );
  			onLoad( object.geometry, object.materials );

  		}, onProgress, onError );

  	},

  	setTexturePath: function ( value ) {

  		this.texturePath = value;

  	},

  	parse: ( function () {

  		function parseModel( json, geometry ) {

  			function isBitSet( value, position ) {

  				return value & ( 1 << position );

  			}

  			var i, j, fi,

  				offset, zLength,

  				colorIndex, normalIndex, uvIndex, materialIndex,

  				type,
  				isQuad,
  				hasMaterial,
  				hasFaceVertexUv,
  				hasFaceNormal, hasFaceVertexNormal,
  				hasFaceColor, hasFaceVertexColor,

  				vertex, face, faceA, faceB, hex, normal,

  				uvLayer, uv, u, v,

  				faces = json.faces,
  				vertices = json.vertices,
  				normals = json.normals,
  				colors = json.colors,

  				scale = json.scale,

  				nUvLayers = 0;


  			if ( json.uvs !== undefined ) {

  				// disregard empty arrays

  				for ( i = 0; i < json.uvs.length; i ++ ) {

  					if ( json.uvs[ i ].length ) nUvLayers ++;

  				}

  				for ( i = 0; i < nUvLayers; i ++ ) {

  					geometry.faceVertexUvs[ i ] = [];

  				}

  			}

  			offset = 0;
  			zLength = vertices.length;

  			while ( offset < zLength ) {

  				vertex = new Vector3();

  				vertex.x = vertices[ offset ++ ] * scale;
  				vertex.y = vertices[ offset ++ ] * scale;
  				vertex.z = vertices[ offset ++ ] * scale;

  				geometry.vertices.push( vertex );

  			}

  			offset = 0;
  			zLength = faces.length;

  			while ( offset < zLength ) {

  				type = faces[ offset ++ ];

  				isQuad = isBitSet( type, 0 );
  				hasMaterial = isBitSet( type, 1 );
  				hasFaceVertexUv = isBitSet( type, 3 );
  				hasFaceNormal = isBitSet( type, 4 );
  				hasFaceVertexNormal = isBitSet( type, 5 );
  				hasFaceColor = isBitSet( type, 6 );
  				hasFaceVertexColor = isBitSet( type, 7 );

  				// console.log("type", type, "bits", isQuad, hasMaterial, hasFaceVertexUv, hasFaceNormal, hasFaceVertexNormal, hasFaceColor, hasFaceVertexColor);

  				if ( isQuad ) {

  					faceA = new Face3();
  					faceA.a = faces[ offset ];
  					faceA.b = faces[ offset + 1 ];
  					faceA.c = faces[ offset + 3 ];

  					faceB = new Face3();
  					faceB.a = faces[ offset + 1 ];
  					faceB.b = faces[ offset + 2 ];
  					faceB.c = faces[ offset + 3 ];

  					offset += 4;

  					if ( hasMaterial ) {

  						materialIndex = faces[ offset ++ ];
  						faceA.materialIndex = materialIndex;
  						faceB.materialIndex = materialIndex;

  					}

  					// to get face <=> uv index correspondence

  					fi = geometry.faces.length;

  					if ( hasFaceVertexUv ) {

  						for ( i = 0; i < nUvLayers; i ++ ) {

  							uvLayer = json.uvs[ i ];

  							geometry.faceVertexUvs[ i ][ fi ] = [];
  							geometry.faceVertexUvs[ i ][ fi + 1 ] = [];

  							for ( j = 0; j < 4; j ++ ) {

  								uvIndex = faces[ offset ++ ];

  								u = uvLayer[ uvIndex * 2 ];
  								v = uvLayer[ uvIndex * 2 + 1 ];

  								uv = new Vector2( u, v );

  								if ( j !== 2 ) geometry.faceVertexUvs[ i ][ fi ].push( uv );
  								if ( j !== 0 ) geometry.faceVertexUvs[ i ][ fi + 1 ].push( uv );

  							}

  						}

  					}

  					if ( hasFaceNormal ) {

  						normalIndex = faces[ offset ++ ] * 3;

  						faceA.normal.set(
  							normals[ normalIndex ++ ],
  							normals[ normalIndex ++ ],
  							normals[ normalIndex ]
  						);

  						faceB.normal.copy( faceA.normal );

  					}

  					if ( hasFaceVertexNormal ) {

  						for ( i = 0; i < 4; i ++ ) {

  							normalIndex = faces[ offset ++ ] * 3;

  							normal = new Vector3(
  								normals[ normalIndex ++ ],
  								normals[ normalIndex ++ ],
  								normals[ normalIndex ]
  							);


  							if ( i !== 2 ) faceA.vertexNormals.push( normal );
  							if ( i !== 0 ) faceB.vertexNormals.push( normal );

  						}

  					}


  					if ( hasFaceColor ) {

  						colorIndex = faces[ offset ++ ];
  						hex = colors[ colorIndex ];

  						faceA.color.setHex( hex );
  						faceB.color.setHex( hex );

  					}


  					if ( hasFaceVertexColor ) {

  						for ( i = 0; i < 4; i ++ ) {

  							colorIndex = faces[ offset ++ ];
  							hex = colors[ colorIndex ];

  							if ( i !== 2 ) faceA.vertexColors.push( new Color( hex ) );
  							if ( i !== 0 ) faceB.vertexColors.push( new Color( hex ) );

  						}

  					}

  					geometry.faces.push( faceA );
  					geometry.faces.push( faceB );

  				} else {

  					face = new Face3();
  					face.a = faces[ offset ++ ];
  					face.b = faces[ offset ++ ];
  					face.c = faces[ offset ++ ];

  					if ( hasMaterial ) {

  						materialIndex = faces[ offset ++ ];
  						face.materialIndex = materialIndex;

  					}

  					// to get face <=> uv index correspondence

  					fi = geometry.faces.length;

  					if ( hasFaceVertexUv ) {

  						for ( i = 0; i < nUvLayers; i ++ ) {

  							uvLayer = json.uvs[ i ];

  							geometry.faceVertexUvs[ i ][ fi ] = [];

  							for ( j = 0; j < 3; j ++ ) {

  								uvIndex = faces[ offset ++ ];

  								u = uvLayer[ uvIndex * 2 ];
  								v = uvLayer[ uvIndex * 2 + 1 ];

  								uv = new Vector2( u, v );

  								geometry.faceVertexUvs[ i ][ fi ].push( uv );

  							}

  						}

  					}

  					if ( hasFaceNormal ) {

  						normalIndex = faces[ offset ++ ] * 3;

  						face.normal.set(
  							normals[ normalIndex ++ ],
  							normals[ normalIndex ++ ],
  							normals[ normalIndex ]
  						);

  					}

  					if ( hasFaceVertexNormal ) {

  						for ( i = 0; i < 3; i ++ ) {

  							normalIndex = faces[ offset ++ ] * 3;

  							normal = new Vector3(
  								normals[ normalIndex ++ ],
  								normals[ normalIndex ++ ],
  								normals[ normalIndex ]
  							);

  							face.vertexNormals.push( normal );

  						}

  					}


  					if ( hasFaceColor ) {

  						colorIndex = faces[ offset ++ ];
  						face.color.setHex( colors[ colorIndex ] );

  					}


  					if ( hasFaceVertexColor ) {

  						for ( i = 0; i < 3; i ++ ) {

  							colorIndex = faces[ offset ++ ];
  							face.vertexColors.push( new Color( colors[ colorIndex ] ) );

  						}

  					}

  					geometry.faces.push( face );

  				}

  			}

  		}

  		function parseSkin( json, geometry ) {

  			var influencesPerVertex = ( json.influencesPerVertex !== undefined ) ? json.influencesPerVertex : 2;

  			if ( json.skinWeights ) {

  				for ( var i = 0, l = json.skinWeights.length; i < l; i += influencesPerVertex ) {

  					var x = json.skinWeights[ i ];
  					var y = ( influencesPerVertex > 1 ) ? json.skinWeights[ i + 1 ] : 0;
  					var z = ( influencesPerVertex > 2 ) ? json.skinWeights[ i + 2 ] : 0;
  					var w = ( influencesPerVertex > 3 ) ? json.skinWeights[ i + 3 ] : 0;

  					geometry.skinWeights.push( new Vector4( x, y, z, w ) );

  				}

  			}

  			if ( json.skinIndices ) {

  				for ( var i = 0, l = json.skinIndices.length; i < l; i += influencesPerVertex ) {

  					var a = json.skinIndices[ i ];
  					var b = ( influencesPerVertex > 1 ) ? json.skinIndices[ i + 1 ] : 0;
  					var c = ( influencesPerVertex > 2 ) ? json.skinIndices[ i + 2 ] : 0;
  					var d = ( influencesPerVertex > 3 ) ? json.skinIndices[ i + 3 ] : 0;

  					geometry.skinIndices.push( new Vector4( a, b, c, d ) );

  				}

  			}

  			geometry.bones = json.bones;

  			if ( geometry.bones && geometry.bones.length > 0 && ( geometry.skinWeights.length !== geometry.skinIndices.length || geometry.skinIndices.length !== geometry.vertices.length ) ) {

  				console.warn( 'When skinning, number of vertices (' + geometry.vertices.length + '), skinIndices (' +
  					geometry.skinIndices.length + '), and skinWeights (' + geometry.skinWeights.length + ') should match.' );

  			}

  		}

  		function parseMorphing( json, geometry ) {

  			var scale = json.scale;

  			if ( json.morphTargets !== undefined ) {

  				for ( var i = 0, l = json.morphTargets.length; i < l; i ++ ) {

  					geometry.morphTargets[ i ] = {};
  					geometry.morphTargets[ i ].name = json.morphTargets[ i ].name;
  					geometry.morphTargets[ i ].vertices = [];

  					var dstVertices = geometry.morphTargets[ i ].vertices;
  					var srcVertices = json.morphTargets[ i ].vertices;

  					for ( var v = 0, vl = srcVertices.length; v < vl; v += 3 ) {

  						var vertex = new Vector3();
  						vertex.x = srcVertices[ v ] * scale;
  						vertex.y = srcVertices[ v + 1 ] * scale;
  						vertex.z = srcVertices[ v + 2 ] * scale;

  						dstVertices.push( vertex );

  					}

  				}

  			}

  			if ( json.morphColors !== undefined && json.morphColors.length > 0 ) {

  				console.warn( 'THREE.JSONLoader: "morphColors" no longer supported. Using them as face colors.' );

  				var faces = geometry.faces;
  				var morphColors = json.morphColors[ 0 ].colors;

  				for ( var i = 0, l = faces.length; i < l; i ++ ) {

  					faces[ i ].color.fromArray( morphColors, i * 3 );

  				}

  			}

  		}

  		function parseAnimations( json, geometry ) {

  			var outputAnimations = [];

  			// parse old style Bone/Hierarchy animations
  			var animations = [];

  			if ( json.animation !== undefined ) {

  				animations.push( json.animation );

  			}

  			if ( json.animations !== undefined ) {

  				if ( json.animations.length ) {

  					animations = animations.concat( json.animations );

  				} else {

  					animations.push( json.animations );

  				}

  			}

  			for ( var i = 0; i < animations.length; i ++ ) {

  				var clip = AnimationClip.parseAnimation( animations[ i ], geometry.bones );
  				if ( clip ) outputAnimations.push( clip );

  			}

  			// parse implicit morph animations
  			if ( geometry.morphTargets ) {

  				// TODO: Figure out what an appropraite FPS is for morph target animations -- defaulting to 10, but really it is completely arbitrary.
  				var morphAnimationClips = AnimationClip.CreateClipsFromMorphTargetSequences( geometry.morphTargets, 10 );
  				outputAnimations = outputAnimations.concat( morphAnimationClips );

  			}

  			if ( outputAnimations.length > 0 ) geometry.animations = outputAnimations;

  		}

  		return function parse( json, texturePath ) {

  			if ( json.data !== undefined ) {

  				// Geometry 4.0 spec
  				json = json.data;

  			}

  			if ( json.scale !== undefined ) {

  				json.scale = 1.0 / json.scale;

  			} else {

  				json.scale = 1.0;

  			}

  			var geometry = new Geometry();

  			parseModel( json, geometry );
  			parseSkin( json, geometry );
  			parseMorphing( json, geometry );
  			parseAnimations( json, geometry );

  			geometry.computeFaceNormals();
  			geometry.computeBoundingSphere();

  			if ( json.materials === undefined || json.materials.length === 0 ) {

  				return { geometry: geometry };

  			} else {

  				var materials = Loader.prototype.initMaterials( json.materials, texturePath, this.crossOrigin );

  				return { geometry: geometry, materials: materials };

  			}

  		};

  	} )()

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function ObjectLoader( manager ) {

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;
  	this.texturePath = '';

  }

  Object.assign( ObjectLoader.prototype, {

  	load: function ( url, onLoad, onProgress, onError ) {

  		if ( this.texturePath === '' ) {

  			this.texturePath = url.substring( 0, url.lastIndexOf( '/' ) + 1 );

  		}

  		var scope = this;

  		var loader = new FileLoader( scope.manager );
  		loader.load( url, function ( text ) {

  			var json = null;

  			try {

  				json = JSON.parse( text );

  			} catch ( error ) {

  				if ( onError !== undefined ) onError( error );

  				console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message );

  				return;

  			}

  			var metadata = json.metadata;

  			if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) {

  				console.error( 'THREE.ObjectLoader: Can\'t load ' + url + '. Use THREE.JSONLoader instead.' );
  				return;

  			}

  			scope.parse( json, onLoad );

  		}, onProgress, onError );

  	},

  	setTexturePath: function ( value ) {

  		this.texturePath = value;
  		return this;

  	},

  	setCrossOrigin: function ( value ) {

  		this.crossOrigin = value;
  		return this;

  	},

  	parse: function ( json, onLoad ) {

  		var shapes = this.parseShape( json.shapes );
  		var geometries = this.parseGeometries( json.geometries, shapes );

  		var images = this.parseImages( json.images, function () {

  			if ( onLoad !== undefined ) onLoad( object );

  		} );

  		var textures = this.parseTextures( json.textures, images );
  		var materials = this.parseMaterials( json.materials, textures );

  		var object = this.parseObject( json.object, geometries, materials );

  		if ( json.animations ) {

  			object.animations = this.parseAnimations( json.animations );

  		}

  		if ( json.images === undefined || json.images.length === 0 ) {

  			if ( onLoad !== undefined ) onLoad( object );

  		}

  		return object;

  	},

  	parseShape: function ( json ) {

  		var shapes = {};

  		if ( json !== undefined ) {

  			for ( var i = 0, l = json.length; i < l; i ++ ) {

  				var shape = new Shape().fromJSON( json[ i ] );

  				shapes[ shape.uuid ] = shape;

  			}

  		}

  		return shapes;

  	},

  	parseGeometries: function ( json, shapes ) {

  		var geometries = {};

  		if ( json !== undefined ) {

  			var geometryLoader = new JSONLoader();
  			var bufferGeometryLoader = new BufferGeometryLoader();

  			for ( var i = 0, l = json.length; i < l; i ++ ) {

  				var geometry;
  				var data = json[ i ];

  				switch ( data.type ) {

  					case 'PlaneGeometry':
  					case 'PlaneBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.width,
  							data.height,
  							data.widthSegments,
  							data.heightSegments
  						);

  						break;

  					case 'BoxGeometry':
  					case 'BoxBufferGeometry':
  					case 'CubeGeometry': // backwards compatible

  						geometry = new Geometries[ data.type ](
  							data.width,
  							data.height,
  							data.depth,
  							data.widthSegments,
  							data.heightSegments,
  							data.depthSegments
  						);

  						break;

  					case 'CircleGeometry':
  					case 'CircleBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radius,
  							data.segments,
  							data.thetaStart,
  							data.thetaLength
  						);

  						break;

  					case 'CylinderGeometry':
  					case 'CylinderBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radiusTop,
  							data.radiusBottom,
  							data.height,
  							data.radialSegments,
  							data.heightSegments,
  							data.openEnded,
  							data.thetaStart,
  							data.thetaLength
  						);

  						break;

  					case 'ConeGeometry':
  					case 'ConeBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radius,
  							data.height,
  							data.radialSegments,
  							data.heightSegments,
  							data.openEnded,
  							data.thetaStart,
  							data.thetaLength
  						);

  						break;

  					case 'SphereGeometry':
  					case 'SphereBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radius,
  							data.widthSegments,
  							data.heightSegments,
  							data.phiStart,
  							data.phiLength,
  							data.thetaStart,
  							data.thetaLength
  						);

  						break;

  					case 'DodecahedronGeometry':
  					case 'DodecahedronBufferGeometry':
  					case 'IcosahedronGeometry':
  					case 'IcosahedronBufferGeometry':
  					case 'OctahedronGeometry':
  					case 'OctahedronBufferGeometry':
  					case 'TetrahedronGeometry':
  					case 'TetrahedronBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radius,
  							data.detail
  						);

  						break;

  					case 'RingGeometry':
  					case 'RingBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.innerRadius,
  							data.outerRadius,
  							data.thetaSegments,
  							data.phiSegments,
  							data.thetaStart,
  							data.thetaLength
  						);

  						break;

  					case 'TorusGeometry':
  					case 'TorusBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radius,
  							data.tube,
  							data.radialSegments,
  							data.tubularSegments,
  							data.arc
  						);

  						break;

  					case 'TorusKnotGeometry':
  					case 'TorusKnotBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.radius,
  							data.tube,
  							data.tubularSegments,
  							data.radialSegments,
  							data.p,
  							data.q
  						);

  						break;

  					case 'LatheGeometry':
  					case 'LatheBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.points,
  							data.segments,
  							data.phiStart,
  							data.phiLength
  						);

  						break;

  					case 'PolyhedronGeometry':
  					case 'PolyhedronBufferGeometry':

  						geometry = new Geometries[ data.type ](
  							data.vertices,
  							data.indices,
  							data.radius,
  							data.details
  						);

  						break;

  					case 'ShapeGeometry':
  					case 'ShapeBufferGeometry':

  						var geometryShapes = [];

  						for ( var j = 0, jl = data.shapes.length; j < jl; j ++ ) {

  							var shape = shapes[ data.shapes[ j ] ];

  							geometryShapes.push( shape );

  						}

  						geometry = new Geometries[ data.type ](
  							geometryShapes,
  							data.curveSegments
  						);

  						break;


  					case 'ExtrudeGeometry':
  					case 'ExtrudeBufferGeometry':

  						var geometryShapes = [];

  						for ( var j = 0, jl = data.shapes.length; j < jl; j ++ ) {

  							var shape = shapes[ data.shapes[ j ] ];

  							geometryShapes.push( shape );

  						}

  						var extrudePath = data.options.extrudePath;

  						if ( extrudePath !== undefined ) {

  							data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath );

  						}

  						geometry = new Geometries[ data.type ](
  							geometryShapes,
  							data.options
  						);

  						break;

  					case 'BufferGeometry':

  						geometry = bufferGeometryLoader.parse( data );

  						break;

  					case 'Geometry':

  						geometry = geometryLoader.parse( data, this.texturePath ).geometry;

  						break;

  					default:

  						console.warn( 'THREE.ObjectLoader: Unsupported geometry type "' + data.type + '"' );

  						continue;

  				}

  				geometry.uuid = data.uuid;

  				if ( data.name !== undefined ) geometry.name = data.name;
  				if ( geometry.isBufferGeometry === true && data.userData !== undefined ) geometry.userData = data.userData;

  				geometries[ data.uuid ] = geometry;

  			}

  		}

  		return geometries;

  	},

  	parseMaterials: function ( json, textures ) {

  		var materials = {};

  		if ( json !== undefined ) {

  			var loader = new MaterialLoader();
  			loader.setTextures( textures );

  			for ( var i = 0, l = json.length; i < l; i ++ ) {

  				var data = json[ i ];

  				if ( data.type === 'MultiMaterial' ) {

  					// Deprecated

  					var array = [];

  					for ( var j = 0; j < data.materials.length; j ++ ) {

  						array.push( loader.parse( data.materials[ j ] ) );

  					}

  					materials[ data.uuid ] = array;

  				} else {

  					materials[ data.uuid ] = loader.parse( data );

  				}

  			}

  		}

  		return materials;

  	},

  	parseAnimations: function ( json ) {

  		var animations = [];

  		for ( var i = 0; i < json.length; i ++ ) {

  			var data = json[ i ];

  			var clip = AnimationClip.parse( data );

  			if ( data.uuid !== undefined ) clip.uuid = data.uuid;

  			animations.push( clip );

  		}

  		return animations;

  	},

  	parseImages: function ( json, onLoad ) {

  		var scope = this;
  		var images = {};

  		function loadImage( url ) {

  			scope.manager.itemStart( url );

  			return loader.load( url, function () {

  				scope.manager.itemEnd( url );

  			}, undefined, function () {

  				scope.manager.itemEnd( url );
  				scope.manager.itemError( url );

  			} );

  		}

  		if ( json !== undefined && json.length > 0 ) {

  			var manager = new LoadingManager( onLoad );

  			var loader = new ImageLoader( manager );
  			loader.setCrossOrigin( this.crossOrigin );

  			for ( var i = 0, l = json.length; i < l; i ++ ) {

  				var image = json[ i ];
  				var path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( image.url ) ? image.url : scope.texturePath + image.url;

  				images[ image.uuid ] = loadImage( path );

  			}

  		}

  		return images;

  	},

  	parseTextures: function ( json, images ) {

  		function parseConstant( value, type ) {

  			if ( typeof value === 'number' ) return value;

  			console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value );

  			return type[ value ];

  		}

  		var textures = {};

  		if ( json !== undefined ) {

  			for ( var i = 0, l = json.length; i < l; i ++ ) {

  				var data = json[ i ];

  				if ( data.image === undefined ) {

  					console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid );

  				}

  				if ( images[ data.image ] === undefined ) {

  					console.warn( 'THREE.ObjectLoader: Undefined image', data.image );

  				}

  				var texture = new Texture( images[ data.image ] );
  				texture.needsUpdate = true;

  				texture.uuid = data.uuid;

  				if ( data.name !== undefined ) texture.name = data.name;

  				if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING );

  				if ( data.offset !== undefined ) texture.offset.fromArray( data.offset );
  				if ( data.repeat !== undefined ) texture.repeat.fromArray( data.repeat );
  				if ( data.center !== undefined ) texture.center.fromArray( data.center );
  				if ( data.rotation !== undefined ) texture.rotation = data.rotation;

  				if ( data.wrap !== undefined ) {

  					texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING );
  					texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING );

  				}

  				if ( data.format !== undefined ) texture.format = data.format;

  				if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER );
  				if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER );
  				if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy;

  				if ( data.flipY !== undefined ) texture.flipY = data.flipY;

  				textures[ data.uuid ] = texture;

  			}

  		}

  		return textures;

  	},

  	parseObject: function ( data, geometries, materials ) {

  		var object;

  		function getGeometry( name ) {

  			if ( geometries[ name ] === undefined ) {

  				console.warn( 'THREE.ObjectLoader: Undefined geometry', name );

  			}

  			return geometries[ name ];

  		}

  		function getMaterial( name ) {

  			if ( name === undefined ) return undefined;

  			if ( Array.isArray( name ) ) {

  				var array = [];

  				for ( var i = 0, l = name.length; i < l; i ++ ) {

  					var uuid = name[ i ];

  					if ( materials[ uuid ] === undefined ) {

  						console.warn( 'THREE.ObjectLoader: Undefined material', uuid );

  					}

  					array.push( materials[ uuid ] );

  				}

  				return array;

  			}

  			if ( materials[ name ] === undefined ) {

  				console.warn( 'THREE.ObjectLoader: Undefined material', name );

  			}

  			return materials[ name ];

  		}

  		switch ( data.type ) {

  			case 'Scene':

  				object = new Scene();

  				if ( data.background !== undefined ) {

  					if ( Number.isInteger( data.background ) ) {

  						object.background = new Color( data.background );

  					}

  				}

  				if ( data.fog !== undefined ) {

  					if ( data.fog.type === 'Fog' ) {

  						object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far );

  					} else if ( data.fog.type === 'FogExp2' ) {

  						object.fog = new FogExp2( data.fog.color, data.fog.density );

  					}

  				}

  				break;

  			case 'PerspectiveCamera':

  				object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far );

  				if ( data.focus !== undefined ) object.focus = data.focus;
  				if ( data.zoom !== undefined ) object.zoom = data.zoom;
  				if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge;
  				if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset;
  				if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );

  				break;

  			case 'OrthographicCamera':

  				object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far );

  				if ( data.zoom !== undefined ) object.zoom = data.zoom;
  				if ( data.view !== undefined ) object.view = Object.assign( {}, data.view );

  				break;

  			case 'AmbientLight':

  				object = new AmbientLight( data.color, data.intensity );

  				break;

  			case 'DirectionalLight':

  				object = new DirectionalLight( data.color, data.intensity );

  				break;

  			case 'PointLight':

  				object = new PointLight( data.color, data.intensity, data.distance, data.decay );

  				break;

  			case 'RectAreaLight':

  				object = new RectAreaLight( data.color, data.intensity, data.width, data.height );

  				break;

  			case 'SpotLight':

  				object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay );

  				break;

  			case 'HemisphereLight':

  				object = new HemisphereLight( data.color, data.groundColor, data.intensity );

  				break;

  			case 'SkinnedMesh':

  				console.warn( 'THREE.ObjectLoader.parseObject() does not support SkinnedMesh yet.' );

  			case 'Mesh':

  				var geometry = getGeometry( data.geometry );
  				var material = getMaterial( data.material );

  				if ( geometry.bones && geometry.bones.length > 0 ) {

  					object = new SkinnedMesh( geometry, material );

  				} else {

  					object = new Mesh( geometry, material );

  				}

  				break;

  			case 'LOD':

  				object = new LOD();

  				break;

  			case 'Line':

  				object = new Line( getGeometry( data.geometry ), getMaterial( data.material ), data.mode );

  				break;

  			case 'LineLoop':

  				object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) );

  				break;

  			case 'LineSegments':

  				object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) );

  				break;

  			case 'PointCloud':
  			case 'Points':

  				object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) );

  				break;

  			case 'Sprite':

  				object = new Sprite( getMaterial( data.material ) );

  				break;

  			case 'Group':

  				object = new Group();

  				break;

  			default:

  				object = new Object3D();

  		}

  		object.uuid = data.uuid;

  		if ( data.name !== undefined ) object.name = data.name;

  		if ( data.matrix !== undefined ) {

  			object.matrix.fromArray( data.matrix );

  			if ( data.matrixAutoUpdate !== undefined ) object.matrixAutoUpdate = data.matrixAutoUpdate;
  			if ( object.matrixAutoUpdate ) object.matrix.decompose( object.position, object.quaternion, object.scale );

  		} else {

  			if ( data.position !== undefined ) object.position.fromArray( data.position );
  			if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation );
  			if ( data.quaternion !== undefined ) object.quaternion.fromArray( data.quaternion );
  			if ( data.scale !== undefined ) object.scale.fromArray( data.scale );

  		}

  		if ( data.castShadow !== undefined ) object.castShadow = data.castShadow;
  		if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow;

  		if ( data.shadow ) {

  			if ( data.shadow.bias !== undefined ) object.shadow.bias = data.shadow.bias;
  			if ( data.shadow.radius !== undefined ) object.shadow.radius = data.shadow.radius;
  			if ( data.shadow.mapSize !== undefined ) object.shadow.mapSize.fromArray( data.shadow.mapSize );
  			if ( data.shadow.camera !== undefined ) object.shadow.camera = this.parseObject( data.shadow.camera );

  		}

  		if ( data.visible !== undefined ) object.visible = data.visible;
  		if ( data.frustumCulled !== undefined ) object.frustumCulled = data.frustumCulled;
  		if ( data.renderOrder !== undefined ) object.renderOrder = data.renderOrder;
  		if ( data.userData !== undefined ) object.userData = data.userData;

  		if ( data.children !== undefined ) {

  			var children = data.children;

  			for ( var i = 0; i < children.length; i ++ ) {

  				object.add( this.parseObject( children[ i ], geometries, materials ) );

  			}

  		}

  		if ( data.type === 'LOD' ) {

  			var levels = data.levels;

  			for ( var l = 0; l < levels.length; l ++ ) {

  				var level = levels[ l ];
  				var child = object.getObjectByProperty( 'uuid', level.object );

  				if ( child !== undefined ) {

  					object.addLevel( child, level.distance );

  				}

  			}

  		}

  		return object;

  	}

  } );

  var TEXTURE_MAPPING = {
  	UVMapping: UVMapping,
  	CubeReflectionMapping: CubeReflectionMapping,
  	CubeRefractionMapping: CubeRefractionMapping,
  	EquirectangularReflectionMapping: EquirectangularReflectionMapping,
  	EquirectangularRefractionMapping: EquirectangularRefractionMapping,
  	SphericalReflectionMapping: SphericalReflectionMapping,
  	CubeUVReflectionMapping: CubeUVReflectionMapping,
  	CubeUVRefractionMapping: CubeUVRefractionMapping
  };

  var TEXTURE_WRAPPING = {
  	RepeatWrapping: RepeatWrapping,
  	ClampToEdgeWrapping: ClampToEdgeWrapping,
  	MirroredRepeatWrapping: MirroredRepeatWrapping
  };

  var TEXTURE_FILTER = {
  	NearestFilter: NearestFilter,
  	NearestMipMapNearestFilter: NearestMipMapNearestFilter,
  	NearestMipMapLinearFilter: NearestMipMapLinearFilter,
  	LinearFilter: LinearFilter,
  	LinearMipMapNearestFilter: LinearMipMapNearestFilter,
  	LinearMipMapLinearFilter: LinearMipMapLinearFilter
  };

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * minimal class for proxing functions to Path. Replaces old "extractSubpaths()"
   **/

  function ShapePath() {

  	this.type = 'ShapePath';

  	this.color = new Color();

  	this.subPaths = [];
  	this.currentPath = null;

  }

  Object.assign( ShapePath.prototype, {

  	moveTo: function ( x, y ) {

  		this.currentPath = new Path();
  		this.subPaths.push( this.currentPath );
  		this.currentPath.moveTo( x, y );

  	},

  	lineTo: function ( x, y ) {

  		this.currentPath.lineTo( x, y );

  	},

  	quadraticCurveTo: function ( aCPx, aCPy, aX, aY ) {

  		this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY );

  	},

  	bezierCurveTo: function ( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) {

  		this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY );

  	},

  	splineThru: function ( pts ) {

  		this.currentPath.splineThru( pts );

  	},

  	toShapes: function ( isCCW, noHoles ) {

  		function toShapesNoHoles( inSubpaths ) {

  			var shapes = [];

  			for ( var i = 0, l = inSubpaths.length; i < l; i ++ ) {

  				var tmpPath = inSubpaths[ i ];

  				var tmpShape = new Shape();
  				tmpShape.curves = tmpPath.curves;

  				shapes.push( tmpShape );

  			}

  			return shapes;

  		}

  		function isPointInsidePolygon( inPt, inPolygon ) {

  			var polyLen = inPolygon.length;

  			// inPt on polygon contour => immediate success    or
  			// toggling of inside/outside at every single! intersection point of an edge
  			//  with the horizontal line through inPt, left of inPt
  			//  not counting lowerY endpoints of edges and whole edges on that line
  			var inside = false;
  			for ( var p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) {

  				var edgeLowPt = inPolygon[ p ];
  				var edgeHighPt = inPolygon[ q ];

  				var edgeDx = edgeHighPt.x - edgeLowPt.x;
  				var edgeDy = edgeHighPt.y - edgeLowPt.y;

  				if ( Math.abs( edgeDy ) > Number.EPSILON ) {

  					// not parallel
  					if ( edgeDy < 0 ) {

  						edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx;
  						edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy;

  					}
  					if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) 		continue;

  					if ( inPt.y === edgeLowPt.y ) {

  						if ( inPt.x === edgeLowPt.x )		return	true;		// inPt is on contour ?
  						// continue;				// no intersection or edgeLowPt => doesn't count !!!

  					} else {

  						var perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y );
  						if ( perpEdge === 0 )				return	true;		// inPt is on contour ?
  						if ( perpEdge < 0 ) 				continue;
  						inside = ! inside;		// true intersection left of inPt

  					}

  				} else {

  					// parallel or collinear
  					if ( inPt.y !== edgeLowPt.y ) 		continue;			// parallel
  					// edge lies on the same horizontal line as inPt
  					if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) ||
  						 ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) )		return	true;	// inPt: Point on contour !
  					// continue;

  				}

  			}

  			return	inside;

  		}

  		var isClockWise = ShapeUtils.isClockWise;

  		var subPaths = this.subPaths;
  		if ( subPaths.length === 0 ) return [];

  		if ( noHoles === true )	return	toShapesNoHoles( subPaths );


  		var solid, tmpPath, tmpShape, shapes = [];

  		if ( subPaths.length === 1 ) {

  			tmpPath = subPaths[ 0 ];
  			tmpShape = new Shape();
  			tmpShape.curves = tmpPath.curves;
  			shapes.push( tmpShape );
  			return shapes;

  		}

  		var holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() );
  		holesFirst = isCCW ? ! holesFirst : holesFirst;

  		// console.log("Holes first", holesFirst);

  		var betterShapeHoles = [];
  		var newShapes = [];
  		var newShapeHoles = [];
  		var mainIdx = 0;
  		var tmpPoints;

  		newShapes[ mainIdx ] = undefined;
  		newShapeHoles[ mainIdx ] = [];

  		for ( var i = 0, l = subPaths.length; i < l; i ++ ) {

  			tmpPath = subPaths[ i ];
  			tmpPoints = tmpPath.getPoints();
  			solid = isClockWise( tmpPoints );
  			solid = isCCW ? ! solid : solid;

  			if ( solid ) {

  				if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) )	mainIdx ++;

  				newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints };
  				newShapes[ mainIdx ].s.curves = tmpPath.curves;

  				if ( holesFirst )	mainIdx ++;
  				newShapeHoles[ mainIdx ] = [];

  				//console.log('cw', i);

  			} else {

  				newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } );

  				//console.log('ccw', i);

  			}

  		}

  		// only Holes? -> probably all Shapes with wrong orientation
  		if ( ! newShapes[ 0 ] )	return	toShapesNoHoles( subPaths );


  		if ( newShapes.length > 1 ) {

  			var ambiguous = false;
  			var toChange = [];

  			for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {

  				betterShapeHoles[ sIdx ] = [];

  			}

  			for ( var sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) {

  				var sho = newShapeHoles[ sIdx ];

  				for ( var hIdx = 0; hIdx < sho.length; hIdx ++ ) {

  					var ho = sho[ hIdx ];
  					var hole_unassigned = true;

  					for ( var s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) {

  						if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) {

  							if ( sIdx !== s2Idx )	toChange.push( { froms: sIdx, tos: s2Idx, hole: hIdx } );
  							if ( hole_unassigned ) {

  								hole_unassigned = false;
  								betterShapeHoles[ s2Idx ].push( ho );

  							} else {

  								ambiguous = true;

  							}

  						}

  					}
  					if ( hole_unassigned ) {

  						betterShapeHoles[ sIdx ].push( ho );

  					}

  				}

  			}
  			// console.log("ambiguous: ", ambiguous);
  			if ( toChange.length > 0 ) {

  				// console.log("to change: ", toChange);
  				if ( ! ambiguous )	newShapeHoles = betterShapeHoles;

  			}

  		}

  		var tmpHoles;

  		for ( var i = 0, il = newShapes.length; i < il; i ++ ) {

  			tmpShape = newShapes[ i ].s;
  			shapes.push( tmpShape );
  			tmpHoles = newShapeHoles[ i ];

  			for ( var j = 0, jl = tmpHoles.length; j < jl; j ++ ) {

  				tmpShape.holes.push( tmpHoles[ j ].h );

  			}

  		}

  		//console.log("shape", shapes);

  		return shapes;

  	}

  } );

  /**
   * @author zz85 / http://www.lab4games.net/zz85/blog
   * @author mrdoob / http://mrdoob.com/
   */


  function Font( data ) {

  	this.type = 'Font';

  	this.data = data;

  }

  Object.assign( Font.prototype, {

  	isFont: true,

  	generateShapes: function ( text, size, divisions ) {

  		if ( size === undefined ) size = 100;
  		if ( divisions === undefined ) divisions = 4;

  		var shapes = [];
  		var paths = createPaths( text, size, divisions, this.data );

  		for ( var p = 0, pl = paths.length; p < pl; p ++ ) {

  			Array.prototype.push.apply( shapes, paths[ p ].toShapes() );

  		}

  		return shapes;

  	}

  } );

  function createPaths( text, size, divisions, data ) {

  	var chars = Array.from ? Array.from( text ) : String( text ).split( '' ); // see #13988
  	var scale = size / data.resolution;
  	var line_height = ( data.boundingBox.yMax - data.boundingBox.yMin + data.underlineThickness ) * scale;

  	var paths = [];

  	var offsetX = 0, offsetY = 0;

  	for ( var i = 0; i < chars.length; i ++ ) {

  		var char = chars[ i ];

  		if ( char === '\n' ) {

  			offsetX = 0;
  			offsetY -= line_height;

  		} else {

  			var ret = createPath( char, divisions, scale, offsetX, offsetY, data );
  			offsetX += ret.offsetX;
  			paths.push( ret.path );

  		}

  	}

  	return paths;

  }

  function createPath( char, divisions, scale, offsetX, offsetY, data ) {

  	var glyph = data.glyphs[ char ] || data.glyphs[ '?' ];

  	if ( ! glyph ) return;

  	var path = new ShapePath();

  	var x, y, cpx, cpy, cpx1, cpy1, cpx2, cpy2;

  	if ( glyph.o ) {

  		var outline = glyph._cachedOutline || ( glyph._cachedOutline = glyph.o.split( ' ' ) );

  		for ( var i = 0, l = outline.length; i < l; ) {

  			var action = outline[ i ++ ];

  			switch ( action ) {

  				case 'm': // moveTo

  					x = outline[ i ++ ] * scale + offsetX;
  					y = outline[ i ++ ] * scale + offsetY;

  					path.moveTo( x, y );

  					break;

  				case 'l': // lineTo

  					x = outline[ i ++ ] * scale + offsetX;
  					y = outline[ i ++ ] * scale + offsetY;

  					path.lineTo( x, y );

  					break;

  				case 'q': // quadraticCurveTo

  					cpx = outline[ i ++ ] * scale + offsetX;
  					cpy = outline[ i ++ ] * scale + offsetY;
  					cpx1 = outline[ i ++ ] * scale + offsetX;
  					cpy1 = outline[ i ++ ] * scale + offsetY;

  					path.quadraticCurveTo( cpx1, cpy1, cpx, cpy );

  					break;

  				case 'b': // bezierCurveTo

  					cpx = outline[ i ++ ] * scale + offsetX;
  					cpy = outline[ i ++ ] * scale + offsetY;
  					cpx1 = outline[ i ++ ] * scale + offsetX;
  					cpy1 = outline[ i ++ ] * scale + offsetY;
  					cpx2 = outline[ i ++ ] * scale + offsetX;
  					cpy2 = outline[ i ++ ] * scale + offsetY;

  					path.bezierCurveTo( cpx1, cpy1, cpx2, cpy2, cpx, cpy );

  					break;

  			}

  		}

  	}

  	return { offsetX: glyph.ha * scale, path: path };

  }

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function FontLoader( manager ) {

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

  }

  Object.assign( FontLoader.prototype, {

  	load: function ( url, onLoad, onProgress, onError ) {

  		var scope = this;

  		var loader = new FileLoader( this.manager );
  		loader.setPath( this.path );
  		loader.load( url, function ( text ) {

  			var json;

  			try {

  				json = JSON.parse( text );

  			} catch ( e ) {

  				console.warn( 'THREE.FontLoader: typeface.js support is being deprecated. Use typeface.json instead.' );
  				json = JSON.parse( text.substring( 65, text.length - 2 ) );

  			}

  			var font = scope.parse( json );

  			if ( onLoad ) onLoad( font );

  		}, onProgress, onError );

  	},

  	parse: function ( json ) {

  		return new Font( json );

  	},

  	setPath: function ( value ) {

  		this.path = value;
  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  var context;

  var AudioContext = {

  	getContext: function () {

  		if ( context === undefined ) {

  			context = new ( window.AudioContext || window.webkitAudioContext )();

  		}

  		return context;

  	},

  	setContext: function ( value ) {

  		context = value;

  	}

  };

  /**
   * @author Reece Aaron Lecrivain / http://reecenotes.com/
   */

  function AudioLoader( manager ) {

  	this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager;

  }

  Object.assign( AudioLoader.prototype, {

  	load: function ( url, onLoad, onProgress, onError ) {

  		var loader = new FileLoader( this.manager );
  		loader.setResponseType( 'arraybuffer' );
  		loader.load( url, function ( buffer ) {

  			var context = AudioContext.getContext();

  			context.decodeAudioData( buffer, function ( audioBuffer ) {

  				onLoad( audioBuffer );

  			} );

  		}, onProgress, onError );

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function StereoCamera() {

  	this.type = 'StereoCamera';

  	this.aspect = 1;

  	this.eyeSep = 0.064;

  	this.cameraL = new PerspectiveCamera();
  	this.cameraL.layers.enable( 1 );
  	this.cameraL.matrixAutoUpdate = false;

  	this.cameraR = new PerspectiveCamera();
  	this.cameraR.layers.enable( 2 );
  	this.cameraR.matrixAutoUpdate = false;

  }

  Object.assign( StereoCamera.prototype, {

  	update: ( function () {

  		var instance, focus, fov, aspect, near, far, zoom, eyeSep;

  		var eyeRight = new Matrix4();
  		var eyeLeft = new Matrix4();

  		return function update( camera ) {

  			var needsUpdate = instance !== this || focus !== camera.focus || fov !== camera.fov ||
  												aspect !== camera.aspect * this.aspect || near !== camera.near ||
  												far !== camera.far || zoom !== camera.zoom || eyeSep !== this.eyeSep;

  			if ( needsUpdate ) {

  				instance = this;
  				focus = camera.focus;
  				fov = camera.fov;
  				aspect = camera.aspect * this.aspect;
  				near = camera.near;
  				far = camera.far;
  				zoom = camera.zoom;

  				// Off-axis stereoscopic effect based on
  				// http://paulbourke.net/stereographics/stereorender/

  				var projectionMatrix = camera.projectionMatrix.clone();
  				eyeSep = this.eyeSep / 2;
  				var eyeSepOnProjection = eyeSep * near / focus;
  				var ymax = ( near * Math.tan( _Math.DEG2RAD * fov * 0.5 ) ) / zoom;
  				var xmin, xmax;

  				// translate xOffset

  				eyeLeft.elements[ 12 ] = - eyeSep;
  				eyeRight.elements[ 12 ] = eyeSep;

  				// for left eye

  				xmin = - ymax * aspect + eyeSepOnProjection;
  				xmax = ymax * aspect + eyeSepOnProjection;

  				projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
  				projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );

  				this.cameraL.projectionMatrix.copy( projectionMatrix );

  				// for right eye

  				xmin = - ymax * aspect - eyeSepOnProjection;
  				xmax = ymax * aspect - eyeSepOnProjection;

  				projectionMatrix.elements[ 0 ] = 2 * near / ( xmax - xmin );
  				projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin );

  				this.cameraR.projectionMatrix.copy( projectionMatrix );

  			}

  			this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( eyeLeft );
  			this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( eyeRight );

  		};

  	} )()

  } );

  /**
   * Camera for rendering cube maps
   *	- renders scene into axis-aligned cube
   *
   * @author alteredq / http://alteredqualia.com/
   */

  function CubeCamera( near, far, cubeResolution ) {

  	Object3D.call( this );

  	this.type = 'CubeCamera';

  	var fov = 90, aspect = 1;

  	var cameraPX = new PerspectiveCamera( fov, aspect, near, far );
  	cameraPX.up.set( 0, - 1, 0 );
  	cameraPX.lookAt( new Vector3( 1, 0, 0 ) );
  	this.add( cameraPX );

  	var cameraNX = new PerspectiveCamera( fov, aspect, near, far );
  	cameraNX.up.set( 0, - 1, 0 );
  	cameraNX.lookAt( new Vector3( - 1, 0, 0 ) );
  	this.add( cameraNX );

  	var cameraPY = new PerspectiveCamera( fov, aspect, near, far );
  	cameraPY.up.set( 0, 0, 1 );
  	cameraPY.lookAt( new Vector3( 0, 1, 0 ) );
  	this.add( cameraPY );

  	var cameraNY = new PerspectiveCamera( fov, aspect, near, far );
  	cameraNY.up.set( 0, 0, - 1 );
  	cameraNY.lookAt( new Vector3( 0, - 1, 0 ) );
  	this.add( cameraNY );

  	var cameraPZ = new PerspectiveCamera( fov, aspect, near, far );
  	cameraPZ.up.set( 0, - 1, 0 );
  	cameraPZ.lookAt( new Vector3( 0, 0, 1 ) );
  	this.add( cameraPZ );

  	var cameraNZ = new PerspectiveCamera( fov, aspect, near, far );
  	cameraNZ.up.set( 0, - 1, 0 );
  	cameraNZ.lookAt( new Vector3( 0, 0, - 1 ) );
  	this.add( cameraNZ );

  	var options = { format: RGBFormat, magFilter: LinearFilter, minFilter: LinearFilter };

  	this.renderTarget = new WebGLRenderTargetCube( cubeResolution, cubeResolution, options );
  	this.renderTarget.texture.name = "CubeCamera";

  	this.update = function ( renderer, scene ) {

  		if ( this.parent === null ) this.updateMatrixWorld();

  		var renderTarget = this.renderTarget;
  		var generateMipmaps = renderTarget.texture.generateMipmaps;

  		renderTarget.texture.generateMipmaps = false;

  		renderTarget.activeCubeFace = 0;
  		renderer.render( scene, cameraPX, renderTarget );

  		renderTarget.activeCubeFace = 1;
  		renderer.render( scene, cameraNX, renderTarget );

  		renderTarget.activeCubeFace = 2;
  		renderer.render( scene, cameraPY, renderTarget );

  		renderTarget.activeCubeFace = 3;
  		renderer.render( scene, cameraNY, renderTarget );

  		renderTarget.activeCubeFace = 4;
  		renderer.render( scene, cameraPZ, renderTarget );

  		renderTarget.texture.generateMipmaps = generateMipmaps;

  		renderTarget.activeCubeFace = 5;
  		renderer.render( scene, cameraNZ, renderTarget );

  		renderer.setRenderTarget( null );

  	};

  	this.clear = function ( renderer, color, depth, stencil ) {

  		var renderTarget = this.renderTarget;

  		for ( var i = 0; i < 6; i ++ ) {

  			renderTarget.activeCubeFace = i;
  			renderer.setRenderTarget( renderTarget );

  			renderer.clear( color, depth, stencil );

  		}

  		renderer.setRenderTarget( null );

  	};

  }

  CubeCamera.prototype = Object.create( Object3D.prototype );
  CubeCamera.prototype.constructor = CubeCamera;

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function AudioListener() {

  	Object3D.call( this );

  	this.type = 'AudioListener';

  	this.context = AudioContext.getContext();

  	this.gain = this.context.createGain();
  	this.gain.connect( this.context.destination );

  	this.filter = null;

  }

  AudioListener.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: AudioListener,

  	getInput: function () {

  		return this.gain;

  	},

  	removeFilter: function ( ) {

  		if ( this.filter !== null ) {

  			this.gain.disconnect( this.filter );
  			this.filter.disconnect( this.context.destination );
  			this.gain.connect( this.context.destination );
  			this.filter = null;

  		}

  	},

  	getFilter: function () {

  		return this.filter;

  	},

  	setFilter: function ( value ) {

  		if ( this.filter !== null ) {

  			this.gain.disconnect( this.filter );
  			this.filter.disconnect( this.context.destination );

  		} else {

  			this.gain.disconnect( this.context.destination );

  		}

  		this.filter = value;
  		this.gain.connect( this.filter );
  		this.filter.connect( this.context.destination );

  	},

  	getMasterVolume: function () {

  		return this.gain.gain.value;

  	},

  	setMasterVolume: function ( value ) {

  		this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 );

  	},

  	updateMatrixWorld: ( function () {

  		var position = new Vector3();
  		var quaternion = new Quaternion();
  		var scale = new Vector3();

  		var orientation = new Vector3();

  		return function updateMatrixWorld( force ) {

  			Object3D.prototype.updateMatrixWorld.call( this, force );

  			var listener = this.context.listener;
  			var up = this.up;

  			this.matrixWorld.decompose( position, quaternion, scale );

  			orientation.set( 0, 0, - 1 ).applyQuaternion( quaternion );

  			if ( listener.positionX ) {

  				listener.positionX.setValueAtTime( position.x, this.context.currentTime );
  				listener.positionY.setValueAtTime( position.y, this.context.currentTime );
  				listener.positionZ.setValueAtTime( position.z, this.context.currentTime );
  				listener.forwardX.setValueAtTime( orientation.x, this.context.currentTime );
  				listener.forwardY.setValueAtTime( orientation.y, this.context.currentTime );
  				listener.forwardZ.setValueAtTime( orientation.z, this.context.currentTime );
  				listener.upX.setValueAtTime( up.x, this.context.currentTime );
  				listener.upY.setValueAtTime( up.y, this.context.currentTime );
  				listener.upZ.setValueAtTime( up.z, this.context.currentTime );

  			} else {

  				listener.setPosition( position.x, position.y, position.z );
  				listener.setOrientation( orientation.x, orientation.y, orientation.z, up.x, up.y, up.z );

  			}

  		};

  	} )()

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Reece Aaron Lecrivain / http://reecenotes.com/
   */

  function Audio( listener ) {

  	Object3D.call( this );

  	this.type = 'Audio';

  	this.context = listener.context;

  	this.gain = this.context.createGain();
  	this.gain.connect( listener.getInput() );

  	this.autoplay = false;

  	this.buffer = null;
  	this.loop = false;
  	this.startTime = 0;
  	this.offset = 0;
  	this.playbackRate = 1;
  	this.isPlaying = false;
  	this.hasPlaybackControl = true;
  	this.sourceType = 'empty';

  	this.filters = [];

  }

  Audio.prototype = Object.assign( Object.create( Object3D.prototype ), {

  	constructor: Audio,

  	getOutput: function () {

  		return this.gain;

  	},

  	setNodeSource: function ( audioNode ) {

  		this.hasPlaybackControl = false;
  		this.sourceType = 'audioNode';
  		this.source = audioNode;
  		this.connect();

  		return this;

  	},

  	setMediaElementSource: function ( mediaElement ) {

  		this.hasPlaybackControl = false;
  		this.sourceType = 'mediaNode';
  		this.source = this.context.createMediaElementSource( mediaElement );
  		this.connect();

  		return this;

  	},

  	setBuffer: function ( audioBuffer ) {

  		this.buffer = audioBuffer;
  		this.sourceType = 'buffer';

  		if ( this.autoplay ) this.play();

  		return this;

  	},

  	play: function () {

  		if ( this.isPlaying === true ) {

  			console.warn( 'THREE.Audio: Audio is already playing.' );
  			return;

  		}

  		if ( this.hasPlaybackControl === false ) {

  			console.warn( 'THREE.Audio: this Audio has no playback control.' );
  			return;

  		}

  		var source = this.context.createBufferSource();

  		source.buffer = this.buffer;
  		source.loop = this.loop;
  		source.onended = this.onEnded.bind( this );
  		source.playbackRate.setValueAtTime( this.playbackRate, this.startTime );
  		this.startTime = this.context.currentTime;
  		source.start( this.startTime, this.offset );

  		this.isPlaying = true;

  		this.source = source;

  		return this.connect();

  	},

  	pause: function () {

  		if ( this.hasPlaybackControl === false ) {

  			console.warn( 'THREE.Audio: this Audio has no playback control.' );
  			return;

  		}

  		if ( this.isPlaying === true ) {

  			this.source.stop();
  			this.offset += ( this.context.currentTime - this.startTime ) * this.playbackRate;
  			this.isPlaying = false;

  		}

  		return this;

  	},

  	stop: function () {

  		if ( this.hasPlaybackControl === false ) {

  			console.warn( 'THREE.Audio: this Audio has no playback control.' );
  			return;

  		}

  		this.source.stop();
  		this.offset = 0;
  		this.isPlaying = false;

  		return this;

  	},

  	connect: function () {

  		if ( this.filters.length > 0 ) {

  			this.source.connect( this.filters[ 0 ] );

  			for ( var i = 1, l = this.filters.length; i < l; i ++ ) {

  				this.filters[ i - 1 ].connect( this.filters[ i ] );

  			}

  			this.filters[ this.filters.length - 1 ].connect( this.getOutput() );

  		} else {

  			this.source.connect( this.getOutput() );

  		}

  		return this;

  	},

  	disconnect: function () {

  		if ( this.filters.length > 0 ) {

  			this.source.disconnect( this.filters[ 0 ] );

  			for ( var i = 1, l = this.filters.length; i < l; i ++ ) {

  				this.filters[ i - 1 ].disconnect( this.filters[ i ] );

  			}

  			this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() );

  		} else {

  			this.source.disconnect( this.getOutput() );

  		}

  		return this;

  	},

  	getFilters: function () {

  		return this.filters;

  	},

  	setFilters: function ( value ) {

  		if ( ! value ) value = [];

  		if ( this.isPlaying === true ) {

  			this.disconnect();
  			this.filters = value;
  			this.connect();

  		} else {

  			this.filters = value;

  		}

  		return this;

  	},

  	getFilter: function () {

  		return this.getFilters()[ 0 ];

  	},

  	setFilter: function ( filter ) {

  		return this.setFilters( filter ? [ filter ] : [] );

  	},

  	setPlaybackRate: function ( value ) {

  		if ( this.hasPlaybackControl === false ) {

  			console.warn( 'THREE.Audio: this Audio has no playback control.' );
  			return;

  		}

  		this.playbackRate = value;

  		if ( this.isPlaying === true ) {

  			this.source.playbackRate.setValueAtTime( this.playbackRate, this.context.currentTime );

  		}

  		return this;

  	},

  	getPlaybackRate: function () {

  		return this.playbackRate;

  	},

  	onEnded: function () {

  		this.isPlaying = false;

  	},

  	getLoop: function () {

  		if ( this.hasPlaybackControl === false ) {

  			console.warn( 'THREE.Audio: this Audio has no playback control.' );
  			return false;

  		}

  		return this.loop;

  	},

  	setLoop: function ( value ) {

  		if ( this.hasPlaybackControl === false ) {

  			console.warn( 'THREE.Audio: this Audio has no playback control.' );
  			return;

  		}

  		this.loop = value;

  		if ( this.isPlaying === true ) {

  			this.source.loop = this.loop;

  		}

  		return this;

  	},

  	getVolume: function () {

  		return this.gain.gain.value;

  	},

  	setVolume: function ( value ) {

  		this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 );

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function PositionalAudio( listener ) {

  	Audio.call( this, listener );

  	this.panner = this.context.createPanner();
  	this.panner.connect( this.gain );

  }

  PositionalAudio.prototype = Object.assign( Object.create( Audio.prototype ), {

  	constructor: PositionalAudio,

  	getOutput: function () {

  		return this.panner;

  	},

  	getRefDistance: function () {

  		return this.panner.refDistance;

  	},

  	setRefDistance: function ( value ) {

  		this.panner.refDistance = value;

  	},

  	getRolloffFactor: function () {

  		return this.panner.rolloffFactor;

  	},

  	setRolloffFactor: function ( value ) {

  		this.panner.rolloffFactor = value;

  	},

  	getDistanceModel: function () {

  		return this.panner.distanceModel;

  	},

  	setDistanceModel: function ( value ) {

  		this.panner.distanceModel = value;

  	},

  	getMaxDistance: function () {

  		return this.panner.maxDistance;

  	},

  	setMaxDistance: function ( value ) {

  		this.panner.maxDistance = value;

  	},

  	updateMatrixWorld: ( function () {

  		var position = new Vector3();

  		return function updateMatrixWorld( force ) {

  			Object3D.prototype.updateMatrixWorld.call( this, force );

  			position.setFromMatrixPosition( this.matrixWorld );

  			this.panner.setPosition( position.x, position.y, position.z );

  		};

  	} )()


  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function AudioAnalyser( audio, fftSize ) {

  	this.analyser = audio.context.createAnalyser();
  	this.analyser.fftSize = fftSize !== undefined ? fftSize : 2048;

  	this.data = new Uint8Array( this.analyser.frequencyBinCount );

  	audio.getOutput().connect( this.analyser );

  }

  Object.assign( AudioAnalyser.prototype, {

  	getFrequencyData: function () {

  		this.analyser.getByteFrequencyData( this.data );

  		return this.data;

  	},

  	getAverageFrequency: function () {

  		var value = 0, data = this.getFrequencyData();

  		for ( var i = 0; i < data.length; i ++ ) {

  			value += data[ i ];

  		}

  		return value / data.length;

  	}

  } );

  /**
   *
   * Buffered scene graph property that allows weighted accumulation.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function PropertyMixer( binding, typeName, valueSize ) {

  	this.binding = binding;
  	this.valueSize = valueSize;

  	var bufferType = Float64Array,
  		mixFunction;

  	switch ( typeName ) {

  		case 'quaternion':
  			mixFunction = this._slerp;
  			break;

  		case 'string':
  		case 'bool':
  			bufferType = Array;
  			mixFunction = this._select;
  			break;

  		default:
  			mixFunction = this._lerp;

  	}

  	this.buffer = new bufferType( valueSize * 4 );
  	// layout: [ incoming | accu0 | accu1 | orig ]
  	//
  	// interpolators can use .buffer as their .result
  	// the data then goes to 'incoming'
  	//
  	// 'accu0' and 'accu1' are used frame-interleaved for
  	// the cumulative result and are compared to detect
  	// changes
  	//
  	// 'orig' stores the original state of the property

  	this._mixBufferRegion = mixFunction;

  	this.cumulativeWeight = 0;

  	this.useCount = 0;
  	this.referenceCount = 0;

  }

  Object.assign( PropertyMixer.prototype, {

  	// accumulate data in the 'incoming' region into 'accu<i>'
  	accumulate: function ( accuIndex, weight ) {

  		// note: happily accumulating nothing when weight = 0, the caller knows
  		// the weight and shouldn't have made the call in the first place

  		var buffer = this.buffer,
  			stride = this.valueSize,
  			offset = accuIndex * stride + stride,

  			currentWeight = this.cumulativeWeight;

  		if ( currentWeight === 0 ) {

  			// accuN := incoming * weight

  			for ( var i = 0; i !== stride; ++ i ) {

  				buffer[ offset + i ] = buffer[ i ];

  			}

  			currentWeight = weight;

  		} else {

  			// accuN := accuN + incoming * weight

  			currentWeight += weight;
  			var mix = weight / currentWeight;
  			this._mixBufferRegion( buffer, offset, 0, mix, stride );

  		}

  		this.cumulativeWeight = currentWeight;

  	},

  	// apply the state of 'accu<i>' to the binding when accus differ
  	apply: function ( accuIndex ) {

  		var stride = this.valueSize,
  			buffer = this.buffer,
  			offset = accuIndex * stride + stride,

  			weight = this.cumulativeWeight,

  			binding = this.binding;

  		this.cumulativeWeight = 0;

  		if ( weight < 1 ) {

  			// accuN := accuN + original * ( 1 - cumulativeWeight )

  			var originalValueOffset = stride * 3;

  			this._mixBufferRegion(
  				buffer, offset, originalValueOffset, 1 - weight, stride );

  		}

  		for ( var i = stride, e = stride + stride; i !== e; ++ i ) {

  			if ( buffer[ i ] !== buffer[ i + stride ] ) {

  				// value has changed -> update scene graph

  				binding.setValue( buffer, offset );
  				break;

  			}

  		}

  	},

  	// remember the state of the bound property and copy it to both accus
  	saveOriginalState: function () {

  		var binding = this.binding;

  		var buffer = this.buffer,
  			stride = this.valueSize,

  			originalValueOffset = stride * 3;

  		binding.getValue( buffer, originalValueOffset );

  		// accu[0..1] := orig -- initially detect changes against the original
  		for ( var i = stride, e = originalValueOffset; i !== e; ++ i ) {

  			buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ];

  		}

  		this.cumulativeWeight = 0;

  	},

  	// apply the state previously taken via 'saveOriginalState' to the binding
  	restoreOriginalState: function () {

  		var originalValueOffset = this.valueSize * 3;
  		this.binding.setValue( this.buffer, originalValueOffset );

  	},


  	// mix functions

  	_select: function ( buffer, dstOffset, srcOffset, t, stride ) {

  		if ( t >= 0.5 ) {

  			for ( var i = 0; i !== stride; ++ i ) {

  				buffer[ dstOffset + i ] = buffer[ srcOffset + i ];

  			}

  		}

  	},

  	_slerp: function ( buffer, dstOffset, srcOffset, t ) {

  		Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t );

  	},

  	_lerp: function ( buffer, dstOffset, srcOffset, t, stride ) {

  		var s = 1 - t;

  		for ( var i = 0; i !== stride; ++ i ) {

  			var j = dstOffset + i;

  			buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t;

  		}

  	}

  } );

  /**
   *
   * A reference to a real property in the scene graph.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  // Characters [].:/ are reserved for track binding syntax.
  var RESERVED_CHARS_RE = '\\[\\]\\.:\\/';

  function Composite( targetGroup, path, optionalParsedPath ) {

  	var parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path );

  	this._targetGroup = targetGroup;
  	this._bindings = targetGroup.subscribe_( path, parsedPath );

  }

  Object.assign( Composite.prototype, {

  	getValue: function ( array, offset ) {

  		this.bind(); // bind all binding

  		var firstValidIndex = this._targetGroup.nCachedObjects_,
  			binding = this._bindings[ firstValidIndex ];

  		// and only call .getValue on the first
  		if ( binding !== undefined ) binding.getValue( array, offset );

  	},

  	setValue: function ( array, offset ) {

  		var bindings = this._bindings;

  		for ( var i = this._targetGroup.nCachedObjects_,
  				  n = bindings.length; i !== n; ++ i ) {

  			bindings[ i ].setValue( array, offset );

  		}

  	},

  	bind: function () {

  		var bindings = this._bindings;

  		for ( var i = this._targetGroup.nCachedObjects_,
  				  n = bindings.length; i !== n; ++ i ) {

  			bindings[ i ].bind();

  		}

  	},

  	unbind: function () {

  		var bindings = this._bindings;

  		for ( var i = this._targetGroup.nCachedObjects_,
  				  n = bindings.length; i !== n; ++ i ) {

  			bindings[ i ].unbind();

  		}

  	}

  } );


  function PropertyBinding( rootNode, path, parsedPath ) {

  	this.path = path;
  	this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path );

  	this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ) || rootNode;

  	this.rootNode = rootNode;

  }

  Object.assign( PropertyBinding, {

  	Composite: Composite,

  	create: function ( root, path, parsedPath ) {

  		if ( ! ( root && root.isAnimationObjectGroup ) ) {

  			return new PropertyBinding( root, path, parsedPath );

  		} else {

  			return new PropertyBinding.Composite( root, path, parsedPath );

  		}

  	},

  	/**
  	 * Replaces spaces with underscores and removes unsupported characters from
  	 * node names, to ensure compatibility with parseTrackName().
  	 *
  	 * @param  {string} name Node name to be sanitized.
  	 * @return {string}
  	 */
  	sanitizeNodeName: ( function () {

  		var reservedRe = new RegExp( '[' + RESERVED_CHARS_RE + ']', 'g' );

  		return function sanitizeNodeName( name ) {

  			return name.replace( /\s/g, '_' ).replace( reservedRe, '' );

  		};

  	}() ),

  	parseTrackName: function () {

  		// Attempts to allow node names from any language. ES5's `\w` regexp matches
  		// only latin characters, and the unicode \p{L} is not yet supported. So
  		// instead, we exclude reserved characters and match everything else.
  		var wordChar = '[^' + RESERVED_CHARS_RE + ']';
  		var wordCharOrDot = '[^' + RESERVED_CHARS_RE.replace( '\\.', '' ) + ']';

  		// Parent directories, delimited by '/' or ':'. Currently unused, but must
  		// be matched to parse the rest of the track name.
  		var directoryRe = /((?:WC+[\/:])*)/.source.replace( 'WC', wordChar );

  		// Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
  		var nodeRe = /(WCOD+)?/.source.replace( 'WCOD', wordCharOrDot );

  		// Object on target node, and accessor. May not contain reserved
  		// characters. Accessor may contain any character except closing bracket.
  		var objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', wordChar );

  		// Property and accessor. May not contain reserved characters. Accessor may
  		// contain any non-bracket characters.
  		var propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', wordChar );

  		var trackRe = new RegExp( ''
  			+ '^'
  			+ directoryRe
  			+ nodeRe
  			+ objectRe
  			+ propertyRe
  			+ '$'
  		);

  		var supportedObjectNames = [ 'material', 'materials', 'bones' ];

  		return function parseTrackName( trackName ) {

  			var matches = trackRe.exec( trackName );

  			if ( ! matches ) {

  				throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName );

  			}

  			var results = {
  				// directoryName: matches[ 1 ], // (tschw) currently unused
  				nodeName: matches[ 2 ],
  				objectName: matches[ 3 ],
  				objectIndex: matches[ 4 ],
  				propertyName: matches[ 5 ], // required
  				propertyIndex: matches[ 6 ]
  			};

  			var lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' );

  			if ( lastDot !== undefined && lastDot !== - 1 ) {

  				var objectName = results.nodeName.substring( lastDot + 1 );

  				// Object names must be checked against a whitelist. Otherwise, there
  				// is no way to parse 'foo.bar.baz': 'baz' must be a property, but
  				// 'bar' could be the objectName, or part of a nodeName (which can
  				// include '.' characters).
  				if ( supportedObjectNames.indexOf( objectName ) !== - 1 ) {

  					results.nodeName = results.nodeName.substring( 0, lastDot );
  					results.objectName = objectName;

  				}

  			}

  			if ( results.propertyName === null || results.propertyName.length === 0 ) {

  				throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName );

  			}

  			return results;

  		};

  	}(),

  	findNode: function ( root, nodeName ) {

  		if ( ! nodeName || nodeName === "" || nodeName === "root" || nodeName === "." || nodeName === - 1 || nodeName === root.name || nodeName === root.uuid ) {

  			return root;

  		}

  		// search into skeleton bones.
  		if ( root.skeleton ) {

  			var bone = root.skeleton.getBoneByName( nodeName );

  			if ( bone !== undefined ) {

  				return bone;

  			}

  		}

  		// search into node subtree.
  		if ( root.children ) {

  			var searchNodeSubtree = function ( children ) {

  				for ( var i = 0; i < children.length; i ++ ) {

  					var childNode = children[ i ];

  					if ( childNode.name === nodeName || childNode.uuid === nodeName ) {

  						return childNode;

  					}

  					var result = searchNodeSubtree( childNode.children );

  					if ( result ) return result;

  				}

  				return null;

  			};

  			var subTreeNode = searchNodeSubtree( root.children );

  			if ( subTreeNode ) {

  				return subTreeNode;

  			}

  		}

  		return null;

  	}

  } );

  Object.assign( PropertyBinding.prototype, { // prototype, continued

  	// these are used to "bind" a nonexistent property
  	_getValue_unavailable: function () {},
  	_setValue_unavailable: function () {},

  	BindingType: {
  		Direct: 0,
  		EntireArray: 1,
  		ArrayElement: 2,
  		HasFromToArray: 3
  	},

  	Versioning: {
  		None: 0,
  		NeedsUpdate: 1,
  		MatrixWorldNeedsUpdate: 2
  	},

  	GetterByBindingType: [

  		function getValue_direct( buffer, offset ) {

  			buffer[ offset ] = this.node[ this.propertyName ];

  		},

  		function getValue_array( buffer, offset ) {

  			var source = this.resolvedProperty;

  			for ( var i = 0, n = source.length; i !== n; ++ i ) {

  				buffer[ offset ++ ] = source[ i ];

  			}

  		},

  		function getValue_arrayElement( buffer, offset ) {

  			buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ];

  		},

  		function getValue_toArray( buffer, offset ) {

  			this.resolvedProperty.toArray( buffer, offset );

  		}

  	],

  	SetterByBindingTypeAndVersioning: [

  		[
  			// Direct

  			function setValue_direct( buffer, offset ) {

  				this.targetObject[ this.propertyName ] = buffer[ offset ];

  			},

  			function setValue_direct_setNeedsUpdate( buffer, offset ) {

  				this.targetObject[ this.propertyName ] = buffer[ offset ];
  				this.targetObject.needsUpdate = true;

  			},

  			function setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) {

  				this.targetObject[ this.propertyName ] = buffer[ offset ];
  				this.targetObject.matrixWorldNeedsUpdate = true;

  			}

  		], [

  			// EntireArray

  			function setValue_array( buffer, offset ) {

  				var dest = this.resolvedProperty;

  				for ( var i = 0, n = dest.length; i !== n; ++ i ) {

  					dest[ i ] = buffer[ offset ++ ];

  				}

  			},

  			function setValue_array_setNeedsUpdate( buffer, offset ) {

  				var dest = this.resolvedProperty;

  				for ( var i = 0, n = dest.length; i !== n; ++ i ) {

  					dest[ i ] = buffer[ offset ++ ];

  				}

  				this.targetObject.needsUpdate = true;

  			},

  			function setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) {

  				var dest = this.resolvedProperty;

  				for ( var i = 0, n = dest.length; i !== n; ++ i ) {

  					dest[ i ] = buffer[ offset ++ ];

  				}

  				this.targetObject.matrixWorldNeedsUpdate = true;

  			}

  		], [

  			// ArrayElement

  			function setValue_arrayElement( buffer, offset ) {

  				this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];

  			},

  			function setValue_arrayElement_setNeedsUpdate( buffer, offset ) {

  				this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
  				this.targetObject.needsUpdate = true;

  			},

  			function setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) {

  				this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ];
  				this.targetObject.matrixWorldNeedsUpdate = true;

  			}

  		], [

  			// HasToFromArray

  			function setValue_fromArray( buffer, offset ) {

  				this.resolvedProperty.fromArray( buffer, offset );

  			},

  			function setValue_fromArray_setNeedsUpdate( buffer, offset ) {

  				this.resolvedProperty.fromArray( buffer, offset );
  				this.targetObject.needsUpdate = true;

  			},

  			function setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) {

  				this.resolvedProperty.fromArray( buffer, offset );
  				this.targetObject.matrixWorldNeedsUpdate = true;

  			}

  		]

  	],

  	getValue: function getValue_unbound( targetArray, offset ) {

  		this.bind();
  		this.getValue( targetArray, offset );

  		// Note: This class uses a State pattern on a per-method basis:
  		// 'bind' sets 'this.getValue' / 'setValue' and shadows the
  		// prototype version of these methods with one that represents
  		// the bound state. When the property is not found, the methods
  		// become no-ops.

  	},

  	setValue: function getValue_unbound( sourceArray, offset ) {

  		this.bind();
  		this.setValue( sourceArray, offset );

  	},

  	// create getter / setter pair for a property in the scene graph
  	bind: function () {

  		var targetObject = this.node,
  			parsedPath = this.parsedPath,

  			objectName = parsedPath.objectName,
  			propertyName = parsedPath.propertyName,
  			propertyIndex = parsedPath.propertyIndex;

  		if ( ! targetObject ) {

  			targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ) || this.rootNode;

  			this.node = targetObject;

  		}

  		// set fail state so we can just 'return' on error
  		this.getValue = this._getValue_unavailable;
  		this.setValue = this._setValue_unavailable;

  		// ensure there is a value node
  		if ( ! targetObject ) {

  			console.error( 'THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.' );
  			return;

  		}

  		if ( objectName ) {

  			var objectIndex = parsedPath.objectIndex;

  			// special cases were we need to reach deeper into the hierarchy to get the face materials....
  			switch ( objectName ) {

  				case 'materials':

  					if ( ! targetObject.material ) {

  						console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this );
  						return;

  					}

  					if ( ! targetObject.material.materials ) {

  						console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this );
  						return;

  					}

  					targetObject = targetObject.material.materials;

  					break;

  				case 'bones':

  					if ( ! targetObject.skeleton ) {

  						console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this );
  						return;

  					}

  					// potential future optimization: skip this if propertyIndex is already an integer
  					// and convert the integer string to a true integer.

  					targetObject = targetObject.skeleton.bones;

  					// support resolving morphTarget names into indices.
  					for ( var i = 0; i < targetObject.length; i ++ ) {

  						if ( targetObject[ i ].name === objectIndex ) {

  							objectIndex = i;
  							break;

  						}

  					}

  					break;

  				default:

  					if ( targetObject[ objectName ] === undefined ) {

  						console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this );
  						return;

  					}

  					targetObject = targetObject[ objectName ];

  			}


  			if ( objectIndex !== undefined ) {

  				if ( targetObject[ objectIndex ] === undefined ) {

  					console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject );
  					return;

  				}

  				targetObject = targetObject[ objectIndex ];

  			}

  		}

  		// resolve property
  		var nodeProperty = targetObject[ propertyName ];

  		if ( nodeProperty === undefined ) {

  			var nodeName = parsedPath.nodeName;

  			console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName +
  				'.' + propertyName + ' but it wasn\'t found.', targetObject );
  			return;

  		}

  		// determine versioning scheme
  		var versioning = this.Versioning.None;

  		if ( targetObject.needsUpdate !== undefined ) { // material

  			versioning = this.Versioning.NeedsUpdate;
  			this.targetObject = targetObject;

  		} else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform

  			versioning = this.Versioning.MatrixWorldNeedsUpdate;
  			this.targetObject = targetObject;

  		}

  		// determine how the property gets bound
  		var bindingType = this.BindingType.Direct;

  		if ( propertyIndex !== undefined ) {

  			// access a sub element of the property array (only primitives are supported right now)

  			if ( propertyName === "morphTargetInfluences" ) {

  				// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.

  				// support resolving morphTarget names into indices.
  				if ( ! targetObject.geometry ) {

  					console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this );
  					return;

  				}

  				if ( targetObject.geometry.isBufferGeometry ) {

  					if ( ! targetObject.geometry.morphAttributes ) {

  						console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this );
  						return;

  					}

  					for ( var i = 0; i < this.node.geometry.morphAttributes.position.length; i ++ ) {

  						if ( targetObject.geometry.morphAttributes.position[ i ].name === propertyIndex ) {

  							propertyIndex = i;
  							break;

  						}

  					}


  				} else {

  					if ( ! targetObject.geometry.morphTargets ) {

  						console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphTargets.', this );
  						return;

  					}

  					for ( var i = 0; i < this.node.geometry.morphTargets.length; i ++ ) {

  						if ( targetObject.geometry.morphTargets[ i ].name === propertyIndex ) {

  							propertyIndex = i;
  							break;

  						}

  					}

  				}

  			}

  			bindingType = this.BindingType.ArrayElement;

  			this.resolvedProperty = nodeProperty;
  			this.propertyIndex = propertyIndex;

  		} else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) {

  			// must use copy for Object3D.Euler/Quaternion

  			bindingType = this.BindingType.HasFromToArray;

  			this.resolvedProperty = nodeProperty;

  		} else if ( Array.isArray( nodeProperty ) ) {

  			bindingType = this.BindingType.EntireArray;

  			this.resolvedProperty = nodeProperty;

  		} else {

  			this.propertyName = propertyName;

  		}

  		// select getter / setter
  		this.getValue = this.GetterByBindingType[ bindingType ];
  		this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ];

  	},

  	unbind: function () {

  		this.node = null;

  		// back to the prototype version of getValue / setValue
  		// note: avoiding to mutate the shape of 'this' via 'delete'
  		this.getValue = this._getValue_unbound;
  		this.setValue = this._setValue_unbound;

  	}

  } );

  //!\ DECLARE ALIAS AFTER assign prototype !
  Object.assign( PropertyBinding.prototype, {

  	// initial state of these methods that calls 'bind'
  	_getValue_unbound: PropertyBinding.prototype.getValue,
  	_setValue_unbound: PropertyBinding.prototype.setValue,

  } );

  /**
   *
   * A group of objects that receives a shared animation state.
   *
   * Usage:
   *
   * 	-	Add objects you would otherwise pass as 'root' to the
   * 		constructor or the .clipAction method of AnimationMixer.
   *
   * 	-	Instead pass this object as 'root'.
   *
   * 	-	You can also add and remove objects later when the mixer
   * 		is running.
   *
   * Note:
   *
   *  	Objects of this class appear as one object to the mixer,
   *  	so cache control of the individual objects must be done
   *  	on the group.
   *
   * Limitation:
   *
   * 	- 	The animated properties must be compatible among the
   * 		all objects in the group.
   *
   *  -	A single property can either be controlled through a
   *  	target group or directly, but not both.
   *
   * @author tschw
   */

  function AnimationObjectGroup() {

  	this.uuid = _Math.generateUUID();

  	// cached objects followed by the active ones
  	this._objects = Array.prototype.slice.call( arguments );

  	this.nCachedObjects_ = 0;			// threshold
  	// note: read by PropertyBinding.Composite

  	var indices = {};
  	this._indicesByUUID = indices;		// for bookkeeping

  	for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

  		indices[ arguments[ i ].uuid ] = i;

  	}

  	this._paths = [];					// inside: string
  	this._parsedPaths = [];				// inside: { we don't care, here }
  	this._bindings = []; 				// inside: Array< PropertyBinding >
  	this._bindingsIndicesByPath = {}; 	// inside: indices in these arrays

  	var scope = this;

  	this.stats = {

  		objects: {
  			get total() {

  				return scope._objects.length;

  			},
  			get inUse() {

  				return this.total - scope.nCachedObjects_;

  			}
  		},
  		get bindingsPerObject() {

  			return scope._bindings.length;

  		}

  	};

  }

  Object.assign( AnimationObjectGroup.prototype, {

  	isAnimationObjectGroup: true,

  	add: function () {

  		var objects = this._objects,
  			nObjects = objects.length,
  			nCachedObjects = this.nCachedObjects_,
  			indicesByUUID = this._indicesByUUID,
  			paths = this._paths,
  			parsedPaths = this._parsedPaths,
  			bindings = this._bindings,
  			nBindings = bindings.length,
  			knownObject = undefined;

  		for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

  			var object = arguments[ i ],
  				uuid = object.uuid,
  				index = indicesByUUID[ uuid ];

  			if ( index === undefined ) {

  				// unknown object -> add it to the ACTIVE region

  				index = nObjects ++;
  				indicesByUUID[ uuid ] = index;
  				objects.push( object );

  				// accounting is done, now do the same for all bindings

  				for ( var j = 0, m = nBindings; j !== m; ++ j ) {

  					bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) );

  				}

  			} else if ( index < nCachedObjects ) {

  				knownObject = objects[ index ];

  				// move existing object to the ACTIVE region

  				var firstActiveIndex = -- nCachedObjects,
  					lastCachedObject = objects[ firstActiveIndex ];

  				indicesByUUID[ lastCachedObject.uuid ] = index;
  				objects[ index ] = lastCachedObject;

  				indicesByUUID[ uuid ] = firstActiveIndex;
  				objects[ firstActiveIndex ] = object;

  				// accounting is done, now do the same for all bindings

  				for ( var j = 0, m = nBindings; j !== m; ++ j ) {

  					var bindingsForPath = bindings[ j ],
  						lastCached = bindingsForPath[ firstActiveIndex ],
  						binding = bindingsForPath[ index ];

  					bindingsForPath[ index ] = lastCached;

  					if ( binding === undefined ) {

  						// since we do not bother to create new bindings
  						// for objects that are cached, the binding may
  						// or may not exist

  						binding = new PropertyBinding( object, paths[ j ], parsedPaths[ j ] );

  					}

  					bindingsForPath[ firstActiveIndex ] = binding;

  				}

  			} else if ( objects[ index ] !== knownObject ) {

  				console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' +
  						'detected. Clean the caches or recreate your infrastructure when reloading scenes.' );

  			} // else the object is already where we want it to be

  		} // for arguments

  		this.nCachedObjects_ = nCachedObjects;

  	},

  	remove: function () {

  		var objects = this._objects,
  			nCachedObjects = this.nCachedObjects_,
  			indicesByUUID = this._indicesByUUID,
  			bindings = this._bindings,
  			nBindings = bindings.length;

  		for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

  			var object = arguments[ i ],
  				uuid = object.uuid,
  				index = indicesByUUID[ uuid ];

  			if ( index !== undefined && index >= nCachedObjects ) {

  				// move existing object into the CACHED region

  				var lastCachedIndex = nCachedObjects ++,
  					firstActiveObject = objects[ lastCachedIndex ];

  				indicesByUUID[ firstActiveObject.uuid ] = index;
  				objects[ index ] = firstActiveObject;

  				indicesByUUID[ uuid ] = lastCachedIndex;
  				objects[ lastCachedIndex ] = object;

  				// accounting is done, now do the same for all bindings

  				for ( var j = 0, m = nBindings; j !== m; ++ j ) {

  					var bindingsForPath = bindings[ j ],
  						firstActive = bindingsForPath[ lastCachedIndex ],
  						binding = bindingsForPath[ index ];

  					bindingsForPath[ index ] = firstActive;
  					bindingsForPath[ lastCachedIndex ] = binding;

  				}

  			}

  		} // for arguments

  		this.nCachedObjects_ = nCachedObjects;

  	},

  	// remove & forget
  	uncache: function () {

  		var objects = this._objects,
  			nObjects = objects.length,
  			nCachedObjects = this.nCachedObjects_,
  			indicesByUUID = this._indicesByUUID,
  			bindings = this._bindings,
  			nBindings = bindings.length;

  		for ( var i = 0, n = arguments.length; i !== n; ++ i ) {

  			var object = arguments[ i ],
  				uuid = object.uuid,
  				index = indicesByUUID[ uuid ];

  			if ( index !== undefined ) {

  				delete indicesByUUID[ uuid ];

  				if ( index < nCachedObjects ) {

  					// object is cached, shrink the CACHED region

  					var firstActiveIndex = -- nCachedObjects,
  						lastCachedObject = objects[ firstActiveIndex ],
  						lastIndex = -- nObjects,
  						lastObject = objects[ lastIndex ];

  					// last cached object takes this object's place
  					indicesByUUID[ lastCachedObject.uuid ] = index;
  					objects[ index ] = lastCachedObject;

  					// last object goes to the activated slot and pop
  					indicesByUUID[ lastObject.uuid ] = firstActiveIndex;
  					objects[ firstActiveIndex ] = lastObject;
  					objects.pop();

  					// accounting is done, now do the same for all bindings

  					for ( var j = 0, m = nBindings; j !== m; ++ j ) {

  						var bindingsForPath = bindings[ j ],
  							lastCached = bindingsForPath[ firstActiveIndex ],
  							last = bindingsForPath[ lastIndex ];

  						bindingsForPath[ index ] = lastCached;
  						bindingsForPath[ firstActiveIndex ] = last;
  						bindingsForPath.pop();

  					}

  				} else {

  					// object is active, just swap with the last and pop

  					var lastIndex = -- nObjects,
  						lastObject = objects[ lastIndex ];

  					indicesByUUID[ lastObject.uuid ] = index;
  					objects[ index ] = lastObject;
  					objects.pop();

  					// accounting is done, now do the same for all bindings

  					for ( var j = 0, m = nBindings; j !== m; ++ j ) {

  						var bindingsForPath = bindings[ j ];

  						bindingsForPath[ index ] = bindingsForPath[ lastIndex ];
  						bindingsForPath.pop();

  					}

  				} // cached or active

  			} // if object is known

  		} // for arguments

  		this.nCachedObjects_ = nCachedObjects;

  	},

  	// Internal interface used by befriended PropertyBinding.Composite:

  	subscribe_: function ( path, parsedPath ) {

  		// returns an array of bindings for the given path that is changed
  		// according to the contained objects in the group

  		var indicesByPath = this._bindingsIndicesByPath,
  			index = indicesByPath[ path ],
  			bindings = this._bindings;

  		if ( index !== undefined ) return bindings[ index ];

  		var paths = this._paths,
  			parsedPaths = this._parsedPaths,
  			objects = this._objects,
  			nObjects = objects.length,
  			nCachedObjects = this.nCachedObjects_,
  			bindingsForPath = new Array( nObjects );

  		index = bindings.length;

  		indicesByPath[ path ] = index;

  		paths.push( path );
  		parsedPaths.push( parsedPath );
  		bindings.push( bindingsForPath );

  		for ( var i = nCachedObjects, n = objects.length; i !== n; ++ i ) {

  			var object = objects[ i ];
  			bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath );

  		}

  		return bindingsForPath;

  	},

  	unsubscribe_: function ( path ) {

  		// tells the group to forget about a property path and no longer
  		// update the array previously obtained with 'subscribe_'

  		var indicesByPath = this._bindingsIndicesByPath,
  			index = indicesByPath[ path ];

  		if ( index !== undefined ) {

  			var paths = this._paths,
  				parsedPaths = this._parsedPaths,
  				bindings = this._bindings,
  				lastBindingsIndex = bindings.length - 1,
  				lastBindings = bindings[ lastBindingsIndex ],
  				lastBindingsPath = path[ lastBindingsIndex ];

  			indicesByPath[ lastBindingsPath ] = index;

  			bindings[ index ] = lastBindings;
  			bindings.pop();

  			parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ];
  			parsedPaths.pop();

  			paths[ index ] = paths[ lastBindingsIndex ];
  			paths.pop();

  		}

  	}

  } );

  /**
   *
   * Action provided by AnimationMixer for scheduling clip playback on specific
   * objects.
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   *
   */

  function AnimationAction( mixer, clip, localRoot ) {

  	this._mixer = mixer;
  	this._clip = clip;
  	this._localRoot = localRoot || null;

  	var tracks = clip.tracks,
  		nTracks = tracks.length,
  		interpolants = new Array( nTracks );

  	var interpolantSettings = {
  		endingStart: ZeroCurvatureEnding,
  		endingEnd: ZeroCurvatureEnding
  	};

  	for ( var i = 0; i !== nTracks; ++ i ) {

  		var interpolant = tracks[ i ].createInterpolant( null );
  		interpolants[ i ] = interpolant;
  		interpolant.settings = interpolantSettings;

  	}

  	this._interpolantSettings = interpolantSettings;

  	this._interpolants = interpolants;	// bound by the mixer

  	// inside: PropertyMixer (managed by the mixer)
  	this._propertyBindings = new Array( nTracks );

  	this._cacheIndex = null;			// for the memory manager
  	this._byClipCacheIndex = null;		// for the memory manager

  	this._timeScaleInterpolant = null;
  	this._weightInterpolant = null;

  	this.loop = LoopRepeat;
  	this._loopCount = - 1;

  	// global mixer time when the action is to be started
  	// it's set back to 'null' upon start of the action
  	this._startTime = null;

  	// scaled local time of the action
  	// gets clamped or wrapped to 0..clip.duration according to loop
  	this.time = 0;

  	this.timeScale = 1;
  	this._effectiveTimeScale = 1;

  	this.weight = 1;
  	this._effectiveWeight = 1;

  	this.repetitions = Infinity; 		// no. of repetitions when looping

  	this.paused = false;				// true -> zero effective time scale
  	this.enabled = true;				// false -> zero effective weight

  	this.clampWhenFinished 	= false;	// keep feeding the last frame?

  	this.zeroSlopeAtStart 	= true;		// for smooth interpolation w/o separate
  	this.zeroSlopeAtEnd		= true;		// clips for start, loop and end

  }

  Object.assign( AnimationAction.prototype, {

  	// State & Scheduling

  	play: function () {

  		this._mixer._activateAction( this );

  		return this;

  	},

  	stop: function () {

  		this._mixer._deactivateAction( this );

  		return this.reset();

  	},

  	reset: function () {

  		this.paused = false;
  		this.enabled = true;

  		this.time = 0;			// restart clip
  		this._loopCount = - 1;	// forget previous loops
  		this._startTime = null;	// forget scheduling

  		return this.stopFading().stopWarping();

  	},

  	isRunning: function () {

  		return this.enabled && ! this.paused && this.timeScale !== 0 &&
  				this._startTime === null && this._mixer._isActiveAction( this );

  	},

  	// return true when play has been called
  	isScheduled: function () {

  		return this._mixer._isActiveAction( this );

  	},

  	startAt: function ( time ) {

  		this._startTime = time;

  		return this;

  	},

  	setLoop: function ( mode, repetitions ) {

  		this.loop = mode;
  		this.repetitions = repetitions;

  		return this;

  	},

  	// Weight

  	// set the weight stopping any scheduled fading
  	// although .enabled = false yields an effective weight of zero, this
  	// method does *not* change .enabled, because it would be confusing
  	setEffectiveWeight: function ( weight ) {

  		this.weight = weight;

  		// note: same logic as when updated at runtime
  		this._effectiveWeight = this.enabled ? weight : 0;

  		return this.stopFading();

  	},

  	// return the weight considering fading and .enabled
  	getEffectiveWeight: function () {

  		return this._effectiveWeight;

  	},

  	fadeIn: function ( duration ) {

  		return this._scheduleFading( duration, 0, 1 );

  	},

  	fadeOut: function ( duration ) {

  		return this._scheduleFading( duration, 1, 0 );

  	},

  	crossFadeFrom: function ( fadeOutAction, duration, warp ) {

  		fadeOutAction.fadeOut( duration );
  		this.fadeIn( duration );

  		if ( warp ) {

  			var fadeInDuration = this._clip.duration,
  				fadeOutDuration = fadeOutAction._clip.duration,

  				startEndRatio = fadeOutDuration / fadeInDuration,
  				endStartRatio = fadeInDuration / fadeOutDuration;

  			fadeOutAction.warp( 1.0, startEndRatio, duration );
  			this.warp( endStartRatio, 1.0, duration );

  		}

  		return this;

  	},

  	crossFadeTo: function ( fadeInAction, duration, warp ) {

  		return fadeInAction.crossFadeFrom( this, duration, warp );

  	},

  	stopFading: function () {

  		var weightInterpolant = this._weightInterpolant;

  		if ( weightInterpolant !== null ) {

  			this._weightInterpolant = null;
  			this._mixer._takeBackControlInterpolant( weightInterpolant );

  		}

  		return this;

  	},

  	// Time Scale Control

  	// set the time scale stopping any scheduled warping
  	// although .paused = true yields an effective time scale of zero, this
  	// method does *not* change .paused, because it would be confusing
  	setEffectiveTimeScale: function ( timeScale ) {

  		this.timeScale = timeScale;
  		this._effectiveTimeScale = this.paused ? 0 : timeScale;

  		return this.stopWarping();

  	},

  	// return the time scale considering warping and .paused
  	getEffectiveTimeScale: function () {

  		return this._effectiveTimeScale;

  	},

  	setDuration: function ( duration ) {

  		this.timeScale = this._clip.duration / duration;

  		return this.stopWarping();

  	},

  	syncWith: function ( action ) {

  		this.time = action.time;
  		this.timeScale = action.timeScale;

  		return this.stopWarping();

  	},

  	halt: function ( duration ) {

  		return this.warp( this._effectiveTimeScale, 0, duration );

  	},

  	warp: function ( startTimeScale, endTimeScale, duration ) {

  		var mixer = this._mixer, now = mixer.time,
  			interpolant = this._timeScaleInterpolant,

  			timeScale = this.timeScale;

  		if ( interpolant === null ) {

  			interpolant = mixer._lendControlInterpolant();
  			this._timeScaleInterpolant = interpolant;

  		}

  		var times = interpolant.parameterPositions,
  			values = interpolant.sampleValues;

  		times[ 0 ] = now;
  		times[ 1 ] = now + duration;

  		values[ 0 ] = startTimeScale / timeScale;
  		values[ 1 ] = endTimeScale / timeScale;

  		return this;

  	},

  	stopWarping: function () {

  		var timeScaleInterpolant = this._timeScaleInterpolant;

  		if ( timeScaleInterpolant !== null ) {

  			this._timeScaleInterpolant = null;
  			this._mixer._takeBackControlInterpolant( timeScaleInterpolant );

  		}

  		return this;

  	},

  	// Object Accessors

  	getMixer: function () {

  		return this._mixer;

  	},

  	getClip: function () {

  		return this._clip;

  	},

  	getRoot: function () {

  		return this._localRoot || this._mixer._root;

  	},

  	// Interna

  	_update: function ( time, deltaTime, timeDirection, accuIndex ) {

  		// called by the mixer

  		if ( ! this.enabled ) {

  			// call ._updateWeight() to update ._effectiveWeight

  			this._updateWeight( time );
  			return;

  		}

  		var startTime = this._startTime;

  		if ( startTime !== null ) {

  			// check for scheduled start of action

  			var timeRunning = ( time - startTime ) * timeDirection;
  			if ( timeRunning < 0 || timeDirection === 0 ) {

  				return; // yet to come / don't decide when delta = 0

  			}

  			// start

  			this._startTime = null; // unschedule
  			deltaTime = timeDirection * timeRunning;

  		}

  		// apply time scale and advance time

  		deltaTime *= this._updateTimeScale( time );
  		var clipTime = this._updateTime( deltaTime );

  		// note: _updateTime may disable the action resulting in
  		// an effective weight of 0

  		var weight = this._updateWeight( time );

  		if ( weight > 0 ) {

  			var interpolants = this._interpolants;
  			var propertyMixers = this._propertyBindings;

  			for ( var j = 0, m = interpolants.length; j !== m; ++ j ) {

  				interpolants[ j ].evaluate( clipTime );
  				propertyMixers[ j ].accumulate( accuIndex, weight );

  			}

  		}

  	},

  	_updateWeight: function ( time ) {

  		var weight = 0;

  		if ( this.enabled ) {

  			weight = this.weight;
  			var interpolant = this._weightInterpolant;

  			if ( interpolant !== null ) {

  				var interpolantValue = interpolant.evaluate( time )[ 0 ];

  				weight *= interpolantValue;

  				if ( time > interpolant.parameterPositions[ 1 ] ) {

  					this.stopFading();

  					if ( interpolantValue === 0 ) {

  						// faded out, disable
  						this.enabled = false;

  					}

  				}

  			}

  		}

  		this._effectiveWeight = weight;
  		return weight;

  	},

  	_updateTimeScale: function ( time ) {

  		var timeScale = 0;

  		if ( ! this.paused ) {

  			timeScale = this.timeScale;

  			var interpolant = this._timeScaleInterpolant;

  			if ( interpolant !== null ) {

  				var interpolantValue = interpolant.evaluate( time )[ 0 ];

  				timeScale *= interpolantValue;

  				if ( time > interpolant.parameterPositions[ 1 ] ) {

  					this.stopWarping();

  					if ( timeScale === 0 ) {

  						// motion has halted, pause
  						this.paused = true;

  					} else {

  						// warp done - apply final time scale
  						this.timeScale = timeScale;

  					}

  				}

  			}

  		}

  		this._effectiveTimeScale = timeScale;
  		return timeScale;

  	},

  	_updateTime: function ( deltaTime ) {

  		var time = this.time + deltaTime;

  		if ( deltaTime === 0 ) return time;

  		var duration = this._clip.duration,

  			loop = this.loop,
  			loopCount = this._loopCount;

  		if ( loop === LoopOnce ) {

  			if ( loopCount === - 1 ) {

  				// just started

  				this._loopCount = 0;
  				this._setEndings( true, true, false );

  			}

  			handle_stop: {

  				if ( time >= duration ) {

  					time = duration;

  				} else if ( time < 0 ) {

  					time = 0;

  				} else break handle_stop;

  				if ( this.clampWhenFinished ) this.paused = true;
  				else this.enabled = false;

  				this._mixer.dispatchEvent( {
  					type: 'finished', action: this,
  					direction: deltaTime < 0 ? - 1 : 1
  				} );

  			}

  		} else { // repetitive Repeat or PingPong

  			var pingPong = ( loop === LoopPingPong );

  			if ( loopCount === - 1 ) {

  				// just started

  				if ( deltaTime >= 0 ) {

  					loopCount = 0;

  					this._setEndings( true, this.repetitions === 0, pingPong );

  				} else {

  					// when looping in reverse direction, the initial
  					// transition through zero counts as a repetition,
  					// so leave loopCount at -1

  					this._setEndings( this.repetitions === 0, true, pingPong );

  				}

  			}

  			if ( time >= duration || time < 0 ) {

  				// wrap around

  				var loopDelta = Math.floor( time / duration ); // signed
  				time -= duration * loopDelta;

  				loopCount += Math.abs( loopDelta );

  				var pending = this.repetitions - loopCount;

  				if ( pending <= 0 ) {

  					// have to stop (switch state, clamp time, fire event)

  					if ( this.clampWhenFinished ) this.paused = true;
  					else this.enabled = false;

  					time = deltaTime > 0 ? duration : 0;

  					this._mixer.dispatchEvent( {
  						type: 'finished', action: this,
  						direction: deltaTime > 0 ? 1 : - 1
  					} );

  				} else {

  					// keep running

  					if ( pending === 1 ) {

  						// entering the last round

  						var atStart = deltaTime < 0;
  						this._setEndings( atStart, ! atStart, pingPong );

  					} else {

  						this._setEndings( false, false, pingPong );

  					}

  					this._loopCount = loopCount;

  					this._mixer.dispatchEvent( {
  						type: 'loop', action: this, loopDelta: loopDelta
  					} );

  				}

  			}

  			if ( pingPong && ( loopCount & 1 ) === 1 ) {

  				// invert time for the "pong round"

  				this.time = time;
  				return duration - time;

  			}

  		}

  		this.time = time;
  		return time;

  	},

  	_setEndings: function ( atStart, atEnd, pingPong ) {

  		var settings = this._interpolantSettings;

  		if ( pingPong ) {

  			settings.endingStart 	= ZeroSlopeEnding;
  			settings.endingEnd		= ZeroSlopeEnding;

  		} else {

  			// assuming for LoopOnce atStart == atEnd == true

  			if ( atStart ) {

  				settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;

  			} else {

  				settings.endingStart = WrapAroundEnding;

  			}

  			if ( atEnd ) {

  				settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;

  			} else {

  				settings.endingEnd 	 = WrapAroundEnding;

  			}

  		}

  	},

  	_scheduleFading: function ( duration, weightNow, weightThen ) {

  		var mixer = this._mixer, now = mixer.time,
  			interpolant = this._weightInterpolant;

  		if ( interpolant === null ) {

  			interpolant = mixer._lendControlInterpolant();
  			this._weightInterpolant = interpolant;

  		}

  		var times = interpolant.parameterPositions,
  			values = interpolant.sampleValues;

  		times[ 0 ] = now; 				values[ 0 ] = weightNow;
  		times[ 1 ] = now + duration;	values[ 1 ] = weightThen;

  		return this;

  	}

  } );

  /**
   *
   * Player for AnimationClips.
   *
   *
   * @author Ben Houston / http://clara.io/
   * @author David Sarno / http://lighthaus.us/
   * @author tschw
   */

  function AnimationMixer( root ) {

  	this._root = root;
  	this._initMemoryManager();
  	this._accuIndex = 0;

  	this.time = 0;

  	this.timeScale = 1.0;

  }

  AnimationMixer.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {

  	constructor: AnimationMixer,

  	_bindAction: function ( action, prototypeAction ) {

  		var root = action._localRoot || this._root,
  			tracks = action._clip.tracks,
  			nTracks = tracks.length,
  			bindings = action._propertyBindings,
  			interpolants = action._interpolants,
  			rootUuid = root.uuid,
  			bindingsByRoot = this._bindingsByRootAndName,
  			bindingsByName = bindingsByRoot[ rootUuid ];

  		if ( bindingsByName === undefined ) {

  			bindingsByName = {};
  			bindingsByRoot[ rootUuid ] = bindingsByName;

  		}

  		for ( var i = 0; i !== nTracks; ++ i ) {

  			var track = tracks[ i ],
  				trackName = track.name,
  				binding = bindingsByName[ trackName ];

  			if ( binding !== undefined ) {

  				bindings[ i ] = binding;

  			} else {

  				binding = bindings[ i ];

  				if ( binding !== undefined ) {

  					// existing binding, make sure the cache knows

  					if ( binding._cacheIndex === null ) {

  						++ binding.referenceCount;
  						this._addInactiveBinding( binding, rootUuid, trackName );

  					}

  					continue;

  				}

  				var path = prototypeAction && prototypeAction.
  					_propertyBindings[ i ].binding.parsedPath;

  				binding = new PropertyMixer(
  					PropertyBinding.create( root, trackName, path ),
  					track.ValueTypeName, track.getValueSize() );

  				++ binding.referenceCount;
  				this._addInactiveBinding( binding, rootUuid, trackName );

  				bindings[ i ] = binding;

  			}

  			interpolants[ i ].resultBuffer = binding.buffer;

  		}

  	},

  	_activateAction: function ( action ) {

  		if ( ! this._isActiveAction( action ) ) {

  			if ( action._cacheIndex === null ) {

  				// this action has been forgotten by the cache, but the user
  				// appears to be still using it -> rebind

  				var rootUuid = ( action._localRoot || this._root ).uuid,
  					clipUuid = action._clip.uuid,
  					actionsForClip = this._actionsByClip[ clipUuid ];

  				this._bindAction( action,
  					actionsForClip && actionsForClip.knownActions[ 0 ] );

  				this._addInactiveAction( action, clipUuid, rootUuid );

  			}

  			var bindings = action._propertyBindings;

  			// increment reference counts / sort out state
  			for ( var i = 0, n = bindings.length; i !== n; ++ i ) {

  				var binding = bindings[ i ];

  				if ( binding.useCount ++ === 0 ) {

  					this._lendBinding( binding );
  					binding.saveOriginalState();

  				}

  			}

  			this._lendAction( action );

  		}

  	},

  	_deactivateAction: function ( action ) {

  		if ( this._isActiveAction( action ) ) {

  			var bindings = action._propertyBindings;

  			// decrement reference counts / sort out state
  			for ( var i = 0, n = bindings.length; i !== n; ++ i ) {

  				var binding = bindings[ i ];

  				if ( -- binding.useCount === 0 ) {

  					binding.restoreOriginalState();
  					this._takeBackBinding( binding );

  				}

  			}

  			this._takeBackAction( action );

  		}

  	},

  	// Memory manager

  	_initMemoryManager: function () {

  		this._actions = []; // 'nActiveActions' followed by inactive ones
  		this._nActiveActions = 0;

  		this._actionsByClip = {};
  		// inside:
  		// {
  		// 		knownActions: Array< AnimationAction >	- used as prototypes
  		// 		actionByRoot: AnimationAction			- lookup
  		// }


  		this._bindings = []; // 'nActiveBindings' followed by inactive ones
  		this._nActiveBindings = 0;

  		this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >


  		this._controlInterpolants = []; // same game as above
  		this._nActiveControlInterpolants = 0;

  		var scope = this;

  		this.stats = {

  			actions: {
  				get total() {

  					return scope._actions.length;

  				},
  				get inUse() {

  					return scope._nActiveActions;

  				}
  			},
  			bindings: {
  				get total() {

  					return scope._bindings.length;

  				},
  				get inUse() {

  					return scope._nActiveBindings;

  				}
  			},
  			controlInterpolants: {
  				get total() {

  					return scope._controlInterpolants.length;

  				},
  				get inUse() {

  					return scope._nActiveControlInterpolants;

  				}
  			}

  		};

  	},

  	// Memory management for AnimationAction objects

  	_isActiveAction: function ( action ) {

  		var index = action._cacheIndex;
  		return index !== null && index < this._nActiveActions;

  	},

  	_addInactiveAction: function ( action, clipUuid, rootUuid ) {

  		var actions = this._actions,
  			actionsByClip = this._actionsByClip,
  			actionsForClip = actionsByClip[ clipUuid ];

  		if ( actionsForClip === undefined ) {

  			actionsForClip = {

  				knownActions: [ action ],
  				actionByRoot: {}

  			};

  			action._byClipCacheIndex = 0;

  			actionsByClip[ clipUuid ] = actionsForClip;

  		} else {

  			var knownActions = actionsForClip.knownActions;

  			action._byClipCacheIndex = knownActions.length;
  			knownActions.push( action );

  		}

  		action._cacheIndex = actions.length;
  		actions.push( action );

  		actionsForClip.actionByRoot[ rootUuid ] = action;

  	},

  	_removeInactiveAction: function ( action ) {

  		var actions = this._actions,
  			lastInactiveAction = actions[ actions.length - 1 ],
  			cacheIndex = action._cacheIndex;

  		lastInactiveAction._cacheIndex = cacheIndex;
  		actions[ cacheIndex ] = lastInactiveAction;
  		actions.pop();

  		action._cacheIndex = null;


  		var clipUuid = action._clip.uuid,
  			actionsByClip = this._actionsByClip,
  			actionsForClip = actionsByClip[ clipUuid ],
  			knownActionsForClip = actionsForClip.knownActions,

  			lastKnownAction =
  				knownActionsForClip[ knownActionsForClip.length - 1 ],

  			byClipCacheIndex = action._byClipCacheIndex;

  		lastKnownAction._byClipCacheIndex = byClipCacheIndex;
  		knownActionsForClip[ byClipCacheIndex ] = lastKnownAction;
  		knownActionsForClip.pop();

  		action._byClipCacheIndex = null;


  		var actionByRoot = actionsForClip.actionByRoot,
  			rootUuid = ( action._localRoot || this._root ).uuid;

  		delete actionByRoot[ rootUuid ];

  		if ( knownActionsForClip.length === 0 ) {

  			delete actionsByClip[ clipUuid ];

  		}

  		this._removeInactiveBindingsForAction( action );

  	},

  	_removeInactiveBindingsForAction: function ( action ) {

  		var bindings = action._propertyBindings;
  		for ( var i = 0, n = bindings.length; i !== n; ++ i ) {

  			var binding = bindings[ i ];

  			if ( -- binding.referenceCount === 0 ) {

  				this._removeInactiveBinding( binding );

  			}

  		}

  	},

  	_lendAction: function ( action ) {

  		// [ active actions |  inactive actions  ]
  		// [  active actions >| inactive actions ]
  		//                 s        a
  		//                  <-swap->
  		//                 a        s

  		var actions = this._actions,
  			prevIndex = action._cacheIndex,

  			lastActiveIndex = this._nActiveActions ++,

  			firstInactiveAction = actions[ lastActiveIndex ];

  		action._cacheIndex = lastActiveIndex;
  		actions[ lastActiveIndex ] = action;

  		firstInactiveAction._cacheIndex = prevIndex;
  		actions[ prevIndex ] = firstInactiveAction;

  	},

  	_takeBackAction: function ( action ) {

  		// [  active actions  | inactive actions ]
  		// [ active actions |< inactive actions  ]
  		//        a        s
  		//         <-swap->
  		//        s        a

  		var actions = this._actions,
  			prevIndex = action._cacheIndex,

  			firstInactiveIndex = -- this._nActiveActions,

  			lastActiveAction = actions[ firstInactiveIndex ];

  		action._cacheIndex = firstInactiveIndex;
  		actions[ firstInactiveIndex ] = action;

  		lastActiveAction._cacheIndex = prevIndex;
  		actions[ prevIndex ] = lastActiveAction;

  	},

  	// Memory management for PropertyMixer objects

  	_addInactiveBinding: function ( binding, rootUuid, trackName ) {

  		var bindingsByRoot = this._bindingsByRootAndName,
  			bindingByName = bindingsByRoot[ rootUuid ],

  			bindings = this._bindings;

  		if ( bindingByName === undefined ) {

  			bindingByName = {};
  			bindingsByRoot[ rootUuid ] = bindingByName;

  		}

  		bindingByName[ trackName ] = binding;

  		binding._cacheIndex = bindings.length;
  		bindings.push( binding );

  	},

  	_removeInactiveBinding: function ( binding ) {

  		var bindings = this._bindings,
  			propBinding = binding.binding,
  			rootUuid = propBinding.rootNode.uuid,
  			trackName = propBinding.path,
  			bindingsByRoot = this._bindingsByRootAndName,
  			bindingByName = bindingsByRoot[ rootUuid ],

  			lastInactiveBinding = bindings[ bindings.length - 1 ],
  			cacheIndex = binding._cacheIndex;

  		lastInactiveBinding._cacheIndex = cacheIndex;
  		bindings[ cacheIndex ] = lastInactiveBinding;
  		bindings.pop();

  		delete bindingByName[ trackName ];

  		remove_empty_map: {

  			for ( var _ in bindingByName ) break remove_empty_map; // eslint-disable-line no-unused-vars

  			delete bindingsByRoot[ rootUuid ];

  		}

  	},

  	_lendBinding: function ( binding ) {

  		var bindings = this._bindings,
  			prevIndex = binding._cacheIndex,

  			lastActiveIndex = this._nActiveBindings ++,

  			firstInactiveBinding = bindings[ lastActiveIndex ];

  		binding._cacheIndex = lastActiveIndex;
  		bindings[ lastActiveIndex ] = binding;

  		firstInactiveBinding._cacheIndex = prevIndex;
  		bindings[ prevIndex ] = firstInactiveBinding;

  	},

  	_takeBackBinding: function ( binding ) {

  		var bindings = this._bindings,
  			prevIndex = binding._cacheIndex,

  			firstInactiveIndex = -- this._nActiveBindings,

  			lastActiveBinding = bindings[ firstInactiveIndex ];

  		binding._cacheIndex = firstInactiveIndex;
  		bindings[ firstInactiveIndex ] = binding;

  		lastActiveBinding._cacheIndex = prevIndex;
  		bindings[ prevIndex ] = lastActiveBinding;

  	},


  	// Memory management of Interpolants for weight and time scale

  	_lendControlInterpolant: function () {

  		var interpolants = this._controlInterpolants,
  			lastActiveIndex = this._nActiveControlInterpolants ++,
  			interpolant = interpolants[ lastActiveIndex ];

  		if ( interpolant === undefined ) {

  			interpolant = new LinearInterpolant(
  				new Float32Array( 2 ), new Float32Array( 2 ),
  				1, this._controlInterpolantsResultBuffer );

  			interpolant.__cacheIndex = lastActiveIndex;
  			interpolants[ lastActiveIndex ] = interpolant;

  		}

  		return interpolant;

  	},

  	_takeBackControlInterpolant: function ( interpolant ) {

  		var interpolants = this._controlInterpolants,
  			prevIndex = interpolant.__cacheIndex,

  			firstInactiveIndex = -- this._nActiveControlInterpolants,

  			lastActiveInterpolant = interpolants[ firstInactiveIndex ];

  		interpolant.__cacheIndex = firstInactiveIndex;
  		interpolants[ firstInactiveIndex ] = interpolant;

  		lastActiveInterpolant.__cacheIndex = prevIndex;
  		interpolants[ prevIndex ] = lastActiveInterpolant;

  	},

  	_controlInterpolantsResultBuffer: new Float32Array( 1 ),

  	// return an action for a clip optionally using a custom root target
  	// object (this method allocates a lot of dynamic memory in case a
  	// previously unknown clip/root combination is specified)
  	clipAction: function ( clip, optionalRoot ) {

  		var root = optionalRoot || this._root,
  			rootUuid = root.uuid,

  			clipObject = typeof clip === 'string' ?
  				AnimationClip.findByName( root, clip ) : clip,

  			clipUuid = clipObject !== null ? clipObject.uuid : clip,

  			actionsForClip = this._actionsByClip[ clipUuid ],
  			prototypeAction = null;

  		if ( actionsForClip !== undefined ) {

  			var existingAction =
  					actionsForClip.actionByRoot[ rootUuid ];

  			if ( existingAction !== undefined ) {

  				return existingAction;

  			}

  			// we know the clip, so we don't have to parse all
  			// the bindings again but can just copy
  			prototypeAction = actionsForClip.knownActions[ 0 ];

  			// also, take the clip from the prototype action
  			if ( clipObject === null )
  				clipObject = prototypeAction._clip;

  		}

  		// clip must be known when specified via string
  		if ( clipObject === null ) return null;

  		// allocate all resources required to run it
  		var newAction = new AnimationAction( this, clipObject, optionalRoot );

  		this._bindAction( newAction, prototypeAction );

  		// and make the action known to the memory manager
  		this._addInactiveAction( newAction, clipUuid, rootUuid );

  		return newAction;

  	},

  	// get an existing action
  	existingAction: function ( clip, optionalRoot ) {

  		var root = optionalRoot || this._root,
  			rootUuid = root.uuid,

  			clipObject = typeof clip === 'string' ?
  				AnimationClip.findByName( root, clip ) : clip,

  			clipUuid = clipObject ? clipObject.uuid : clip,

  			actionsForClip = this._actionsByClip[ clipUuid ];

  		if ( actionsForClip !== undefined ) {

  			return actionsForClip.actionByRoot[ rootUuid ] || null;

  		}

  		return null;

  	},

  	// deactivates all previously scheduled actions
  	stopAllAction: function () {

  		var actions = this._actions,
  			nActions = this._nActiveActions,
  			bindings = this._bindings,
  			nBindings = this._nActiveBindings;

  		this._nActiveActions = 0;
  		this._nActiveBindings = 0;

  		for ( var i = 0; i !== nActions; ++ i ) {

  			actions[ i ].reset();

  		}

  		for ( var i = 0; i !== nBindings; ++ i ) {

  			bindings[ i ].useCount = 0;

  		}

  		return this;

  	},

  	// advance the time and update apply the animation
  	update: function ( deltaTime ) {

  		deltaTime *= this.timeScale;

  		var actions = this._actions,
  			nActions = this._nActiveActions,

  			time = this.time += deltaTime,
  			timeDirection = Math.sign( deltaTime ),

  			accuIndex = this._accuIndex ^= 1;

  		// run active actions

  		for ( var i = 0; i !== nActions; ++ i ) {

  			var action = actions[ i ];

  			action._update( time, deltaTime, timeDirection, accuIndex );

  		}

  		// update scene graph

  		var bindings = this._bindings,
  			nBindings = this._nActiveBindings;

  		for ( var i = 0; i !== nBindings; ++ i ) {

  			bindings[ i ].apply( accuIndex );

  		}

  		return this;

  	},

  	// return this mixer's root target object
  	getRoot: function () {

  		return this._root;

  	},

  	// free all resources specific to a particular clip
  	uncacheClip: function ( clip ) {

  		var actions = this._actions,
  			clipUuid = clip.uuid,
  			actionsByClip = this._actionsByClip,
  			actionsForClip = actionsByClip[ clipUuid ];

  		if ( actionsForClip !== undefined ) {

  			// note: just calling _removeInactiveAction would mess up the
  			// iteration state and also require updating the state we can
  			// just throw away

  			var actionsToRemove = actionsForClip.knownActions;

  			for ( var i = 0, n = actionsToRemove.length; i !== n; ++ i ) {

  				var action = actionsToRemove[ i ];

  				this._deactivateAction( action );

  				var cacheIndex = action._cacheIndex,
  					lastInactiveAction = actions[ actions.length - 1 ];

  				action._cacheIndex = null;
  				action._byClipCacheIndex = null;

  				lastInactiveAction._cacheIndex = cacheIndex;
  				actions[ cacheIndex ] = lastInactiveAction;
  				actions.pop();

  				this._removeInactiveBindingsForAction( action );

  			}

  			delete actionsByClip[ clipUuid ];

  		}

  	},

  	// free all resources specific to a particular root target object
  	uncacheRoot: function ( root ) {

  		var rootUuid = root.uuid,
  			actionsByClip = this._actionsByClip;

  		for ( var clipUuid in actionsByClip ) {

  			var actionByRoot = actionsByClip[ clipUuid ].actionByRoot,
  				action = actionByRoot[ rootUuid ];

  			if ( action !== undefined ) {

  				this._deactivateAction( action );
  				this._removeInactiveAction( action );

  			}

  		}

  		var bindingsByRoot = this._bindingsByRootAndName,
  			bindingByName = bindingsByRoot[ rootUuid ];

  		if ( bindingByName !== undefined ) {

  			for ( var trackName in bindingByName ) {

  				var binding = bindingByName[ trackName ];
  				binding.restoreOriginalState();
  				this._removeInactiveBinding( binding );

  			}

  		}

  	},

  	// remove a targeted clip from the cache
  	uncacheAction: function ( clip, optionalRoot ) {

  		var action = this.existingAction( clip, optionalRoot );

  		if ( action !== null ) {

  			this._deactivateAction( action );
  			this._removeInactiveAction( action );

  		}

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function Uniform( value ) {

  	if ( typeof value === 'string' ) {

  		console.warn( 'THREE.Uniform: Type parameter is no longer needed.' );
  		value = arguments[ 1 ];

  	}

  	this.value = value;

  }

  Uniform.prototype.clone = function () {

  	return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() );

  };

  /**
   * @author benaadams / https://twitter.com/ben_a_adams
   */

  function InstancedBufferGeometry() {

  	BufferGeometry.call( this );

  	this.type = 'InstancedBufferGeometry';
  	this.maxInstancedCount = undefined;

  }

  InstancedBufferGeometry.prototype = Object.assign( Object.create( BufferGeometry.prototype ), {

  	constructor: InstancedBufferGeometry,

  	isInstancedBufferGeometry: true,

  	copy: function ( source ) {

  		BufferGeometry.prototype.copy.call( this, source );

  		this.maxInstancedCount = source.maxInstancedCount;

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	}

  } );

  /**
   * @author benaadams / https://twitter.com/ben_a_adams
   */

  function InterleavedBufferAttribute( interleavedBuffer, itemSize, offset, normalized ) {

  	this.data = interleavedBuffer;
  	this.itemSize = itemSize;
  	this.offset = offset;

  	this.normalized = normalized === true;

  }

  Object.defineProperties( InterleavedBufferAttribute.prototype, {

  	count: {

  		get: function () {

  			return this.data.count;

  		}

  	},

  	array: {

  		get: function () {

  			return this.data.array;

  		}

  	}

  } );

  Object.assign( InterleavedBufferAttribute.prototype, {

  	isInterleavedBufferAttribute: true,

  	setX: function ( index, x ) {

  		this.data.array[ index * this.data.stride + this.offset ] = x;

  		return this;

  	},

  	setY: function ( index, y ) {

  		this.data.array[ index * this.data.stride + this.offset + 1 ] = y;

  		return this;

  	},

  	setZ: function ( index, z ) {

  		this.data.array[ index * this.data.stride + this.offset + 2 ] = z;

  		return this;

  	},

  	setW: function ( index, w ) {

  		this.data.array[ index * this.data.stride + this.offset + 3 ] = w;

  		return this;

  	},

  	getX: function ( index ) {

  		return this.data.array[ index * this.data.stride + this.offset ];

  	},

  	getY: function ( index ) {

  		return this.data.array[ index * this.data.stride + this.offset + 1 ];

  	},

  	getZ: function ( index ) {

  		return this.data.array[ index * this.data.stride + this.offset + 2 ];

  	},

  	getW: function ( index ) {

  		return this.data.array[ index * this.data.stride + this.offset + 3 ];

  	},

  	setXY: function ( index, x, y ) {

  		index = index * this.data.stride + this.offset;

  		this.data.array[ index + 0 ] = x;
  		this.data.array[ index + 1 ] = y;

  		return this;

  	},

  	setXYZ: function ( index, x, y, z ) {

  		index = index * this.data.stride + this.offset;

  		this.data.array[ index + 0 ] = x;
  		this.data.array[ index + 1 ] = y;
  		this.data.array[ index + 2 ] = z;

  		return this;

  	},

  	setXYZW: function ( index, x, y, z, w ) {

  		index = index * this.data.stride + this.offset;

  		this.data.array[ index + 0 ] = x;
  		this.data.array[ index + 1 ] = y;
  		this.data.array[ index + 2 ] = z;
  		this.data.array[ index + 3 ] = w;

  		return this;

  	}

  } );

  /**
   * @author benaadams / https://twitter.com/ben_a_adams
   */

  function InterleavedBuffer( array, stride ) {

  	this.array = array;
  	this.stride = stride;
  	this.count = array !== undefined ? array.length / stride : 0;

  	this.dynamic = false;
  	this.updateRange = { offset: 0, count: - 1 };

  	this.version = 0;

  }

  Object.defineProperty( InterleavedBuffer.prototype, 'needsUpdate', {

  	set: function ( value ) {

  		if ( value === true ) this.version ++;

  	}

  } );

  Object.assign( InterleavedBuffer.prototype, {

  	isInterleavedBuffer: true,

  	onUploadCallback: function () {},

  	setArray: function ( array ) {

  		if ( Array.isArray( array ) ) {

  			throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' );

  		}

  		this.count = array !== undefined ? array.length / this.stride : 0;
  		this.array = array;

  		return this;

  	},

  	setDynamic: function ( value ) {

  		this.dynamic = value;

  		return this;

  	},

  	copy: function ( source ) {

  		this.array = new source.array.constructor( source.array );
  		this.count = source.count;
  		this.stride = source.stride;
  		this.dynamic = source.dynamic;

  		return this;

  	},

  	copyAt: function ( index1, attribute, index2 ) {

  		index1 *= this.stride;
  		index2 *= attribute.stride;

  		for ( var i = 0, l = this.stride; i < l; i ++ ) {

  			this.array[ index1 + i ] = attribute.array[ index2 + i ];

  		}

  		return this;

  	},

  	set: function ( value, offset ) {

  		if ( offset === undefined ) offset = 0;

  		this.array.set( value, offset );

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	onUpload: function ( callback ) {

  		this.onUploadCallback = callback;

  		return this;

  	}

  } );

  /**
   * @author benaadams / https://twitter.com/ben_a_adams
   */

  function InstancedInterleavedBuffer( array, stride, meshPerAttribute ) {

  	InterleavedBuffer.call( this, array, stride );

  	this.meshPerAttribute = meshPerAttribute || 1;

  }

  InstancedInterleavedBuffer.prototype = Object.assign( Object.create( InterleavedBuffer.prototype ), {

  	constructor: InstancedInterleavedBuffer,

  	isInstancedInterleavedBuffer: true,

  	copy: function ( source ) {

  		InterleavedBuffer.prototype.copy.call( this, source );

  		this.meshPerAttribute = source.meshPerAttribute;

  		return this;

  	}

  } );

  /**
   * @author benaadams / https://twitter.com/ben_a_adams
   */

  function InstancedBufferAttribute( array, itemSize, meshPerAttribute ) {

  	BufferAttribute.call( this, array, itemSize );

  	this.meshPerAttribute = meshPerAttribute || 1;

  }

  InstancedBufferAttribute.prototype = Object.assign( Object.create( BufferAttribute.prototype ), {

  	constructor: InstancedBufferAttribute,

  	isInstancedBufferAttribute: true,

  	copy: function ( source ) {

  		BufferAttribute.prototype.copy.call( this, source );

  		this.meshPerAttribute = source.meshPerAttribute;

  		return this;

  	}

  } );

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author bhouston / http://clara.io/
   * @author stephomi / http://stephaneginier.com/
   */

  function Raycaster( origin, direction, near, far ) {

  	this.ray = new Ray( origin, direction );
  	// direction is assumed to be normalized (for accurate distance calculations)

  	this.near = near || 0;
  	this.far = far || Infinity;

  	this.params = {
  		Mesh: {},
  		Line: {},
  		LOD: {},
  		Points: { threshold: 1 },
  		Sprite: {}
  	};

  	Object.defineProperties( this.params, {
  		PointCloud: {
  			get: function () {

  				console.warn( 'THREE.Raycaster: params.PointCloud has been renamed to params.Points.' );
  				return this.Points;

  			}
  		}
  	} );

  }

  function ascSort( a, b ) {

  	return a.distance - b.distance;

  }

  function intersectObject( object, raycaster, intersects, recursive ) {

  	if ( object.visible === false ) return;

  	object.raycast( raycaster, intersects );

  	if ( recursive === true ) {

  		var children = object.children;

  		for ( var i = 0, l = children.length; i < l; i ++ ) {

  			intersectObject( children[ i ], raycaster, intersects, true );

  		}

  	}

  }

  Object.assign( Raycaster.prototype, {

  	linePrecision: 1,

  	set: function ( origin, direction ) {

  		// direction is assumed to be normalized (for accurate distance calculations)

  		this.ray.set( origin, direction );

  	},

  	setFromCamera: function ( coords, camera ) {

  		if ( ( camera && camera.isPerspectiveCamera ) ) {

  			this.ray.origin.setFromMatrixPosition( camera.matrixWorld );
  			this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize();

  		} else if ( ( camera && camera.isOrthographicCamera ) ) {

  			this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera
  			this.ray.direction.set( 0, 0, - 1 ).transformDirection( camera.matrixWorld );

  		} else {

  			console.error( 'THREE.Raycaster: Unsupported camera type.' );

  		}

  	},

  	intersectObject: function ( object, recursive, optionalTarget ) {

  		var intersects = optionalTarget || [];

  		intersectObject( object, this, intersects, recursive );

  		intersects.sort( ascSort );

  		return intersects;

  	},

  	intersectObjects: function ( objects, recursive, optionalTarget ) {

  		var intersects = optionalTarget || [];

  		if ( Array.isArray( objects ) === false ) {

  			console.warn( 'THREE.Raycaster.intersectObjects: objects is not an Array.' );
  			return intersects;

  		}

  		for ( var i = 0, l = objects.length; i < l; i ++ ) {

  			intersectObject( objects[ i ], this, intersects, recursive );

  		}

  		intersects.sort( ascSort );

  		return intersects;

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function Clock( autoStart ) {

  	this.autoStart = ( autoStart !== undefined ) ? autoStart : true;

  	this.startTime = 0;
  	this.oldTime = 0;
  	this.elapsedTime = 0;

  	this.running = false;

  }

  Object.assign( Clock.prototype, {

  	start: function () {

  		this.startTime = ( typeof performance === 'undefined' ? Date : performance ).now(); // see #10732

  		this.oldTime = this.startTime;
  		this.elapsedTime = 0;
  		this.running = true;

  	},

  	stop: function () {

  		this.getElapsedTime();
  		this.running = false;
  		this.autoStart = false;

  	},

  	getElapsedTime: function () {

  		this.getDelta();
  		return this.elapsedTime;

  	},

  	getDelta: function () {

  		var diff = 0;

  		if ( this.autoStart && ! this.running ) {

  			this.start();
  			return 0;

  		}

  		if ( this.running ) {

  			var newTime = ( typeof performance === 'undefined' ? Date : performance ).now();

  			diff = ( newTime - this.oldTime ) / 1000;
  			this.oldTime = newTime;

  			this.elapsedTime += diff;

  		}

  		return diff;

  	}

  } );

  /**
   * @author bhouston / http://clara.io
   * @author WestLangley / http://github.com/WestLangley
   *
   * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
   *
   * The poles (phi) are at the positive and negative y axis.
   * The equator starts at positive z.
   */

  function Spherical( radius, phi, theta ) {

  	this.radius = ( radius !== undefined ) ? radius : 1.0;
  	this.phi = ( phi !== undefined ) ? phi : 0; // up / down towards top and bottom pole
  	this.theta = ( theta !== undefined ) ? theta : 0; // around the equator of the sphere

  	return this;

  }

  Object.assign( Spherical.prototype, {

  	set: function ( radius, phi, theta ) {

  		this.radius = radius;
  		this.phi = phi;
  		this.theta = theta;

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( other ) {

  		this.radius = other.radius;
  		this.phi = other.phi;
  		this.theta = other.theta;

  		return this;

  	},

  	// restrict phi to be betwee EPS and PI-EPS
  	makeSafe: function () {

  		var EPS = 0.000001;
  		this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) );

  		return this;

  	},

  	setFromVector3: function ( vec3 ) {

  		this.radius = vec3.length();

  		if ( this.radius === 0 ) {

  			this.theta = 0;
  			this.phi = 0;

  		} else {

  			this.theta = Math.atan2( vec3.x, vec3.z ); // equator angle around y-up axis
  			this.phi = Math.acos( _Math.clamp( vec3.y / this.radius, - 1, 1 ) ); // polar angle

  		}

  		return this;

  	}

  } );

  /**
   * @author Mugen87 / https://github.com/Mugen87
   *
   * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
   *
   */

  function Cylindrical( radius, theta, y ) {

  	this.radius = ( radius !== undefined ) ? radius : 1.0; // distance from the origin to a point in the x-z plane
  	this.theta = ( theta !== undefined ) ? theta : 0; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
  	this.y = ( y !== undefined ) ? y : 0; // height above the x-z plane

  	return this;

  }

  Object.assign( Cylindrical.prototype, {

  	set: function ( radius, theta, y ) {

  		this.radius = radius;
  		this.theta = theta;
  		this.y = y;

  		return this;

  	},

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( other ) {

  		this.radius = other.radius;
  		this.theta = other.theta;
  		this.y = other.y;

  		return this;

  	},

  	setFromVector3: function ( vec3 ) {

  		this.radius = Math.sqrt( vec3.x * vec3.x + vec3.z * vec3.z );
  		this.theta = Math.atan2( vec3.x, vec3.z );
  		this.y = vec3.y;

  		return this;

  	}

  } );

  /**
   * @author bhouston / http://clara.io
   */

  function Box2( min, max ) {

  	this.min = ( min !== undefined ) ? min : new Vector2( + Infinity, + Infinity );
  	this.max = ( max !== undefined ) ? max : new Vector2( - Infinity, - Infinity );

  }

  Object.assign( Box2.prototype, {

  	set: function ( min, max ) {

  		this.min.copy( min );
  		this.max.copy( max );

  		return this;

  	},

  	setFromPoints: function ( points ) {

  		this.makeEmpty();

  		for ( var i = 0, il = points.length; i < il; i ++ ) {

  			this.expandByPoint( points[ i ] );

  		}

  		return this;

  	},

  	setFromCenterAndSize: function () {

  		var v1 = new Vector2();

  		return function setFromCenterAndSize( center, size ) {

  			var halfSize = v1.copy( size ).multiplyScalar( 0.5 );
  			this.min.copy( center ).sub( halfSize );
  			this.max.copy( center ).add( halfSize );

  			return this;

  		};

  	}(),

  	clone: function () {

  		return new this.constructor().copy( this );

  	},

  	copy: function ( box ) {

  		this.min.copy( box.min );
  		this.max.copy( box.max );

  		return this;

  	},

  	makeEmpty: function () {

  		this.min.x = this.min.y = + Infinity;
  		this.max.x = this.max.y = - Infinity;

  		return this;

  	},

  	isEmpty: function () {

  		// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes

  		return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y );

  	},

  	getCenter: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box2: .getCenter() target is now required' );
  			target = new Vector2();

  		}

  		return this.isEmpty() ? target.set( 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );

  	},

  	getSize: function ( target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box2: .getSize() target is now required' );
  			target = new Vector2();

  		}

  		return this.isEmpty() ? target.set( 0, 0 ) : target.subVectors( this.max, this.min );

  	},

  	expandByPoint: function ( point ) {

  		this.min.min( point );
  		this.max.max( point );

  		return this;

  	},

  	expandByVector: function ( vector ) {

  		this.min.sub( vector );
  		this.max.add( vector );

  		return this;

  	},

  	expandByScalar: function ( scalar ) {

  		this.min.addScalar( - scalar );
  		this.max.addScalar( scalar );

  		return this;

  	},

  	containsPoint: function ( point ) {

  		return point.x < this.min.x || point.x > this.max.x ||
  			point.y < this.min.y || point.y > this.max.y ? false : true;

  	},

  	containsBox: function ( box ) {

  		return this.min.x <= box.min.x && box.max.x <= this.max.x &&
  			this.min.y <= box.min.y && box.max.y <= this.max.y;

  	},

  	getParameter: function ( point, target ) {

  		// This can potentially have a divide by zero if the box
  		// has a size dimension of 0.

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box2: .getParameter() target is now required' );
  			target = new Vector2();

  		}

  		return target.set(
  			( point.x - this.min.x ) / ( this.max.x - this.min.x ),
  			( point.y - this.min.y ) / ( this.max.y - this.min.y )
  		);

  	},

  	intersectsBox: function ( box ) {

  		// using 4 splitting planes to rule out intersections

  		return box.max.x < this.min.x || box.min.x > this.max.x ||
  			box.max.y < this.min.y || box.min.y > this.max.y ? false : true;

  	},

  	clampPoint: function ( point, target ) {

  		if ( target === undefined ) {

  			console.warn( 'THREE.Box2: .clampPoint() target is now required' );
  			target = new Vector2();

  		}

  		return target.copy( point ).clamp( this.min, this.max );

  	},

  	distanceToPoint: function () {

  		var v1 = new Vector2();

  		return function distanceToPoint( point ) {

  			var clampedPoint = v1.copy( point ).clamp( this.min, this.max );
  			return clampedPoint.sub( point ).length();

  		};

  	}(),

  	intersect: function ( box ) {

  		this.min.max( box.min );
  		this.max.min( box.max );

  		return this;

  	},

  	union: function ( box ) {

  		this.min.min( box.min );
  		this.max.max( box.max );

  		return this;

  	},

  	translate: function ( offset ) {

  		this.min.add( offset );
  		this.max.add( offset );

  		return this;

  	},

  	equals: function ( box ) {

  		return box.min.equals( this.min ) && box.max.equals( this.max );

  	}

  } );

  /**
   * @author alteredq / http://alteredqualia.com/
   */

  function ImmediateRenderObject( material ) {

  	Object3D.call( this );

  	this.material = material;
  	this.render = function ( /* renderCallback */ ) {};

  }

  ImmediateRenderObject.prototype = Object.create( Object3D.prototype );
  ImmediateRenderObject.prototype.constructor = ImmediateRenderObject;

  ImmediateRenderObject.prototype.isImmediateRenderObject = true;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author WestLangley / http://github.com/WestLangley
   */

  function VertexNormalsHelper( object, size, hex, linewidth ) {

  	this.object = object;

  	this.size = ( size !== undefined ) ? size : 1;

  	var color = ( hex !== undefined ) ? hex : 0xff0000;

  	var width = ( linewidth !== undefined ) ? linewidth : 1;

  	//

  	var nNormals = 0;

  	var objGeometry = this.object.geometry;

  	if ( objGeometry && objGeometry.isGeometry ) {

  		nNormals = objGeometry.faces.length * 3;

  	} else if ( objGeometry && objGeometry.isBufferGeometry ) {

  		nNormals = objGeometry.attributes.normal.count;

  	}

  	//

  	var geometry = new BufferGeometry();

  	var positions = new Float32BufferAttribute( nNormals * 2 * 3, 3 );

  	geometry.addAttribute( 'position', positions );

  	LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, linewidth: width } ) );

  	//

  	this.matrixAutoUpdate = false;

  	this.update();

  }

  VertexNormalsHelper.prototype = Object.create( LineSegments.prototype );
  VertexNormalsHelper.prototype.constructor = VertexNormalsHelper;

  VertexNormalsHelper.prototype.update = ( function () {

  	var v1 = new Vector3();
  	var v2 = new Vector3();
  	var normalMatrix = new Matrix3();

  	return function update() {

  		var keys = [ 'a', 'b', 'c' ];

  		this.object.updateMatrixWorld( true );

  		normalMatrix.getNormalMatrix( this.object.matrixWorld );

  		var matrixWorld = this.object.matrixWorld;

  		var position = this.geometry.attributes.position;

  		//

  		var objGeometry = this.object.geometry;

  		if ( objGeometry && objGeometry.isGeometry ) {

  			var vertices = objGeometry.vertices;

  			var faces = objGeometry.faces;

  			var idx = 0;

  			for ( var i = 0, l = faces.length; i < l; i ++ ) {

  				var face = faces[ i ];

  				for ( var j = 0, jl = face.vertexNormals.length; j < jl; j ++ ) {

  					var vertex = vertices[ face[ keys[ j ] ] ];

  					var normal = face.vertexNormals[ j ];

  					v1.copy( vertex ).applyMatrix4( matrixWorld );

  					v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );

  					position.setXYZ( idx, v1.x, v1.y, v1.z );

  					idx = idx + 1;

  					position.setXYZ( idx, v2.x, v2.y, v2.z );

  					idx = idx + 1;

  				}

  			}

  		} else if ( objGeometry && objGeometry.isBufferGeometry ) {

  			var objPos = objGeometry.attributes.position;

  			var objNorm = objGeometry.attributes.normal;

  			var idx = 0;

  			// for simplicity, ignore index and drawcalls, and render every normal

  			for ( var j = 0, jl = objPos.count; j < jl; j ++ ) {

  				v1.set( objPos.getX( j ), objPos.getY( j ), objPos.getZ( j ) ).applyMatrix4( matrixWorld );

  				v2.set( objNorm.getX( j ), objNorm.getY( j ), objNorm.getZ( j ) );

  				v2.applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );

  				position.setXYZ( idx, v1.x, v1.y, v1.z );

  				idx = idx + 1;

  				position.setXYZ( idx, v2.x, v2.y, v2.z );

  				idx = idx + 1;

  			}

  		}

  		position.needsUpdate = true;

  	};

  }() );

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   * @author WestLangley / http://github.com/WestLangley
   */

  function SpotLightHelper( light, color ) {

  	Object3D.call( this );

  	this.light = light;
  	this.light.updateMatrixWorld();

  	this.matrix = light.matrixWorld;
  	this.matrixAutoUpdate = false;

  	this.color = color;

  	var geometry = new BufferGeometry();

  	var positions = [
  		0, 0, 0, 	0, 0, 1,
  		0, 0, 0, 	1, 0, 1,
  		0, 0, 0,	- 1, 0, 1,
  		0, 0, 0, 	0, 1, 1,
  		0, 0, 0, 	0, - 1, 1
  	];

  	for ( var i = 0, j = 1, l = 32; i < l; i ++, j ++ ) {

  		var p1 = ( i / l ) * Math.PI * 2;
  		var p2 = ( j / l ) * Math.PI * 2;

  		positions.push(
  			Math.cos( p1 ), Math.sin( p1 ), 1,
  			Math.cos( p2 ), Math.sin( p2 ), 1
  		);

  	}

  	geometry.addAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );

  	var material = new LineBasicMaterial( { fog: false } );

  	this.cone = new LineSegments( geometry, material );
  	this.add( this.cone );

  	this.update();

  }

  SpotLightHelper.prototype = Object.create( Object3D.prototype );
  SpotLightHelper.prototype.constructor = SpotLightHelper;

  SpotLightHelper.prototype.dispose = function () {

  	this.cone.geometry.dispose();
  	this.cone.material.dispose();

  };

  SpotLightHelper.prototype.update = function () {

  	var vector = new Vector3();
  	var vector2 = new Vector3();

  	return function update() {

  		this.light.updateMatrixWorld();

  		var coneLength = this.light.distance ? this.light.distance : 1000;
  		var coneWidth = coneLength * Math.tan( this.light.angle );

  		this.cone.scale.set( coneWidth, coneWidth, coneLength );

  		vector.setFromMatrixPosition( this.light.matrixWorld );
  		vector2.setFromMatrixPosition( this.light.target.matrixWorld );

  		this.cone.lookAt( vector2.sub( vector ) );

  		if ( this.color !== undefined ) {

  			this.cone.material.color.set( this.color );

  		} else {

  			this.cone.material.color.copy( this.light.color );

  		}

  	};

  }();

  /**
   * @author Sean Griffin / http://twitter.com/sgrif
   * @author Michael Guerrero / http://realitymeltdown.com
   * @author mrdoob / http://mrdoob.com/
   * @author ikerr / http://verold.com
   * @author Mugen87 / https://github.com/Mugen87
   */

  function getBoneList( object ) {

  	var boneList = [];

  	if ( object && object.isBone ) {

  		boneList.push( object );

  	}

  	for ( var i = 0; i < object.children.length; i ++ ) {

  		boneList.push.apply( boneList, getBoneList( object.children[ i ] ) );

  	}

  	return boneList;

  }

  function SkeletonHelper( object ) {

  	var bones = getBoneList( object );

  	var geometry = new BufferGeometry();

  	var vertices = [];
  	var colors = [];

  	var color1 = new Color( 0, 0, 1 );
  	var color2 = new Color( 0, 1, 0 );

  	for ( var i = 0; i < bones.length; i ++ ) {

  		var bone = bones[ i ];

  		if ( bone.parent && bone.parent.isBone ) {

  			vertices.push( 0, 0, 0 );
  			vertices.push( 0, 0, 0 );
  			colors.push( color1.r, color1.g, color1.b );
  			colors.push( color2.r, color2.g, color2.b );

  		}

  	}

  	geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

  	var material = new LineBasicMaterial( { vertexColors: VertexColors, depthTest: false, depthWrite: false, transparent: true } );

  	LineSegments.call( this, geometry, material );

  	this.root = object;
  	this.bones = bones;

  	this.matrix = object.matrixWorld;
  	this.matrixAutoUpdate = false;

  }

  SkeletonHelper.prototype = Object.create( LineSegments.prototype );
  SkeletonHelper.prototype.constructor = SkeletonHelper;

  SkeletonHelper.prototype.updateMatrixWorld = function () {

  	var vector = new Vector3();

  	var boneMatrix = new Matrix4();
  	var matrixWorldInv = new Matrix4();

  	return function updateMatrixWorld( force ) {

  		var bones = this.bones;

  		var geometry = this.geometry;
  		var position = geometry.getAttribute( 'position' );

  		matrixWorldInv.getInverse( this.root.matrixWorld );

  		for ( var i = 0, j = 0; i < bones.length; i ++ ) {

  			var bone = bones[ i ];

  			if ( bone.parent && bone.parent.isBone ) {

  				boneMatrix.multiplyMatrices( matrixWorldInv, bone.matrixWorld );
  				vector.setFromMatrixPosition( boneMatrix );
  				position.setXYZ( j, vector.x, vector.y, vector.z );

  				boneMatrix.multiplyMatrices( matrixWorldInv, bone.parent.matrixWorld );
  				vector.setFromMatrixPosition( boneMatrix );
  				position.setXYZ( j + 1, vector.x, vector.y, vector.z );

  				j += 2;

  			}

  		}

  		geometry.getAttribute( 'position' ).needsUpdate = true;

  		Object3D.prototype.updateMatrixWorld.call( this, force );

  	};

  }();

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   */

  function PointLightHelper( light, sphereSize, color ) {

  	this.light = light;
  	this.light.updateMatrixWorld();

  	this.color = color;

  	var geometry = new SphereBufferGeometry( sphereSize, 4, 2 );
  	var material = new MeshBasicMaterial( { wireframe: true, fog: false } );

  	Mesh.call( this, geometry, material );

  	this.matrix = this.light.matrixWorld;
  	this.matrixAutoUpdate = false;

  	this.update();


  	/*
  	var distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 );
  	var distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );

  	this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );
  	this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );

  	var d = light.distance;

  	if ( d === 0.0 ) {

  		this.lightDistance.visible = false;

  	} else {

  		this.lightDistance.scale.set( d, d, d );

  	}

  	this.add( this.lightDistance );
  	*/

  }

  PointLightHelper.prototype = Object.create( Mesh.prototype );
  PointLightHelper.prototype.constructor = PointLightHelper;

  PointLightHelper.prototype.dispose = function () {

  	this.geometry.dispose();
  	this.material.dispose();

  };

  PointLightHelper.prototype.update = function () {

  	if ( this.color !== undefined ) {

  		this.material.color.set( this.color );

  	} else {

  		this.material.color.copy( this.light.color );

  	}

  	/*
  	var d = this.light.distance;

  	if ( d === 0.0 ) {

  		this.lightDistance.visible = false;

  	} else {

  		this.lightDistance.visible = true;
  		this.lightDistance.scale.set( d, d, d );

  	}
  	*/

  };

  /**
   * @author abelnation / http://github.com/abelnation
   * @author Mugen87 / http://github.com/Mugen87
   * @author WestLangley / http://github.com/WestLangley
   */

  function RectAreaLightHelper( light, color ) {

  	Object3D.call( this );

  	this.light = light;
  	this.light.updateMatrixWorld();

  	this.matrix = light.matrixWorld;
  	this.matrixAutoUpdate = false;

  	this.color = color;

  	var material = new LineBasicMaterial( { fog: false } );

  	var geometry = new BufferGeometry();

  	geometry.addAttribute( 'position', new BufferAttribute( new Float32Array( 5 * 3 ), 3 ) );

  	this.line = new Line( geometry, material );
  	this.add( this.line );


  	this.update();

  }

  RectAreaLightHelper.prototype = Object.create( Object3D.prototype );
  RectAreaLightHelper.prototype.constructor = RectAreaLightHelper;

  RectAreaLightHelper.prototype.dispose = function () {

  	this.children[ 0 ].geometry.dispose();
  	this.children[ 0 ].material.dispose();

  };

  RectAreaLightHelper.prototype.update = function () {

  	// calculate new dimensions of the helper

  	var hx = this.light.width * 0.5;
  	var hy = this.light.height * 0.5;

  	var position = this.line.geometry.attributes.position;
  	var array = position.array;

  	// update vertices

  	array[ 0 ] = hx; array[ 1 ] = - hy; array[ 2 ] = 0;
  	array[ 3 ] = hx; array[ 4 ] = hy; array[ 5 ] = 0;
  	array[ 6 ] = - hx; array[ 7 ] = hy; array[ 8 ] = 0;
  	array[ 9 ] = - hx; array[ 10 ] = - hy; array[ 11 ] = 0;
  	array[ 12 ] = hx; array[ 13 ] = - hy; array[ 14 ] = 0;

  	position.needsUpdate = true;

  	if ( this.color !== undefined ) {

  		this.line.material.color.set( this.color );

  	} else {

  		this.line.material.color.copy( this.light.color );

  	}

  };

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / https://github.com/Mugen87
   */

  function HemisphereLightHelper( light, size, color ) {

  	Object3D.call( this );

  	this.light = light;
  	this.light.updateMatrixWorld();

  	this.matrix = light.matrixWorld;
  	this.matrixAutoUpdate = false;

  	this.color = color;

  	var geometry = new OctahedronBufferGeometry( size );
  	geometry.rotateY( Math.PI * 0.5 );

  	this.material = new MeshBasicMaterial( { wireframe: true, fog: false } );
  	if ( this.color === undefined ) this.material.vertexColors = VertexColors;

  	var position = geometry.getAttribute( 'position' );
  	var colors = new Float32Array( position.count * 3 );

  	geometry.addAttribute( 'color', new BufferAttribute( colors, 3 ) );

  	this.add( new Mesh( geometry, this.material ) );

  	this.update();

  }

  HemisphereLightHelper.prototype = Object.create( Object3D.prototype );
  HemisphereLightHelper.prototype.constructor = HemisphereLightHelper;

  HemisphereLightHelper.prototype.dispose = function () {

  	this.children[ 0 ].geometry.dispose();
  	this.children[ 0 ].material.dispose();

  };

  HemisphereLightHelper.prototype.update = function () {

  	var vector = new Vector3();

  	var color1 = new Color();
  	var color2 = new Color();

  	return function update() {

  		var mesh = this.children[ 0 ];

  		if ( this.color !== undefined ) {

  			this.material.color.set( this.color );

  		} else {

  			var colors = mesh.geometry.getAttribute( 'color' );

  			color1.copy( this.light.color );
  			color2.copy( this.light.groundColor );

  			for ( var i = 0, l = colors.count; i < l; i ++ ) {

  				var color = ( i < ( l / 2 ) ) ? color1 : color2;

  				colors.setXYZ( i, color.r, color.g, color.b );

  			}

  			colors.needsUpdate = true;

  		}

  		mesh.lookAt( vector.setFromMatrixPosition( this.light.matrixWorld ).negate() );

  	};

  }();

  /**
   * @author mrdoob / http://mrdoob.com/
   */

  function GridHelper( size, divisions, color1, color2 ) {

  	size = size || 10;
  	divisions = divisions || 10;
  	color1 = new Color( color1 !== undefined ? color1 : 0x444444 );
  	color2 = new Color( color2 !== undefined ? color2 : 0x888888 );

  	var center = divisions / 2;
  	var step = size / divisions;
  	var halfSize = size / 2;

  	var vertices = [], colors = [];

  	for ( var i = 0, j = 0, k = - halfSize; i <= divisions; i ++, k += step ) {

  		vertices.push( - halfSize, 0, k, halfSize, 0, k );
  		vertices.push( k, 0, - halfSize, k, 0, halfSize );

  		var color = i === center ? color1 : color2;

  		color.toArray( colors, j ); j += 3;
  		color.toArray( colors, j ); j += 3;
  		color.toArray( colors, j ); j += 3;
  		color.toArray( colors, j ); j += 3;

  	}

  	var geometry = new BufferGeometry();
  	geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

  	var material = new LineBasicMaterial( { vertexColors: VertexColors } );

  	LineSegments.call( this, geometry, material );

  }

  GridHelper.prototype = Object.create( LineSegments.prototype );
  GridHelper.prototype.constructor = GridHelper;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / http://github.com/Mugen87
   * @author Hectate / http://www.github.com/Hectate
   */

  function PolarGridHelper( radius, radials, circles, divisions, color1, color2 ) {

  	radius = radius || 10;
  	radials = radials || 16;
  	circles = circles || 8;
  	divisions = divisions || 64;
  	color1 = new Color( color1 !== undefined ? color1 : 0x444444 );
  	color2 = new Color( color2 !== undefined ? color2 : 0x888888 );

  	var vertices = [];
  	var colors = [];

  	var x, z;
  	var v, i, j, r, color;

  	// create the radials

  	for ( i = 0; i <= radials; i ++ ) {

  		v = ( i / radials ) * ( Math.PI * 2 );

  		x = Math.sin( v ) * radius;
  		z = Math.cos( v ) * radius;

  		vertices.push( 0, 0, 0 );
  		vertices.push( x, 0, z );

  		color = ( i & 1 ) ? color1 : color2;

  		colors.push( color.r, color.g, color.b );
  		colors.push( color.r, color.g, color.b );

  	}

  	// create the circles

  	for ( i = 0; i <= circles; i ++ ) {

  		color = ( i & 1 ) ? color1 : color2;

  		r = radius - ( radius / circles * i );

  		for ( j = 0; j < divisions; j ++ ) {

  			// first vertex

  			v = ( j / divisions ) * ( Math.PI * 2 );

  			x = Math.sin( v ) * r;
  			z = Math.cos( v ) * r;

  			vertices.push( x, 0, z );
  			colors.push( color.r, color.g, color.b );

  			// second vertex

  			v = ( ( j + 1 ) / divisions ) * ( Math.PI * 2 );

  			x = Math.sin( v ) * r;
  			z = Math.cos( v ) * r;

  			vertices.push( x, 0, z );
  			colors.push( color.r, color.g, color.b );

  		}

  	}

  	var geometry = new BufferGeometry();
  	geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

  	var material = new LineBasicMaterial( { vertexColors: VertexColors } );

  	LineSegments.call( this, geometry, material );

  }

  PolarGridHelper.prototype = Object.create( LineSegments.prototype );
  PolarGridHelper.prototype.constructor = PolarGridHelper;

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author WestLangley / http://github.com/WestLangley
   */

  function FaceNormalsHelper( object, size, hex, linewidth ) {

  	// FaceNormalsHelper only supports THREE.Geometry

  	this.object = object;

  	this.size = ( size !== undefined ) ? size : 1;

  	var color = ( hex !== undefined ) ? hex : 0xffff00;

  	var width = ( linewidth !== undefined ) ? linewidth : 1;

  	//

  	var nNormals = 0;

  	var objGeometry = this.object.geometry;

  	if ( objGeometry && objGeometry.isGeometry ) {

  		nNormals = objGeometry.faces.length;

  	} else {

  		console.warn( 'THREE.FaceNormalsHelper: only THREE.Geometry is supported. Use THREE.VertexNormalsHelper, instead.' );

  	}

  	//

  	var geometry = new BufferGeometry();

  	var positions = new Float32BufferAttribute( nNormals * 2 * 3, 3 );

  	geometry.addAttribute( 'position', positions );

  	LineSegments.call( this, geometry, new LineBasicMaterial( { color: color, linewidth: width } ) );

  	//

  	this.matrixAutoUpdate = false;
  	this.update();

  }

  FaceNormalsHelper.prototype = Object.create( LineSegments.prototype );
  FaceNormalsHelper.prototype.constructor = FaceNormalsHelper;

  FaceNormalsHelper.prototype.update = ( function () {

  	var v1 = new Vector3();
  	var v2 = new Vector3();
  	var normalMatrix = new Matrix3();

  	return function update() {

  		this.object.updateMatrixWorld( true );

  		normalMatrix.getNormalMatrix( this.object.matrixWorld );

  		var matrixWorld = this.object.matrixWorld;

  		var position = this.geometry.attributes.position;

  		//

  		var objGeometry = this.object.geometry;

  		var vertices = objGeometry.vertices;

  		var faces = objGeometry.faces;

  		var idx = 0;

  		for ( var i = 0, l = faces.length; i < l; i ++ ) {

  			var face = faces[ i ];

  			var normal = face.normal;

  			v1.copy( vertices[ face.a ] )
  				.add( vertices[ face.b ] )
  				.add( vertices[ face.c ] )
  				.divideScalar( 3 )
  				.applyMatrix4( matrixWorld );

  			v2.copy( normal ).applyMatrix3( normalMatrix ).normalize().multiplyScalar( this.size ).add( v1 );

  			position.setXYZ( idx, v1.x, v1.y, v1.z );

  			idx = idx + 1;

  			position.setXYZ( idx, v2.x, v2.y, v2.z );

  			idx = idx + 1;

  		}

  		position.needsUpdate = true;

  	};

  }() );

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author mrdoob / http://mrdoob.com/
   * @author WestLangley / http://github.com/WestLangley
   */

  function DirectionalLightHelper( light, size, color ) {

  	Object3D.call( this );

  	this.light = light;
  	this.light.updateMatrixWorld();

  	this.matrix = light.matrixWorld;
  	this.matrixAutoUpdate = false;

  	this.color = color;

  	if ( size === undefined ) size = 1;

  	var geometry = new BufferGeometry();
  	geometry.addAttribute( 'position', new Float32BufferAttribute( [
  		- size, size, 0,
  		size, size, 0,
  		size, - size, 0,
  		- size, - size, 0,
  		- size, size, 0
  	], 3 ) );

  	var material = new LineBasicMaterial( { fog: false } );

  	this.lightPlane = new Line( geometry, material );
  	this.add( this.lightPlane );

  	geometry = new BufferGeometry();
  	geometry.addAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) );

  	this.targetLine = new Line( geometry, material );
  	this.add( this.targetLine );

  	this.update();

  }

  DirectionalLightHelper.prototype = Object.create( Object3D.prototype );
  DirectionalLightHelper.prototype.constructor = DirectionalLightHelper;

  DirectionalLightHelper.prototype.dispose = function () {

  	this.lightPlane.geometry.dispose();
  	this.lightPlane.material.dispose();
  	this.targetLine.geometry.dispose();
  	this.targetLine.material.dispose();

  };

  DirectionalLightHelper.prototype.update = function () {

  	var v1 = new Vector3();
  	var v2 = new Vector3();
  	var v3 = new Vector3();

  	return function update() {

  		v1.setFromMatrixPosition( this.light.matrixWorld );
  		v2.setFromMatrixPosition( this.light.target.matrixWorld );
  		v3.subVectors( v2, v1 );

  		this.lightPlane.lookAt( v3 );

  		if ( this.color !== undefined ) {

  			this.lightPlane.material.color.set( this.color );
  			this.targetLine.material.color.set( this.color );

  		} else {

  			this.lightPlane.material.color.copy( this.light.color );
  			this.targetLine.material.color.copy( this.light.color );

  		}

  		this.targetLine.lookAt( v3 );
  		this.targetLine.scale.z = v3.length();

  	};

  }();

  /**
   * @author alteredq / http://alteredqualia.com/
   * @author Mugen87 / https://github.com/Mugen87
   *
   *	- shows frustum, line of sight and up of the camera
   *	- suitable for fast updates
   * 	- based on frustum visualization in lightgl.js shadowmap example
   *		http://evanw.github.com/lightgl.js/tests/shadowmap.html
   */

  function CameraHelper( camera ) {

  	var geometry = new BufferGeometry();
  	var material = new LineBasicMaterial( { color: 0xffffff, vertexColors: FaceColors } );

  	var vertices = [];
  	var colors = [];

  	var pointMap = {};

  	// colors

  	var colorFrustum = new Color( 0xffaa00 );
  	var colorCone = new Color( 0xff0000 );
  	var colorUp = new Color( 0x00aaff );
  	var colorTarget = new Color( 0xffffff );
  	var colorCross = new Color( 0x333333 );

  	// near

  	addLine( 'n1', 'n2', colorFrustum );
  	addLine( 'n2', 'n4', colorFrustum );
  	addLine( 'n4', 'n3', colorFrustum );
  	addLine( 'n3', 'n1', colorFrustum );

  	// far

  	addLine( 'f1', 'f2', colorFrustum );
  	addLine( 'f2', 'f4', colorFrustum );
  	addLine( 'f4', 'f3', colorFrustum );
  	addLine( 'f3', 'f1', colorFrustum );

  	// sides

  	addLine( 'n1', 'f1', colorFrustum );
  	addLine( 'n2', 'f2', colorFrustum );
  	addLine( 'n3', 'f3', colorFrustum );
  	addLine( 'n4', 'f4', colorFrustum );

  	// cone

  	addLine( 'p', 'n1', colorCone );
  	addLine( 'p', 'n2', colorCone );
  	addLine( 'p', 'n3', colorCone );
  	addLine( 'p', 'n4', colorCone );

  	// up

  	addLine( 'u1', 'u2', colorUp );
  	addLine( 'u2', 'u3', colorUp );
  	addLine( 'u3', 'u1', colorUp );

  	// target

  	addLine( 'c', 't', colorTarget );
  	addLine( 'p', 'c', colorCross );

  	// cross

  	addLine( 'cn1', 'cn2', colorCross );
  	addLine( 'cn3', 'cn4', colorCross );

  	addLine( 'cf1', 'cf2', colorCross );
  	addLine( 'cf3', 'cf4', colorCross );

  	function addLine( a, b, color ) {

  		addPoint( a, color );
  		addPoint( b, color );

  	}

  	function addPoint( id, color ) {

  		vertices.push( 0, 0, 0 );
  		colors.push( color.r, color.g, color.b );

  		if ( pointMap[ id ] === undefined ) {

  			pointMap[ id ] = [];

  		}

  		pointMap[ id ].push( ( vertices.length / 3 ) - 1 );

  	}

  	geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

  	LineSegments.call( this, geometry, material );

  	this.camera = camera;
  	if ( this.camera.updateProjectionMatrix ) this.camera.updateProjectionMatrix();

  	this.matrix = camera.matrixWorld;
  	this.matrixAutoUpdate = false;

  	this.pointMap = pointMap;

  	this.update();

  }

  CameraHelper.prototype = Object.create( LineSegments.prototype );
  CameraHelper.prototype.constructor = CameraHelper;

  CameraHelper.prototype.update = function () {

  	var geometry, pointMap;

  	var vector = new Vector3();
  	var camera = new Camera();

  	function setPoint( point, x, y, z ) {

  		vector.set( x, y, z ).unproject( camera );

  		var points = pointMap[ point ];

  		if ( points !== undefined ) {

  			var position = geometry.getAttribute( 'position' );

  			for ( var i = 0, l = points.length; i < l; i ++ ) {

  				position.setXYZ( points[ i ], vector.x, vector.y, vector.z );

  			}

  		}

  	}

  	return function update() {

  		geometry = this.geometry;
  		pointMap = this.pointMap;

  		var w = 1, h = 1;

  		// we need just camera projection matrix
  		// world matrix must be identity

  		camera.projectionMatrix.copy( this.camera.projectionMatrix );

  		// center / target

  		setPoint( 'c', 0, 0, - 1 );
  		setPoint( 't', 0, 0, 1 );

  		// near

  		setPoint( 'n1', - w, - h, - 1 );
  		setPoint( 'n2', w, - h, - 1 );
  		setPoint( 'n3', - w, h, - 1 );
  		setPoint( 'n4', w, h, - 1 );

  		// far

  		setPoint( 'f1', - w, - h, 1 );
  		setPoint( 'f2', w, - h, 1 );
  		setPoint( 'f3', - w, h, 1 );
  		setPoint( 'f4', w, h, 1 );

  		// up

  		setPoint( 'u1', w * 0.7, h * 1.1, - 1 );
  		setPoint( 'u2', - w * 0.7, h * 1.1, - 1 );
  		setPoint( 'u3', 0, h * 2, - 1 );

  		// cross

  		setPoint( 'cf1', - w, 0, 1 );
  		setPoint( 'cf2', w, 0, 1 );
  		setPoint( 'cf3', 0, - h, 1 );
  		setPoint( 'cf4', 0, h, 1 );

  		setPoint( 'cn1', - w, 0, - 1 );
  		setPoint( 'cn2', w, 0, - 1 );
  		setPoint( 'cn3', 0, - h, - 1 );
  		setPoint( 'cn4', 0, h, - 1 );

  		geometry.getAttribute( 'position' ).needsUpdate = true;

  	};

  }();

  /**
   * @author mrdoob / http://mrdoob.com/
   * @author Mugen87 / http://github.com/Mugen87
   */

  function BoxHelper( object, color ) {

  	this.object = object;

  	if ( color === undefined ) color = 0xffff00;

  	var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );
  	var positions = new Float32Array( 8 * 3 );

  	var geometry = new BufferGeometry();
  	geometry.setIndex( new BufferAttribute( indices, 1 ) );
  	geometry.addAttribute( 'position', new BufferAttribute( positions, 3 ) );

  	LineSegments.call( this, geometry, new LineBasicMaterial( { color: color } ) );

  	this.matrixAutoUpdate = false;

  	this.update();

  }

  BoxHelper.prototype = Object.create( LineSegments.prototype );
  BoxHelper.prototype.constructor = BoxHelper;

  BoxHelper.prototype.update = ( function () {

  	var box = new Box3();

  	return function update( object ) {

  		if ( object !== undefined ) {

  			console.warn( 'THREE.BoxHelper: .update() has no longer arguments.' );

  		}

  		if ( this.object !== undefined ) {

  			box.setFromObject( this.object );

  		}

  		if ( box.isEmpty() ) return;

  		var min = box.min;
  		var max = box.max;

  		/*
  		  5____4
  		1/___0/|
  		| 6__|_7
  		2/___3/

  		0: max.x, max.y, max.z
  		1: min.x, max.y, max.z
  		2: min.x, min.y, max.z
  		3: max.x, min.y, max.z
  		4: max.x, max.y, min.z
  		5: min.x, max.y, min.z
  		6: min.x, min.y, min.z
  		7: max.x, min.y, min.z
  		*/

  		var position = this.geometry.attributes.position;
  		var array = position.array;

  		array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z;
  		array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z;
  		array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z;
  		array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z;
  		array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z;
  		array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z;
  		array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z;
  		array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z;

  		position.needsUpdate = true;

  		this.geometry.computeBoundingSphere();

  	};

  } )();

  BoxHelper.prototype.setFromObject = function ( object ) {

  	this.object = object;
  	this.update();

  	return this;

  };

  /**
   * @author WestLangley / http://github.com/WestLangley
   */

  function Box3Helper( box, hex ) {

  	this.type = 'Box3Helper';

  	this.box = box;

  	var color = ( hex !== undefined ) ? hex : 0xffff00;

  	var indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] );

  	var positions = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, - 1, - 1, 1, - 1, - 1, - 1, - 1, 1, - 1, - 1 ];

  	var geometry = new BufferGeometry();

  	geometry.setIndex( new BufferAttribute( indices, 1 ) );

  	geometry.addAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );

  	LineSegments.call( this, geometry, new LineBasicMaterial( { color: color } ) );

  	this.geometry.computeBoundingSphere();

  }

  Box3Helper.prototype = Object.create( LineSegments.prototype );
  Box3Helper.prototype.constructor = Box3Helper;

  Box3Helper.prototype.updateMatrixWorld = function ( force ) {

  	var box = this.box;

  	if ( box.isEmpty() ) return;

  	box.getCenter( this.position );

  	box.getSize( this.scale );

  	this.scale.multiplyScalar( 0.5 );

  	Object3D.prototype.updateMatrixWorld.call( this, force );

  };

  /**
   * @author WestLangley / http://github.com/WestLangley
   */

  function PlaneHelper( plane, size, hex ) {

  	this.type = 'PlaneHelper';

  	this.plane = plane;

  	this.size = ( size === undefined ) ? 1 : size;

  	var color = ( hex !== undefined ) ? hex : 0xffff00;

  	var positions = [ 1, - 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0 ];

  	var geometry = new BufferGeometry();
  	geometry.addAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
  	geometry.computeBoundingSphere();

  	Line.call( this, geometry, new LineBasicMaterial( { color: color } ) );

  	//

  	var positions2 = [ 1, 1, 1, - 1, 1, 1, - 1, - 1, 1, 1, 1, 1, - 1, - 1, 1, 1, - 1, 1 ];

  	var geometry2 = new BufferGeometry();
  	geometry2.addAttribute( 'position', new Float32BufferAttribute( positions2, 3 ) );
  	geometry2.computeBoundingSphere();

  	this.add( new Mesh( geometry2, new MeshBasicMaterial( { color: color, opacity: 0.2, transparent: true, depthWrite: false } ) ) );

  }

  PlaneHelper.prototype = Object.create( Line.prototype );
  PlaneHelper.prototype.constructor = PlaneHelper;

  PlaneHelper.prototype.updateMatrixWorld = function ( force ) {

  	var scale = - this.plane.constant;

  	if ( Math.abs( scale ) < 1e-8 ) scale = 1e-8; // sign does not matter

  	this.scale.set( 0.5 * this.size, 0.5 * this.size, scale );

  	this.children[ 0 ].material.side = ( scale < 0 ) ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here

  	this.lookAt( this.plane.normal );

  	Object3D.prototype.updateMatrixWorld.call( this, force );

  };

  /**
   * @author WestLangley / http://github.com/WestLangley
   * @author zz85 / http://github.com/zz85
   * @author bhouston / http://clara.io
   *
   * Creates an arrow for visualizing directions
   *
   * Parameters:
   *  dir - Vector3
   *  origin - Vector3
   *  length - Number
   *  color - color in hex value
   *  headLength - Number
   *  headWidth - Number
   */

  var lineGeometry, coneGeometry;

  function ArrowHelper( dir, origin, length, color, headLength, headWidth ) {

  	// dir is assumed to be normalized

  	Object3D.call( this );

  	if ( color === undefined ) color = 0xffff00;
  	if ( length === undefined ) length = 1;
  	if ( headLength === undefined ) headLength = 0.2 * length;
  	if ( headWidth === undefined ) headWidth = 0.2 * headLength;

  	if ( lineGeometry === undefined ) {

  		lineGeometry = new BufferGeometry();
  		lineGeometry.addAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) );

  		coneGeometry = new CylinderBufferGeometry( 0, 0.5, 1, 5, 1 );
  		coneGeometry.translate( 0, - 0.5, 0 );

  	}

  	this.position.copy( origin );

  	this.line = new Line( lineGeometry, new LineBasicMaterial( { color: color } ) );
  	this.line.matrixAutoUpdate = false;
  	this.add( this.line );

  	this.cone = new Mesh( coneGeometry, new MeshBasicMaterial( { color: color } ) );
  	this.cone.matrixAutoUpdate = false;
  	this.add( this.cone );

  	this.setDirection( dir );
  	this.setLength( length, headLength, headWidth );

  }

  ArrowHelper.prototype = Object.create( Object3D.prototype );
  ArrowHelper.prototype.constructor = ArrowHelper;

  ArrowHelper.prototype.setDirection = ( function () {

  	var axis = new Vector3();
  	var radians;

  	return function setDirection( dir ) {

  		// dir is assumed to be normalized

  		if ( dir.y > 0.99999 ) {

  			this.quaternion.set( 0, 0, 0, 1 );

  		} else if ( dir.y < - 0.99999 ) {

  			this.quaternion.set( 1, 0, 0, 0 );

  		} else {

  			axis.set( dir.z, 0, - dir.x ).normalize();

  			radians = Math.acos( dir.y );

  			this.quaternion.setFromAxisAngle( axis, radians );

  		}

  	};

  }() );

  ArrowHelper.prototype.setLength = function ( length, headLength, headWidth ) {

  	if ( headLength === undefined ) headLength = 0.2 * length;
  	if ( headWidth === undefined ) headWidth = 0.2 * headLength;

  	this.line.scale.set( 1, Math.max( 0, length - headLength ), 1 );
  	this.line.updateMatrix();

  	this.cone.scale.set( headWidth, headLength, headWidth );
  	this.cone.position.y = length;
  	this.cone.updateMatrix();

  };

  ArrowHelper.prototype.setColor = function ( color ) {

  	this.line.material.color.copy( color );
  	this.cone.material.color.copy( color );

  };

  /**
   * @author sroucheray / http://sroucheray.org/
   * @author mrdoob / http://mrdoob.com/
   */

  function AxesHelper( size ) {

  	size = size || 1;

  	var vertices = [
  		0, 0, 0,	size, 0, 0,
  		0, 0, 0,	0, size, 0,
  		0, 0, 0,	0, 0, size
  	];

  	var colors = [
  		1, 0, 0,	1, 0.6, 0,
  		0, 1, 0,	0.6, 1, 0,
  		0, 0, 1,	0, 0.6, 1
  	];

  	var geometry = new BufferGeometry();
  	geometry.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
  	geometry.addAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );

  	var material = new LineBasicMaterial( { vertexColors: VertexColors } );

  	LineSegments.call( this, geometry, material );

  }

  AxesHelper.prototype = Object.create( LineSegments.prototype );
  AxesHelper.prototype.constructor = AxesHelper;

  //

  Curve.create = function ( construct, getPoint ) {

  	console.log( 'THREE.Curve.create() has been deprecated' );

  	construct.prototype = Object.create( Curve.prototype );
  	construct.prototype.constructor = construct;
  	construct.prototype.getPoint = getPoint;

  	return construct;

  };

  //

  Object.assign( CurvePath.prototype, {

  	createPointsGeometry: function ( divisions ) {

  		console.warn( 'THREE.CurvePath: .createPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );

  		// generate geometry from path points (for Line or Points objects)

  		var pts = this.getPoints( divisions );
  		return this.createGeometry( pts );

  	},

  	createSpacedPointsGeometry: function ( divisions ) {

  		console.warn( 'THREE.CurvePath: .createSpacedPointsGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );

  		// generate geometry from equidistant sampling along the path

  		var pts = this.getSpacedPoints( divisions );
  		return this.createGeometry( pts );

  	},

  	createGeometry: function ( points ) {

  		console.warn( 'THREE.CurvePath: .createGeometry() has been removed. Use new THREE.Geometry().setFromPoints( points ) instead.' );

  		var geometry = new Geometry();

  		for ( var i = 0, l = points.length; i < l; i ++ ) {

  			var point = points[ i ];
  			geometry.vertices.push( new Vector3( point.x, point.y, point.z || 0 ) );

  		}

  		return geometry;

  	}

  } );

  //

  Object.assign( Path.prototype, {

  	fromPoints: function ( points ) {

  		console.warn( 'THREE.Path: .fromPoints() has been renamed to .setFromPoints().' );
  		this.setFromPoints( points );

  	}

  } );

  //

  function Spline( points ) {

  	console.warn( 'THREE.Spline has been removed. Use THREE.CatmullRomCurve3 instead.' );

  	CatmullRomCurve3.call( this, points );
  	this.type = 'catmullrom';

  }

  Spline.prototype = Object.create( CatmullRomCurve3.prototype );

  Object.assign( Spline.prototype, {

  	initFromArray: function ( /* a */ ) {

  		console.error( 'THREE.Spline: .initFromArray() has been removed.' );

  	},
  	getControlPointsArray: function ( /* optionalTarget */ ) {

  		console.error( 'THREE.Spline: .getControlPointsArray() has been removed.' );

  	},
  	reparametrizeByArcLength: function ( /* samplingCoef */ ) {

  		console.error( 'THREE.Spline: .reparametrizeByArcLength() has been removed.' );

  	}

  } );

  GridHelper.prototype.setColors = function () {

  	console.error( 'THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.' );

  };

  SkeletonHelper.prototype.update = function () {

  	console.error( 'THREE.SkeletonHelper: update() no longer needs to be called.' );

  };

  //

  Object.assign( Loader.prototype, {

  	extractUrlBase: function ( url ) {

  		console.warn( 'THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.' );
  		return LoaderUtils.extractUrlBase( url );

  	}

  } );

  //

  Object.assign( Box2.prototype, {

  	center: function ( optionalTarget ) {

  		console.warn( 'THREE.Box2: .center() has been renamed to .getCenter().' );
  		return this.getCenter( optionalTarget );

  	},
  	empty: function () {

  		console.warn( 'THREE.Box2: .empty() has been renamed to .isEmpty().' );
  		return this.isEmpty();

  	},
  	isIntersectionBox: function ( box ) {

  		console.warn( 'THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().' );
  		return this.intersectsBox( box );

  	},
  	size: function ( optionalTarget ) {

  		console.warn( 'THREE.Box2: .size() has been renamed to .getSize().' );
  		return this.getSize( optionalTarget );

  	}
  } );

  Object.assign( Box3.prototype, {

  	center: function ( optionalTarget ) {

  		console.warn( 'THREE.Box3: .center() has been renamed to .getCenter().' );
  		return this.getCenter( optionalTarget );

  	},
  	empty: function () {

  		console.warn( 'THREE.Box3: .empty() has been renamed to .isEmpty().' );
  		return this.isEmpty();

  	},
  	isIntersectionBox: function ( box ) {

  		console.warn( 'THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().' );
  		return this.intersectsBox( box );

  	},
  	isIntersectionSphere: function ( sphere ) {

  		console.warn( 'THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
  		return this.intersectsSphere( sphere );

  	},
  	size: function ( optionalTarget ) {

  		console.warn( 'THREE.Box3: .size() has been renamed to .getSize().' );
  		return this.getSize( optionalTarget );

  	}
  } );

  Line3.prototype.center = function ( optionalTarget ) {

  	console.warn( 'THREE.Line3: .center() has been renamed to .getCenter().' );
  	return this.getCenter( optionalTarget );

  };

  Object.assign( _Math, {

  	random16: function () {

  		console.warn( 'THREE.Math: .random16() has been deprecated. Use Math.random() instead.' );
  		return Math.random();

  	},

  	nearestPowerOfTwo: function ( value ) {

  		console.warn( 'THREE.Math: .nearestPowerOfTwo() has been renamed to .floorPowerOfTwo().' );
  		return _Math.floorPowerOfTwo( value );

  	},

  	nextPowerOfTwo: function ( value ) {

  		console.warn( 'THREE.Math: .nextPowerOfTwo() has been renamed to .ceilPowerOfTwo().' );
  		return _Math.ceilPowerOfTwo( value );

  	}

  } );

  Object.assign( Matrix3.prototype, {

  	flattenToArrayOffset: function ( array, offset ) {

  		console.warn( "THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." );
  		return this.toArray( array, offset );

  	},
  	multiplyVector3: function ( vector ) {

  		console.warn( 'THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.' );
  		return vector.applyMatrix3( this );

  	},
  	multiplyVector3Array: function ( /* a */ ) {

  		console.error( 'THREE.Matrix3: .multiplyVector3Array() has been removed.' );

  	},
  	applyToBuffer: function ( buffer /*, offset, length */ ) {

  		console.warn( 'THREE.Matrix3: .applyToBuffer() has been removed. Use matrix.applyToBufferAttribute( attribute ) instead.' );
  		return this.applyToBufferAttribute( buffer );

  	},
  	applyToVector3Array: function ( /* array, offset, length */ ) {

  		console.error( 'THREE.Matrix3: .applyToVector3Array() has been removed.' );

  	}

  } );

  Object.assign( Matrix4.prototype, {

  	extractPosition: function ( m ) {

  		console.warn( 'THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().' );
  		return this.copyPosition( m );

  	},
  	flattenToArrayOffset: function ( array, offset ) {

  		console.warn( "THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead." );
  		return this.toArray( array, offset );

  	},
  	getPosition: function () {

  		var v1;

  		return function getPosition() {

  			if ( v1 === undefined ) v1 = new Vector3();
  			console.warn( 'THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.' );
  			return v1.setFromMatrixColumn( this, 3 );

  		};

  	}(),
  	setRotationFromQuaternion: function ( q ) {

  		console.warn( 'THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().' );
  		return this.makeRotationFromQuaternion( q );

  	},
  	multiplyToArray: function () {

  		console.warn( 'THREE.Matrix4: .multiplyToArray() has been removed.' );

  	},
  	multiplyVector3: function ( vector ) {

  		console.warn( 'THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
  		return vector.applyMatrix4( this );

  	},
  	multiplyVector4: function ( vector ) {

  		console.warn( 'THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
  		return vector.applyMatrix4( this );

  	},
  	multiplyVector3Array: function ( /* a */ ) {

  		console.error( 'THREE.Matrix4: .multiplyVector3Array() has been removed.' );

  	},
  	rotateAxis: function ( v ) {

  		console.warn( 'THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.' );
  		v.transformDirection( this );

  	},
  	crossVector: function ( vector ) {

  		console.warn( 'THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.' );
  		return vector.applyMatrix4( this );

  	},
  	translate: function () {

  		console.error( 'THREE.Matrix4: .translate() has been removed.' );

  	},
  	rotateX: function () {

  		console.error( 'THREE.Matrix4: .rotateX() has been removed.' );

  	},
  	rotateY: function () {

  		console.error( 'THREE.Matrix4: .rotateY() has been removed.' );

  	},
  	rotateZ: function () {

  		console.error( 'THREE.Matrix4: .rotateZ() has been removed.' );

  	},
  	rotateByAxis: function () {

  		console.error( 'THREE.Matrix4: .rotateByAxis() has been removed.' );

  	},
  	applyToBuffer: function ( buffer /*, offset, length */ ) {

  		console.warn( 'THREE.Matrix4: .applyToBuffer() has been removed. Use matrix.applyToBufferAttribute( attribute ) instead.' );
  		return this.applyToBufferAttribute( buffer );

  	},
  	applyToVector3Array: function ( /* array, offset, length */ ) {

  		console.error( 'THREE.Matrix4: .applyToVector3Array() has been removed.' );

  	},
  	makeFrustum: function ( left, right, bottom, top, near, far ) {

  		console.warn( 'THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.' );
  		return this.makePerspective( left, right, top, bottom, near, far );

  	}

  } );

  Plane.prototype.isIntersectionLine = function ( line ) {

  	console.warn( 'THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().' );
  	return this.intersectsLine( line );

  };

  Quaternion.prototype.multiplyVector3 = function ( vector ) {

  	console.warn( 'THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.' );
  	return vector.applyQuaternion( this );

  };

  Object.assign( Ray.prototype, {

  	isIntersectionBox: function ( box ) {

  		console.warn( 'THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().' );
  		return this.intersectsBox( box );

  	},
  	isIntersectionPlane: function ( plane ) {

  		console.warn( 'THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().' );
  		return this.intersectsPlane( plane );

  	},
  	isIntersectionSphere: function ( sphere ) {

  		console.warn( 'THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().' );
  		return this.intersectsSphere( sphere );

  	}

  } );

  Object.assign( Triangle.prototype, {

  	area: function () {

  		console.warn( 'THREE.Triangle: .area() has been renamed to .getArea().' );
  		return this.getArea();

  	},
  	barycoordFromPoint: function ( point, target ) {

  		console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' );
  		return this.getBarycoord( point, target );

  	},
  	midpoint: function ( target ) {

  		console.warn( 'THREE.Triangle: .midpoint() has been renamed to .getMidpoint().' );
  		return this.getMidpoint( target );

  	},
  	normal: function ( target ) {

  		console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' );
  		return this.getNormal( target );

  	},
  	plane: function ( target ) {

  		console.warn( 'THREE.Triangle: .plane() has been renamed to .getPlane().' );
  		return this.getPlane( target );

  	}

  } );

  Object.assign( Triangle, {

  	barycoordFromPoint: function ( point, a, b, c, target ) {

  		console.warn( 'THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().' );
  		return Triangle.getBarycoord( point, a, b, c, target );

  	},
  	normal: function ( a, b, c, target ) {

  		console.warn( 'THREE.Triangle: .normal() has been renamed to .getNormal().' );
  		return Triangle.getNormal( a, b, c, target );

  	}

  } );

  Object.assign( Shape.prototype, {

  	extractAllPoints: function ( divisions ) {

  		console.warn( 'THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.' );
  		return this.extractPoints( divisions );

  	},
  	extrude: function ( options ) {

  		console.warn( 'THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.' );
  		return new ExtrudeGeometry( this, options );

  	},
  	makeGeometry: function ( options ) {

  		console.warn( 'THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.' );
  		return new ShapeGeometry( this, options );

  	}

  } );

  Object.assign( Vector2.prototype, {

  	fromAttribute: function ( attribute, index, offset ) {

  		console.warn( 'THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().' );
  		return this.fromBufferAttribute( attribute, index, offset );

  	},
  	distanceToManhattan: function ( v ) {

  		console.warn( 'THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' );
  		return this.manhattanDistanceTo( v );

  	},
  	lengthManhattan: function () {

  		console.warn( 'THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().' );
  		return this.manhattanLength();

  	}

  } );

  Object.assign( Vector3.prototype, {

  	setEulerFromRotationMatrix: function () {

  		console.error( 'THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.' );

  	},
  	setEulerFromQuaternion: function () {

  		console.error( 'THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.' );

  	},
  	getPositionFromMatrix: function ( m ) {

  		console.warn( 'THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().' );
  		return this.setFromMatrixPosition( m );

  	},
  	getScaleFromMatrix: function ( m ) {

  		console.warn( 'THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().' );
  		return this.setFromMatrixScale( m );

  	},
  	getColumnFromMatrix: function ( index, matrix ) {

  		console.warn( 'THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().' );
  		return this.setFromMatrixColumn( matrix, index );

  	},
  	applyProjection: function ( m ) {

  		console.warn( 'THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.' );
  		return this.applyMatrix4( m );

  	},
  	fromAttribute: function ( attribute, index, offset ) {

  		console.warn( 'THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().' );
  		return this.fromBufferAttribute( attribute, index, offset );

  	},
  	distanceToManhattan: function ( v ) {

  		console.warn( 'THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().' );
  		return this.manhattanDistanceTo( v );

  	},
  	lengthManhattan: function () {

  		console.warn( 'THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().' );
  		return this.manhattanLength();

  	}

  } );

  Object.assign( Vector4.prototype, {

  	fromAttribute: function ( attribute, index, offset ) {

  		console.warn( 'THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().' );
  		return this.fromBufferAttribute( attribute, index, offset );

  	},
  	lengthManhattan: function () {

  		console.warn( 'THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().' );
  		return this.manhattanLength();

  	}

  } );

  //

  Object.assign( Geometry.prototype, {

  	computeTangents: function () {

  		console.error( 'THREE.Geometry: .computeTangents() has been removed.' );

  	},
  	computeLineDistances: function () {

  		console.error( 'THREE.Geometry: .computeLineDistances() has been removed. Use THREE.Line.computeLineDistances() instead.' );

  	}

  } );

  Object.assign( Object3D.prototype, {

  	getChildByName: function ( name ) {

  		console.warn( 'THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().' );
  		return this.getObjectByName( name );

  	},
  	renderDepth: function () {

  		console.warn( 'THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.' );

  	},
  	translate: function ( distance, axis ) {

  		console.warn( 'THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.' );
  		return this.translateOnAxis( axis, distance );

  	},
  	getWorldRotation: function () {

  		console.error( 'THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.' );

  	}

  } );

  Object.defineProperties( Object3D.prototype, {

  	eulerOrder: {
  		get: function () {

  			console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
  			return this.rotation.order;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.Object3D: .eulerOrder is now .rotation.order.' );
  			this.rotation.order = value;

  		}
  	},
  	useQuaternion: {
  		get: function () {

  			console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );

  		},
  		set: function () {

  			console.warn( 'THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.' );

  		}
  	}

  } );

  Object.defineProperties( LOD.prototype, {

  	objects: {
  		get: function () {

  			console.warn( 'THREE.LOD: .objects has been renamed to .levels.' );
  			return this.levels;

  		}
  	}

  } );

  Object.defineProperty( Skeleton.prototype, 'useVertexTexture', {

  	get: function () {

  		console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );

  	},
  	set: function () {

  		console.warn( 'THREE.Skeleton: useVertexTexture has been removed.' );

  	}

  } );

  Object.defineProperty( Curve.prototype, '__arcLengthDivisions', {

  	get: function () {

  		console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' );
  		return this.arcLengthDivisions;

  	},
  	set: function ( value ) {

  		console.warn( 'THREE.Curve: .__arcLengthDivisions is now .arcLengthDivisions.' );
  		this.arcLengthDivisions = value;

  	}

  } );

  //

  PerspectiveCamera.prototype.setLens = function ( focalLength, filmGauge ) {

  	console.warn( "THREE.PerspectiveCamera.setLens is deprecated. " +
  			"Use .setFocalLength and .filmGauge for a photographic setup." );

  	if ( filmGauge !== undefined ) this.filmGauge = filmGauge;
  	this.setFocalLength( focalLength );

  };

  //

  Object.defineProperties( Light.prototype, {
  	onlyShadow: {
  		set: function () {

  			console.warn( 'THREE.Light: .onlyShadow has been removed.' );

  		}
  	},
  	shadowCameraFov: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraFov is now .shadow.camera.fov.' );
  			this.shadow.camera.fov = value;

  		}
  	},
  	shadowCameraLeft: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraLeft is now .shadow.camera.left.' );
  			this.shadow.camera.left = value;

  		}
  	},
  	shadowCameraRight: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraRight is now .shadow.camera.right.' );
  			this.shadow.camera.right = value;

  		}
  	},
  	shadowCameraTop: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraTop is now .shadow.camera.top.' );
  			this.shadow.camera.top = value;

  		}
  	},
  	shadowCameraBottom: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.' );
  			this.shadow.camera.bottom = value;

  		}
  	},
  	shadowCameraNear: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraNear is now .shadow.camera.near.' );
  			this.shadow.camera.near = value;

  		}
  	},
  	shadowCameraFar: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowCameraFar is now .shadow.camera.far.' );
  			this.shadow.camera.far = value;

  		}
  	},
  	shadowCameraVisible: {
  		set: function () {

  			console.warn( 'THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.' );

  		}
  	},
  	shadowBias: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowBias is now .shadow.bias.' );
  			this.shadow.bias = value;

  		}
  	},
  	shadowDarkness: {
  		set: function () {

  			console.warn( 'THREE.Light: .shadowDarkness has been removed.' );

  		}
  	},
  	shadowMapWidth: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.' );
  			this.shadow.mapSize.width = value;

  		}
  	},
  	shadowMapHeight: {
  		set: function ( value ) {

  			console.warn( 'THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.' );
  			this.shadow.mapSize.height = value;

  		}
  	}
  } );

  //

  Object.defineProperties( BufferAttribute.prototype, {

  	length: {
  		get: function () {

  			console.warn( 'THREE.BufferAttribute: .length has been deprecated. Use .count instead.' );
  			return this.array.length;

  		}
  	},
  	copyIndicesArray: function ( /* indices */ ) {

  		console.error( 'THREE.BufferAttribute: .copyIndicesArray() has been removed.' );

  	}

  } );

  Object.assign( BufferGeometry.prototype, {

  	addIndex: function ( index ) {

  		console.warn( 'THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().' );
  		this.setIndex( index );

  	},
  	addDrawCall: function ( start, count, indexOffset ) {

  		if ( indexOffset !== undefined ) {

  			console.warn( 'THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.' );

  		}
  		console.warn( 'THREE.BufferGeometry: .addDrawCall() is now .addGroup().' );
  		this.addGroup( start, count );

  	},
  	clearDrawCalls: function () {

  		console.warn( 'THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().' );
  		this.clearGroups();

  	},
  	computeTangents: function () {

  		console.warn( 'THREE.BufferGeometry: .computeTangents() has been removed.' );

  	},
  	computeOffsets: function () {

  		console.warn( 'THREE.BufferGeometry: .computeOffsets() has been removed.' );

  	}

  } );

  Object.defineProperties( BufferGeometry.prototype, {

  	drawcalls: {
  		get: function () {

  			console.error( 'THREE.BufferGeometry: .drawcalls has been renamed to .groups.' );
  			return this.groups;

  		}
  	},
  	offsets: {
  		get: function () {

  			console.warn( 'THREE.BufferGeometry: .offsets has been renamed to .groups.' );
  			return this.groups;

  		}
  	}

  } );

  //

  Object.assign( ExtrudeBufferGeometry.prototype, {

  	getArrays: function () {

  		console.error( 'THREE.ExtrudeBufferGeometry: .getArrays() has been removed.' );

  	},

  	addShapeList: function () {

  		console.error( 'THREE.ExtrudeBufferGeometry: .addShapeList() has been removed.' );

  	},

  	addShape: function () {

  		console.error( 'THREE.ExtrudeBufferGeometry: .addShape() has been removed.' );

  	}

  } );

  //

  Object.defineProperties( Uniform.prototype, {

  	dynamic: {
  		set: function () {

  			console.warn( 'THREE.Uniform: .dynamic has been removed. Use object.onBeforeRender() instead.' );

  		}
  	},
  	onUpdate: {
  		value: function () {

  			console.warn( 'THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.' );
  			return this;

  		}
  	}

  } );

  //

  Object.defineProperties( Material.prototype, {

  	wrapAround: {
  		get: function () {

  			console.warn( 'THREE.Material: .wrapAround has been removed.' );

  		},
  		set: function () {

  			console.warn( 'THREE.Material: .wrapAround has been removed.' );

  		}
  	},
  	wrapRGB: {
  		get: function () {

  			console.warn( 'THREE.Material: .wrapRGB has been removed.' );
  			return new Color();

  		}
  	},

  	shading: {
  		get: function () {

  			console.error( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.' );
  			this.flatShading = ( value === FlatShading );

  		}
  	}

  } );

  Object.defineProperties( MeshPhongMaterial.prototype, {

  	metal: {
  		get: function () {

  			console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead.' );
  			return false;

  		},
  		set: function () {

  			console.warn( 'THREE.MeshPhongMaterial: .metal has been removed. Use THREE.MeshStandardMaterial instead' );

  		}
  	}

  } );

  Object.defineProperties( ShaderMaterial.prototype, {

  	derivatives: {
  		get: function () {

  			console.warn( 'THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
  			return this.extensions.derivatives;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.' );
  			this.extensions.derivatives = value;

  		}
  	}

  } );

  //

  Object.assign( WebGLRenderer.prototype, {

  	animate: function ( callback ) {

  		console.warn( 'THREE.WebGLRenderer: .animate() is now .setAnimationLoop().' );
  		this.setAnimationLoop( callback );

  	},

  	getCurrentRenderTarget: function () {

  		console.warn( 'THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().' );
  		return this.getRenderTarget();

  	},

  	getMaxAnisotropy: function () {

  		console.warn( 'THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().' );
  		return this.capabilities.getMaxAnisotropy();

  	},

  	getPrecision: function () {

  		console.warn( 'THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.' );
  		return this.capabilities.precision;

  	},

  	resetGLState: function () {

  		console.warn( 'THREE.WebGLRenderer: .resetGLState() is now .state.reset().' );
  		return this.state.reset();

  	},

  	supportsFloatTextures: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).' );
  		return this.extensions.get( 'OES_texture_float' );

  	},
  	supportsHalfFloatTextures: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).' );
  		return this.extensions.get( 'OES_texture_half_float' );

  	},
  	supportsStandardDerivatives: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).' );
  		return this.extensions.get( 'OES_standard_derivatives' );

  	},
  	supportsCompressedTextureS3TC: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).' );
  		return this.extensions.get( 'WEBGL_compressed_texture_s3tc' );

  	},
  	supportsCompressedTexturePVRTC: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).' );
  		return this.extensions.get( 'WEBGL_compressed_texture_pvrtc' );

  	},
  	supportsBlendMinMax: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).' );
  		return this.extensions.get( 'EXT_blend_minmax' );

  	},
  	supportsVertexTextures: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.' );
  		return this.capabilities.vertexTextures;

  	},
  	supportsInstancedArrays: function () {

  		console.warn( 'THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).' );
  		return this.extensions.get( 'ANGLE_instanced_arrays' );

  	},
  	enableScissorTest: function ( boolean ) {

  		console.warn( 'THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().' );
  		this.setScissorTest( boolean );

  	},
  	initMaterial: function () {

  		console.warn( 'THREE.WebGLRenderer: .initMaterial() has been removed.' );

  	},
  	addPrePlugin: function () {

  		console.warn( 'THREE.WebGLRenderer: .addPrePlugin() has been removed.' );

  	},
  	addPostPlugin: function () {

  		console.warn( 'THREE.WebGLRenderer: .addPostPlugin() has been removed.' );

  	},
  	updateShadowMap: function () {

  		console.warn( 'THREE.WebGLRenderer: .updateShadowMap() has been removed.' );

  	},
  	setFaceCulling: function () {

  		console.warn( 'THREE.WebGLRenderer: .setFaceCulling() has been removed.' );

  	}

  } );

  Object.defineProperties( WebGLRenderer.prototype, {

  	shadowMapEnabled: {
  		get: function () {

  			return this.shadowMap.enabled;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.' );
  			this.shadowMap.enabled = value;

  		}
  	},
  	shadowMapType: {
  		get: function () {

  			return this.shadowMap.type;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.' );
  			this.shadowMap.type = value;

  		}
  	},
  	shadowMapCullFace: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' );
  			return undefined;

  		},
  		set: function ( /* value */ ) {

  			console.warn( 'THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.' );

  		}
  	}
  } );

  Object.defineProperties( WebGLShadowMap.prototype, {

  	cullFace: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' );
  			return undefined;

  		},
  		set: function ( /* cullFace */ ) {

  			console.warn( 'THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.' );

  		}
  	},
  	renderReverseSided: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' );
  			return undefined;

  		},
  		set: function () {

  			console.warn( 'THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.' );

  		}
  	},
  	renderSingleSided: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' );
  			return undefined;

  		},
  		set: function () {

  			console.warn( 'THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.' );

  		}
  	}

  } );

  //

  Object.defineProperties( WebGLRenderTarget.prototype, {

  	wrapS: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
  			return this.texture.wrapS;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.' );
  			this.texture.wrapS = value;

  		}
  	},
  	wrapT: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
  			return this.texture.wrapT;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.' );
  			this.texture.wrapT = value;

  		}
  	},
  	magFilter: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
  			return this.texture.magFilter;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.' );
  			this.texture.magFilter = value;

  		}
  	},
  	minFilter: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
  			return this.texture.minFilter;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.' );
  			this.texture.minFilter = value;

  		}
  	},
  	anisotropy: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
  			return this.texture.anisotropy;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.' );
  			this.texture.anisotropy = value;

  		}
  	},
  	offset: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
  			return this.texture.offset;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .offset is now .texture.offset.' );
  			this.texture.offset = value;

  		}
  	},
  	repeat: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
  			return this.texture.repeat;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .repeat is now .texture.repeat.' );
  			this.texture.repeat = value;

  		}
  	},
  	format: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
  			return this.texture.format;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .format is now .texture.format.' );
  			this.texture.format = value;

  		}
  	},
  	type: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
  			return this.texture.type;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .type is now .texture.type.' );
  			this.texture.type = value;

  		}
  	},
  	generateMipmaps: {
  		get: function () {

  			console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
  			return this.texture.generateMipmaps;

  		},
  		set: function ( value ) {

  			console.warn( 'THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.' );
  			this.texture.generateMipmaps = value;

  		}
  	}

  } );

  //

  Object.defineProperties( WebVRManager.prototype, {

  	standing: {
  		set: function ( /* value */ ) {

  			console.warn( 'THREE.WebVRManager: .standing has been removed.' );

  		}
  	}

  } );

  //

  Audio.prototype.load = function ( file ) {

  	console.warn( 'THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.' );
  	var scope = this;
  	var audioLoader = new AudioLoader();
  	audioLoader.load( file, function ( buffer ) {

  		scope.setBuffer( buffer );

  	} );
  	return this;

  };

  AudioAnalyser.prototype.getData = function () {

  	console.warn( 'THREE.AudioAnalyser: .getData() is now .getFrequencyData().' );
  	return this.getFrequencyData();

  };

  //

  CubeCamera.prototype.updateCubeMap = function ( renderer, scene ) {

  	console.warn( 'THREE.CubeCamera: .updateCubeMap() is now .update().' );
  	return this.update( renderer, scene );

  };

  /**
   * @author dmarcos / https://github.com/dmarcos
   * @author mrdoob / http://mrdoob.com
   */
  var VRControls = function ( object, onError ) {

  	var scope = this;

  	var vrDisplay, vrDisplays;

  	var standingMatrix = new Matrix4();

  	var frameData = null;

  	if ( 'VRFrameData' in window ) {

  		frameData = new VRFrameData();

  	}

  	function gotVRDisplays( displays ) {

  		vrDisplays = displays;

  		if ( displays.length > 0 ) {

  			vrDisplay = displays[ 0 ];

  		} else {

  			if ( onError ) onError( 'VR input not available.' );

  		}

  	}

  	if ( navigator.getVRDisplays ) {

  		navigator.getVRDisplays().then( gotVRDisplays ).catch( function () {

  			console.warn( 'VRControls: Unable to get VR Displays' );

  		} );

  	}

  	// the Rift SDK returns the position in meters
  	// this scale factor allows the user to define how meters
  	// are converted to scene units.

  	this.scale = 1;

  	// If true will use "standing space" coordinate system where y=0 is the
  	// floor and x=0, z=0 is the center of the room.
  	this.standing = false;

  	// Distance from the users eyes to the floor in meters. Used when
  	// standing=true but the VRDisplay doesn't provide stageParameters.
  	this.userHeight = 1.6;

  	this.getVRDisplay = function () {

  		return vrDisplay;

  	};

  	this.setVRDisplay = function ( value ) {

  		vrDisplay = value;

  	};

  	this.getVRDisplays = function () {

  		console.warn( 'VRControls: getVRDisplays() is being deprecated.' );
  		return vrDisplays;

  	};

  	this.getStandingMatrix = function () {

  		return standingMatrix;

  	};

  	this.update = function () {

  		if ( vrDisplay ) {

  			var pose;

  			if ( vrDisplay.getFrameData ) {

  				vrDisplay.getFrameData( frameData );
  				pose = frameData.pose;

  			} else if ( vrDisplay.getPose ) {

  				pose = vrDisplay.getPose();

  			}

  			if ( pose.orientation !== null ) {

  				object.quaternion.fromArray( pose.orientation );

  			}

  			if ( pose.position !== null ) {

  				object.position.fromArray( pose.position );

  			} else {

  				object.position.set( 0, 0, 0 );

  			}

  			if ( this.standing ) {

  				if ( vrDisplay.stageParameters ) {

  					object.updateMatrix();

  					standingMatrix.fromArray( vrDisplay.stageParameters.sittingToStandingTransform );
  					object.applyMatrix( standingMatrix );

  				} else {

  					object.position.setY( object.position.y + this.userHeight );

  				}

  			}

  			object.position.multiplyScalar( scope.scale );

  		}

  	};

  	this.dispose = function () {

  		vrDisplay = null;

  	};

  };

  /**
   * @author dmarcos / https://github.com/dmarcos
   * @author mrdoob / http://mrdoob.com
   *
   * WebVR Spec: http://mozvr.github.io/webvr-spec/webvr.html
   *
   * Firefox: http://mozvr.com/downloads/
   * Chromium: https://webvr.info/get-chrome
   */
  var VREffect = function ( renderer, onError ) {

  	var vrDisplay, vrDisplays;
  	var eyeTranslationL = new Vector3();
  	var eyeTranslationR = new Vector3();
  	var renderRectL, renderRectR;
  	var headMatrix = new Matrix4();
  	var eyeMatrixL = new Matrix4();
  	var eyeMatrixR = new Matrix4();

  	var frameData = null;

  	if ( 'VRFrameData' in window ) {

  		frameData = new window.VRFrameData();

  	}

  	function gotVRDisplays( displays ) {

  		vrDisplays = displays;

  		if ( displays.length > 0 ) {

  			vrDisplay = displays[ 0 ];

  		} else {

  			if ( onError ) onError( 'HMD not available' );

  		}

  	}

  	if ( navigator.getVRDisplays ) {

  		navigator.getVRDisplays().then( gotVRDisplays ).catch( function () {

  			console.warn( 'VREffect: Unable to get VR Displays' );

  		} );

  	}

  	//

  	this.isPresenting = false;

  	var scope = this;

  	var rendererSize = renderer.getSize();
  	var rendererUpdateStyle = false;
  	var rendererPixelRatio = renderer.getPixelRatio();

  	this.getVRDisplay = function () {

  		return vrDisplay;

  	};

  	this.setVRDisplay = function ( value ) {

  		vrDisplay = value;

  	};

  	this.getVRDisplays = function () {

  		console.warn( 'VREffect: getVRDisplays() is being deprecated.' );
  		return vrDisplays;

  	};

  	this.setSize = function ( width, height, updateStyle ) {

  		rendererSize = { width: width, height: height };
  		rendererUpdateStyle = updateStyle;

  		if ( scope.isPresenting ) {

  			var eyeParamsL = vrDisplay.getEyeParameters( 'left' );
  			renderer.setPixelRatio( 1 );
  			renderer.setSize( eyeParamsL.renderWidth * 2, eyeParamsL.renderHeight, false );

  		} else {

  			renderer.setPixelRatio( rendererPixelRatio );
  			renderer.setSize( width, height, updateStyle );

  		}

  	};

  	// VR presentation

  	var canvas = renderer.domElement;
  	var defaultLeftBounds = [ 0.0, 0.0, 0.5, 1.0 ];
  	var defaultRightBounds = [ 0.5, 0.0, 0.5, 1.0 ];

  	function onVRDisplayPresentChange() {

  		var wasPresenting = scope.isPresenting;
  		scope.isPresenting = vrDisplay !== undefined && vrDisplay.isPresenting;

  		if ( scope.isPresenting ) {

  			var eyeParamsL = vrDisplay.getEyeParameters( 'left' );
  			var eyeWidth = eyeParamsL.renderWidth;
  			var eyeHeight = eyeParamsL.renderHeight;

  			if ( ! wasPresenting ) {

  				rendererPixelRatio = renderer.getPixelRatio();
  				rendererSize = renderer.getSize();

  				renderer.setPixelRatio( 1 );
  				renderer.setSize( eyeWidth * 2, eyeHeight, false );

  			}

  		} else if ( wasPresenting ) {

  			renderer.setPixelRatio( rendererPixelRatio );
  			renderer.setSize( rendererSize.width, rendererSize.height, rendererUpdateStyle );

  		}

  	}

  	window.addEventListener( 'vrdisplaypresentchange', onVRDisplayPresentChange, false );

  	this.setFullScreen = function ( boolean ) {

  		return new Promise( function ( resolve, reject ) {

  			if ( vrDisplay === undefined ) {

  				reject( new Error( 'No VR hardware found.' ) );
  				return;

  			}

  			if ( scope.isPresenting === boolean ) {

  				resolve();
  				return;

  			}

  			if ( boolean ) {

  				resolve( vrDisplay.requestPresent( [ { source: canvas } ] ) );

  			} else {

  				resolve( vrDisplay.exitPresent() );

  			}

  		} );

  	};

  	this.requestPresent = function () {

  		return this.setFullScreen( true );

  	};

  	this.exitPresent = function () {

  		return this.setFullScreen( false );

  	};

  	this.requestAnimationFrame = function ( f ) {

  		if ( vrDisplay !== undefined ) {

  			return vrDisplay.requestAnimationFrame( f );

  		} else {

  			return window.requestAnimationFrame( f );

  		}

  	};

  	this.cancelAnimationFrame = function ( h ) {

  		if ( vrDisplay !== undefined ) {

  			vrDisplay.cancelAnimationFrame( h );

  		} else {

  			window.cancelAnimationFrame( h );

  		}

  	};

  	this.submitFrame = function () {

  		if ( vrDisplay !== undefined && scope.isPresenting ) {

  			vrDisplay.submitFrame();

  		}

  	};

  	this.autoSubmitFrame = true;

  	// render

  	var cameraL = new PerspectiveCamera();
  	cameraL.layers.enable( 1 );

  	var cameraR = new PerspectiveCamera();
  	cameraR.layers.enable( 2 );

  	this.render = function ( scene, camera, renderTarget, forceClear ) {

  		if ( vrDisplay && scope.isPresenting ) {

  			var autoUpdate = scene.autoUpdate;

  			if ( autoUpdate ) {

  				scene.updateMatrixWorld();
  				scene.autoUpdate = false;

  			}

  			if ( Array.isArray( scene ) ) {

  				console.warn( 'VREffect.render() no longer supports arrays. Use object.layers instead.' );
  				scene = scene[ 0 ];

  			}

  			// When rendering we don't care what the recommended size is, only what the actual size
  			// of the backbuffer is.
  			var size = renderer.getSize();
  			var layers = vrDisplay.getLayers();
  			var leftBounds;
  			var rightBounds;

  			if ( layers.length ) {

  				var layer = layers[ 0 ];

  				leftBounds = layer.leftBounds !== null && layer.leftBounds.length === 4 ? layer.leftBounds : defaultLeftBounds;
  				rightBounds = layer.rightBounds !== null && layer.rightBounds.length === 4 ? layer.rightBounds : defaultRightBounds;

  			} else {

  				leftBounds = defaultLeftBounds;
  				rightBounds = defaultRightBounds;

  			}

  			renderRectL = {
  				x: Math.round( size.width * leftBounds[ 0 ] ),
  				y: Math.round( size.height * leftBounds[ 1 ] ),
  				width: Math.round( size.width * leftBounds[ 2 ] ),
  				height: Math.round( size.height * leftBounds[ 3 ] )
  			};
  			renderRectR = {
  				x: Math.round( size.width * rightBounds[ 0 ] ),
  				y: Math.round( size.height * rightBounds[ 1 ] ),
  				width: Math.round( size.width * rightBounds[ 2 ] ),
  				height: Math.round( size.height * rightBounds[ 3 ] )
  			};

  			if ( renderTarget ) {

  				renderer.setRenderTarget( renderTarget );
  				renderTarget.scissorTest = true;

  			} else {

  				renderer.setRenderTarget( null );
  				renderer.setScissorTest( true );

  			}

  			if ( renderer.autoClear || forceClear ) renderer.clear();

  			if ( camera.parent === null ) camera.updateMatrixWorld();

  			camera.matrixWorld.decompose( cameraL.position, cameraL.quaternion, cameraL.scale );

  			cameraR.position.copy( cameraL.position );
  			cameraR.quaternion.copy( cameraL.quaternion );
  			cameraR.scale.copy( cameraL.scale );

  			if ( vrDisplay.getFrameData ) {

  				vrDisplay.depthNear = camera.near;
  				vrDisplay.depthFar = camera.far;

  				vrDisplay.getFrameData( frameData );

  				cameraL.projectionMatrix.elements = frameData.leftProjectionMatrix;
  				cameraR.projectionMatrix.elements = frameData.rightProjectionMatrix;

  				getEyeMatrices( frameData );

  				cameraL.updateMatrix();
  				cameraL.matrix.multiply( eyeMatrixL );
  				cameraL.matrix.decompose( cameraL.position, cameraL.quaternion, cameraL.scale );

  				cameraR.updateMatrix();
  				cameraR.matrix.multiply( eyeMatrixR );
  				cameraR.matrix.decompose( cameraR.position, cameraR.quaternion, cameraR.scale );

  			} else {

  				var eyeParamsL = vrDisplay.getEyeParameters( 'left' );
  				var eyeParamsR = vrDisplay.getEyeParameters( 'right' );

  				cameraL.projectionMatrix = fovToProjection( eyeParamsL.fieldOfView, true, camera.near, camera.far );
  				cameraR.projectionMatrix = fovToProjection( eyeParamsR.fieldOfView, true, camera.near, camera.far );

  				eyeTranslationL.fromArray( eyeParamsL.offset );
  				eyeTranslationR.fromArray( eyeParamsR.offset );

  				cameraL.translateOnAxis( eyeTranslationL, cameraL.scale.x );
  				cameraR.translateOnAxis( eyeTranslationR, cameraR.scale.x );

  			}

  			// render left eye
  			if ( renderTarget ) {

  				renderTarget.viewport.set( renderRectL.x, renderRectL.y, renderRectL.width, renderRectL.height );
  				renderTarget.scissor.set( renderRectL.x, renderRectL.y, renderRectL.width, renderRectL.height );

  			} else {

  				renderer.setViewport( renderRectL.x, renderRectL.y, renderRectL.width, renderRectL.height );
  				renderer.setScissor( renderRectL.x, renderRectL.y, renderRectL.width, renderRectL.height );

  			}
  			renderer.render( scene, cameraL, renderTarget, forceClear );

  			// render right eye
  			if ( renderTarget ) {

  				renderTarget.viewport.set( renderRectR.x, renderRectR.y, renderRectR.width, renderRectR.height );
  				renderTarget.scissor.set( renderRectR.x, renderRectR.y, renderRectR.width, renderRectR.height );

  			} else {

  				renderer.setViewport( renderRectR.x, renderRectR.y, renderRectR.width, renderRectR.height );
  				renderer.setScissor( renderRectR.x, renderRectR.y, renderRectR.width, renderRectR.height );

  			}
  			renderer.render( scene, cameraR, renderTarget, forceClear );

  			if ( renderTarget ) {

  				renderTarget.viewport.set( 0, 0, size.width, size.height );
  				renderTarget.scissor.set( 0, 0, size.width, size.height );
  				renderTarget.scissorTest = false;
  				renderer.setRenderTarget( null );

  			} else {

  				renderer.setViewport( 0, 0, size.width, size.height );
  				renderer.setScissorTest( false );

  			}

  			if ( autoUpdate ) {

  				scene.autoUpdate = true;

  			}

  			if ( scope.autoSubmitFrame ) {

  				scope.submitFrame();

  			}

  			return;

  		}

  		// Regular render mode if not HMD

  		renderer.render( scene, camera, renderTarget, forceClear );

  	};

  	this.dispose = function () {

  		window.removeEventListener( 'vrdisplaypresentchange', onVRDisplayPresentChange, false );

  	};

  	//

  	var poseOrientation = new Quaternion();
  	var posePosition = new Vector3();

  	// Compute model matrices of the eyes with respect to the head.
  	function getEyeMatrices( frameData ) {

  		// Compute the matrix for the position of the head based on the pose
  		if ( frameData.pose.orientation ) {

  			poseOrientation.fromArray( frameData.pose.orientation );
  			headMatrix.makeRotationFromQuaternion( poseOrientation );

  		}	else {

  			headMatrix.identity();

  		}

  		if ( frameData.pose.position ) {

  			posePosition.fromArray( frameData.pose.position );
  			headMatrix.setPosition( posePosition );

  		}

  		// The view matrix transforms vertices from sitting space to eye space. As such, the view matrix can be thought of as a product of two matrices:
  		// headToEyeMatrix * sittingToHeadMatrix

  		// The headMatrix that we've calculated above is the model matrix of the head in sitting space, which is the inverse of sittingToHeadMatrix.
  		// So when we multiply the view matrix with headMatrix, we're left with headToEyeMatrix:
  		// viewMatrix * headMatrix = headToEyeMatrix * sittingToHeadMatrix * headMatrix = headToEyeMatrix

  		eyeMatrixL.fromArray( frameData.leftViewMatrix );
  		eyeMatrixL.multiply( headMatrix );
  		eyeMatrixR.fromArray( frameData.rightViewMatrix );
  		eyeMatrixR.multiply( headMatrix );

  		// The eye's model matrix in head space is the inverse of headToEyeMatrix we calculated above.

  		eyeMatrixL.getInverse( eyeMatrixL );
  		eyeMatrixR.getInverse( eyeMatrixR );

  	}

  	function fovToNDCScaleOffset( fov ) {

  		var pxscale = 2.0 / ( fov.leftTan + fov.rightTan );
  		var pxoffset = ( fov.leftTan - fov.rightTan ) * pxscale * 0.5;
  		var pyscale = 2.0 / ( fov.upTan + fov.downTan );
  		var pyoffset = ( fov.upTan - fov.downTan ) * pyscale * 0.5;
  		return { scale: [ pxscale, pyscale ], offset: [ pxoffset, pyoffset ] };

  	}

  	function fovPortToProjection( fov, rightHanded, zNear, zFar ) {

  		rightHanded = rightHanded === undefined ? true : rightHanded;
  		zNear = zNear === undefined ? 0.01 : zNear;
  		zFar = zFar === undefined ? 10000.0 : zFar;

  		var handednessScale = rightHanded ? - 1.0 : 1.0;

  		// start with an identity matrix
  		var mobj = new Matrix4();
  		var m = mobj.elements;

  		// and with scale/offset info for normalized device coords
  		var scaleAndOffset = fovToNDCScaleOffset( fov );

  		// X result, map clip edges to [-w,+w]
  		m[ 0 * 4 + 0 ] = scaleAndOffset.scale[ 0 ];
  		m[ 0 * 4 + 1 ] = 0.0;
  		m[ 0 * 4 + 2 ] = scaleAndOffset.offset[ 0 ] * handednessScale;
  		m[ 0 * 4 + 3 ] = 0.0;

  		// Y result, map clip edges to [-w,+w]
  		// Y offset is negated because this proj matrix transforms from world coords with Y=up,
  		// but the NDC scaling has Y=down (thanks D3D?)
  		m[ 1 * 4 + 0 ] = 0.0;
  		m[ 1 * 4 + 1 ] = scaleAndOffset.scale[ 1 ];
  		m[ 1 * 4 + 2 ] = - scaleAndOffset.offset[ 1 ] * handednessScale;
  		m[ 1 * 4 + 3 ] = 0.0;

  		// Z result (up to the app)
  		m[ 2 * 4 + 0 ] = 0.0;
  		m[ 2 * 4 + 1 ] = 0.0;
  		m[ 2 * 4 + 2 ] = zFar / ( zNear - zFar ) * - handednessScale;
  		m[ 2 * 4 + 3 ] = ( zFar * zNear ) / ( zNear - zFar );

  		// W result (= Z in)
  		m[ 3 * 4 + 0 ] = 0.0;
  		m[ 3 * 4 + 1 ] = 0.0;
  		m[ 3 * 4 + 2 ] = handednessScale;
  		m[ 3 * 4 + 3 ] = 0.0;

  		mobj.transpose();
  		return mobj;

  	}

  	function fovToProjection( fov, rightHanded, zNear, zFar ) {

  		var DEG2RAD = Math.PI / 180.0;

  		var fovPort = {
  			upTan: Math.tan( fov.upDegrees * DEG2RAD ),
  			downTan: Math.tan( fov.downDegrees * DEG2RAD ),
  			leftTan: Math.tan( fov.leftDegrees * DEG2RAD ),
  			rightTan: Math.tan( fov.rightDegrees * DEG2RAD )
  		};

  		return fovPortToProjection( fovPort, rightHanded, zNear, zFar );

  	}

  };

  /**
   * @author qiao / https://github.com/qiao
   * @author mrdoob / http://mrdoob.com
   * @author alteredq / http://alteredqualia.com/
   * @author WestLangley / http://github.com/WestLangley
   * @author erich666 / http://erichaines.com
   */
  var OrbitControls = function ( object, domElement ) {

  	this.object = object;

  	this.domElement = ( domElement !== undefined ) ? domElement : document;

  	// Set to false to disable this control
  	this.enabled = true;

  	// "target" sets the location of focus, where the object orbits around
  	this.target = new Vector3();

  	// How far you can dolly in and out ( PerspectiveCamera only )
  	this.minDistance = 0;
  	this.maxDistance = Infinity;

  	// How far you can zoom in and out ( OrthographicCamera only )
  	this.minZoom = 0;
  	this.maxZoom = Infinity;

  	// How far you can orbit vertically, upper and lower limits.
  	// Range is 0 to Math.PI radians.
  	this.minPolarAngle = 0; // radians
  	this.maxPolarAngle = Math.PI; // radians

  	// How far you can orbit horizontally, upper and lower limits.
  	// If set, must be a sub-interval of the interval [ - Math.PI, Math.PI ].
  	this.minAzimuthAngle = - Infinity; // radians
  	this.maxAzimuthAngle = Infinity; // radians

  	// Set to true to enable damping (inertia)
  	// If damping is enabled, you must call controls.update() in your animation loop
  	this.enableDamping = false;
  	this.dampingFactor = 0.25;

  	// This option actually enables dollying in and out; left as "zoom" for backwards compatibility.
  	// Set to false to disable zooming
  	this.enableZoom = true;
  	this.zoomSpeed = 1.0;

  	// Set to false to disable rotating
  	this.enableRotate = true;
  	this.rotateSpeed = 1.0;

  	// Set to false to disable panning
  	this.enablePan = true;
  	this.panSpeed = 1.0;
  	this.screenSpacePanning = false; // if true, pan in screen-space
  	this.keyPanSpeed = 7.0;	// pixels moved per arrow key push

  	// Set to true to automatically rotate around the target
  	// If auto-rotate is enabled, you must call controls.update() in your animation loop
  	this.autoRotate = false;
  	this.autoRotateSpeed = 2.0; // 30 seconds per round when fps is 60

  	// Set to false to disable use of the keys
  	this.enableKeys = true;

  	// The four arrow keys
  	this.keys = { LEFT: 37, UP: 38, RIGHT: 39, BOTTOM: 40 };

  	// Mouse buttons
  	this.mouseButtons = { ORBIT: MOUSE.LEFT, ZOOM: MOUSE.MIDDLE, PAN: MOUSE.RIGHT };

  	// for reset
  	this.target0 = this.target.clone();
  	this.position0 = this.object.position.clone();
  	this.zoom0 = this.object.zoom;

  	//
  	// public methods
  	//

  	this.getPolarAngle = function () {

  		return spherical.phi;

  	};

  	this.getAzimuthalAngle = function () {

  		return spherical.theta;

  	};

  	this.saveState = function () {

  		scope.target0.copy( scope.target );
  		scope.position0.copy( scope.object.position );
  		scope.zoom0 = scope.object.zoom;

  	};

  	this.reset = function () {

  		scope.target.copy( scope.target0 );
  		scope.object.position.copy( scope.position0 );
  		scope.object.zoom = scope.zoom0;

  		scope.object.updateProjectionMatrix();
  		scope.dispatchEvent( changeEvent );

  		scope.update();

  		state = STATE.NONE;

  	};

  	// this method is exposed, but perhaps it would be better if we can make it private...
  	this.update = function () {

  		var offset = new Vector3();

  		// so camera.up is the orbit axis
  		var quat = new Quaternion().setFromUnitVectors( object.up, new Vector3( 0, 1, 0 ) );
  		var quatInverse = quat.clone().inverse();

  		var lastPosition = new Vector3();
  		var lastQuaternion = new Quaternion();

  		return function update() {

  			var position = scope.object.position;

  			offset.copy( position ).sub( scope.target );

  			// rotate offset to "y-axis-is-up" space
  			offset.applyQuaternion( quat );

  			// angle from z-axis around y-axis
  			spherical.setFromVector3( offset );

  			if ( scope.autoRotate && state === STATE.NONE ) {

  				scope.rotateLeft( getAutoRotationAngle() );

  			}

  			spherical.theta += sphericalDelta.theta;
  			spherical.phi += sphericalDelta.phi;

  			// restrict theta to be between desired limits
  			spherical.theta = Math.max( scope.minAzimuthAngle, Math.min( scope.maxAzimuthAngle, spherical.theta ) );

  			// restrict phi to be between desired limits
  			spherical.phi = Math.max( scope.minPolarAngle, Math.min( scope.maxPolarAngle, spherical.phi ) );

  			spherical.makeSafe();


  			spherical.radius *= scale;

  			// restrict radius to be between desired limits
  			spherical.radius = Math.max( scope.minDistance, Math.min( scope.maxDistance, spherical.radius ) );

  			// move target to panned location
  			scope.target.add( panOffset );

  			offset.setFromSpherical( spherical );

  			// rotate offset back to "camera-up-vector-is-up" space
  			offset.applyQuaternion( quatInverse );

  			position.copy( scope.target ).add( offset );

  			scope.object.lookAt( scope.target );

  			if ( scope.enableDamping === true ) {

  				sphericalDelta.theta *= ( 1 - scope.dampingFactor );
  				sphericalDelta.phi *= ( 1 - scope.dampingFactor );

  				panOffset.multiplyScalar( 1 - scope.dampingFactor );

  			} else {

  				sphericalDelta.set( 0, 0, 0 );

  				panOffset.set( 0, 0, 0 );

  			}

  			scale = 1;

  			// update condition is:
  			// min(camera displacement, camera rotation in radians)^2 > EPS
  			// using small-angle approximation cos(x/2) = 1 - x^2 / 8

  			if ( zoomChanged ||
  				lastPosition.distanceToSquared( scope.object.position ) > EPS ||
  				8 * ( 1 - lastQuaternion.dot( scope.object.quaternion ) ) > EPS ) {

  				scope.dispatchEvent( changeEvent );

  				lastPosition.copy( scope.object.position );
  				lastQuaternion.copy( scope.object.quaternion );
  				zoomChanged = false;

  				return true;

  			}

  			return false;

  		};

  	}();

  	this.dispose = function () {

  		scope.domElement.removeEventListener( 'contextmenu', onContextMenu, false );
  		scope.domElement.removeEventListener( 'mousedown', onMouseDown, false );
  		scope.domElement.removeEventListener( 'wheel', onMouseWheel, false );

  		scope.domElement.removeEventListener( 'touchstart', onTouchStart, false );
  		scope.domElement.removeEventListener( 'touchend', onTouchEnd, false );
  		scope.domElement.removeEventListener( 'touchmove', onTouchMove, false );

  		document.removeEventListener( 'mousemove', onMouseMove, false );
  		document.removeEventListener( 'mouseup', onMouseUp, false );

  		window.removeEventListener( 'keydown', onKeyDown, false );

  		//scope.dispatchEvent( { type: 'dispose' } ); // should this be added here?

  	};

  	//
  	// internals
  	//

  	var scope = this;

  	var changeEvent = { type: 'change' };
  	var startEvent = { type: 'start' };
  	var endEvent = { type: 'end' };

  	var STATE = { NONE: - 1, ROTATE: 0, DOLLY: 1, PAN: 2, TOUCH_ROTATE: 3, TOUCH_DOLLY_PAN: 4 };

  	var state = STATE.NONE;

  	var EPS = 0.000001;

  	// current position in spherical coordinates
  	var spherical = new Spherical();
  	var sphericalDelta = new Spherical();

  	var scale = 1;
  	var panOffset = new Vector3();
  	var zoomChanged = false;

  	var rotateStart = new Vector2();
  	var rotateEnd = new Vector2();
  	var rotateDelta = new Vector2();

  	var panStart = new Vector2();
  	var panEnd = new Vector2();
  	var panDelta = new Vector2();

  	var dollyStart = new Vector2();
  	var dollyEnd = new Vector2();
  	var dollyDelta = new Vector2();

  	function getAutoRotationAngle() {

  		return 2 * Math.PI / 60 / 60 * scope.autoRotateSpeed;

  	}

  	function getZoomScale() {

  		return Math.pow( 0.95, scope.zoomSpeed );

  	}

  	scope.rotateLeft = function( angle ) {

  		sphericalDelta.theta -= angle;

  	};

  	scope.rotateUp = function( angle ) {

  		sphericalDelta.phi -= angle;

  	};

  	var panLeft = function () {

  		var v = new Vector3();

  		return function panLeft( distance, objectMatrix ) {

  			v.setFromMatrixColumn( objectMatrix, 0 ); // get X column of objectMatrix
  			v.multiplyScalar( - distance );

  			panOffset.add( v );

  		};

  	}();

  	var panUp = function () {

  		var v = new Vector3();

  		return function panUp( distance, objectMatrix ) {

  			if ( scope.screenSpacePanning === true ) {

  				v.setFromMatrixColumn( objectMatrix, 1 );

  			} else {

  				v.setFromMatrixColumn( objectMatrix, 0 );
  				v.crossVectors( scope.object.up, v );

  			}

  			v.multiplyScalar( distance );

  			panOffset.add( v );

  		};

  	}();

  	// deltaX and deltaY are in pixels; right and down are positive
  	var pan = function () {

  		var offset = new Vector3();

  		return function pan( deltaX, deltaY ) {

  			var element = scope.domElement === document ? scope.domElement.body : scope.domElement;

  			if ( scope.object.isPerspectiveCamera ) {

  				// perspective
  				var position = scope.object.position;
  				offset.copy( position ).sub( scope.target );
  				var targetDistance = offset.length();

  				// half of the fov is center to top of screen
  				targetDistance *= Math.tan( ( scope.object.fov / 2 ) * Math.PI / 180.0 );

  				// we use only clientHeight here so aspect ratio does not distort speed
  				panLeft( 2 * deltaX * targetDistance / element.clientHeight, scope.object.matrix );
  				panUp( 2 * deltaY * targetDistance / element.clientHeight, scope.object.matrix );

  			} else if ( scope.object.isOrthographicCamera ) {

  				// orthographic
  				panLeft( deltaX * ( scope.object.right - scope.object.left ) / scope.object.zoom / element.clientWidth, scope.object.matrix );
  				panUp( deltaY * ( scope.object.top - scope.object.bottom ) / scope.object.zoom / element.clientHeight, scope.object.matrix );

  			} else {

  				// camera neither orthographic nor perspective
  				console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - pan disabled.' );
  				scope.enablePan = false;

  			}

  		};

  	}();

  	function dollyIn( dollyScale ) {

  		if ( scope.object.isPerspectiveCamera ) {

  			scale /= dollyScale;

  		} else if ( scope.object.isOrthographicCamera ) {

  			scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom * dollyScale ) );
  			scope.object.updateProjectionMatrix();
  			zoomChanged = true;

  		} else {

  			console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
  			scope.enableZoom = false;

  		}

  	}

  	function dollyOut( dollyScale ) {

  		if ( scope.object.isPerspectiveCamera ) {

  			scale *= dollyScale;

  		} else if ( scope.object.isOrthographicCamera ) {

  			scope.object.zoom = Math.max( scope.minZoom, Math.min( scope.maxZoom, scope.object.zoom / dollyScale ) );
  			scope.object.updateProjectionMatrix();
  			zoomChanged = true;

  		} else {

  			console.warn( 'WARNING: OrbitControls.js encountered an unknown camera type - dolly/zoom disabled.' );
  			scope.enableZoom = false;

  		}

  	}

  	//
  	// event callbacks - update the object state
  	//

  	function handleMouseDownRotate( event ) {

  		//console.log( 'handleMouseDownRotate' );

  		rotateStart.set( event.clientX, event.clientY );

  	}

  	function handleMouseDownDolly( event ) {

  		//console.log( 'handleMouseDownDolly' );

  		dollyStart.set( event.clientX, event.clientY );

  	}

  	function handleMouseDownPan( event ) {

  		//console.log( 'handleMouseDownPan' );

  		panStart.set( event.clientX, event.clientY );

  	}

  	function handleMouseMoveRotate( event ) {

  		//console.log( 'handleMouseMoveRotate' );

  		rotateEnd.set( event.clientX, event.clientY );

  		rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed );

  		var element = scope.domElement === document ? scope.domElement.body : scope.domElement;

  		scope.rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height

  		scope.rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight );

  		rotateStart.copy( rotateEnd );

  		scope.update();

  	}

  	function handleMouseMoveDolly( event ) {

  		//console.log( 'handleMouseMoveDolly' );

  		dollyEnd.set( event.clientX, event.clientY );

  		dollyDelta.subVectors( dollyEnd, dollyStart );

  		if ( dollyDelta.y > 0 ) {

  			dollyIn( getZoomScale() );

  		} else if ( dollyDelta.y < 0 ) {

  			dollyOut( getZoomScale() );

  		}

  		dollyStart.copy( dollyEnd );

  		scope.update();

  	}

  	function handleMouseMovePan( event ) {

  		//console.log( 'handleMouseMovePan' );

  		panEnd.set( event.clientX, event.clientY );

  		panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed );

  		pan( panDelta.x, panDelta.y );

  		panStart.copy( panEnd );

  		scope.update();

  	}

  	function handleMouseWheel( event ) {

  		// console.log( 'handleMouseWheel' );

  		if ( event.deltaY < 0 ) {

  			dollyOut( getZoomScale() );

  		} else if ( event.deltaY > 0 ) {

  			dollyIn( getZoomScale() );

  		}

  		scope.update();

  	}

  	function handleKeyDown( event ) {

  		//console.log( 'handleKeyDown' );

  		switch ( event.keyCode ) {

  			case scope.keys.UP:
  				pan( 0, scope.keyPanSpeed );
  				scope.update();
  				break;

  			case scope.keys.BOTTOM:
  				pan( 0, - scope.keyPanSpeed );
  				scope.update();
  				break;

  			case scope.keys.LEFT:
  				pan( scope.keyPanSpeed, 0 );
  				scope.update();
  				break;

  			case scope.keys.RIGHT:
  				pan( - scope.keyPanSpeed, 0 );
  				scope.update();
  				break;

  		}

  	}

  	function handleTouchStartRotate( event ) {

  		//console.log( 'handleTouchStartRotate' );

  		rotateStart.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );

  	}

  	function handleTouchStartDollyPan( event ) {

  		//console.log( 'handleTouchStartDollyPan' );

  		if ( scope.enableZoom ) {

  			var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX;
  			var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY;

  			var distance = Math.sqrt( dx * dx + dy * dy );

  			dollyStart.set( 0, distance );

  		}

  		if ( scope.enablePan ) {

  			var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX );
  			var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY );

  			panStart.set( x, y );

  		}

  	}

  	function handleTouchMoveRotate( event ) {

  		//console.log( 'handleTouchMoveRotate' );

  		rotateEnd.set( event.touches[ 0 ].pageX, event.touches[ 0 ].pageY );

  		rotateDelta.subVectors( rotateEnd, rotateStart ).multiplyScalar( scope.rotateSpeed );

  		var element = scope.domElement === document ? scope.domElement.body : scope.domElement;

  		scope.rotateLeft( 2 * Math.PI * rotateDelta.x / element.clientHeight ); // yes, height

  		scope.rotateUp( 2 * Math.PI * rotateDelta.y / element.clientHeight );

  		rotateStart.copy( rotateEnd );

  		scope.update();

  	}

  	function handleTouchMoveDollyPan( event ) {

  		//console.log( 'handleTouchMoveDollyPan' );

  		if ( scope.enableZoom ) {

  			var dx = event.touches[ 0 ].pageX - event.touches[ 1 ].pageX;
  			var dy = event.touches[ 0 ].pageY - event.touches[ 1 ].pageY;

  			var distance = Math.sqrt( dx * dx + dy * dy );

  			dollyEnd.set( 0, distance );

  			dollyDelta.set( 0, Math.pow( dollyEnd.y / dollyStart.y, scope.zoomSpeed ) );

  			dollyIn( dollyDelta.y );

  			dollyStart.copy( dollyEnd );

  		}

  		if ( scope.enablePan ) {

  			var x = 0.5 * ( event.touches[ 0 ].pageX + event.touches[ 1 ].pageX );
  			var y = 0.5 * ( event.touches[ 0 ].pageY + event.touches[ 1 ].pageY );

  			panEnd.set( x, y );

  			panDelta.subVectors( panEnd, panStart ).multiplyScalar( scope.panSpeed );

  			pan( panDelta.x, panDelta.y );

  			panStart.copy( panEnd );

  		}

  		scope.update();

  	}

  	//
  	// event handlers - FSM: listen for events and reset state
  	//

  	function onMouseDown( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();

  		switch ( event.button ) {

  			case scope.mouseButtons.ORBIT:

  				if ( scope.enableRotate === false ) return;

  				handleMouseDownRotate( event );

  				state = STATE.ROTATE;

  				break;

  			case scope.mouseButtons.ZOOM:

  				if ( scope.enableZoom === false ) return;

  				handleMouseDownDolly( event );

  				state = STATE.DOLLY;

  				break;

  			case scope.mouseButtons.PAN:

  				if ( scope.enablePan === false ) return;

  				handleMouseDownPan( event );

  				state = STATE.PAN;

  				break;

  		}

  		if ( state !== STATE.NONE ) {

  			document.addEventListener( 'mousemove', onMouseMove, false );
  			document.addEventListener( 'mouseup', onMouseUp, false );

  			scope.dispatchEvent( startEvent );

  		}

  	}

  	function onMouseMove( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();

  		switch ( state ) {

  			case STATE.ROTATE:

  				if ( scope.enableRotate === false ) return;

  				handleMouseMoveRotate( event );

  				break;

  			case STATE.DOLLY:

  				if ( scope.enableZoom === false ) return;

  				handleMouseMoveDolly( event );

  				break;

  			case STATE.PAN:

  				if ( scope.enablePan === false ) return;

  				handleMouseMovePan( event );

  				break;

  		}

  	}

  	function onMouseUp( event ) {

  		if ( scope.enabled === false ) return;

  		document.removeEventListener( 'mousemove', onMouseMove, false );
  		document.removeEventListener( 'mouseup', onMouseUp, false );

  		scope.dispatchEvent( endEvent );

  		state = STATE.NONE;

  	}

  	function onMouseWheel( event ) {

  		if ( scope.enabled === false || scope.enableZoom === false || ( state !== STATE.NONE && state !== STATE.ROTATE ) ) return;

  		event.preventDefault();
  		event.stopPropagation();

  		scope.dispatchEvent( startEvent );

  		handleMouseWheel( event );

  		scope.dispatchEvent( endEvent );

  	}

  	function onKeyDown( event ) {

  		if ( scope.enabled === false || scope.enableKeys === false || scope.enablePan === false ) return;

  		handleKeyDown( event );

  	}

  	function onTouchStart( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();

  		switch ( event.touches.length ) {

  			case 1:	// one-fingered touch: rotate

  				if ( scope.enableRotate === false ) return;

  				handleTouchStartRotate( event );

  				state = STATE.TOUCH_ROTATE;

  				break;

  			case 2:	// two-fingered touch: dolly-pan

  				if ( scope.enableZoom === false && scope.enablePan === false ) return;

  				handleTouchStartDollyPan( event );

  				state = STATE.TOUCH_DOLLY_PAN;

  				break;

  			default:

  				state = STATE.NONE;

  		}

  		if ( state !== STATE.NONE ) {

  			scope.dispatchEvent( startEvent );

  		}

  	}

  	function onTouchMove( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();
  		event.stopPropagation();

  		switch ( event.touches.length ) {

  			case 1: // one-fingered touch: rotate

  				if ( scope.enableRotate === false ) return;
  				if ( state !== STATE.TOUCH_ROTATE ) return; // is this needed?

  				handleTouchMoveRotate( event );

  				break;

  			case 2: // two-fingered touch: dolly-pan

  				if ( scope.enableZoom === false && scope.enablePan === false ) return;
  				if ( state !== STATE.TOUCH_DOLLY_PAN ) return; // is this needed?

  				handleTouchMoveDollyPan( event );

  				break;

  			default:

  				state = STATE.NONE;

  		}

  	}

  	function onTouchEnd( event ) {

  		if ( scope.enabled === false ) return;

  		scope.dispatchEvent( endEvent );

  		state = STATE.NONE;

  	}

  	function onContextMenu( event ) {

  		if ( scope.enabled === false ) return;

  		event.preventDefault();

  	}

  	//

  	//scope.domElement.addEventListener\( 'contextmenu', onContextMenu, false );

  	scope.domElement.addEventListener( 'mousedown', onMouseDown, false );
  	scope.domElement.addEventListener( 'wheel', onMouseWheel, false );

  	scope.domElement.addEventListener( 'touchstart', onTouchStart, false );
  	scope.domElement.addEventListener( 'touchend', onTouchEnd, false );
  	scope.domElement.addEventListener( 'touchmove', onTouchMove, false );

  	window.addEventListener( 'keydown', onKeyDown, false );

  	// force an update at start

  	this.update();

  };

  OrbitControls.prototype = Object.create( EventDispatcher.prototype );
  OrbitControls.prototype.constructor = OrbitControls;

  Object.defineProperties( OrbitControls.prototype, {

  	center: {

  		get: function () {

  			console.warn( 'OrbitControls: .center has been renamed to .target' );
  			return this.target;

  		}

  	},

  	// backward compatibility

  	noZoom: {

  		get: function () {

  			console.warn( 'OrbitControls: .noZoom has been deprecated. Use .enableZoom instead.' );
  			return ! this.enableZoom;

  		},

  		set: function ( value ) {

  			console.warn( 'OrbitControls: .noZoom has been deprecated. Use .enableZoom instead.' );
  			this.enableZoom = ! value;

  		}

  	},

  	noRotate: {

  		get: function () {

  			console.warn( 'OrbitControls: .noRotate has been deprecated. Use .enableRotate instead.' );
  			return ! this.enableRotate;

  		},

  		set: function ( value ) {

  			console.warn( 'OrbitControls: .noRotate has been deprecated. Use .enableRotate instead.' );
  			this.enableRotate = ! value;

  		}

  	},

  	noPan: {

  		get: function () {

  			console.warn( 'OrbitControls: .noPan has been deprecated. Use .enablePan instead.' );
  			return ! this.enablePan;

  		},

  		set: function ( value ) {

  			console.warn( 'OrbitControls: .noPan has been deprecated. Use .enablePan instead.' );
  			this.enablePan = ! value;

  		}

  	},

  	noKeys: {

  		get: function () {

  			console.warn( 'OrbitControls: .noKeys has been deprecated. Use .enableKeys instead.' );
  			return ! this.enableKeys;

  		},

  		set: function ( value ) {

  			console.warn( 'OrbitControls: .noKeys has been deprecated. Use .enableKeys instead.' );
  			this.enableKeys = ! value;

  		}

  	},

  	staticMoving: {

  		get: function () {

  			console.warn( 'OrbitControls: .staticMoving has been deprecated. Use .enableDamping instead.' );
  			return ! this.enableDamping;

  		},

  		set: function ( value ) {

  			console.warn( 'OrbitControls: .staticMoving has been deprecated. Use .enableDamping instead.' );
  			this.enableDamping = ! value;

  		}

  	},

  	dynamicDampingFactor: {

  		get: function () {

  			console.warn( 'OrbitControls: .dynamicDampingFactor has been renamed. Use .dampingFactor instead.' );
  			return this.dampingFactor;

  		},

  		set: function ( value ) {

  			console.warn( 'OrbitControls: .dynamicDampingFactor has been renamed. Use .dampingFactor instead.' );
  			this.dampingFactor = value;

  		}

  	}

  } );

  /**
   * @author richt / http://richt.me
   * @author WestLangley / http://github.com/WestLangley
   *
   * W3C Device Orientation control (http://w3c.github.io/deviceorientation/spec-source-orientation.html)
   */
  var DeviceOrientationControls = function ( object ) {

  	var scope = this;

  	this.object = object;
  	this.object.rotation.reorder( 'YXZ' );

  	this.enabled = true;

  	this.deviceOrientation = {};
  	this.screenOrientation = 0;

  	this.alphaOffset = 0; // radians

  	var onDeviceOrientationChangeEvent = function ( event ) {

  		scope.deviceOrientation = event;

  	};

  	var onScreenOrientationChangeEvent = function () {

  		scope.screenOrientation = window.orientation || 0;

  	};

  	// The angles alpha, beta and gamma form a set of intrinsic Tait-Bryan angles of type Z-X'-Y''

  	var setObjectQuaternion = function () {

  		var zee = new Vector3( 0, 0, 1 );

  		var euler = new Euler();

  		var q0 = new Quaternion();

  		var q1 = new Quaternion( - Math.sqrt( 0.5 ), 0, 0, Math.sqrt( 0.5 ) ); // - PI/2 around the x-axis

  		return function ( quaternion, alpha, beta, gamma, orient ) {

  			euler.set( beta, alpha, - gamma, 'YXZ' ); // 'ZXY' for the device, but 'YXZ' for us

  			quaternion.setFromEuler( euler ); // orient the device

  			quaternion.multiply( q1 ); // camera looks out the back of the device, not the top

  			quaternion.multiply( q0.setFromAxisAngle( zee, - orient ) ); // adjust for screen orientation

  		};

  	}();

  	this.connect = function () {

  		onScreenOrientationChangeEvent(); // run once on load

  		window.addEventListener( 'orientationchange', onScreenOrientationChangeEvent, false );
  		window.addEventListener( 'deviceorientation', onDeviceOrientationChangeEvent, false );

  		scope.enabled = true;

  	};

  	this.disconnect = function () {

  		window.removeEventListener( 'orientationchange', onScreenOrientationChangeEvent, false );
  		window.removeEventListener( 'deviceorientation', onDeviceOrientationChangeEvent, false );

  		scope.enabled = false;

  	};

  	this.update = function () {

  		if ( scope.enabled === false ) return;

  		var device = scope.deviceOrientation;

  		if ( device ) {

  			var alpha = device.alpha ? _Math.degToRad( device.alpha ) + scope.alphaOffset : 0; // Z

  			var beta = device.beta ? _Math.degToRad( device.beta ) : 0; // X'

  			var gamma = device.gamma ? _Math.degToRad( device.gamma ) : 0; // Y''

  			var orient = scope.screenOrientation ? _Math.degToRad( scope.screenOrientation ) : 0; // O

  			setObjectQuaternion( scope.object.quaternion, alpha, beta, gamma, orient );

  		}


  	};

  	this.dispose = function () {

  		scope.disconnect();

  	};

  	this.connect();

  };

  /**
   * Convert a quaternion to an angle
   *
   * Taken from https://stackoverflow.com/a/35448946
   * Thanks P. Ellul
   */

  function Quat2Angle(x, y, z, w) {
    var test = x * y + z * w; // singularity at north pole

    if (test > 0.499) {
      var _yaw = 2 * Math.atan2(x, w);

      var _pitch = Math.PI / 2;

      var _roll = 0;
      return new Vector3(_pitch, _roll, _yaw);
    } // singularity at south pole


    if (test < -0.499) {
      var _yaw2 = -2 * Math.atan2(x, w);

      var _pitch2 = -Math.PI / 2;

      var _roll2 = 0;
      return new Vector3(_pitch2, _roll2, _yaw2);
    }

    var sqx = x * x;
    var sqy = y * y;
    var sqz = z * z;
    var yaw = Math.atan2(2 * y * w - 2 * x * z, 1 - 2 * sqy - 2 * sqz);
    var pitch = Math.asin(2 * test);
    var roll = Math.atan2(2 * x * w - 2 * y * z, 1 - 2 * sqx - 2 * sqz);
    return new Vector3(pitch, roll, yaw);
  }

  var OrbitOrientationControls =
  /*#__PURE__*/
  function () {
    function OrbitOrientationControls(options) {
      this.object = options.camera;
      this.domElement = options.canvas;
      this.orbit = new OrbitControls(this.object, this.domElement);
      this.speed = 0.5;
      this.orbit.target.set(0, 0, -1);
      this.orbit.enableZoom = false;
      this.orbit.enablePan = false;
      this.orbit.rotateSpeed = -this.speed; // if orientation is supported

      if (options.orientation) {
        this.orientation = new DeviceOrientationControls(this.object);
      } // if projection is not full view
      // limit the rotation angle in order to not display back half view


      if (options.halfView) {
        this.orbit.minAzimuthAngle = -Math.PI / 4;
        this.orbit.maxAzimuthAngle = Math.PI / 4;
      }
    }

    var _proto = OrbitOrientationControls.prototype;

    _proto.update = function update() {
      // orientation updates the camera using quaternions and
      // orbit updates the camera using angles. They are incompatible
      // and one update overrides the other. So before
      // orbit overrides orientation we convert our quaternion changes to
      // an angle change. Then save the angle into orbit so that
      // it will take those into account when it updates the camera and overrides
      // our changes
      if (this.orientation) {
        this.orientation.update();
        var quat = this.orientation.object.quaternion;
        var currentAngle = Quat2Angle(quat.x, quat.y, quat.z, quat.w); // we also have to store the last angle since quaternions are b

        if (typeof this.lastAngle_ === 'undefined') {
          this.lastAngle_ = currentAngle;
        }

        this.orbit.rotateLeft((this.lastAngle_.z - currentAngle.z) * (1 + this.speed));
        this.orbit.rotateUp((this.lastAngle_.y - currentAngle.y) * (1 + this.speed));
        this.lastAngle_ = currentAngle;
      }

      this.orbit.update();
    };

    _proto.dispose = function dispose() {
      this.orbit.dispose();

      if (this.orientation) {
        this.orientation.dispose();
      }
    };

    return OrbitOrientationControls;
  }();

  var corsSupport = function () {
    var video = document$1.createElement('video');
    video.crossOrigin = 'anonymous';
    return video.hasAttribute('crossorigin');
  }();
  var validProjections = ['360', '360_LR', '360_TB', '360_CUBE', 'EAC', 'EAC_LR', 'NONE', 'AUTO', 'Sphere', 'Cube', 'equirectangular', '180'];
  var getInternalProjectionName = function getInternalProjectionName(projection) {
    if (!projection) {
      return;
    }

    projection = projection.toString().trim();

    if (/sphere/i.test(projection)) {
      return '360';
    }

    if (/cube/i.test(projection)) {
      return '360_CUBE';
    }

    if (/equirectangular/i.test(projection)) {
      return '360';
    }

    for (var i = 0; i < validProjections.length; i++) {
      if (new RegExp('^' + validProjections[i] + '$', 'i').test(projection)) {
        return validProjections[i];
      }
    }
  };

  /**
   * This class reacts to interactions with the canvas and
   * triggers appropriate functionality on the player. Right now
   * it does two things:
   *
   * 1. A `mousedown`/`touchstart` followed by `touchend`/`mouseup` without any
   *    `touchmove` or `mousemove` toggles play/pause on the player
   * 2. Only moving on/clicking the control bar or toggling play/pause should
   *    show the control bar. Moving around the scene in the canvas should not.
   */

  var CanvasPlayerControls =
  /*#__PURE__*/
  function (_videojs$EventTarget) {
    inheritsLoose(CanvasPlayerControls, _videojs$EventTarget);

    function CanvasPlayerControls(player, canvas) {
      var _this;

      _this = _videojs$EventTarget.call(this) || this;
      _this.player = player;
      _this.canvas = canvas;
      _this.onMoveEnd = videojs.bind(assertThisInitialized(_this), _this.onMoveEnd);
      _this.onMoveStart = videojs.bind(assertThisInitialized(_this), _this.onMoveStart);
      _this.onMove = videojs.bind(assertThisInitialized(_this), _this.onMove);
      _this.onControlBarMove = videojs.bind(assertThisInitialized(_this), _this.onControlBarMove);

      _this.player.controlBar.on(['mousedown', 'mousemove', 'mouseup', 'touchstart', 'touchmove', 'touchend'], _this.onControlBarMove); // we have to override these here because
      // video.js listens for user activity on the video element
      // and makes the user active when the mouse moves.
      // We don't want that for 3d videos


      _this.oldReportUserActivity = _this.player.reportUserActivity;

      _this.player.reportUserActivity = function () {}; // canvas movements


      _this.canvas.addEventListener('mousedown', _this.onMoveStart);

      _this.canvas.addEventListener('touchstart', _this.onMoveStart);

      _this.canvas.addEventListener('mousemove', _this.onMove);

      _this.canvas.addEventListener('touchmove', _this.onMove);

      _this.canvas.addEventListener('mouseup', _this.onMoveEnd);

      _this.canvas.addEventListener('touchend', _this.onMoveEnd);

      _this.shouldTogglePlay = false;
      return _this;
    }

    var _proto = CanvasPlayerControls.prototype;

    _proto.togglePlay = function togglePlay() {
      if (this.player.paused()) {
        this.player.play();
      } else {
        this.player.pause();
      }
    };

    _proto.onMoveStart = function onMoveStart(e) {
      // if the player does not have a controlbar or
      // the move was a mouse click but not left click do not
      // toggle play.
      if (!this.player.controls() || e.type === 'mousedown' && !videojs.dom.isSingleLeftClick(e)) {
        this.shouldTogglePlay = false;
        return;
      }

      this.shouldTogglePlay = true;
      this.touchMoveCount_ = 0;
    };

    _proto.onMoveEnd = function onMoveEnd(e) {
      // We want to have the same behavior in VR360 Player and standar player.
      // in touchend we want to know if was a touch click, for a click we show the bar,
      // otherwise continue with the mouse logic.
      //
      // Maximum movement allowed during a touch event to still be considered a tap
      // Other popular libs use anywhere from 2 (hammer.js) to 15,
      // so 10 seems like a nice, round number.
      if (e.type === 'touchend' && this.touchMoveCount_ < 10) {
        if (this.player.userActive() === false) {
          this.player.userActive(true);
          return;
        }

        this.player.userActive(false);
        return;
      }

      if (!this.shouldTogglePlay) {
        return;
      } // We want the same behavior in Desktop for VR360  and standar player


      if (e.type == 'mouseup') {
        this.togglePlay();
      }
    };

    _proto.onMove = function onMove(e) {
      // Increase touchMoveCount_ since Android detects 1 - 6 touches when user click normaly
      this.touchMoveCount_++;
      this.shouldTogglePlay = false;
    };

    _proto.onControlBarMove = function onControlBarMove(e) {
      this.player.userActive(true);
    };

    _proto.dispose = function dispose() {
      this.canvas.removeEventListener('mousedown', this.onMoveStart);
      this.canvas.removeEventListener('touchstart', this.onMoveStart);
      this.canvas.removeEventListener('mousemove', this.onMove);
      this.canvas.removeEventListener('touchmove', this.onMove);
      this.canvas.removeEventListener('mouseup', this.onMoveEnd);
      this.canvas.removeEventListener('touchend', this.onMoveEnd);
      this.player.controlBar.off(['mousedown', 'mousemove', 'mouseup', 'touchstart', 'touchmove', 'touchend'], this.onControlBarMove);
      this.player.reportUserActivity = this.oldReportUserActivity;
    };

    return CanvasPlayerControls;
  }(videojs.EventTarget);

  /**
   * This class manages ambisonic decoding and binaural rendering via Omnitone library.
   */

  var OmnitoneController =
  /*#__PURE__*/
  function (_videojs$EventTarget) {
    inheritsLoose(OmnitoneController, _videojs$EventTarget);

    /**
     * Omnitone controller class.
     *
     * @class
     * @param {AudioContext} audioContext - associated AudioContext.
     * @param {Omnitone library} omnitone - Omnitone library element.
     * @param {HTMLVideoElement} video - vidoe tag element.
     * @param {Object} options - omnitone options.
     */
    function OmnitoneController(audioContext, omnitone, video, options) {
      var _this;

      _this = _videojs$EventTarget.call(this) || this;
      var settings = videojs.mergeOptions({
        // Safari uses the different AAC decoder than FFMPEG. The channel order is
        // The default 4ch AAC channel layout for FFMPEG AAC channel ordering.
        channelMap: videojs.browser.IS_SAFARI ? [2, 0, 1, 3] : [0, 1, 2, 3],
        ambisonicOrder: 1
      }, options);
      _this.videoElementSource = audioContext.createMediaElementSource(video);
      _this.foaRenderer = omnitone.createFOARenderer(audioContext, settings);

      _this.foaRenderer.initialize().then(function () {
        if (audioContext.state === 'suspended') {
          _this.trigger({
            type: 'audiocontext-suspended'
          });
        }

        _this.videoElementSource.connect(_this.foaRenderer.input);

        _this.foaRenderer.output.connect(audioContext.destination);

        _this.initialized = true;

        _this.trigger({
          type: 'omnitone-ready'
        });
      }, function (error) {
        videojs.log.warn("videojs-vr: Omnitone initializes failed with the following error: " + error + ")");
      });

      return _this;
    }
    /**
     * Updates the rotation of the Omnitone decoder based on three.js camera matrix.
     *
     * @param {Camera} camera Three.js camera object
     */


    var _proto = OmnitoneController.prototype;

    _proto.update = function update(camera) {
      if (!this.initialized) {
        return;
      }

      this.foaRenderer.setRotationMatrixFromCamera(camera.matrix);
    }
    /**
     * Destroys the controller and does any necessary cleanup.
     */
    ;

    _proto.dispose = function dispose() {
      this.initialized = false;
      this.foaRenderer.setRenderingMode('bypass');
      this.foaRenderer = null;
    };

    return OmnitoneController;
  }(videojs.EventTarget);

  var Button = videojs.getComponent('Button');

  var CardboardButton =
  /*#__PURE__*/
  function (_Button) {
    inheritsLoose(CardboardButton, _Button);

    function CardboardButton(player, options) {
      var _this;

      _this = _Button.call(this, player, options) || this;
      _this.handleVrDisplayActivate_ = videojs.bind(assertThisInitialized(_this), _this.handleVrDisplayActivate_);
      _this.handleVrDisplayDeactivate_ = videojs.bind(assertThisInitialized(_this), _this.handleVrDisplayDeactivate_);
      _this.handleVrDisplayPresentChange_ = videojs.bind(assertThisInitialized(_this), _this.handleVrDisplayPresentChange_);
      _this.handleOrientationChange_ = videojs.bind(assertThisInitialized(_this), _this.handleOrientationChange_);
      window$1.addEventListener('orientationchange', _this.handleOrientationChange_);
      window$1.addEventListener('vrdisplayactivate', _this.handleVrDisplayActivate_);
      window$1.addEventListener('vrdisplaydeactivate', _this.handleVrDisplayDeactivate_); // vrdisplaypresentchange does not fire activate or deactivate
      // and happens when hitting the back button during cardboard mode
      // so we need to make sure we stay in the correct state by
      // listening to it and checking if we are presenting it or not

      window$1.addEventListener('vrdisplaypresentchange', _this.handleVrDisplayPresentChange_); // we cannot show the cardboard button in fullscreen on
      // android as it breaks the controls, and makes it impossible
      // to exit cardboard mode

      if (videojs.browser.IS_ANDROID) {
        _this.on(player, 'fullscreenchange', function () {
          if (player.isFullscreen()) {
            _this.hide();
          } else {
            _this.show();
          }
        });
      }

      return _this;
    }

    var _proto = CardboardButton.prototype;

    _proto.buildCSSClass = function buildCSSClass() {
      return "vjs-button-vr " + _Button.prototype.buildCSSClass.call(this);
    };

    _proto.handleVrDisplayPresentChange_ = function handleVrDisplayPresentChange_() {
      if (!this.player_.vr().vrDisplay.isPresenting && this.active_) {
        this.handleVrDisplayDeactivate_();
      }

      if (this.player_.vr().vrDisplay.isPresenting && !this.active_) {
        this.handleVrDisplayActivate_();
      }
    };

    _proto.handleOrientationChange_ = function handleOrientationChange_() {
      if (this.active_ && videojs.browser.IS_IOS) {
        this.changeSize_();
      }
    };

    _proto.changeSize_ = function changeSize_() {
      this.player_.width(window$1.innerWidth);
      this.player_.height(window$1.innerHeight);
      window$1.dispatchEvent(new window$1.Event('resize'));
    };

    _proto.handleVrDisplayActivate_ = function handleVrDisplayActivate_() {
      // we mimic fullscreen on IOS
      if (videojs.browser.IS_IOS) {
        this.oldWidth_ = this.player_.currentWidth();
        this.oldHeight_ = this.player_.currentHeight();
        this.player_.enterFullWindow();
        this.changeSize_();
      }

      this.active_ = true;
    };

    _proto.handleVrDisplayDeactivate_ = function handleVrDisplayDeactivate_() {
      // un-mimic fullscreen on iOS
      if (videojs.browser.IS_IOS) {
        if (this.oldWidth_) {
          this.player_.width(this.oldWidth_);
        }

        if (this.oldHeight_) {
          this.player_.height(this.oldHeight_);
        }

        this.player_.exitFullWindow();
      }

      this.active_ = false;
    };

    _proto.handleClick = function handleClick(event) {
      // if cardboard mode display is not active, activate it
      // otherwise deactivate it
      if (!this.active_) {
        // This starts playback mode when the cardboard button
        // is clicked on Andriod. We need to do this as the controls
        // disappear
        if (!this.player_.hasStarted() && videojs.browser.IS_ANDROID) {
          this.player_.play();
        }

        window$1.dispatchEvent(new window$1.Event('vrdisplayactivate'));
      } else {
        window$1.dispatchEvent(new window$1.Event('vrdisplaydeactivate'));
      }
    };

    _proto.dispose = function dispose() {
      _Button.prototype.dispose.call(this);

      window$1.removeEventListener('vrdisplayactivate', this.handleVrDisplayActivate_);
      window$1.removeEventListener('vrdisplaydeactivate', this.handleVrDisplayDeactivate_);
      window$1.removeEventListener('vrdisplaypresentchange', this.handleVrDisplayPresentChange_);
    };

    return CardboardButton;
  }(Button);

  videojs.registerComponent('CardboardButton', CardboardButton);

  var BigPlayButton = videojs.getComponent('BigPlayButton');

  var BigVrPlayButton =
  /*#__PURE__*/
  function (_BigPlayButton) {
    inheritsLoose(BigVrPlayButton, _BigPlayButton);

    function BigVrPlayButton() {
      return _BigPlayButton.apply(this, arguments) || this;
    }

    var _proto = BigVrPlayButton.prototype;

    _proto.buildCSSClass = function buildCSSClass() {
      return "vjs-big-vr-play-button " + _BigPlayButton.prototype.buildCSSClass.call(this);
    };

    return BigVrPlayButton;
  }(BigPlayButton);

  videojs.registerComponent('BigVrPlayButton', BigVrPlayButton);

  var defaults = {
    debug: false,
    omnitone: false,
    forceCardboard: false,
    omnitoneOptions: {},
    projection: 'AUTO'
  };
  var errors = {
    'web-vr-out-of-date': {
      headline: '360 is out of date',
      type: '360_OUT_OF_DATE',
      message: "Your browser supports 360 but not the latest version. See <a href='http://webvr.info'>http://webvr.info</a> for more info."
    },
    'web-vr-not-supported': {
      headline: '360 not supported on this device',
      type: '360_NOT_SUPPORTED',
      message: "Your browser does not support 360. See <a href='http://webvr.info'>http://webvr.info</a> for assistance."
    },
    'web-vr-hls-cors-not-supported': {
      headline: '360 HLS video not supported on this device',
      type: '360_NOT_SUPPORTED',
      message: "Your browser/device does not support HLS 360 video. See <a href='http://webvr.info'>http://webvr.info</a> for assistance."
    }
  };
  var Plugin = videojs.getPlugin('plugin');
  var Component = videojs.getComponent('Component');

  var VR =
  /*#__PURE__*/
  function (_Plugin) {
    inheritsLoose(VR, _Plugin);

    function VR(player, options) {
      var _this;

      var settings = videojs.mergeOptions(defaults, options);
      _this = _Plugin.call(this, player, settings) || this;
      _this.options_ = settings;
      _this.player_ = player;
      _this.bigPlayButtonIndex_ = player.children().indexOf(player.getChild('BigPlayButton')) || 0; // custom videojs-errors integration boolean

      _this.videojsErrorsSupport_ = !!videojs.errors;

      if (_this.videojsErrorsSupport_) {
        player.errors({
          errors: errors
        });
      } // IE 11 does not support enough webgl to be supported
      // older safari does not support cors, so it wont work


      if (videojs.browser.IE_VERSION || !corsSupport) {
        // if a player triggers error before 'loadstart' is fired
        // video.js will reset the error overlay
        _this.player_.on('loadstart', function () {
          _this.triggerError_({
            code: 'web-vr-not-supported',
            dismiss: false
          });
        });

        return assertThisInitialized(_this);
      }

      _this.polyfill_ = new WebVRPolyfill({
        // do not show rotate instructions
        ROTATE_INSTRUCTIONS_DISABLED: true
      });
      _this.polyfill_ = new WebVRPolyfill();
      _this.handleVrDisplayActivate_ = videojs.bind(assertThisInitialized(_this), _this.handleVrDisplayActivate_);
      _this.handleVrDisplayDeactivate_ = videojs.bind(assertThisInitialized(_this), _this.handleVrDisplayDeactivate_);
      _this.handleResize_ = videojs.bind(assertThisInitialized(_this), _this.handleResize_);
      _this.animate_ = videojs.bind(assertThisInitialized(_this), _this.animate_);

      _this.setProjection(_this.options_.projection); // any time the video element is recycled for ads
      // we have to reset the vr state and re-init after ad


      _this.on(player, 'adstart', function () {
        return player.setTimeout(function () {
          // if the video element was recycled for this ad
          if (!player.ads || !player.ads.videoElementRecycled()) {
            _this.log('video element not recycled for this ad, no need to reset');

            return;
          }

          _this.log('video element recycled for this ad, reseting');

          _this.reset();

          _this.one(player, 'playing', _this.init);
        });
      }, 1);

      _this.on(player, 'loadedmetadata', _this.init);

      return _this;
    }

    var _proto = VR.prototype;

    _proto.changeProjection_ = function changeProjection_(projection) {
      var _this2 = this;

      projection = getInternalProjectionName(projection); // don't change to an invalid projection

      if (!projection) {
        projection = 'NONE';
      }

      var position = {
        x: 0,
        y: 0,
        z: 0
      };

      if (this.scene) {
        this.scene.remove(this.movieScreen);
      }

      if (projection === 'AUTO') {
        // mediainfo cannot be set to auto or we would infinite loop here
        // each source should know wether they are 360 or not, if using AUTO
        if (this.player_.mediainfo && this.player_.mediainfo.projection && this.player_.mediainfo.projection !== 'AUTO') {
          var autoProjection = getInternalProjectionName(this.player_.mediainfo.projection);
          return this.changeProjection_(autoProjection);
        }

        return this.changeProjection_('NONE');
      } else if (projection === '360') {
        this.movieGeometry = new SphereBufferGeometry(256, 32, 32);
        this.movieMaterial = new MeshBasicMaterial({
          map: this.videoTexture,
          overdraw: true,
          side: BackSide
        });
        this.movieScreen = new Mesh(this.movieGeometry, this.movieMaterial);
        this.movieScreen.position.set(position.x, position.y, position.z);
        this.movieScreen.scale.x = -1;
        this.movieScreen.quaternion.setFromAxisAngle({
          x: 0,
          y: 1,
          z: 0
        }, -Math.PI / 2);
        this.scene.add(this.movieScreen);
      } else if (projection === '360_LR' || projection === '360_TB') {
        // Left eye view
        var geometry = new SphereGeometry(256, 32, 32);
        var uvs = geometry.faceVertexUvs[0];

        for (var i = 0; i < uvs.length; i++) {
          for (var j = 0; j < 3; j++) {
            if (projection === '360_LR') {
              uvs[i][j].x *= 0.5;
            } else {
              uvs[i][j].y *= 0.5;
              uvs[i][j].y += 0.5;
            }
          }
        }

        this.movieGeometry = new BufferGeometry().fromGeometry(geometry);
        this.movieMaterial = new MeshBasicMaterial({
          map: this.videoTexture,
          overdraw: true,
          side: BackSide
        });
        this.movieScreen = new Mesh(this.movieGeometry, this.movieMaterial);
        this.movieScreen.scale.x = -1;
        this.movieScreen.quaternion.setFromAxisAngle({
          x: 0,
          y: 1,
          z: 0
        }, -Math.PI / 2); // display in left eye only

        this.movieScreen.layers.set(1);
        this.scene.add(this.movieScreen); // Right eye view

        geometry = new SphereGeometry(256, 32, 32);
        uvs = geometry.faceVertexUvs[0];

        for (var _i = 0; _i < uvs.length; _i++) {
          for (var _j = 0; _j < 3; _j++) {
            if (projection === '360_LR') {
              uvs[_i][_j].x *= 0.5;
              uvs[_i][_j].x += 0.5;
            } else {
              uvs[_i][_j].y *= 0.5;
            }
          }
        }

        this.movieGeometry = new BufferGeometry().fromGeometry(geometry);
        this.movieMaterial = new MeshBasicMaterial({
          map: this.videoTexture,
          overdraw: true,
          side: BackSide
        });
        this.movieScreen = new Mesh(this.movieGeometry, this.movieMaterial);
        this.movieScreen.scale.x = -1;
        this.movieScreen.quaternion.setFromAxisAngle({
          x: 0,
          y: 1,
          z: 0
        }, -Math.PI / 2); // display in right eye only

        this.movieScreen.layers.set(2);
        this.scene.add(this.movieScreen);
      } else if (projection === '360_CUBE') {
        this.movieGeometry = new BoxGeometry(256, 256, 256);
        this.movieMaterial = new MeshBasicMaterial({
          map: this.videoTexture,
          overdraw: true,
          side: BackSide
        });
        var left = [new Vector2(0, 0.5), new Vector2(0.333, 0.5), new Vector2(0.333, 1), new Vector2(0, 1)];
        var right = [new Vector2(0.333, 0.5), new Vector2(0.666, 0.5), new Vector2(0.666, 1), new Vector2(0.333, 1)];
        var top = [new Vector2(0.666, 0.5), new Vector2(1, 0.5), new Vector2(1, 1), new Vector2(0.666, 1)];
        var bottom = [new Vector2(0, 0), new Vector2(0.333, 0), new Vector2(0.333, 0.5), new Vector2(0, 0.5)];
        var front = [new Vector2(0.333, 0), new Vector2(0.666, 0), new Vector2(0.666, 0.5), new Vector2(0.333, 0.5)];
        var back = [new Vector2(0.666, 0), new Vector2(1, 0), new Vector2(1, 0.5), new Vector2(0.666, 0.5)];
        this.movieGeometry.faceVertexUvs[0] = [];
        this.movieGeometry.faceVertexUvs[0][0] = [right[2], right[1], right[3]];
        this.movieGeometry.faceVertexUvs[0][1] = [right[1], right[0], right[3]];
        this.movieGeometry.faceVertexUvs[0][2] = [left[2], left[1], left[3]];
        this.movieGeometry.faceVertexUvs[0][3] = [left[1], left[0], left[3]];
        this.movieGeometry.faceVertexUvs[0][4] = [top[2], top[1], top[3]];
        this.movieGeometry.faceVertexUvs[0][5] = [top[1], top[0], top[3]];
        this.movieGeometry.faceVertexUvs[0][6] = [bottom[2], bottom[1], bottom[3]];
        this.movieGeometry.faceVertexUvs[0][7] = [bottom[1], bottom[0], bottom[3]];
        this.movieGeometry.faceVertexUvs[0][8] = [front[2], front[1], front[3]];
        this.movieGeometry.faceVertexUvs[0][9] = [front[1], front[0], front[3]];
        this.movieGeometry.faceVertexUvs[0][10] = [back[2], back[1], back[3]];
        this.movieGeometry.faceVertexUvs[0][11] = [back[1], back[0], back[3]];
        this.movieScreen = new Mesh(this.movieGeometry, this.movieMaterial);
        this.movieScreen.position.set(position.x, position.y, position.z);
        this.movieScreen.rotation.y = -Math.PI;
        this.scene.add(this.movieScreen);
      } else if (projection === '180') {
        var _geometry = new SphereGeometry(256, 32, 32, Math.PI, Math.PI); // Left eye view


        _geometry.scale(-1, 1, 1);

        var _uvs = _geometry.faceVertexUvs[0];

        for (var _i2 = 0; _i2 < _uvs.length; _i2++) {
          for (var _j2 = 0; _j2 < 3; _j2++) {
            _uvs[_i2][_j2].x *= 0.5;
          }
        }

        this.movieGeometry = new BufferGeometry().fromGeometry(_geometry);
        this.movieMaterial = new MeshBasicMaterial({
          map: this.videoTexture,
          overdraw: true
        });
        this.movieScreen = new Mesh(this.movieGeometry, this.movieMaterial); // display in left eye only

        this.movieScreen.layers.set(1);
        this.scene.add(this.movieScreen); // Right eye view

        _geometry = new SphereGeometry(256, 32, 32, Math.PI, Math.PI);

        _geometry.scale(-1, 1, 1);

        _uvs = _geometry.faceVertexUvs[0];

        for (var _i3 = 0; _i3 < _uvs.length; _i3++) {
          for (var _j3 = 0; _j3 < 3; _j3++) {
            _uvs[_i3][_j3].x *= 0.5;
            _uvs[_i3][_j3].x += 0.5;
          }
        }

        this.movieGeometry = new BufferGeometry().fromGeometry(_geometry);
        this.movieMaterial = new MeshBasicMaterial({
          map: this.videoTexture,
          overdraw: true
        });
        this.movieScreen = new Mesh(this.movieGeometry, this.movieMaterial); // display in right eye only

        this.movieScreen.layers.set(2);
        this.scene.add(this.movieScreen);
      } else if (projection === 'EAC' || projection === 'EAC_LR') {
        var makeScreen = function makeScreen(mapMatrix, scaleMatrix) {
          // "Continuity correction?": because of discontinuous faces and aliasing,
          // we truncate the 2-pixel-wide strips on all discontinuous edges,
          var contCorrect = 2;
          _this2.movieGeometry = new BoxGeometry(256, 256, 256);
          _this2.movieMaterial = new ShaderMaterial({
            overdraw: true,
            side: BackSide,
            uniforms: {
              mapped: {
                value: _this2.videoTexture
              },
              mapMatrix: {
                value: mapMatrix
              },
              contCorrect: {
                value: contCorrect
              },
              faceWH: {
                value: new Vector2(1 / 3, 1 / 2).applyMatrix3(scaleMatrix)
              },
              vidWH: {
                value: new Vector2(_this2.videoTexture.image.videoWidth, _this2.videoTexture.image.videoHeight).applyMatrix3(scaleMatrix)
              }
            },
            vertexShader: "\nvarying vec2 vUv;\nuniform mat3 mapMatrix;\n\nvoid main() {\n  vUv = (mapMatrix * vec3(uv, 1.)).xy;\n  gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.);\n}",
            fragmentShader: "\nvarying vec2 vUv;\nuniform sampler2D mapped;\nuniform vec2 faceWH;\nuniform vec2 vidWH;\nuniform float contCorrect;\n\nconst float PI = 3.1415926535897932384626433832795;\n\nvoid main() {\n  vec2 corner = vUv - mod(vUv, faceWH) + vec2(0, contCorrect / vidWH.y);\n\n  vec2 faceWHadj = faceWH - vec2(0, contCorrect * 2. / vidWH.y);\n\n  vec2 p = (vUv - corner) / faceWHadj - .5;\n  vec2 q = 2. / PI * atan(2. * p) + .5;\n\n  vec2 eUv = corner + q * faceWHadj;\n\n  gl_FragColor = texture2D(mapped, eUv);\n}"
          });
          var right = [new Vector2(0, 1 / 2), new Vector2(1 / 3, 1 / 2), new Vector2(1 / 3, 1), new Vector2(0, 1)];
          var front = [new Vector2(1 / 3, 1 / 2), new Vector2(2 / 3, 1 / 2), new Vector2(2 / 3, 1), new Vector2(1 / 3, 1)];
          var left = [new Vector2(2 / 3, 1 / 2), new Vector2(1, 1 / 2), new Vector2(1, 1), new Vector2(2 / 3, 1)];
          var bottom = [new Vector2(1 / 3, 0), new Vector2(1 / 3, 1 / 2), new Vector2(0, 1 / 2), new Vector2(0, 0)];
          var back = [new Vector2(1 / 3, 1 / 2), new Vector2(1 / 3, 0), new Vector2(2 / 3, 0), new Vector2(2 / 3, 1 / 2)];
          var top = [new Vector2(1, 0), new Vector2(1, 1 / 2), new Vector2(2 / 3, 1 / 2), new Vector2(2 / 3, 0)];

          for (var _i4 = 0, _arr = [right, front, left, bottom, back, top]; _i4 < _arr.length; _i4++) {
            var face = _arr[_i4];
            var height = _this2.videoTexture.image.videoHeight;
            var lowY = 1;
            var highY = 0;

            for (var _iterator = face, _isArray = Array.isArray(_iterator), _i5 = 0, _iterator = _isArray ? _iterator : _iterator[Symbol.iterator]();;) {
              var _ref;

              if (_isArray) {
                if (_i5 >= _iterator.length) break;
                _ref = _iterator[_i5++];
              } else {
                _i5 = _iterator.next();
                if (_i5.done) break;
                _ref = _i5.value;
              }

              var vector = _ref;

              if (vector.y < lowY) {
                lowY = vector.y;
              }

              if (vector.y > highY) {
                highY = vector.y;
              }
            }

            for (var _iterator2 = face, _isArray2 = Array.isArray(_iterator2), _i6 = 0, _iterator2 = _isArray2 ? _iterator2 : _iterator2[Symbol.iterator]();;) {
              var _ref2;

              if (_isArray2) {
                if (_i6 >= _iterator2.length) break;
                _ref2 = _iterator2[_i6++];
              } else {
                _i6 = _iterator2.next();
                if (_i6.done) break;
                _ref2 = _i6.value;
              }

              var _vector = _ref2;

              if (Math.abs(_vector.y - lowY) < Number.EPSILON) {
                _vector.y += contCorrect / height;
              }

              if (Math.abs(_vector.y - highY) < Number.EPSILON) {
                _vector.y -= contCorrect / height;
              }

              _vector.x = _vector.x / height * (height - contCorrect * 2) + contCorrect / height;
            }
          }

          _this2.movieGeometry.faceVertexUvs[0] = [];
          _this2.movieGeometry.faceVertexUvs[0][0] = [right[2], right[1], right[3]];
          _this2.movieGeometry.faceVertexUvs[0][1] = [right[1], right[0], right[3]];
          _this2.movieGeometry.faceVertexUvs[0][2] = [left[2], left[1], left[3]];
          _this2.movieGeometry.faceVertexUvs[0][3] = [left[1], left[0], left[3]];
          _this2.movieGeometry.faceVertexUvs[0][4] = [top[2], top[1], top[3]];
          _this2.movieGeometry.faceVertexUvs[0][5] = [top[1], top[0], top[3]];
          _this2.movieGeometry.faceVertexUvs[0][6] = [bottom[2], bottom[1], bottom[3]];
          _this2.movieGeometry.faceVertexUvs[0][7] = [bottom[1], bottom[0], bottom[3]];
          _this2.movieGeometry.faceVertexUvs[0][8] = [front[2], front[1], front[3]];
          _this2.movieGeometry.faceVertexUvs[0][9] = [front[1], front[0], front[3]];
          _this2.movieGeometry.faceVertexUvs[0][10] = [back[2], back[1], back[3]];
          _this2.movieGeometry.faceVertexUvs[0][11] = [back[1], back[0], back[3]];
          _this2.movieScreen = new Mesh(_this2.movieGeometry, _this2.movieMaterial);

          _this2.movieScreen.position.set(position.x, position.y, position.z);

          _this2.movieScreen.rotation.y = -Math.PI;
          return _this2.movieScreen;
        };

        if (projection === 'EAC') {
          this.scene.add(makeScreen(new Matrix3(), new Matrix3()));
        } else {
          var scaleMatrix = new Matrix3().set(0, 0.5, 0, 1, 0, 0, 0, 0, 1);
          makeScreen(new Matrix3().set(0, -0.5, 0.5, 1, 0, 0, 0, 0, 1), scaleMatrix); // display in left eye only

          this.movieScreen.layers.set(1);
          this.scene.add(this.movieScreen);
          makeScreen(new Matrix3().set(0, -0.5, 1, 1, 0, 0, 0, 0, 1), scaleMatrix); // display in right eye only

          this.movieScreen.layers.set(2);
          this.scene.add(this.movieScreen);
        }
      }

      this.currentProjection_ = projection;
    };

    _proto.triggerError_ = function triggerError_(errorObj) {
      // if we have videojs-errors use it
      if (this.videojsErrorsSupport_) {
        this.player_.error(errorObj); // if we don't have videojs-errors just use a normal player error
      } else {
        // strip any html content from the error message
        // as it is not supported outside of videojs-errors
        var div = document$1.createElement('div');
        div.innerHTML = errors[errorObj.code].message;
        var message = div.textContent || div.innerText || '';
        this.player_.error({
          code: errorObj.code,
          message: message
        });
      }
    };

    _proto.log = function log() {
      if (!this.options_.debug) {
        return;
      }

      for (var _len = arguments.length, msgs = new Array(_len), _key = 0; _key < _len; _key++) {
        msgs[_key] = arguments[_key];
      }

      msgs.forEach(function (msg) {
        videojs.log('VR: ', msg);
      });
    };

    _proto.handleVrDisplayActivate_ = function handleVrDisplayActivate_() {
      var _this3 = this;

      if (!this.vrDisplay) {
        return;
      }

      this.vrDisplay.requestPresent([{
        source: this.renderedCanvas
      }]).then(function () {
        if (!_this3.vrDisplay.cardboardUI_ || !videojs.browser.IS_IOS) {
          return;
        } // webvr-polyfill/cardboard ui only watches for click events
        // to tell that the back arrow button is pressed during cardboard vr.
        // but somewhere along the line these events are silenced with preventDefault
        // but only on iOS, so we translate them ourselves here


        var touches = [];

        var iosCardboardTouchStart_ = function iosCardboardTouchStart_(e) {
          for (var i = 0; i < e.touches.length; i++) {
            touches.push(e.touches[i]);
          }
        };

        var iosCardboardTouchEnd_ = function iosCardboardTouchEnd_(e) {
          if (!touches.length) {
            return;
          }

          touches.forEach(function (t) {
            var simulatedClick = new window$1.MouseEvent('click', {
              screenX: t.screenX,
              screenY: t.screenY,
              clientX: t.clientX,
              clientY: t.clientY
            });

            _this3.renderedCanvas.dispatchEvent(simulatedClick);
          });
          touches = [];
        };

        _this3.renderedCanvas.addEventListener('touchstart', iosCardboardTouchStart_);

        _this3.renderedCanvas.addEventListener('touchend', iosCardboardTouchEnd_);

        _this3.iosRevertTouchToClick_ = function () {
          _this3.renderedCanvas.removeEventListener('touchstart', iosCardboardTouchStart_);

          _this3.renderedCanvas.removeEventListener('touchend', iosCardboardTouchEnd_);

          _this3.iosRevertTouchToClick_ = null;
        };
      });
    };

    _proto.handleVrDisplayDeactivate_ = function handleVrDisplayDeactivate_() {
      if (!this.vrDisplay || !this.vrDisplay.isPresenting) {
        return;
      }

      if (this.iosRevertTouchToClick_) {
        this.iosRevertTouchToClick_();
      }

      this.vrDisplay.exitPresent();
    };

    _proto.requestAnimationFrame = function requestAnimationFrame(fn) {
      if (this.vrDisplay) {
        return this.vrDisplay.requestAnimationFrame(fn);
      }

      return this.player_.requestAnimationFrame(fn);
    };

    _proto.cancelAnimationFrame = function cancelAnimationFrame(id) {
      if (this.vrDisplay) {
        return this.vrDisplay.cancelAnimationFrame(id);
      }

      return this.player_.cancelAnimationFrame(id);
    };

    _proto.togglePlay_ = function togglePlay_() {
      if (this.player_.paused()) {
        this.player_.play();
      } else {
        this.player_.pause();
      }
    };

    _proto.animate_ = function animate_() {
      if (!this.initialized_) {
        return;
      }

      if (this.getVideoEl_().readyState === this.getVideoEl_().HAVE_ENOUGH_DATA) {
        if (this.videoTexture) {
          this.videoTexture.needsUpdate = true;
        }
      }

      this.controls3d.update();

      if (this.omniController) {
        this.omniController.update(this.camera);
      }

      this.effect.render(this.scene, this.camera);

      if (window$1.navigator.getGamepads) {
        // Grab all gamepads
        var gamepads = window$1.navigator.getGamepads();

        for (var i = 0; i < gamepads.length; ++i) {
          var gamepad = gamepads[i]; // Make sure gamepad is defined
          // Only take input if state has changed since we checked last

          if (!gamepad || !gamepad.timestamp || gamepad.timestamp === this.prevTimestamps_[i]) {
            continue;
          }

          for (var j = 0; j < gamepad.buttons.length; ++j) {
            if (gamepad.buttons[j].pressed) {
              this.togglePlay_();
              this.prevTimestamps_[i] = gamepad.timestamp;
              break;
            }
          }
        }
      }

      this.camera.getWorldDirection(this.cameraVector);
      this.animationFrameId_ = this.requestAnimationFrame(this.animate_);
    };

    _proto.handleResize_ = function handleResize_() {
      var width = this.player_.currentWidth();
      var height = this.player_.currentHeight();
      this.effect.setSize(width, height, false);
      this.camera.aspect = width / height;
      this.camera.updateProjectionMatrix();
    };

    _proto.setProjection = function setProjection(projection) {
      if (!getInternalProjectionName(projection)) {
        videojs.log.error('videojs-vr: please pass a valid projection ' + validProjections.join(', '));
        return;
      }

      this.currentProjection_ = projection;
      this.defaultProjection_ = projection;
    };

    _proto.init = function init() {
      var _this4 = this;

      this.reset();
      this.camera = new PerspectiveCamera(75, this.player_.currentWidth() / this.player_.currentHeight(), 1, 1000); // Store vector representing the direction in which the camera is looking, in world space.

      this.cameraVector = new Vector3();

      if (this.currentProjection_ === '360_LR' || this.currentProjection_ === '360_TB' || this.currentProjection_ === '180' || this.currentProjection_ === 'EAC_LR') {
        // Render left eye when not in VR mode
        this.camera.layers.enable(1);
      }

      this.scene = new Scene();
      this.videoTexture = new VideoTexture(this.getVideoEl_()); // shared regardless of wether VideoTexture is used or
      // an image canvas is used

      this.videoTexture.generateMipmaps = false;
      this.videoTexture.minFilter = LinearFilter;
      this.videoTexture.magFilter = LinearFilter;
      this.videoTexture.format = RGBFormat;
      this.changeProjection_(this.currentProjection_);

      if (this.currentProjection_ === 'NONE') {
        this.log('Projection is NONE, dont init');
        this.reset();
        return;
      }

      this.player_.removeChild('BigPlayButton');
      this.player_.addChild('BigVrPlayButton', {}, this.bigPlayButtonIndex_);
      this.player_.bigPlayButton = this.player_.getChild('BigVrPlayButton'); // mobile devices, or cardboard forced to on

      if (this.options_.forceCardboard || videojs.browser.IS_ANDROID || videojs.browser.IS_IOS) {
        this.addCardboardButton_();
      } // if ios remove full screen toggle


      if (videojs.browser.IS_IOS) {
        this.player_.controlBar.fullscreenToggle.hide();
      }

      this.camera.position.set(0, 0, 0);
      this.renderer = new WebGLRenderer({
        devicePixelRatio: window$1.devicePixelRatio,
        alpha: false,
        clearColor: 0xffffff,
        antialias: true
      });
      var webglContext = this.renderer.getContext('webgl');
      var oldTexImage2D = webglContext.texImage2D;
      /* this is a workaround since threejs uses try catch */

      webglContext.texImage2D = function () {
        try {
          for (var _len2 = arguments.length, args = new Array(_len2), _key2 = 0; _key2 < _len2; _key2++) {
            args[_key2] = arguments[_key2];
          }

          return oldTexImage2D.apply(webglContext, args);
        } catch (e) {
          _this4.reset();

          _this4.player_.pause();

          _this4.triggerError_({
            code: 'web-vr-hls-cors-not-supported',
            dismiss: false
          });

          throw new Error(e);
        }
      };

      this.renderer.setSize(this.player_.currentWidth(), this.player_.currentHeight(), false);
      this.effect = new VREffect(this.renderer);
      this.effect.setSize(this.player_.currentWidth(), this.player_.currentHeight(), false);
      this.vrDisplay = null; // Previous timestamps for gamepad updates

      this.prevTimestamps_ = [];
      this.renderedCanvas = this.renderer.domElement;
      this.renderedCanvas.setAttribute('style', 'width: 100%; height: 100%; position: absolute; top:0;');
      var videoElStyle = this.getVideoEl_().style;
      this.player_.el().insertBefore(this.renderedCanvas, this.player_.el().firstChild);
      videoElStyle.zIndex = '-1';
      videoElStyle.opacity = '0';

      if (window$1.navigator.getVRDisplays) {
        this.log('is supported, getting vr displays');
        window$1.navigator.getVRDisplays().then(function (displays) {
          if (displays.length > 0) {
            _this4.log('Displays found', displays);

            _this4.vrDisplay = displays[0]; // Native WebVR Head Mounted Displays (HMDs) like the HTC Vive
            // also need the cardboard button to enter fully immersive mode
            // so, we want to add the button if we're not polyfilled.

            if (!_this4.vrDisplay.isPolyfilled) {
              _this4.log('Real HMD found using VRControls', _this4.vrDisplay);

              _this4.addCardboardButton_(); // We use VRControls here since we are working with an HMD
              // and we only want orientation controls.


              _this4.controls3d = new VRControls(_this4.camera);
            }
          }

          if (!_this4.controls3d) {
            _this4.log('no HMD found Using Orbit & Orientation Controls');

            var options = {
              camera: _this4.camera,
              canvas: _this4.renderedCanvas,
              // check if its a half sphere view projection
              halfView: _this4.currentProjection_ === '180',
              orientation: videojs.browser.IS_IOS || videojs.browser.IS_ANDROID || false
            };

            if (_this4.options_.motionControls === false) {
              options.orientation = false;
            }

            _this4.controls3d = new OrbitOrientationControls(options);
            _this4.canvasPlayerControls = new CanvasPlayerControls(_this4.player_, _this4.renderedCanvas);
          }

          _this4.animationFrameId_ = _this4.requestAnimationFrame(_this4.animate_);
        });
      } else if (window$1.navigator.getVRDevices) {
        this.triggerError_({
          code: 'web-vr-out-of-date',
          dismiss: false
        });
      } else {
        this.triggerError_({
          code: 'web-vr-not-supported',
          dismiss: false
        });
      }

      if (this.options_.omnitone) {
        var audiocontext = AudioContext.getContext();
        this.omniController = new OmnitoneController(audiocontext, this.options_.omnitone, this.getVideoEl_(), this.options_.omnitoneOptions);
        this.omniController.one('audiocontext-suspended', function () {
          _this4.player.pause();

          _this4.player.one('playing', function () {
            audiocontext.resume();
          });
        });
      }

      this.on(this.player_, 'fullscreenchange', this.handleResize_);
      window$1.addEventListener('vrdisplaypresentchange', this.handleResize_, true);
      window$1.addEventListener('resize', this.handleResize_, true);
      window$1.addEventListener('vrdisplayactivate', this.handleVrDisplayActivate_, true);
      window$1.addEventListener('vrdisplaydeactivate', this.handleVrDisplayDeactivate_, true);
      this.initialized_ = true;
      this.trigger('initialized');
    };

    _proto.addCardboardButton_ = function addCardboardButton_() {
      if (!this.player_.controlBar.getChild('CardboardButton')) {
        this.player_.controlBar.addChild('CardboardButton', {});
      }
    };

    _proto.getVideoEl_ = function getVideoEl_() {
      return this.player_.el().getElementsByTagName('video')[0];
    };

    _proto.reset = function reset() {
      if (!this.initialized_) {
        return;
      }

      if (this.omniController) {
        this.omniController.off('audiocontext-suspended');
        this.omniController.dispose();
        this.omniController = undefined;
      }

      if (this.controls3d) {
        this.controls3d.dispose();
        this.controls3d = null;
      }

      if (this.canvasPlayerControls) {
        this.canvasPlayerControls.dispose();
        this.canvasPlayerControls = null;
      }

      if (this.effect) {
        this.effect.dispose();
        this.effect = null;
      }

      window$1.removeEventListener('resize', this.handleResize_, true);
      window$1.removeEventListener('vrdisplaypresentchange', this.handleResize_, true);
      window$1.removeEventListener('vrdisplayactivate', this.handleVrDisplayActivate_, true);
      window$1.removeEventListener('vrdisplaydeactivate', this.handleVrDisplayDeactivate_, true); // re-add the big play button to player

      if (!this.player_.getChild('BigPlayButton')) {
        this.player_.addChild('BigPlayButton', {}, this.bigPlayButtonIndex_);
      }

      if (this.player_.getChild('BigVrPlayButton')) {
        this.player_.removeChild('BigVrPlayButton');
      } // remove the cardboard button


      if (this.player_.getChild('CardboardButton')) {
        this.player_.controlBar.removeChild('CardboardButton');
      } // show the fullscreen again


      if (videojs.browser.IS_IOS) {
        this.player_.controlBar.fullscreenToggle.show();
      } // reset the video element style so that it will be displayed


      var videoElStyle = this.getVideoEl_().style;
      videoElStyle.zIndex = '';
      videoElStyle.opacity = ''; // set the current projection to the default

      this.currentProjection_ = this.defaultProjection_; // reset the ios touch to click workaround

      if (this.iosRevertTouchToClick_) {
        this.iosRevertTouchToClick_();
      } // remove the old canvas


      if (this.renderedCanvas) {
        this.renderedCanvas.parentNode.removeChild(this.renderedCanvas);
      }

      if (this.animationFrameId_) {
        this.cancelAnimationFrame(this.animationFrameId_);
      }

      this.initialized_ = false;
    };

    _proto.dispose = function dispose() {
      _Plugin.prototype.dispose.call(this);

      this.reset();
    };

    _proto.polyfillVersion = function polyfillVersion() {
      return WebVRPolyfill.version;
    };

    return VR;
  }(Plugin);

  VR.prototype.setTimeout = Component.prototype.setTimeout;
  VR.prototype.clearTimeout = Component.prototype.clearTimeout;
  VR.VERSION = version;
  videojs.registerPlugin('vr', VR);

  return VR;

}));