hardened_malloc/h_malloc.c
2024-10-12 03:17:44 -04:00

2191 lines
67 KiB
C

#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <stdatomic.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include "third_party/libdivide.h"
#include "h_malloc.h"
#include "memory.h"
#include "memtag.h"
#include "mutex.h"
#include "pages.h"
#include "random.h"
#include "util.h"
#ifdef USE_PKEY
#include <sys/mman.h>
#endif
#define SLAB_QUARANTINE (SLAB_QUARANTINE_RANDOM_LENGTH > 0 || SLAB_QUARANTINE_QUEUE_LENGTH > 0)
#define REGION_QUARANTINE (REGION_QUARANTINE_RANDOM_LENGTH > 0 || REGION_QUARANTINE_QUEUE_LENGTH > 0)
#define MREMAP_MOVE_THRESHOLD ((size_t)32 * 1024 * 1024)
static_assert(sizeof(void *) == 8, "64-bit only");
static_assert(!WRITE_AFTER_FREE_CHECK || ZERO_ON_FREE, "WRITE_AFTER_FREE_CHECK depends on ZERO_ON_FREE");
static_assert(SLAB_QUARANTINE_RANDOM_LENGTH >= 0 && SLAB_QUARANTINE_RANDOM_LENGTH <= 65536,
"invalid slab quarantine random length");
static_assert(SLAB_QUARANTINE_QUEUE_LENGTH >= 0 && SLAB_QUARANTINE_QUEUE_LENGTH <= 65536,
"invalid slab quarantine queue length");
static_assert(REGION_QUARANTINE_RANDOM_LENGTH >= 0 && REGION_QUARANTINE_RANDOM_LENGTH <= 65536,
"invalid region quarantine random length");
static_assert(REGION_QUARANTINE_QUEUE_LENGTH >= 0 && REGION_QUARANTINE_QUEUE_LENGTH <= 65536,
"invalid region quarantine queue length");
static_assert(FREE_SLABS_QUARANTINE_RANDOM_LENGTH >= 0 && FREE_SLABS_QUARANTINE_RANDOM_LENGTH <= 65536,
"invalid free slabs quarantine random length");
static_assert(GUARD_SLABS_INTERVAL >= 1, "invalid guard slabs interval (minimum 1)");
static_assert(GUARD_SIZE_DIVISOR >= 1, "invalid guard size divisor (minimum 1)");
static_assert(CONFIG_CLASS_REGION_SIZE >= 1048576, "invalid class region size (minimum 1048576)");
static_assert(CONFIG_CLASS_REGION_SIZE <= 1099511627776, "invalid class region size (maximum 1099511627776)");
static_assert(REGION_QUARANTINE_SKIP_THRESHOLD >= 0,
"invalid region quarantine skip threshold (minimum 0)");
static_assert(MREMAP_MOVE_THRESHOLD >= REGION_QUARANTINE_SKIP_THRESHOLD,
"mremap move threshold must be above region quarantine limit");
// either sizeof(u64) or 0
static const size_t canary_size = SLAB_CANARY ? sizeof(u64) : 0;
static_assert(N_ARENA >= 1, "must have at least 1 arena");
static_assert(N_ARENA <= 256, "maximum number of arenas is currently 256");
#define CACHELINE_SIZE 64
#if N_ARENA > 1
__attribute__((tls_model("initial-exec")))
static _Thread_local unsigned thread_arena = N_ARENA;
static atomic_uint thread_arena_counter = 0;
#else
static const unsigned thread_arena = 0;
#endif
static union {
struct {
void *slab_region_start;
void *_Atomic slab_region_end;
struct size_class *size_class_metadata[N_ARENA];
struct region_allocator *region_allocator;
struct region_metadata *regions[2];
#ifdef USE_PKEY
int metadata_pkey;
#endif
#ifdef MEMTAG
bool is_memtag_disabled;
#endif
};
char padding[PAGE_SIZE];
} ro __attribute__((aligned(PAGE_SIZE)));
static inline void *get_slab_region_end(void) {
return atomic_load_explicit(&ro.slab_region_end, memory_order_acquire);
}
#ifdef MEMTAG
static inline bool is_memtag_enabled(void) {
return !ro.is_memtag_disabled;
}
#endif
#define SLAB_METADATA_COUNT
struct slab_metadata {
u64 bitmap[4];
struct slab_metadata *next;
struct slab_metadata *prev;
#if SLAB_CANARY
u64 canary_value;
#endif
#ifdef SLAB_METADATA_COUNT
u16 count;
#endif
#if SLAB_QUARANTINE
u64 quarantine_bitmap[4];
#endif
#ifdef HAS_ARM_MTE
// arm_mte_tags is used as a u4 array (MTE tags are 4-bit wide)
//
// Its size is calculated by the following formula:
// (MAX_SLAB_SLOT_COUNT + 2) / 2
// MAX_SLAB_SLOT_COUNT is currently 256, 2 extra slots are needed for branchless handling of
// edge slots in tag_and_clear_slab_slot()
//
// It's intentionally placed at the end of struct to improve locality: for most size classes,
// slot count is far lower than MAX_SLAB_SLOT_COUNT.
u8 arm_mte_tags[129];
#endif
};
static const size_t min_align = 16;
#define MIN_SLAB_SIZE_CLASS_SHIFT 4
#if !CONFIG_EXTENDED_SIZE_CLASSES
static const size_t max_slab_size_class = 16384;
#define MAX_SLAB_SIZE_CLASS_SHIFT 14
// limit on the number of cached empty slabs before attempting purging instead
static const size_t max_empty_slabs_total = max_slab_size_class * 4;
#else
static const size_t max_slab_size_class = 131072;
#define MAX_SLAB_SIZE_CLASS_SHIFT 17
// limit on the number of cached empty slabs before attempting purging instead
static const size_t max_empty_slabs_total = max_slab_size_class;
#endif
#if SLAB_QUARANTINE && CONFIG_EXTENDED_SIZE_CLASSES
static const size_t min_extended_size_class = 20480;
#endif
static const u32 size_classes[] = {
/* 0 */ 0,
/* 16 */ 16, 32, 48, 64, 80, 96, 112, 128,
/* 32 */ 160, 192, 224, 256,
/* 64 */ 320, 384, 448, 512,
/* 128 */ 640, 768, 896, 1024,
/* 256 */ 1280, 1536, 1792, 2048,
/* 512 */ 2560, 3072, 3584, 4096,
/* 1024 */ 5120, 6144, 7168, 8192,
/* 2048 */ 10240, 12288, 14336, 16384,
#if CONFIG_EXTENDED_SIZE_CLASSES
/* 4096 */ 20480, 24576, 28672, 32768,
/* 8192 */ 40960, 49152, 57344, 65536,
/* 16384 */ 81920, 98304, 114688, 131072,
#endif
};
static const u16 size_class_slots[] = {
/* 0 */ 256,
/* 16 */ 256, 128, 85, 64, 51, 42, 36, 64,
/* 32 */ 51, 64, 54, 64,
/* 64 */ 64, 64, 64, 64,
/* 128 */ 64, 64, 64, 64,
/* 256 */ 16, 16, 16, 16,
/* 512 */ 8, 8, 8, 8,
/* 1024 */ 8, 8, 8, 8,
/* 2048 */ 6, 5, 4, 4,
#if CONFIG_EXTENDED_SIZE_CLASSES
/* 4096 */ 1, 1, 1, 1,
/* 8192 */ 1, 1, 1, 1,
/* 16384 */ 1, 1, 1, 1,
#endif
};
static size_t get_slots(unsigned class) {
return size_class_slots[class];
}
static const char *const size_class_labels[] = {
/* 0 */ "malloc 0",
/* 16 */ "malloc 16", "malloc 32", "malloc 48", "malloc 64",
/* 16 */ "malloc 80", "malloc 96", "malloc 112", "malloc 128",
/* 32 */ "malloc 160", "malloc 192", "malloc 224", "malloc 256",
/* 64 */ "malloc 320", "malloc 384", "malloc 448", "malloc 512",
/* 128 */ "malloc 640", "malloc 768", "malloc 896", "malloc 1024",
/* 256 */ "malloc 1280", "malloc 1536", "malloc 1792", "malloc 2048",
/* 512 */ "malloc 2560", "malloc 3072", "malloc 3584", "malloc 4096",
/* 1024 */ "malloc 5120", "malloc 6144", "malloc 7168", "malloc 8192",
/* 2048 */ "malloc 10240", "malloc 12288", "malloc 14336", "malloc 16384",
#if CONFIG_EXTENDED_SIZE_CLASSES
/* 4096 */ "malloc 20480", "malloc 24576", "malloc 28672", "malloc 32768",
/* 8192 */ "malloc 40960", "malloc 49152", "malloc 57344", "malloc 65536",
/* 16384 */ "malloc 81920", "malloc 98304", "malloc 114688", "malloc 131072",
#endif
};
static void label_slab(void *slab, size_t slab_size, unsigned class) {
memory_set_name(slab, slab_size, size_class_labels[class]);
}
#define N_SIZE_CLASSES (sizeof(size_classes) / sizeof(size_classes[0]))
struct size_info {
size_t size;
size_t class;
};
static inline struct size_info get_size_info(size_t size) {
if (unlikely(size == 0)) {
return (struct size_info){0, 0};
}
// size <= 64 is needed for correctness and raising it to size <= 128 is an optimization
if (size <= 128) {
return (struct size_info){align(size, 16), ((size - 1) >> 4) + 1};
}
static const size_t initial_spacing_multiplier = 5;
static const size_t special_small_sizes = 5; // 0, 16, 32, 48, 64
size_t spacing_class_shift = log2u64(size - 1) - 2;
size_t spacing_class = 1ULL << spacing_class_shift;
size_t real_size = align(size, spacing_class);
size_t spacing_class_index = (real_size >> spacing_class_shift) - initial_spacing_multiplier;
size_t index = (spacing_class_shift - 4) * 4 + special_small_sizes + spacing_class_index;
return (struct size_info){real_size, index};
}
// alignment must be a power of 2 <= PAGE_SIZE since slabs are only page aligned
static inline struct size_info get_size_info_align(size_t size, size_t alignment) {
for (unsigned class = 1; class < N_SIZE_CLASSES; class++) {
size_t real_size = size_classes[class];
if (size <= real_size && !(real_size & (alignment - 1))) {
return (struct size_info){real_size, class};
}
}
fatal_error("invalid size for slabs");
}
static size_t get_slab_size(size_t slots, size_t size) {
return page_align(slots * size);
}
struct __attribute__((aligned(CACHELINE_SIZE))) size_class {
struct mutex lock;
void *class_region_start;
struct slab_metadata *slab_info;
struct libdivide_u32_t size_divisor;
struct libdivide_u64_t slab_size_divisor;
#if SLAB_QUARANTINE_RANDOM_LENGTH > 0
void *quarantine_random[SLAB_QUARANTINE_RANDOM_LENGTH << (MAX_SLAB_SIZE_CLASS_SHIFT - MIN_SLAB_SIZE_CLASS_SHIFT)];
#endif
#if SLAB_QUARANTINE_QUEUE_LENGTH > 0
void *quarantine_queue[SLAB_QUARANTINE_QUEUE_LENGTH << (MAX_SLAB_SIZE_CLASS_SHIFT - MIN_SLAB_SIZE_CLASS_SHIFT)];
size_t quarantine_queue_index;
#endif
// slabs with at least one allocated slot and at least one free slot
//
// LIFO doubly-linked list
struct slab_metadata *partial_slabs;
// slabs without allocated slots that are cached for near-term usage
//
// LIFO singly-linked list
struct slab_metadata *empty_slabs;
size_t empty_slabs_total; // length * slab_size
// slabs without allocated slots that are purged and memory protected
//
// FIFO singly-linked list
struct slab_metadata *free_slabs_head;
struct slab_metadata *free_slabs_tail;
struct slab_metadata *free_slabs_quarantine[FREE_SLABS_QUARANTINE_RANDOM_LENGTH];
#if CONFIG_STATS
u64 nmalloc; // may wrap (per jemalloc API)
u64 ndalloc; // may wrap (per jemalloc API)
size_t allocated;
size_t slab_allocated;
#endif
struct random_state rng;
size_t metadata_allocated;
size_t metadata_count;
size_t metadata_count_unguarded;
};
#define CLASS_REGION_SIZE (size_t)CONFIG_CLASS_REGION_SIZE
#define REAL_CLASS_REGION_SIZE (CLASS_REGION_SIZE * 2)
#define ARENA_SIZE (REAL_CLASS_REGION_SIZE * N_SIZE_CLASSES)
static const size_t slab_region_size = ARENA_SIZE * N_ARENA;
static_assert(PAGE_SIZE == 4096, "bitmap handling will need adjustment for other page sizes");
static void *get_slab(const struct size_class *c, size_t slab_size, const struct slab_metadata *metadata) {
size_t index = metadata - c->slab_info;
return (char *)c->class_region_start + (index * slab_size);
}
#define MAX_METADATA_MAX (CLASS_REGION_SIZE / PAGE_SIZE)
static size_t get_metadata_max(size_t slab_size) {
return CLASS_REGION_SIZE / slab_size;
}
static struct slab_metadata *alloc_metadata(struct size_class *c, size_t slab_size, bool non_zero_size) {
if (unlikely(c->metadata_count >= c->metadata_allocated)) {
size_t metadata_max = get_metadata_max(slab_size);
if (unlikely(c->metadata_count >= metadata_max)) {
errno = ENOMEM;
return NULL;
}
size_t allocate = max(c->metadata_allocated * 2, PAGE_SIZE / sizeof(struct slab_metadata));
if (allocate > metadata_max) {
allocate = metadata_max;
}
if (unlikely(memory_protect_rw_metadata(c->slab_info, allocate * sizeof(struct slab_metadata)))) {
return NULL;
}
c->metadata_allocated = allocate;
}
struct slab_metadata *metadata = c->slab_info + c->metadata_count;
void *slab = get_slab(c, slab_size, metadata);
if (non_zero_size && memory_protect_rw(slab, slab_size)) {
return NULL;
}
c->metadata_count++;
c->metadata_count_unguarded++;
if (c->metadata_count_unguarded >= GUARD_SLABS_INTERVAL) {
c->metadata_count++;
c->metadata_count_unguarded = 0;
}
return metadata;
}
static void set_used_slot(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / U64_WIDTH;
metadata->bitmap[bucket] |= 1UL << (index - bucket * U64_WIDTH);
#ifdef SLAB_METADATA_COUNT
metadata->count++;
#endif
}
static void clear_used_slot(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / U64_WIDTH;
metadata->bitmap[bucket] &= ~(1UL << (index - bucket * U64_WIDTH));
#ifdef SLAB_METADATA_COUNT
metadata->count--;
#endif
}
static bool is_used_slot(const struct slab_metadata *metadata, size_t index) {
size_t bucket = index / U64_WIDTH;
return (metadata->bitmap[bucket] >> (index - bucket * U64_WIDTH)) & 1UL;
}
#if SLAB_QUARANTINE
static void set_quarantine_slot(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / U64_WIDTH;
metadata->quarantine_bitmap[bucket] |= 1UL << (index - bucket * U64_WIDTH);
}
static void clear_quarantine_slot(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / U64_WIDTH;
metadata->quarantine_bitmap[bucket] &= ~(1UL << (index - bucket * U64_WIDTH));
}
static bool is_quarantine_slot(const struct slab_metadata *metadata, size_t index) {
size_t bucket = index / U64_WIDTH;
return (metadata->quarantine_bitmap[bucket] >> (index - bucket * U64_WIDTH)) & 1UL;
}
#endif
static u64 get_mask(size_t slots) {
return slots < U64_WIDTH ? ~0UL << slots : 0;
}
static size_t get_free_slot(struct random_state *rng, size_t slots, const struct slab_metadata *metadata) {
if (SLOT_RANDOMIZE) {
// randomize start location for linear search (uniform random choice is too slow)
size_t random_index = get_random_u16_uniform(rng, slots);
size_t first_bitmap = random_index / U64_WIDTH;
u64 random_split = ~(~0UL << (random_index - first_bitmap * U64_WIDTH));
size_t i = first_bitmap;
u64 masked = metadata->bitmap[i];
masked |= random_split;
for (;;) {
if (i == slots / U64_WIDTH) {
masked |= get_mask(slots - i * U64_WIDTH);
}
if (masked != ~0UL) {
return ffz64(masked) - 1 + i * U64_WIDTH;
}
i = i == (slots - 1) / U64_WIDTH ? 0 : i + 1;
masked = metadata->bitmap[i];
}
} else {
for (size_t i = 0; i <= (slots - 1) / U64_WIDTH; i++) {
u64 masked = metadata->bitmap[i];
if (i == (slots - 1) / U64_WIDTH) {
masked |= get_mask(slots - i * U64_WIDTH);
}
if (masked != ~0UL) {
return ffz64(masked) - 1 + i * U64_WIDTH;
}
}
}
fatal_error("no zero bits");
}
static bool has_free_slots(size_t slots, const struct slab_metadata *metadata) {
#ifdef SLAB_METADATA_COUNT
return metadata->count < slots;
#else
if (slots <= U64_WIDTH) {
u64 masked = metadata->bitmap[0] | get_mask(slots);
return masked != ~0UL;
}
if (slots <= U64_WIDTH * 2) {
u64 masked = metadata->bitmap[1] | get_mask(slots - U64_WIDTH);
return metadata->bitmap[0] != ~0UL || masked != ~0UL;
}
if (slots <= U64_WIDTH * 3) {
u64 masked = metadata->bitmap[2] | get_mask(slots - U64_WIDTH * 2);
return metadata->bitmap[0] != ~0UL || metadata->bitmap[1] != ~0UL || masked != ~0UL;
}
u64 masked = metadata->bitmap[3] | get_mask(slots - U64_WIDTH * 3);
return metadata->bitmap[0] != ~0UL || metadata->bitmap[1] != ~0UL || metadata->bitmap[2] != ~0UL || masked != ~0UL;
#endif
}
static bool is_free_slab(const struct slab_metadata *metadata) {
#ifdef SLAB_METADATA_COUNT
return !metadata->count;
#else
return !metadata->bitmap[0] && !metadata->bitmap[1] && !metadata->bitmap[2] &&
!metadata->bitmap[3];
#endif
}
static struct slab_metadata *get_metadata(const struct size_class *c, const void *p) {
size_t offset = (const char *)p - (const char *)c->class_region_start;
size_t index = libdivide_u64_do(offset, &c->slab_size_divisor);
// still caught without this check either as a read access violation or "double free"
if (unlikely(index >= c->metadata_allocated)) {
fatal_error("invalid free within a slab yet to be used");
}
return c->slab_info + index;
}
static void *slot_pointer(size_t size, void *slab, size_t slot) {
return (char *)slab + slot * size;
}
static void write_after_free_check(const char *p, size_t size) {
if (!WRITE_AFTER_FREE_CHECK) {
return;
}
#ifdef HAS_ARM_MTE
if (likely51(is_memtag_enabled())) {
return;
}
#endif
for (size_t i = 0; i < size; i += sizeof(u64)) {
if (unlikely(*(const u64 *)(const void *)(p + i))) {
fatal_error("detected write after free");
}
}
}
static void set_slab_canary_value(UNUSED struct slab_metadata *metadata, UNUSED struct random_state *rng) {
#if SLAB_CANARY
static const u64 canary_mask = __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ?
0xffffffffffffff00UL :
0x00ffffffffffffffUL;
metadata->canary_value = get_random_u64(rng) & canary_mask;
#ifdef HAS_ARM_MTE
if (unlikely(metadata->canary_value == 0)) {
// 0 is reserved to support disabling MTE at runtime (this is required on Android).
// When MTE is enabled, writing and reading of canaries is disabled, i.e. canary remains zeroed.
// After MTE is disabled, canaries that are set to 0 are ignored, since they wouldn't match
// slab's metadata->canary_value.
// 0x100 was chosen arbitrarily, and can be encoded as an immediate value on ARM by the compiler.
metadata->canary_value = 0x100;
}
#endif
#endif
}
static void set_canary(UNUSED const struct slab_metadata *metadata, UNUSED void *p, UNUSED size_t size) {
#if SLAB_CANARY
#ifdef HAS_ARM_MTE
if (likely51(is_memtag_enabled())) {
return;
}
#endif
memcpy((char *)p + size - canary_size, &metadata->canary_value, canary_size);
#endif
}
static void check_canary(UNUSED const struct slab_metadata *metadata, UNUSED const void *p, UNUSED size_t size) {
#if SLAB_CANARY
#ifdef HAS_ARM_MTE
if (likely51(is_memtag_enabled())) {
return;
}
#endif
u64 canary_value;
memcpy(&canary_value, (const char *)p + size - canary_size, canary_size);
#ifdef HAS_ARM_MTE
if (unlikely(canary_value == 0)) {
return;
}
#endif
if (unlikely(canary_value != metadata->canary_value)) {
fatal_error("canary corrupted");
}
#endif
}
static inline void stats_small_allocate(UNUSED struct size_class *c, UNUSED size_t size) {
#if CONFIG_STATS
c->allocated += size;
c->nmalloc++;
#endif
}
static inline void stats_small_deallocate(UNUSED struct size_class *c, UNUSED size_t size) {
#if CONFIG_STATS
c->allocated -= size;
c->ndalloc++;
#endif
}
static inline void stats_slab_allocate(UNUSED struct size_class *c, UNUSED size_t slab_size) {
#if CONFIG_STATS
c->slab_allocated += slab_size;
#endif
}
static inline void stats_slab_deallocate(UNUSED struct size_class *c, UNUSED size_t slab_size) {
#if CONFIG_STATS
c->slab_allocated -= slab_size;
#endif
}
#ifdef HAS_ARM_MTE
static void *tag_and_clear_slab_slot(struct slab_metadata *metadata, void *slot_ptr, size_t slot_idx, size_t slot_size) {
// arm_mte_tags is an array of 4-bit unsigned integers stored as u8 array (MTE tags are 4-bit wide)
//
// It stores the most recent tag for each slab slot, or 0 if the slot was never used.
// Slab indices in arm_mte_tags array are shifted to the right by 1, and size of this array
// is (MAX_SLAB_SLOT_COUNT + 2). This means that first and last values of arm_mte_tags array
// are always 0, which allows to handle edge slots in a branchless way when tag exclusion mask
// is constructed.
u8 *slot_tags = metadata->arm_mte_tags;
// tag exclusion mask
u64 tem = (1 << RESERVED_TAG);
// current or previous tag of left neighbor or 0 if there's no left neighbor or if it was never used
tem |= (1 << u4_arr_get(slot_tags, slot_idx));
// previous tag of this slot or 0 if it was never used
tem |= (1 << u4_arr_get(slot_tags, slot_idx + 1));
// current or previous tag of right neighbor or 0 if there's no right neighbor or if it was never used
tem |= (1 << u4_arr_get(slot_tags, slot_idx + 2));
void *tagged_ptr = arm_mte_create_random_tag(slot_ptr, tem);
// slot addresses and sizes are always aligned by 16
arm_mte_tag_and_clear_mem(tagged_ptr, slot_size);
// store new tag of this slot
u4_arr_set(slot_tags, slot_idx + 1, get_pointer_tag(tagged_ptr));
return tagged_ptr;
}
#endif
static inline void *allocate_small(unsigned arena, size_t requested_size) {
struct size_info info = get_size_info(requested_size);
size_t size = likely(info.size) ? info.size : 16;
struct size_class *c = &ro.size_class_metadata[arena][info.class];
size_t slots = get_slots(info.class);
size_t slab_size = get_slab_size(slots, size);
mutex_lock(&c->lock);
if (c->partial_slabs == NULL) {
if (c->empty_slabs != NULL) {
struct slab_metadata *metadata = c->empty_slabs;
c->empty_slabs = c->empty_slabs->next;
c->empty_slabs_total -= slab_size;
metadata->next = NULL;
metadata->prev = NULL;
c->partial_slabs = slots > 1 ? metadata : NULL;
void *slab = get_slab(c, slab_size, metadata);
size_t slot = get_free_slot(&c->rng, slots, metadata);
set_used_slot(metadata, slot);
void *p = slot_pointer(size, slab, slot);
if (requested_size) {
write_after_free_check(p, size - canary_size);
set_canary(metadata, p, size);
#ifdef HAS_ARM_MTE
if (likely51(is_memtag_enabled())) {
p = tag_and_clear_slab_slot(metadata, p, slot, size);
}
#endif
}
stats_small_allocate(c, size);
mutex_unlock(&c->lock);
return p;
}
if (c->free_slabs_head != NULL) {
struct slab_metadata *metadata = c->free_slabs_head;
set_slab_canary_value(metadata, &c->rng);
void *slab = get_slab(c, slab_size, metadata);
if (requested_size && memory_protect_rw(slab, slab_size)) {
mutex_unlock(&c->lock);
return NULL;
}
c->free_slabs_head = c->free_slabs_head->next;
if (c->free_slabs_head == NULL) {
c->free_slabs_tail = NULL;
}
metadata->next = NULL;
metadata->prev = NULL;
c->partial_slabs = slots > 1 ? metadata : NULL;
size_t slot = get_free_slot(&c->rng, slots, metadata);
set_used_slot(metadata, slot);
void *p = slot_pointer(size, slab, slot);
if (requested_size) {
set_canary(metadata, p, size);
#ifdef HAS_ARM_MTE
if (likely51(is_memtag_enabled())) {
p = tag_and_clear_slab_slot(metadata, p, slot, size);
}
#endif
}
stats_slab_allocate(c, slab_size);
stats_small_allocate(c, size);
mutex_unlock(&c->lock);
return p;
}
struct slab_metadata *metadata = alloc_metadata(c, slab_size, requested_size);
if (unlikely(metadata == NULL)) {
mutex_unlock(&c->lock);
return NULL;
}
set_slab_canary_value(metadata, &c->rng);
c->partial_slabs = slots > 1 ? metadata : NULL;
void *slab = get_slab(c, slab_size, metadata);
size_t slot = get_free_slot(&c->rng, slots, metadata);
set_used_slot(metadata, slot);
void *p = slot_pointer(size, slab, slot);
if (requested_size) {
set_canary(metadata, p, size);
#ifdef HAS_ARM_MTE
if (likely51(is_memtag_enabled())) {
p = tag_and_clear_slab_slot(metadata, p, slot, size);
}
#endif
}
stats_slab_allocate(c, slab_size);
stats_small_allocate(c, size);
mutex_unlock(&c->lock);
return p;
}
struct slab_metadata *metadata = c->partial_slabs;
size_t slot = get_free_slot(&c->rng, slots, metadata);
set_used_slot(metadata, slot);
if (!has_free_slots(slots, metadata)) {
c->partial_slabs = c->partial_slabs->next;
if (c->partial_slabs) {
c->partial_slabs->prev = NULL;
}
}
void *slab = get_slab(c, slab_size, metadata);
void *p = slot_pointer(size, slab, slot);
if (requested_size) {
write_after_free_check(p, size - canary_size);
set_canary(metadata, p, size);
#ifdef HAS_ARM_MTE
if (likely51(is_memtag_enabled())) {
p = tag_and_clear_slab_slot(metadata, p, slot, size);
}
#endif
}
stats_small_allocate(c, size);
mutex_unlock(&c->lock);
return p;
}
struct slab_size_class_info {
unsigned arena;
size_t class;
};
static struct slab_size_class_info slab_size_class(const void *p) {
size_t offset = (const char *)p - (const char *)ro.slab_region_start;
unsigned arena = 0;
if (N_ARENA > 1) {
arena = offset / ARENA_SIZE;
offset -= arena * ARENA_SIZE;
}
return (struct slab_size_class_info){arena, offset / REAL_CLASS_REGION_SIZE};
}
static size_t slab_usable_size(const void *p) {
return size_classes[slab_size_class(p).class];
}
static void enqueue_free_slab(struct size_class *c, struct slab_metadata *metadata) {
metadata->next = NULL;
static_assert(FREE_SLABS_QUARANTINE_RANDOM_LENGTH < (u16)-1, "free slabs quarantine too large");
size_t index = get_random_u16_uniform(&c->rng, FREE_SLABS_QUARANTINE_RANDOM_LENGTH);
struct slab_metadata *substitute = c->free_slabs_quarantine[index];
c->free_slabs_quarantine[index] = metadata;
if (substitute == NULL) {
return;
}
if (c->free_slabs_tail != NULL) {
c->free_slabs_tail->next = substitute;
} else {
c->free_slabs_head = substitute;
}
c->free_slabs_tail = substitute;
}
// preserves errno
static inline void deallocate_small(void *p, const size_t *expected_size) {
struct slab_size_class_info size_class_info = slab_size_class(p);
size_t class = size_class_info.class;
struct size_class *c = &ro.size_class_metadata[size_class_info.arena][class];
size_t size = size_classes[class];
if (expected_size && unlikely(size != *expected_size)) {
fatal_error("sized deallocation mismatch (small)");
}
bool is_zero_size = size == 0;
if (unlikely(is_zero_size)) {
size = 16;
}
size_t slots = get_slots(class);
size_t slab_size = get_slab_size(slots, size);
mutex_lock(&c->lock);
stats_small_deallocate(c, size);
struct slab_metadata *metadata = get_metadata(c, p);
void *slab = get_slab(c, slab_size, metadata);
size_t slot = libdivide_u32_do((char *)p - (char *)slab, &c->size_divisor);
if (unlikely(slot_pointer(size, slab, slot) != p)) {
fatal_error("invalid unaligned free");
}
if (unlikely(!is_used_slot(metadata, slot))) {
fatal_error("double free");
}
if (likely(!is_zero_size)) {
check_canary(metadata, p, size);
bool skip_zero = false;
#ifdef HAS_ARM_MTE
if (likely51(is_memtag_enabled())) {
arm_mte_tag_and_clear_mem(set_pointer_tag(p, RESERVED_TAG), size);
// metadata->arm_mte_tags is intentionally not updated, see tag_and_clear_slab_slot()
skip_zero = true;
}
#endif
if (ZERO_ON_FREE && !skip_zero) {
memset(p, 0, size - canary_size);
}
}
#if SLAB_QUARANTINE
if (unlikely(is_quarantine_slot(metadata, slot))) {
fatal_error("double free (quarantine)");
}
set_quarantine_slot(metadata, slot);
size_t quarantine_shift = clz64(size) - (63 - MAX_SLAB_SIZE_CLASS_SHIFT);
#if SLAB_QUARANTINE_RANDOM_LENGTH > 0
size_t slab_quarantine_random_length = SLAB_QUARANTINE_RANDOM_LENGTH << quarantine_shift;
size_t random_index = get_random_u16_uniform(&c->rng, slab_quarantine_random_length);
void *random_substitute = c->quarantine_random[random_index];
c->quarantine_random[random_index] = p;
if (random_substitute == NULL) {
mutex_unlock(&c->lock);
return;
}
p = random_substitute;
#endif
#if SLAB_QUARANTINE_QUEUE_LENGTH > 0
size_t slab_quarantine_queue_length = SLAB_QUARANTINE_QUEUE_LENGTH << quarantine_shift;
void *queue_substitute = c->quarantine_queue[c->quarantine_queue_index];
c->quarantine_queue[c->quarantine_queue_index] = p;
c->quarantine_queue_index = (c->quarantine_queue_index + 1) % slab_quarantine_queue_length;
if (queue_substitute == NULL) {
mutex_unlock(&c->lock);
return;
}
p = queue_substitute;
#endif
metadata = get_metadata(c, p);
slab = get_slab(c, slab_size, metadata);
slot = libdivide_u32_do((char *)p - (char *)slab, &c->size_divisor);
clear_quarantine_slot(metadata, slot);
#endif
// triggered even for slots == 1 and then undone below
if (!has_free_slots(slots, metadata)) {
metadata->next = c->partial_slabs;
metadata->prev = NULL;
if (c->partial_slabs) {
c->partial_slabs->prev = metadata;
}
c->partial_slabs = metadata;
}
clear_used_slot(metadata, slot);
if (is_free_slab(metadata)) {
if (metadata->prev) {
metadata->prev->next = metadata->next;
} else {
c->partial_slabs = metadata->next;
}
if (metadata->next) {
metadata->next->prev = metadata->prev;
}
metadata->prev = NULL;
if (c->empty_slabs_total + slab_size > max_empty_slabs_total) {
int saved_errno = errno;
if (!memory_map_fixed(slab, slab_size)) {
label_slab(slab, slab_size, class);
stats_slab_deallocate(c, slab_size);
enqueue_free_slab(c, metadata);
mutex_unlock(&c->lock);
return;
}
memory_purge(slab, slab_size);
errno = saved_errno;
// handle out-of-memory by putting it into the empty slabs list
}
metadata->next = c->empty_slabs;
c->empty_slabs = metadata;
c->empty_slabs_total += slab_size;
}
mutex_unlock(&c->lock);
}
struct region_metadata {
void *p;
size_t size;
size_t guard_size;
};
struct quarantine_info {
void *p;
size_t size;
};
#define INITIAL_REGION_TABLE_SIZE 128
#define MAX_REGION_TABLE_SIZE (CLASS_REGION_SIZE / PAGE_SIZE / sizeof(struct region_metadata))
struct region_allocator {
struct mutex lock;
struct region_metadata *regions;
size_t total;
size_t free;
#if CONFIG_STATS
size_t allocated;
#endif
#if REGION_QUARANTINE_RANDOM_LENGTH
struct quarantine_info quarantine_random[REGION_QUARANTINE_RANDOM_LENGTH];
#endif
#if REGION_QUARANTINE_QUEUE_LENGTH
struct quarantine_info quarantine_queue[REGION_QUARANTINE_QUEUE_LENGTH];
size_t quarantine_queue_index;
#endif
struct random_state rng;
};
static inline void stats_large_allocate(UNUSED struct region_allocator *ra, UNUSED size_t size) {
#if CONFIG_STATS
ra->allocated += size;
#endif
}
static inline void stats_large_deallocate(UNUSED struct region_allocator *ra, UNUSED size_t size) {
#if CONFIG_STATS
ra->allocated -= size;
#endif
}
struct __attribute__((aligned(PAGE_SIZE))) slab_info_mapping {
struct slab_metadata slab_info[MAX_METADATA_MAX];
};
struct __attribute__((aligned(PAGE_SIZE))) allocator_state {
struct size_class size_class_metadata[N_ARENA][N_SIZE_CLASSES];
struct region_allocator region_allocator;
// padding until next page boundary for mprotect
struct region_metadata regions_a[MAX_REGION_TABLE_SIZE] __attribute__((aligned(PAGE_SIZE)));
// padding until next page boundary for mprotect
struct region_metadata regions_b[MAX_REGION_TABLE_SIZE] __attribute__((aligned(PAGE_SIZE)));
// padding until next page boundary for mprotect
struct slab_info_mapping slab_info_mapping[N_ARENA][N_SIZE_CLASSES];
// padding until next page boundary for mprotect
};
static void regions_quarantine_deallocate_pages(void *p, size_t size, size_t guard_size) {
if (!REGION_QUARANTINE || size >= REGION_QUARANTINE_SKIP_THRESHOLD) {
deallocate_pages(p, size, guard_size);
return;
}
if (unlikely(memory_map_fixed(p, size))) {
memory_purge(p, size);
} else {
memory_set_name(p, size, "malloc large quarantine");
}
struct quarantine_info target =
(struct quarantine_info){(char *)p - guard_size, size + guard_size * 2};
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
#if REGION_QUARANTINE_RANDOM_LENGTH
size_t index = get_random_u64_uniform(&ra->rng, REGION_QUARANTINE_RANDOM_LENGTH);
struct quarantine_info random_substitute = ra->quarantine_random[index];
ra->quarantine_random[index] = target;
if (random_substitute.p == NULL) {
mutex_unlock(&ra->lock);
return;
}
target = random_substitute;
#endif
#if REGION_QUARANTINE_QUEUE_LENGTH
struct quarantine_info queue_substitute = ra->quarantine_queue[ra->quarantine_queue_index];
ra->quarantine_queue[ra->quarantine_queue_index] = target;
ra->quarantine_queue_index = (ra->quarantine_queue_index + 1) % REGION_QUARANTINE_QUEUE_LENGTH;
target = queue_substitute;
#endif
mutex_unlock(&ra->lock);
if (target.p != NULL) {
memory_unmap(target.p, target.size);
}
}
static int regions_grow(void) {
struct region_allocator *ra = ro.region_allocator;
if (ra->total > SIZE_MAX / sizeof(struct region_metadata) / 2) {
return 1;
}
size_t newtotal = ra->total * 2;
size_t newsize = newtotal * sizeof(struct region_metadata);
size_t mask = newtotal - 1;
if (newtotal > MAX_REGION_TABLE_SIZE) {
return 1;
}
struct region_metadata *p = ra->regions == ro.regions[0] ?
ro.regions[1] : ro.regions[0];
if (memory_protect_rw_metadata(p, newsize)) {
return 1;
}
for (size_t i = 0; i < ra->total; i++) {
const void *q = ra->regions[i].p;
if (q != NULL) {
size_t index = hash_page(q) & mask;
while (p[index].p != NULL) {
index = (index - 1) & mask;
}
p[index] = ra->regions[i];
}
}
memory_map_fixed(ra->regions, ra->total * sizeof(struct region_metadata));
memory_set_name(ra->regions, ra->total * sizeof(struct region_metadata), "malloc allocator_state");
ra->free = ra->free + ra->total;
ra->total = newtotal;
ra->regions = p;
return 0;
}
static int regions_insert(void *p, size_t size, size_t guard_size) {
struct region_allocator *ra = ro.region_allocator;
if (ra->free * 4 < ra->total) {
if (regions_grow()) {
return 1;
}
}
size_t mask = ra->total - 1;
size_t index = hash_page(p) & mask;
void *q = ra->regions[index].p;
while (q != NULL) {
index = (index - 1) & mask;
q = ra->regions[index].p;
}
ra->regions[index].p = p;
ra->regions[index].size = size;
ra->regions[index].guard_size = guard_size;
ra->free--;
return 0;
}
static struct region_metadata *regions_find(const void *p) {
const struct region_allocator *ra = ro.region_allocator;
size_t mask = ra->total - 1;
size_t index = hash_page(p) & mask;
void *r = ra->regions[index].p;
while (r != p && r != NULL) {
index = (index - 1) & mask;
r = ra->regions[index].p;
}
return (r == p && r != NULL) ? &ra->regions[index] : NULL;
}
static void regions_delete(const struct region_metadata *region) {
struct region_allocator *ra = ro.region_allocator;
size_t mask = ra->total - 1;
ra->free++;
size_t i = region - ra->regions;
for (;;) {
ra->regions[i].p = NULL;
ra->regions[i].size = 0;
size_t j = i;
for (;;) {
i = (i - 1) & mask;
if (ra->regions[i].p == NULL) {
return;
}
size_t r = hash_page(ra->regions[i].p) & mask;
if ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r)) {
continue;
}
ra->regions[j] = ra->regions[i];
break;
}
}
}
int get_metadata_key(void) {
#ifdef USE_PKEY
return ro.metadata_pkey;
#else
return -1;
#endif
}
static inline void thread_set_metadata_access(UNUSED unsigned access) {
#ifdef USE_PKEY
if (ro.metadata_pkey == -1) {
return;
}
pkey_set(ro.metadata_pkey, access);
#endif
}
static inline void thread_unseal_metadata(void) {
thread_set_metadata_access(0);
}
static inline void thread_seal_metadata(void) {
#ifdef USE_PKEY
thread_set_metadata_access(PKEY_DISABLE_ACCESS);
#endif
}
static void full_lock(void) {
thread_unseal_metadata();
mutex_lock(&ro.region_allocator->lock);
for (unsigned arena = 0; arena < N_ARENA; arena++) {
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
mutex_lock(&ro.size_class_metadata[arena][class].lock);
}
}
thread_seal_metadata();
}
static void full_unlock(void) {
thread_unseal_metadata();
mutex_unlock(&ro.region_allocator->lock);
for (unsigned arena = 0; arena < N_ARENA; arena++) {
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
mutex_unlock(&ro.size_class_metadata[arena][class].lock);
}
}
thread_seal_metadata();
}
static void post_fork_child(void) {
thread_unseal_metadata();
mutex_init(&ro.region_allocator->lock);
random_state_init(&ro.region_allocator->rng);
for (unsigned arena = 0; arena < N_ARENA; arena++) {
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
struct size_class *c = &ro.size_class_metadata[arena][class];
mutex_init(&c->lock);
random_state_init(&c->rng);
}
}
thread_seal_metadata();
}
static inline bool is_init(void) {
return get_slab_region_end() != NULL;
}
static inline void enforce_init(void) {
if (unlikely(!is_init())) {
fatal_error("invalid uninitialized allocator usage");
}
}
static struct mutex init_lock = MUTEX_INITIALIZER;
COLD static void init_slow_path(void) {
mutex_lock(&init_lock);
if (unlikely(is_init())) {
mutex_unlock(&init_lock);
return;
}
#ifdef USE_PKEY
ro.metadata_pkey = pkey_alloc(0, 0);
#endif
if (unlikely(sysconf(_SC_PAGESIZE) != PAGE_SIZE)) {
fatal_error("runtime page size does not match compile-time page size which is not supported");
}
struct random_state *rng = allocate_pages(sizeof(struct random_state), PAGE_SIZE, true, "malloc init rng");
if (unlikely(rng == NULL)) {
fatal_error("failed to allocate init rng");
}
random_state_init(rng);
size_t metadata_guard_size =
(get_random_u64_uniform(rng, REAL_CLASS_REGION_SIZE / PAGE_SIZE) + 1) * PAGE_SIZE;
struct allocator_state *allocator_state =
allocate_pages(sizeof(struct allocator_state), metadata_guard_size, false, "malloc allocator_state");
if (unlikely(allocator_state == NULL)) {
fatal_error("failed to reserve allocator state");
}
if (unlikely(memory_protect_rw_metadata(allocator_state, offsetof(struct allocator_state, regions_a)))) {
fatal_error("failed to unprotect allocator state");
}
ro.region_allocator = &allocator_state->region_allocator;
struct region_allocator *ra = ro.region_allocator;
mutex_init(&ra->lock);
random_state_init_from_random_state(&ra->rng, rng);
ro.regions[0] = allocator_state->regions_a;
ro.regions[1] = allocator_state->regions_b;
ra->regions = ro.regions[0];
ra->total = INITIAL_REGION_TABLE_SIZE;
ra->free = INITIAL_REGION_TABLE_SIZE;
if (unlikely(memory_protect_rw_metadata(ra->regions, ra->total * sizeof(struct region_metadata)))) {
fatal_error("failed to unprotect memory for regions table");
}
#ifdef HAS_ARM_MTE
if (likely51(is_memtag_enabled())) {
ro.slab_region_start = memory_map_mte(slab_region_size);
} else {
ro.slab_region_start = memory_map(slab_region_size);
}
#else
ro.slab_region_start = memory_map(slab_region_size);
#endif
if (unlikely(ro.slab_region_start == NULL)) {
fatal_error("failed to allocate slab region");
}
void *slab_region_end = (char *)ro.slab_region_start + slab_region_size;
memory_set_name(ro.slab_region_start, slab_region_size, "malloc slab region gap");
for (unsigned arena = 0; arena < N_ARENA; arena++) {
ro.size_class_metadata[arena] = allocator_state->size_class_metadata[arena];
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
struct size_class *c = &ro.size_class_metadata[arena][class];
mutex_init(&c->lock);
random_state_init_from_random_state(&c->rng, rng);
size_t bound = (REAL_CLASS_REGION_SIZE - CLASS_REGION_SIZE) / PAGE_SIZE - 1;
size_t gap = (get_random_u64_uniform(rng, bound) + 1) * PAGE_SIZE;
c->class_region_start = (char *)ro.slab_region_start + ARENA_SIZE * arena + REAL_CLASS_REGION_SIZE * class + gap;
label_slab(c->class_region_start, CLASS_REGION_SIZE, class);
size_t size = size_classes[class];
if (size == 0) {
size = 16;
}
c->size_divisor = libdivide_u32_gen(size);
size_t slab_size = get_slab_size(get_slots(class), size);
c->slab_size_divisor = libdivide_u64_gen(slab_size);
c->slab_info = allocator_state->slab_info_mapping[arena][class].slab_info;
}
}
deallocate_pages(rng, sizeof(struct random_state), PAGE_SIZE);
atomic_store_explicit(&ro.slab_region_end, slab_region_end, memory_order_release);
if (unlikely(memory_protect_ro(&ro, sizeof(ro)))) {
fatal_error("failed to protect allocator data");
}
memory_set_name(&ro, sizeof(ro), "malloc read-only after init");
mutex_unlock(&init_lock);
// may allocate, so wait until the allocator is initialized to avoid deadlocking
if (unlikely(pthread_atfork(full_lock, full_unlock, post_fork_child))) {
fatal_error("pthread_atfork failed");
}
}
static inline unsigned init(void) {
unsigned arena = thread_arena;
#if N_ARENA > 1
if (likely(arena < N_ARENA)) {
return arena;
}
thread_arena = arena = thread_arena_counter++ % N_ARENA;
#endif
if (unlikely(!is_init())) {
init_slow_path();
}
return arena;
}
#if CONFIG_SELF_INIT
// trigger early initialization to set up pthread_atfork and protect state as soon as possible
COLD __attribute__((constructor(101))) static void trigger_early_init(void) {
// avoid calling init directly to skip it if this isn't the malloc implementation
h_free(h_malloc(16));
}
#endif
// Returns 0 on overflow.
static size_t get_large_size_class(size_t size) {
if (CONFIG_LARGE_SIZE_CLASSES) {
// Continue small size class growth pattern of power of 2 spacing classes:
//
// 4 KiB [20 KiB, 24 KiB, 28 KiB, 32 KiB]
// 8 KiB [40 KiB, 48 KiB, 54 KiB, 64 KiB]
// 16 KiB [80 KiB, 96 KiB, 112 KiB, 128 KiB]
// 32 KiB [160 KiB, 192 KiB, 224 KiB, 256 KiB]
// 512 KiB [2560 KiB, 3 MiB, 3584 KiB, 4 MiB]
// 1 MiB [5 MiB, 6 MiB, 7 MiB, 8 MiB]
// etc.
return get_size_info(max(size, (size_t)PAGE_SIZE)).size;
}
return page_align(size);
}
static size_t get_guard_size(struct random_state *state, size_t size) {
return (get_random_u64_uniform(state, size / PAGE_SIZE / GUARD_SIZE_DIVISOR) + 1) * PAGE_SIZE;
}
static void *allocate_large(size_t size) {
size = get_large_size_class(size);
if (unlikely(!size)) {
errno = ENOMEM;
return NULL;
}
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
size_t guard_size = get_guard_size(&ra->rng, size);
mutex_unlock(&ra->lock);
void *p = allocate_pages(size, guard_size, true, "malloc large");
if (p == NULL) {
return NULL;
}
mutex_lock(&ra->lock);
if (unlikely(regions_insert(p, size, guard_size))) {
mutex_unlock(&ra->lock);
deallocate_pages(p, size, guard_size);
return NULL;
}
stats_large_allocate(ra, size);
mutex_unlock(&ra->lock);
return p;
}
static inline void *allocate(unsigned arena, size_t size) {
return size <= max_slab_size_class ? allocate_small(arena, size) : allocate_large(size);
}
static void deallocate_large(void *p, const size_t *expected_size) {
enforce_init();
thread_unseal_metadata();
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
const struct region_metadata *region = regions_find(p);
if (unlikely(region == NULL)) {
fatal_error("invalid free");
}
size_t size = region->size;
if (expected_size && unlikely(size != get_large_size_class(*expected_size))) {
fatal_error("sized deallocation mismatch (large)");
}
size_t guard_size = region->guard_size;
regions_delete(region);
stats_large_deallocate(ra, size);
mutex_unlock(&ra->lock);
regions_quarantine_deallocate_pages(p, size, guard_size);
}
static int allocate_aligned(unsigned arena, void **memptr, size_t alignment, size_t size, size_t min_alignment) {
if ((alignment - 1) & alignment || alignment < min_alignment) {
return EINVAL;
}
if (alignment <= PAGE_SIZE) {
if (size <= max_slab_size_class && alignment > min_align) {
size = get_size_info_align(size, alignment).size;
}
void *p = allocate(arena, size);
if (unlikely(p == NULL)) {
return ENOMEM;
}
*memptr = p;
return 0;
}
size = get_large_size_class(size);
if (unlikely(!size)) {
return ENOMEM;
}
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
size_t guard_size = get_guard_size(&ra->rng, size);
mutex_unlock(&ra->lock);
void *p = allocate_pages_aligned(size, alignment, guard_size, "malloc large");
if (unlikely(p == NULL)) {
return ENOMEM;
}
mutex_lock(&ra->lock);
if (unlikely(regions_insert(p, size, guard_size))) {
mutex_unlock(&ra->lock);
deallocate_pages(p, size, guard_size);
return ENOMEM;
}
mutex_unlock(&ra->lock);
*memptr = p;
return 0;
}
static size_t adjust_size_for_canary(size_t size) {
if (size > 0 && size <= max_slab_size_class) {
return size + canary_size;
}
return size;
}
static int alloc_aligned(void **memptr, size_t alignment, size_t size, size_t min_alignment) {
unsigned arena = init();
thread_unseal_metadata();
size = adjust_size_for_canary(size);
int ret = allocate_aligned(arena, memptr, alignment, size, min_alignment);
thread_seal_metadata();
return ret;
}
static void *alloc_aligned_simple(size_t alignment, size_t size) {
void *ptr;
int ret = alloc_aligned(&ptr, alignment, size, 1);
if (unlikely(ret)) {
errno = ret;
return NULL;
}
return ptr;
}
static inline void *alloc(size_t size) {
unsigned arena = init();
thread_unseal_metadata();
void *p = allocate(arena, size);
thread_seal_metadata();
return p;
}
EXPORT void *h_malloc(size_t size) {
size = adjust_size_for_canary(size);
return alloc(size);
}
EXPORT void *h_calloc(size_t nmemb, size_t size) {
size_t total_size;
if (unlikely(__builtin_mul_overflow(nmemb, size, &total_size))) {
errno = ENOMEM;
return NULL;
}
total_size = adjust_size_for_canary(total_size);
void *p = alloc(total_size);
if (!ZERO_ON_FREE && likely(p != NULL) && total_size && total_size <= max_slab_size_class) {
memset(p, 0, total_size - canary_size);
}
#ifdef HAS_ARM_MTE
// use an assert instead of adding a conditional to memset() above (freed memory is always
// zeroed when MTE is enabled)
static_assert(ZERO_ON_FREE, "disabling ZERO_ON_FREE reduces performance when ARM MTE is enabled");
#endif
return p;
}
EXPORT void *h_realloc(void *old, size_t size) {
size = adjust_size_for_canary(size);
if (old == NULL) {
return alloc(size);
}
if (size > max_slab_size_class) {
size = get_large_size_class(size);
if (unlikely(!size)) {
errno = ENOMEM;
return NULL;
}
}
void *old_orig = old;
old = untag_pointer(old);
size_t old_size;
if (old < get_slab_region_end() && old >= ro.slab_region_start) {
old_size = slab_usable_size(old);
if (size <= max_slab_size_class && get_size_info(size).size == old_size) {
return old_orig;
}
thread_unseal_metadata();
} else {
enforce_init();
thread_unseal_metadata();
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
const struct region_metadata *region = regions_find(old);
if (unlikely(region == NULL)) {
fatal_error("invalid realloc");
}
old_size = region->size;
size_t old_guard_size = region->guard_size;
if (old_size == size) {
mutex_unlock(&ra->lock);
thread_seal_metadata();
return old;
}
mutex_unlock(&ra->lock);
if (size > max_slab_size_class) {
// in-place shrink
if (size < old_size) {
void *new_end = (char *)old + size;
if (memory_map_fixed(new_end, old_guard_size)) {
thread_seal_metadata();
return NULL;
}
memory_set_name(new_end, old_guard_size, "malloc large");
void *new_guard_end = (char *)new_end + old_guard_size;
regions_quarantine_deallocate_pages(new_guard_end, old_size - size, 0);
mutex_lock(&ra->lock);
struct region_metadata *region = regions_find(old);
if (unlikely(region == NULL)) {
fatal_error("invalid realloc");
}
region->size = size;
stats_large_deallocate(ra, old_size - size);
mutex_unlock(&ra->lock);
thread_seal_metadata();
return old;
}
#ifdef HAVE_COMPATIBLE_MREMAP
static const bool vma_merging_reliable = false;
if (vma_merging_reliable) {
// in-place growth
void *guard_end = (char *)old + old_size + old_guard_size;
size_t extra = size - old_size;
if (!memory_remap((char *)old + old_size, old_guard_size, old_guard_size + extra)) {
if (memory_protect_rw((char *)old + old_size, extra)) {
memory_unmap(guard_end, extra);
} else {
mutex_lock(&ra->lock);
struct region_metadata *region = regions_find(old);
if (region == NULL) {
fatal_error("invalid realloc");
}
region->size = size;
stats_large_allocate(ra, extra);
mutex_unlock(&ra->lock);
thread_seal_metadata();
return old;
}
}
}
size_t copy_size = min(size, old_size);
if (copy_size >= MREMAP_MOVE_THRESHOLD) {
void *new = allocate_large(size);
if (new == NULL) {
thread_seal_metadata();
return NULL;
}
mutex_lock(&ra->lock);
struct region_metadata *region = regions_find(old);
if (unlikely(region == NULL)) {
fatal_error("invalid realloc");
}
regions_delete(region);
stats_large_deallocate(ra, old_size);
mutex_unlock(&ra->lock);
if (memory_remap_fixed(old, old_size, new, size)) {
memcpy(new, old, copy_size);
deallocate_pages(old, old_size, old_guard_size);
} else {
memory_unmap((char *)old - old_guard_size, old_guard_size);
memory_unmap((char *)old + page_align(old_size), old_guard_size);
}
thread_seal_metadata();
return new;
}
#endif
}
}
void *new = allocate(init(), size);
if (new == NULL) {
thread_seal_metadata();
return NULL;
}
size_t copy_size = min(size, old_size);
if (copy_size > 0 && copy_size <= max_slab_size_class) {
copy_size -= canary_size;
}
memcpy(new, old_orig, copy_size);
if (old_size <= max_slab_size_class) {
deallocate_small(old, NULL);
} else {
deallocate_large(old, NULL);
}
thread_seal_metadata();
return new;
}
EXPORT int h_posix_memalign(void **memptr, size_t alignment, size_t size) {
return alloc_aligned(memptr, alignment, size, sizeof(void *));
}
EXPORT void *h_aligned_alloc(size_t alignment, size_t size) {
return alloc_aligned_simple(alignment, size);
}
EXPORT void *h_memalign(size_t alignment, size_t size) ALIAS(h_aligned_alloc);
#ifndef __ANDROID__
EXPORT void *h_valloc(size_t size) {
return alloc_aligned_simple(PAGE_SIZE, size);
}
EXPORT void *h_pvalloc(size_t size) {
size = page_align(size);
if (unlikely(!size)) {
errno = ENOMEM;
return NULL;
}
return alloc_aligned_simple(PAGE_SIZE, size);
}
#endif
// preserves errno
EXPORT void h_free(void *p) {
if (p == NULL) {
return;
}
p = untag_pointer(p);
if (p < get_slab_region_end() && p >= ro.slab_region_start) {
thread_unseal_metadata();
deallocate_small(p, NULL);
thread_seal_metadata();
return;
}
int saved_errno = errno;
deallocate_large(p, NULL);
errno = saved_errno;
thread_seal_metadata();
}
#ifdef __GLIBC__
EXPORT void h_cfree(void *ptr) ALIAS(h_free);
#endif
EXPORT void h_free_sized(void *p, size_t expected_size) {
if (p == NULL) {
return;
}
p = untag_pointer(p);
expected_size = adjust_size_for_canary(expected_size);
if (p < get_slab_region_end() && p >= ro.slab_region_start) {
thread_unseal_metadata();
expected_size = get_size_info(expected_size).size;
deallocate_small(p, &expected_size);
thread_seal_metadata();
return;
}
deallocate_large(p, &expected_size);
thread_seal_metadata();
}
static inline void memory_corruption_check_small(const void *p) {
struct slab_size_class_info size_class_info = slab_size_class(p);
size_t class = size_class_info.class;
struct size_class *c = &ro.size_class_metadata[size_class_info.arena][class];
size_t size = size_classes[class];
bool is_zero_size = size == 0;
if (unlikely(is_zero_size)) {
size = 16;
}
size_t slab_size = get_slab_size(get_slots(class), size);
mutex_lock(&c->lock);
const struct slab_metadata *metadata = get_metadata(c, p);
void *slab = get_slab(c, slab_size, metadata);
size_t slot = libdivide_u32_do((const char *)p - (const char *)slab, &c->size_divisor);
if (unlikely(slot_pointer(size, slab, slot) != p)) {
fatal_error("invalid unaligned malloc_usable_size");
}
if (unlikely(!is_used_slot(metadata, slot))) {
fatal_error("invalid malloc_usable_size");
}
if (likely(!is_zero_size)) {
check_canary(metadata, p, size);
}
#if SLAB_QUARANTINE
if (unlikely(is_quarantine_slot(metadata, slot))) {
fatal_error("invalid malloc_usable_size (quarantine)");
}
#endif
mutex_unlock(&c->lock);
}
EXPORT size_t h_malloc_usable_size(H_MALLOC_USABLE_SIZE_CONST void *arg) {
if (arg == NULL) {
return 0;
}
const void *p = untag_const_pointer(arg);
if (p < get_slab_region_end() && p >= ro.slab_region_start) {
thread_unseal_metadata();
memory_corruption_check_small(p);
thread_seal_metadata();
size_t size = slab_usable_size(p);
return size ? size - canary_size : 0;
}
enforce_init();
thread_unseal_metadata();
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
const struct region_metadata *region = regions_find(p);
if (unlikely(region == NULL)) {
fatal_error("invalid malloc_usable_size");
}
size_t size = region->size;
mutex_unlock(&ra->lock);
thread_seal_metadata();
return size;
}
EXPORT size_t h_malloc_object_size(const void *p) {
if (p == NULL) {
return 0;
}
const void *slab_region_end = get_slab_region_end();
if (p < slab_region_end && p >= ro.slab_region_start) {
thread_unseal_metadata();
struct slab_size_class_info size_class_info = slab_size_class(p);
size_t class = size_class_info.class;
size_t size_class = size_classes[class];
struct size_class *c = &ro.size_class_metadata[size_class_info.arena][class];
mutex_lock(&c->lock);
const struct slab_metadata *metadata = get_metadata(c, p);
size_t slab_size = get_slab_size(get_slots(class), size_class);
void *slab = get_slab(c, slab_size, metadata);
size_t slot = libdivide_u32_do((const char *)p - (const char *)slab, &c->size_divisor);
if (unlikely(!is_used_slot(metadata, slot))) {
fatal_error("invalid malloc_object_size");
}
#if SLAB_QUARANTINE
if (unlikely(is_quarantine_slot(metadata, slot))) {
fatal_error("invalid malloc_object_size (quarantine)");
}
#endif
void *start = slot_pointer(size_class, slab, slot);
size_t offset = (const char *)p - (const char *)start;
mutex_unlock(&c->lock);
thread_seal_metadata();
size_t size = slab_usable_size(p);
return size ? size - canary_size - offset : 0;
}
if (unlikely(slab_region_end == NULL)) {
return SIZE_MAX;
}
thread_unseal_metadata();
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
const struct region_metadata *region = regions_find(p);
size_t size = region == NULL ? SIZE_MAX : region->size;
mutex_unlock(&ra->lock);
thread_seal_metadata();
return size;
}
EXPORT size_t h_malloc_object_size_fast(const void *p) {
if (p == NULL) {
return 0;
}
const void *slab_region_end = get_slab_region_end();
if (p < slab_region_end && p >= ro.slab_region_start) {
size_t size = slab_usable_size(p);
return size ? size - canary_size : 0;
}
if (unlikely(slab_region_end == NULL)) {
return 0;
}
return SIZE_MAX;
}
EXPORT int h_mallopt(UNUSED int param, UNUSED int value) {
#ifdef __ANDROID__
if (param == M_PURGE) {
h_malloc_trim(0);
return 1;
}
#endif
return 0;
}
EXPORT int h_malloc_trim(UNUSED size_t pad) {
if (unlikely(!is_init())) {
return 0;
}
thread_unseal_metadata();
bool is_trimmed = false;
for (unsigned arena = 0; arena < N_ARENA; arena++) {
// skip zero byte size class since there's nothing to change
for (unsigned class = 1; class < N_SIZE_CLASSES; class++) {
struct size_class *c = &ro.size_class_metadata[arena][class];
size_t size = size_classes[class];
size_t slab_size = get_slab_size(get_slots(class), size);
mutex_lock(&c->lock);
struct slab_metadata *iterator = c->empty_slabs;
while (iterator) {
void *slab = get_slab(c, slab_size, iterator);
if (memory_map_fixed(slab, slab_size)) {
break;
}
label_slab(slab, slab_size, class);
stats_slab_deallocate(c, slab_size);
struct slab_metadata *trimmed = iterator;
iterator = iterator->next;
c->empty_slabs_total -= slab_size;
enqueue_free_slab(c, trimmed);
is_trimmed = true;
}
c->empty_slabs = iterator;
#if SLAB_QUARANTINE && CONFIG_EXTENDED_SIZE_CLASSES
if (size >= min_extended_size_class) {
size_t quarantine_shift = clz64(size) - (63 - MAX_SLAB_SIZE_CLASS_SHIFT);
#if SLAB_QUARANTINE_RANDOM_LENGTH > 0
size_t slab_quarantine_random_length = SLAB_QUARANTINE_RANDOM_LENGTH << quarantine_shift;
for (size_t i = 0; i < slab_quarantine_random_length; i++) {
void *p = c->quarantine_random[i];
if (p != NULL) {
memory_purge(p, size);
}
}
#endif
#if SLAB_QUARANTINE_QUEUE_LENGTH > 0
size_t slab_quarantine_queue_length = SLAB_QUARANTINE_QUEUE_LENGTH << quarantine_shift;
for (size_t i = 0; i < slab_quarantine_queue_length; i++) {
void *p = c->quarantine_queue[i];
if (p != NULL) {
memory_purge(p, size);
}
}
#endif
}
#endif
mutex_unlock(&c->lock);
}
}
thread_seal_metadata();
return is_trimmed;
}
EXPORT void h_malloc_stats(void) {}
#if defined(__GLIBC__) || defined(__ANDROID__)
// glibc mallinfo is broken and replaced with mallinfo2
#if defined(__GLIBC__)
EXPORT struct mallinfo h_mallinfo(void) {
return (struct mallinfo){0};
}
EXPORT struct mallinfo2 h_mallinfo2(void) {
struct mallinfo2 info = {0};
#else
EXPORT struct mallinfo h_mallinfo(void) {
struct mallinfo info = {0};
#endif
#if CONFIG_STATS
if (unlikely(!is_init())) {
return info;
}
thread_unseal_metadata();
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
info.hblkhd += ra->allocated;
info.uordblks += ra->allocated;
mutex_unlock(&ra->lock);
for (unsigned arena = 0; arena < N_ARENA; arena++) {
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
struct size_class *c = &ro.size_class_metadata[arena][class];
mutex_lock(&c->lock);
info.hblkhd += c->slab_allocated;
info.uordblks += c->allocated;
mutex_unlock(&c->lock);
}
}
info.fordblks = info.hblkhd - info.uordblks;
info.usmblks = info.hblkhd;
thread_seal_metadata();
#endif
return info;
}
#endif
#ifndef __ANDROID__
EXPORT int h_malloc_info(int options, FILE *fp) {
if (options) {
errno = EINVAL;
return -1;
}
fputs("<malloc version=\"hardened_malloc-1\">", fp);
#if CONFIG_STATS
if (likely(is_init())) {
thread_unseal_metadata();
for (unsigned arena = 0; arena < N_ARENA; arena++) {
fprintf(fp, "<heap nr=\"%u\">", arena);
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
struct size_class *c = &ro.size_class_metadata[arena][class];
mutex_lock(&c->lock);
u64 nmalloc = c->nmalloc;
u64 ndalloc = c->ndalloc;
size_t slab_allocated = c->slab_allocated;
size_t allocated = c->allocated;
mutex_unlock(&c->lock);
if (nmalloc || ndalloc || slab_allocated || allocated) {
fprintf(fp, "<bin nr=\"%u\" size=\"%" PRIu32 "\">"
"<nmalloc>%" PRIu64 "</nmalloc>"
"<ndalloc>%" PRIu64 "</ndalloc>"
"<slab_allocated>%zu</slab_allocated>"
"<allocated>%zu</allocated>"
"</bin>", class, size_classes[class], nmalloc, ndalloc, slab_allocated,
allocated);
}
}
fputs("</heap>", fp);
}
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
size_t region_allocated = ra->allocated;
mutex_unlock(&ra->lock);
fprintf(fp, "<heap nr=\"%u\">"
"<allocated_large>%zu</allocated_large>"
"</heap>", N_ARENA, region_allocated);
thread_seal_metadata();
}
#endif
fputs("</malloc>", fp);
return 0;
}
#endif
#ifdef __ANDROID__
EXPORT size_t h_mallinfo_narenas(void) {
// Consider region allocator to be an arena with index N_ARENA.
return N_ARENA + 1;
}
EXPORT size_t h_mallinfo_nbins(void) {
return N_SIZE_CLASSES;
}
// This internal Android API uses mallinfo in a non-standard way to implement malloc_info:
//
// hblkhd: total mapped memory as usual
// ordblks: large allocations
// uordblks: huge allocations
// fsmblks: small allocations
// (other fields are unused)
EXPORT struct mallinfo h_mallinfo_arena_info(UNUSED size_t arena) {
struct mallinfo info = {0};
#if CONFIG_STATS
if (unlikely(!is_init())) {
return info;
}
thread_unseal_metadata();
if (arena < N_ARENA) {
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
struct size_class *c = &ro.size_class_metadata[arena][class];
mutex_lock(&c->lock);
info.hblkhd += c->slab_allocated;
info.fsmblks += c->allocated;
mutex_unlock(&c->lock);
}
} else if (arena == N_ARENA) {
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
info.hblkhd = ra->allocated;
// our large allocations are roughly comparable to jemalloc huge allocations
info.uordblks = ra->allocated;
mutex_unlock(&ra->lock);
}
thread_seal_metadata();
#endif
return info;
}
// This internal Android API uses mallinfo in a non-standard way to implement malloc_info:
//
// ordblks: total allocated space
// uordblks: nmalloc
// fordblks: ndalloc
// (other fields are unused)
EXPORT struct mallinfo h_mallinfo_bin_info(UNUSED size_t arena, UNUSED size_t bin) {
struct mallinfo info = {0};
#if CONFIG_STATS
if (unlikely(!is_init())) {
return info;
}
if (arena < N_ARENA && bin < N_SIZE_CLASSES) {
thread_seal_metadata();
struct size_class *c = &ro.size_class_metadata[arena][bin];
mutex_lock(&c->lock);
info.ordblks = c->allocated;
info.uordblks = c->nmalloc;
info.fordblks = c->ndalloc;
mutex_unlock(&c->lock);
thread_unseal_metadata();
}
#endif
return info;
}
COLD EXPORT int h_malloc_iterate(UNUSED uintptr_t base, UNUSED size_t size,
UNUSED void (*callback)(uintptr_t ptr, size_t size, void *arg),
UNUSED void *arg) {
fatal_error("not implemented");
}
COLD EXPORT void h_malloc_disable(void) {
init();
full_lock();
}
COLD EXPORT void h_malloc_enable(void) {
enforce_init();
full_unlock();
}
#endif
#ifdef __GLIBC__
COLD EXPORT void *h_malloc_get_state(void) {
errno = ENOSYS;
return NULL;
}
COLD EXPORT int h_malloc_set_state(UNUSED void *state) {
return -2;
}
#endif
#ifdef __ANDROID__
COLD EXPORT void h_malloc_disable_memory_tagging(void) {
#ifdef HAS_ARM_MTE
mutex_lock(&init_lock);
if (!ro.is_memtag_disabled) {
if (is_init()) {
if (unlikely(memory_protect_rw(&ro, sizeof(ro)))) {
fatal_error("failed to unprotect allocator data");
}
ro.is_memtag_disabled = true;
if (unlikely(memory_protect_ro(&ro, sizeof(ro)))) {
fatal_error("failed to protect allocator data");
}
} else {
// bionic calls this function very early in some cases
ro.is_memtag_disabled = true;
}
}
mutex_unlock(&init_lock);
#endif
}
#endif