hardened_malloc/h_malloc.c
Daniel Micay 5275563252 fix C++ sized deallocation check false positive
This is a compatibility issue triggered when both slab canaries and the
C++ allocator overloads providing sized deallocation checks are enabled.

The boundary where slab allocations are turned into large allocations
due to not having room for the canary in the largest slab allocation
size class triggers a false positive in the sized deallocation check.
2021-01-06 00:18:59 -05:00

1979 lines
60 KiB
C

#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <stdatomic.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <threads.h>
#include <malloc.h>
#include <pthread.h>
#include <sys/mman.h>
#include <sys/utsname.h>
#include <unistd.h>
#include "third_party/libdivide.h"
#include "h_malloc.h"
#include "memory.h"
#include "mutex.h"
#include "pages.h"
#include "random.h"
#include "util.h"
#define SLAB_QUARANTINE (SLAB_QUARANTINE_RANDOM_LENGTH > 0 || SLAB_QUARANTINE_QUEUE_LENGTH > 0)
#define REGION_QUARANTINE (REGION_QUARANTINE_RANDOM_LENGTH > 0 || REGION_QUARANTINE_QUEUE_LENGTH > 0)
#define MREMAP_MOVE_THRESHOLD (32 * 1024 * 1024)
static_assert(sizeof(void *) == 8, "64-bit only");
static_assert(!WRITE_AFTER_FREE_CHECK || ZERO_ON_FREE, "WRITE_AFTER_FREE_CHECK depends on ZERO_ON_FREE");
static_assert(SLAB_QUARANTINE_RANDOM_LENGTH >= 0 && SLAB_QUARANTINE_RANDOM_LENGTH <= 65536,
"invalid slab quarantine random length");
static_assert(SLAB_QUARANTINE_QUEUE_LENGTH >= 0 && SLAB_QUARANTINE_QUEUE_LENGTH <= 65536,
"invalid slab quarantine queue length");
static_assert(REGION_QUARANTINE_RANDOM_LENGTH >= 0 && REGION_QUARANTINE_RANDOM_LENGTH <= 65536,
"invalid region quarantine random length");
static_assert(REGION_QUARANTINE_QUEUE_LENGTH >= 0 && REGION_QUARANTINE_QUEUE_LENGTH <= 65536,
"invalid region quarantine queue length");
static_assert(FREE_SLABS_QUARANTINE_RANDOM_LENGTH >= 0 && FREE_SLABS_QUARANTINE_RANDOM_LENGTH <= 65536,
"invalid free slabs quarantine random length");
static_assert(GUARD_SLABS_INTERVAL >= 1, "invalid guard slabs interval (minimum 1)");
static_assert(GUARD_SIZE_DIVISOR >= 1, "invalid guard size divisor (minimum 1)");
static_assert(CONFIG_CLASS_REGION_SIZE >= 1048576, "invalid class region size (minimum 1048576)");
static_assert(CONFIG_CLASS_REGION_SIZE <= 1099511627776, "invalid class region size (maximum 1099511627776)");
static_assert(REGION_QUARANTINE_SKIP_THRESHOLD >= 0,
"invalid region quarantine skip threshold (minimum 0)");
static_assert(MREMAP_MOVE_THRESHOLD >= REGION_QUARANTINE_SKIP_THRESHOLD,
"mremap move threshold must be above region quarantine limit");
// either sizeof(u64) or 0
static const size_t canary_size = SLAB_CANARY ? sizeof(u64) : 0;
static_assert(N_ARENA >= 1, "must have at least 1 arena");
static_assert(N_ARENA <= 256, "maximum number of arenas is currently 256");
#define CACHELINE_SIZE 64
#if N_ARENA > 1
__attribute__((tls_model("initial-exec")))
static thread_local unsigned thread_arena = N_ARENA;
static atomic_uint thread_arena_counter = 0;
#else
static const unsigned thread_arena = 0;
#endif
static union {
struct {
void *slab_region_start;
void *_Atomic slab_region_end;
struct size_class *size_class_metadata[N_ARENA];
struct region_allocator *region_allocator;
struct region_metadata *regions[2];
#ifdef USE_PKEY
int metadata_pkey;
#endif
};
char padding[PAGE_SIZE];
} ro __attribute__((aligned(PAGE_SIZE)));
static inline void *get_slab_region_end() {
return atomic_load_explicit(&ro.slab_region_end, memory_order_acquire);
}
#define SLAB_METADATA_COUNT
struct slab_metadata {
u64 bitmap[4];
struct slab_metadata *next;
struct slab_metadata *prev;
u64 canary_value;
#ifdef SLAB_METADATA_COUNT
u16 count;
#endif
#if SLAB_QUARANTINE
u64 quarantine_bitmap[4];
#endif
};
static const size_t min_align = 16;
#define MIN_SLAB_SIZE_CLASS_SHIFT 4
// set slab cache size based on the size of the largest slab
#if !CONFIG_EXTENDED_SIZE_CLASSES
static const size_t MAX_SLAB_SIZE_CLASS = 65536;
#define MAX_SLAB_SIZE_CLASS_SHIFT 14
#else
static const size_t MAX_SLAB_SIZE_CLASS = 131072;
#define MAX_SLAB_SIZE_CLASS_SHIFT 17
#endif
static const u32 size_classes[] = {
/* 0 */ 0,
/* 16 */ 16, 32, 48, 64, 80, 96, 112, 128,
/* 32 */ 160, 192, 224, 256,
/* 64 */ 320, 384, 448, 512,
/* 128 */ 640, 768, 896, 1024,
/* 256 */ 1280, 1536, 1792, 2048,
/* 512 */ 2560, 3072, 3584, 4096,
/* 1024 */ 5120, 6144, 7168, 8192,
/* 2048 */ 10240, 12288, 14336, 16384,
#if CONFIG_EXTENDED_SIZE_CLASSES
/* 4096 */ 20480, 24576, 28672, 32768,
/* 8192 */ 40960, 49152, 57344, 65536,
/* 16384 */ 81920, 98304, 114688, 131072,
#endif
};
static const u16 size_class_slots[] = {
/* 0 */ 256,
/* 16 */ 256, 128, 85, 64, 51, 42, 36, 64,
/* 32 */ 51, 64, 54, 64,
/* 64 */ 64, 64, 64, 64,
/* 128 */ 64, 64, 64, 64,
/* 256 */ 16, 16, 16, 16,
/* 512 */ 8, 8, 8, 8,
/* 1024 */ 8, 8, 8, 8,
/* 2048 */ 6, 5, 4, 4,
#if CONFIG_EXTENDED_SIZE_CLASSES
/* 4096 */ 2, 2, 2, 2,
/* 8192 */ 1, 1, 1, 1,
/* 16384 */ 1, 1, 1, 1,
#endif
};
static const char *const size_class_labels[] = {
/* 0 */ "malloc 0",
/* 16 */ "malloc 16", "malloc 32", "malloc 48", "malloc 64",
/* 16 */ "malloc 80", "malloc 96", "malloc 112", "malloc 128",
/* 32 */ "malloc 160", "malloc 192", "malloc 224", "malloc 256",
/* 64 */ "malloc 320", "malloc 384", "malloc 448", "malloc 512",
/* 128 */ "malloc 640", "malloc 768", "malloc 896", "malloc 1024",
/* 256 */ "malloc 1280", "malloc 1536", "malloc 1792", "malloc 2048",
/* 512 */ "malloc 2560", "malloc 3072", "malloc 3584", "malloc 4096",
/* 1024 */ "malloc 5120", "malloc 6144", "malloc 7168", "malloc 8192",
/* 2048 */ "malloc 10240", "malloc 12288", "malloc 14336", "malloc 16384",
#if CONFIG_EXTENDED_SIZE_CLASSES
/* 4096 */ "malloc 20480", "malloc 24576", "malloc 28672", "malloc 32768",
/* 8192 */ "malloc 40960", "malloc 49152", "malloc 57344", "malloc 65536",
/* 16384 */ "malloc 81920", "malloc 98304", "malloc 114688", "malloc 131072",
#endif
};
static void label_slab(void *slab, size_t slab_size, unsigned class) {
memory_set_name(slab, slab_size, size_class_labels[class]);
}
#define N_SIZE_CLASSES (sizeof(size_classes) / sizeof(size_classes[0]))
struct size_info {
size_t size;
size_t class;
};
static inline struct size_info get_size_info(size_t size) {
if (size == 0) {
return (struct size_info){0, 0};
}
if (size <= 128) {
return (struct size_info){(size + 15) & ~15, ((size - 1) >> 4) + 1};
}
for (unsigned class = 9; class < N_SIZE_CLASSES; class++) {
size_t real_size = size_classes[class];
if (size <= real_size) {
return (struct size_info){real_size, class};
}
}
fatal_error("invalid size for slabs");
}
// alignment must be a power of 2 <= PAGE_SIZE since slabs are only page aligned
static inline struct size_info get_size_info_align(size_t size, size_t alignment) {
for (unsigned class = 1; class < N_SIZE_CLASSES; class++) {
size_t real_size = size_classes[class];
if (size <= real_size && !(real_size & (alignment - 1))) {
return (struct size_info){real_size, class};
}
}
fatal_error("invalid size for slabs");
}
static size_t get_slab_size(size_t slots, size_t size) {
return PAGE_CEILING(slots * size);
}
// limit on the number of cached empty slabs before attempting purging instead
static const size_t max_empty_slabs_total = MAX_SLAB_SIZE_CLASS;
struct __attribute__((aligned(CACHELINE_SIZE))) size_class {
struct mutex lock;
void *class_region_start;
struct slab_metadata *slab_info;
struct libdivide_u32_t size_divisor;
struct libdivide_u64_t slab_size_divisor;
#if SLAB_QUARANTINE_RANDOM_LENGTH > 0
void *quarantine_random[SLAB_QUARANTINE_RANDOM_LENGTH << (MAX_SLAB_SIZE_CLASS_SHIFT - MIN_SLAB_SIZE_CLASS_SHIFT)];
#endif
#if SLAB_QUARANTINE_QUEUE_LENGTH > 0
void *quarantine_queue[SLAB_QUARANTINE_QUEUE_LENGTH << (MAX_SLAB_SIZE_CLASS_SHIFT - MIN_SLAB_SIZE_CLASS_SHIFT)];
size_t quarantine_queue_index;
#endif
// slabs with at least one allocated slot and at least one free slot
//
// LIFO doubly-linked list
struct slab_metadata *partial_slabs;
// slabs without allocated slots that are cached for near-term usage
//
// LIFO singly-linked list
struct slab_metadata *empty_slabs;
size_t empty_slabs_total; // length * slab_size
// slabs without allocated slots that are purged and memory protected
//
// FIFO singly-linked list
struct slab_metadata *free_slabs_head;
struct slab_metadata *free_slabs_tail;
struct slab_metadata *free_slabs_quarantine[FREE_SLABS_QUARANTINE_RANDOM_LENGTH];
#if CONFIG_STATS
u64 nmalloc; // may wrap (per jemalloc API)
u64 ndalloc; // may wrap (per jemalloc API)
size_t allocated;
size_t slab_allocated;
#endif
struct random_state rng;
size_t metadata_allocated;
size_t metadata_count;
size_t metadata_count_unguarded;
};
#define CLASS_REGION_SIZE (size_t)CONFIG_CLASS_REGION_SIZE
#define REAL_CLASS_REGION_SIZE (CLASS_REGION_SIZE * 2)
#define ARENA_SIZE (REAL_CLASS_REGION_SIZE * N_SIZE_CLASSES)
static const size_t slab_region_size = ARENA_SIZE * N_ARENA;
static_assert(PAGE_SIZE == 4096, "bitmap handling will need adjustment for other page sizes");
static void *get_slab(struct size_class *c, size_t slab_size, struct slab_metadata *metadata) {
size_t index = metadata - c->slab_info;
return (char *)c->class_region_start + (index * slab_size);
}
#define MAX_METADATA_MAX (CLASS_REGION_SIZE / PAGE_SIZE)
static size_t get_metadata_max(size_t slab_size) {
return CLASS_REGION_SIZE / slab_size;
}
static struct slab_metadata *alloc_metadata(struct size_class *c, size_t slab_size, bool non_zero_size) {
if (unlikely(c->metadata_count >= c->metadata_allocated)) {
size_t metadata_max = get_metadata_max(slab_size);
if (c->metadata_count >= metadata_max) {
errno = ENOMEM;
return NULL;
}
size_t allocate = max(c->metadata_allocated * 2, PAGE_SIZE / sizeof(struct slab_metadata));
if (allocate > metadata_max) {
allocate = metadata_max;
}
if (memory_protect_rw_metadata(c->slab_info, allocate * sizeof(struct slab_metadata))) {
return NULL;
}
c->metadata_allocated = allocate;
}
struct slab_metadata *metadata = c->slab_info + c->metadata_count;
void *slab = get_slab(c, slab_size, metadata);
if (non_zero_size && memory_protect_rw(slab, slab_size)) {
return NULL;
}
c->metadata_count++;
c->metadata_count_unguarded++;
if (c->metadata_count_unguarded >= GUARD_SLABS_INTERVAL) {
c->metadata_count++;
c->metadata_count_unguarded = 0;
}
return metadata;
}
static void set_slot(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / 64;
metadata->bitmap[bucket] |= 1UL << (index - bucket * 64);
#ifdef SLAB_METADATA_COUNT
metadata->count++;
#endif
}
static void clear_slot(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / 64;
metadata->bitmap[bucket] &= ~(1UL << (index - bucket * 64));
#ifdef SLAB_METADATA_COUNT
metadata->count--;
#endif
}
static bool get_slot(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / 64;
return (metadata->bitmap[bucket] >> (index - bucket * 64)) & 1UL;
}
#if SLAB_QUARANTINE
static void set_quarantine(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / 64;
metadata->quarantine_bitmap[bucket] |= 1UL << (index - bucket * 64);
}
static void clear_quarantine(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / 64;
metadata->quarantine_bitmap[bucket] &= ~(1UL << (index - bucket * 64));
}
static bool get_quarantine(struct slab_metadata *metadata, size_t index) {
size_t bucket = index / 64;
return (metadata->quarantine_bitmap[bucket] >> (index - bucket * 64)) & 1UL;
}
#endif
static u64 get_mask(size_t slots) {
return slots < 64 ? ~0UL << slots : 0;
}
static size_t get_free_slot(struct random_state *rng, size_t slots, struct slab_metadata *metadata) {
if (SLOT_RANDOMIZE) {
// randomize start location for linear search (uniform random choice is too slow)
unsigned random_index = get_random_u16_uniform(rng, slots);
unsigned first_bitmap = random_index / 64;
u64 random_split = ~(~0UL << (random_index - first_bitmap * 64));
unsigned i = first_bitmap;
u64 masked = metadata->bitmap[i];
masked |= random_split;
for (;;) {
if (i == slots / 64) {
masked |= get_mask(slots - i * 64);
}
if (masked != ~0UL) {
return ffzl(masked) - 1 + i * 64;
}
i = i == (slots - 1) / 64 ? 0 : i + 1;
masked = metadata->bitmap[i];
}
} else {
for (unsigned i = 0; i <= (slots - 1) / 64; i++) {
u64 masked = metadata->bitmap[i];
if (i == (slots - 1) / 64) {
masked |= get_mask(slots - i * 64);
}
if (masked != ~0UL) {
return ffzl(masked) - 1 + i * 64;
}
}
}
fatal_error("no zero bits");
}
static bool has_free_slots(size_t slots, struct slab_metadata *metadata) {
#ifdef SLAB_METADATA_COUNT
return metadata->count < slots;
#else
if (slots <= 64) {
u64 masked = metadata->bitmap[0] | get_mask(slots);
return masked != ~0UL;
}
if (slots <= 128) {
u64 masked = metadata->bitmap[1] | get_mask(slots - 64);
return metadata->bitmap[0] != ~0UL || masked != ~0UL;
}
if (slots <= 192) {
u64 masked = metadata->bitmap[2] | get_mask(slots - 128);
return metadata->bitmap[0] != ~0UL || metadata->bitmap[1] != ~0UL || masked != ~0UL;
}
u64 masked = metadata->bitmap[3] | get_mask(slots - 192);
return metadata->bitmap[0] != ~0UL || metadata->bitmap[1] != ~0UL || metadata->bitmap[2] != ~0UL || masked != ~0UL;
#endif
}
static bool is_free_slab(struct slab_metadata *metadata) {
#ifdef SLAB_METADATA_COUNT
return !metadata->count;
#else
return !metadata->bitmap[0] && !metadata->bitmap[1] && !metadata->bitmap[2] &&
!metadata->bitmap[3];
#endif
}
static struct slab_metadata *get_metadata(struct size_class *c, const void *p) {
size_t offset = (const char *)p - (const char *)c->class_region_start;
size_t index = libdivide_u64_do(offset, &c->slab_size_divisor);
// still caught without this check either as a read access violation or "double free"
if (index >= c->metadata_allocated) {
fatal_error("invalid free within a slab yet to be used");
}
return c->slab_info + index;
}
static void *slot_pointer(size_t size, void *slab, size_t slot) {
return (char *)slab + slot * size;
}
static void write_after_free_check(const char *p, size_t size) {
if (!WRITE_AFTER_FREE_CHECK) {
return;
}
for (size_t i = 0; i < size; i += sizeof(u64)) {
if (*(const u64 *)(const void *)(p + i)) {
fatal_error("detected write after free");
}
}
}
static const u64 canary_mask = __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ?
0xffffffffffffff00UL :
0x00ffffffffffffffUL;
static void set_canary(struct slab_metadata *metadata, void *p, size_t size) {
memcpy((char *)p + size - canary_size, &metadata->canary_value, canary_size);
}
static u64 get_random_canary(struct random_state *rng) {
return get_random_u64(rng) & canary_mask;
}
static inline void stats_small_allocate(UNUSED struct size_class *c, UNUSED size_t size) {
#if CONFIG_STATS
c->allocated += size;
c->nmalloc++;
#endif
}
static inline void stats_small_deallocate(UNUSED struct size_class *c, UNUSED size_t size) {
#if CONFIG_STATS
c->allocated -= size;
c->ndalloc++;
#endif
}
static inline void stats_slab_allocate(UNUSED struct size_class *c, UNUSED size_t slab_size) {
#if CONFIG_STATS
c->slab_allocated += slab_size;
#endif
}
static inline void stats_slab_deallocate(UNUSED struct size_class *c, UNUSED size_t slab_size) {
#if CONFIG_STATS
c->slab_allocated -= slab_size;
#endif
}
static inline void *allocate_small(unsigned arena, size_t requested_size) {
struct size_info info = get_size_info(requested_size);
size_t size = info.size ? info.size : 16;
struct size_class *c = &ro.size_class_metadata[arena][info.class];
size_t slots = size_class_slots[info.class];
size_t slab_size = get_slab_size(slots, size);
mutex_lock(&c->lock);
if (c->partial_slabs == NULL) {
if (c->empty_slabs != NULL) {
struct slab_metadata *metadata = c->empty_slabs;
c->empty_slabs = c->empty_slabs->next;
c->empty_slabs_total -= slab_size;
metadata->next = NULL;
metadata->prev = NULL;
c->partial_slabs = slots > 1 ? metadata : NULL;
void *slab = get_slab(c, slab_size, metadata);
size_t slot = get_free_slot(&c->rng, slots, metadata);
set_slot(metadata, slot);
void *p = slot_pointer(size, slab, slot);
if (requested_size) {
write_after_free_check(p, size - canary_size);
set_canary(metadata, p, size);
}
stats_small_allocate(c, size);
mutex_unlock(&c->lock);
return p;
}
if (c->free_slabs_head != NULL) {
struct slab_metadata *metadata = c->free_slabs_head;
metadata->canary_value = get_random_canary(&c->rng);
void *slab = get_slab(c, slab_size, metadata);
if (requested_size && memory_protect_rw(slab, slab_size)) {
mutex_unlock(&c->lock);
return NULL;
}
c->free_slabs_head = c->free_slabs_head->next;
if (c->free_slabs_head == NULL) {
c->free_slabs_tail = NULL;
}
metadata->next = NULL;
metadata->prev = NULL;
c->partial_slabs = slots > 1 ? metadata : NULL;
size_t slot = get_free_slot(&c->rng, slots, metadata);
set_slot(metadata, slot);
void *p = slot_pointer(size, slab, slot);
if (requested_size) {
set_canary(metadata, p, size);
}
stats_slab_allocate(c, slab_size);
stats_small_allocate(c, size);
mutex_unlock(&c->lock);
return p;
}
struct slab_metadata *metadata = alloc_metadata(c, slab_size, requested_size);
if (unlikely(metadata == NULL)) {
mutex_unlock(&c->lock);
return NULL;
}
metadata->canary_value = get_random_canary(&c->rng);
c->partial_slabs = slots > 1 ? metadata : NULL;
void *slab = get_slab(c, slab_size, metadata);
size_t slot = get_free_slot(&c->rng, slots, metadata);
set_slot(metadata, slot);
void *p = slot_pointer(size, slab, slot);
if (requested_size) {
set_canary(metadata, p, size);
}
stats_slab_allocate(c, slab_size);
stats_small_allocate(c, size);
mutex_unlock(&c->lock);
return p;
}
struct slab_metadata *metadata = c->partial_slabs;
size_t slot = get_free_slot(&c->rng, slots, metadata);
set_slot(metadata, slot);
if (!has_free_slots(slots, metadata)) {
c->partial_slabs = c->partial_slabs->next;
if (c->partial_slabs) {
c->partial_slabs->prev = NULL;
}
}
void *slab = get_slab(c, slab_size, metadata);
void *p = slot_pointer(size, slab, slot);
if (requested_size) {
write_after_free_check(p, size - canary_size);
set_canary(metadata, p, size);
}
stats_small_allocate(c, size);
mutex_unlock(&c->lock);
return p;
}
struct slab_size_class_info {
unsigned arena;
size_t class;
};
static struct slab_size_class_info slab_size_class(const void *p) {
size_t offset = (const char *)p - (const char *)ro.slab_region_start;
unsigned arena = 0;
if (N_ARENA > 1) {
arena = offset / ARENA_SIZE;
offset -= arena * ARENA_SIZE;
}
return (struct slab_size_class_info){arena, offset / REAL_CLASS_REGION_SIZE};
}
static size_t slab_usable_size(const void *p) {
return size_classes[slab_size_class(p).class];
}
static void enqueue_free_slab(struct size_class *c, struct slab_metadata *metadata) {
metadata->next = NULL;
static_assert(FREE_SLABS_QUARANTINE_RANDOM_LENGTH < (u16)-1, "free slabs quarantine too large");
size_t index = get_random_u16_uniform(&c->rng, FREE_SLABS_QUARANTINE_RANDOM_LENGTH);
struct slab_metadata *substitute = c->free_slabs_quarantine[index];
c->free_slabs_quarantine[index] = metadata;
if (substitute == NULL) {
return;
}
if (c->free_slabs_tail != NULL) {
c->free_slabs_tail->next = substitute;
} else {
c->free_slabs_head = substitute;
}
c->free_slabs_tail = substitute;
}
static inline void deallocate_small(void *p, const size_t *expected_size) {
struct slab_size_class_info size_class_info = slab_size_class(p);
size_t class = size_class_info.class;
struct size_class *c = &ro.size_class_metadata[size_class_info.arena][class];
size_t size = size_classes[class];
if (expected_size && size != *expected_size) {
fatal_error("sized deallocation mismatch (small)");
}
bool is_zero_size = size == 0;
if (is_zero_size) {
size = 16;
}
size_t slots = size_class_slots[class];
size_t slab_size = get_slab_size(slots, size);
mutex_lock(&c->lock);
stats_small_deallocate(c, size);
struct slab_metadata *metadata = get_metadata(c, p);
void *slab = get_slab(c, slab_size, metadata);
size_t slot = libdivide_u32_do((char *)p - (char *)slab, &c->size_divisor);
if (slot_pointer(size, slab, slot) != p) {
fatal_error("invalid unaligned free");
}
if (!get_slot(metadata, slot)) {
fatal_error("double free");
}
if (!is_zero_size) {
if (canary_size) {
u64 canary_value;
memcpy(&canary_value, (char *)p + size - canary_size, canary_size);
if (unlikely(canary_value != metadata->canary_value)) {
fatal_error("canary corrupted");
}
}
if (ZERO_ON_FREE) {
memset(p, 0, size - canary_size);
}
}
#if SLAB_QUARANTINE
if (get_quarantine(metadata, slot)) {
fatal_error("double free (quarantine)");
}
set_quarantine(metadata, slot);
size_t quarantine_shift = __builtin_clzl(size) - (63 - MAX_SLAB_SIZE_CLASS_SHIFT);
#if SLAB_QUARANTINE_RANDOM_LENGTH > 0
size_t slab_quarantine_random_length = SLAB_QUARANTINE_RANDOM_LENGTH << quarantine_shift;
size_t random_index = get_random_u16_uniform(&c->rng, slab_quarantine_random_length);
void *random_substitute = c->quarantine_random[random_index];
c->quarantine_random[random_index] = p;
if (random_substitute == NULL) {
mutex_unlock(&c->lock);
return;
}
p = random_substitute;
#endif
#if SLAB_QUARANTINE_QUEUE_LENGTH > 0
size_t slab_quarantine_queue_length = SLAB_QUARANTINE_QUEUE_LENGTH << quarantine_shift;
void *queue_substitute = c->quarantine_queue[c->quarantine_queue_index];
c->quarantine_queue[c->quarantine_queue_index] = p;
c->quarantine_queue_index = (c->quarantine_queue_index + 1) % slab_quarantine_queue_length;
if (queue_substitute == NULL) {
mutex_unlock(&c->lock);
return;
}
p = queue_substitute;
#endif
metadata = get_metadata(c, p);
slab = get_slab(c, slab_size, metadata);
slot = libdivide_u32_do((char *)p - (char *)slab, &c->size_divisor);
clear_quarantine(metadata, slot);
#endif
// triggered even for slots == 1 and then undone below
if (!has_free_slots(slots, metadata)) {
metadata->next = c->partial_slabs;
metadata->prev = NULL;
if (c->partial_slabs) {
c->partial_slabs->prev = metadata;
}
c->partial_slabs = metadata;
}
clear_slot(metadata, slot);
if (is_free_slab(metadata)) {
if (metadata->prev) {
metadata->prev->next = metadata->next;
} else {
c->partial_slabs = metadata->next;
}
if (metadata->next) {
metadata->next->prev = metadata->prev;
}
metadata->prev = NULL;
if (c->empty_slabs_total + slab_size > max_empty_slabs_total) {
if (!memory_map_fixed(slab, slab_size)) {
label_slab(slab, slab_size, class);
stats_slab_deallocate(c, slab_size);
enqueue_free_slab(c, metadata);
mutex_unlock(&c->lock);
return;
}
// handle out-of-memory by just putting it into the empty slabs list
}
metadata->next = c->empty_slabs;
c->empty_slabs = metadata;
c->empty_slabs_total += slab_size;
}
mutex_unlock(&c->lock);
}
struct region_metadata {
void *p;
size_t size;
size_t guard_size;
};
struct quarantine_info {
void *p;
size_t size;
};
#define INITIAL_REGION_TABLE_SIZE 128
#define MAX_REGION_TABLE_SIZE (CLASS_REGION_SIZE / PAGE_SIZE / sizeof(struct region_metadata))
struct region_allocator {
struct mutex lock;
struct region_metadata *regions;
size_t total;
size_t free;
#if CONFIG_STATS
size_t allocated;
#endif
#if REGION_QUARANTINE_RANDOM_LENGTH
struct quarantine_info quarantine_random[REGION_QUARANTINE_RANDOM_LENGTH];
#endif
#if REGION_QUARANTINE_QUEUE_LENGTH
struct quarantine_info quarantine_queue[REGION_QUARANTINE_QUEUE_LENGTH];
size_t quarantine_queue_index;
#endif
struct random_state rng;
};
static inline void stats_large_allocate(UNUSED struct region_allocator *ra, UNUSED size_t size) {
#if CONFIG_STATS
ra->allocated += size;
#endif
}
static inline void stats_large_deallocate(UNUSED struct region_allocator *ra, UNUSED size_t size) {
#if CONFIG_STATS
ra->allocated -= size;
#endif
}
struct __attribute__((aligned(PAGE_SIZE))) slab_info_mapping {
struct slab_metadata slab_info[MAX_METADATA_MAX];
};
struct __attribute__((aligned(PAGE_SIZE))) allocator_state {
struct size_class size_class_metadata[N_ARENA][N_SIZE_CLASSES];
struct region_allocator region_allocator;
// padding until next page boundary for mprotect
struct region_metadata regions_a[MAX_REGION_TABLE_SIZE] __attribute__((aligned(PAGE_SIZE)));
// padding until next page boundary for mprotect
struct region_metadata regions_b[MAX_REGION_TABLE_SIZE] __attribute__((aligned(PAGE_SIZE)));
// padding until next page boundary for mprotect
struct slab_info_mapping slab_info_mapping[N_ARENA][N_SIZE_CLASSES];
// padding until next page boundary for mprotect
};
static void regions_quarantine_deallocate_pages(void *p, size_t size, size_t guard_size) {
if (!REGION_QUARANTINE || size >= REGION_QUARANTINE_SKIP_THRESHOLD) {
deallocate_pages(p, size, guard_size);
return;
}
if (unlikely(memory_map_fixed(p, size))) {
deallocate_pages(p, size, guard_size);
return;
}
memory_set_name(p, size, "malloc large quarantine");
struct quarantine_info target =
(struct quarantine_info){(char *)p - guard_size, size + guard_size * 2};
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
#if REGION_QUARANTINE_RANDOM_LENGTH
size_t index = get_random_u64_uniform(&ra->rng, REGION_QUARANTINE_RANDOM_LENGTH);
struct quarantine_info random_substitute = ra->quarantine_random[index];
ra->quarantine_random[index] = target;
if (random_substitute.p == NULL) {
mutex_unlock(&ra->lock);
return;
}
target = random_substitute;
#endif
#if REGION_QUARANTINE_QUEUE_LENGTH
struct quarantine_info queue_substitute = ra->quarantine_queue[ra->quarantine_queue_index];
ra->quarantine_queue[ra->quarantine_queue_index] = target;
ra->quarantine_queue_index = (ra->quarantine_queue_index + 1) % REGION_QUARANTINE_QUEUE_LENGTH;
target = queue_substitute;
#endif
mutex_unlock(&ra->lock);
if (target.p != NULL) {
memory_unmap(target.p, target.size);
}
}
static int regions_grow(void) {
struct region_allocator *ra = ro.region_allocator;
if (ra->total > SIZE_MAX / sizeof(struct region_metadata) / 2) {
return 1;
}
size_t newtotal = ra->total * 2;
size_t newsize = newtotal * sizeof(struct region_metadata);
size_t mask = newtotal - 1;
if (newtotal > MAX_REGION_TABLE_SIZE) {
return 1;
}
struct region_metadata *p = ra->regions == ro.regions[0] ?
ro.regions[1] : ro.regions[0];
if (memory_protect_rw_metadata(p, newsize)) {
return 1;
}
for (size_t i = 0; i < ra->total; i++) {
void *q = ra->regions[i].p;
if (q != NULL) {
size_t index = hash_page(q) & mask;
while (p[index].p != NULL) {
index = (index - 1) & mask;
}
p[index] = ra->regions[i];
}
}
memory_map_fixed(ra->regions, ra->total * sizeof(struct region_metadata));
memory_set_name(ra->regions, ra->total * sizeof(struct region_metadata), "malloc allocator_state");
ra->free = ra->free + ra->total;
ra->total = newtotal;
ra->regions = p;
return 0;
}
static int regions_insert(void *p, size_t size, size_t guard_size) {
struct region_allocator *ra = ro.region_allocator;
if (ra->free * 4 < ra->total) {
if (regions_grow()) {
return 1;
}
}
size_t mask = ra->total - 1;
size_t index = hash_page(p) & mask;
void *q = ra->regions[index].p;
while (q != NULL) {
index = (index - 1) & mask;
q = ra->regions[index].p;
}
ra->regions[index].p = p;
ra->regions[index].size = size;
ra->regions[index].guard_size = guard_size;
ra->free--;
return 0;
}
static struct region_metadata *regions_find(const void *p) {
struct region_allocator *ra = ro.region_allocator;
size_t mask = ra->total - 1;
size_t index = hash_page(p) & mask;
void *r = ra->regions[index].p;
while (r != p && r != NULL) {
index = (index - 1) & mask;
r = ra->regions[index].p;
}
return (r == p && r != NULL) ? &ra->regions[index] : NULL;
}
static void regions_delete(struct region_metadata *region) {
struct region_allocator *ra = ro.region_allocator;
size_t mask = ra->total - 1;
ra->free++;
size_t i = region - ra->regions;
for (;;) {
ra->regions[i].p = NULL;
ra->regions[i].size = 0;
size_t j = i;
for (;;) {
i = (i - 1) & mask;
if (ra->regions[i].p == NULL) {
return;
}
size_t r = hash_page(ra->regions[i].p) & mask;
if ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r)) {
continue;
}
ra->regions[j] = ra->regions[i];
break;
}
}
}
int get_metadata_key(void) {
#ifdef USE_PKEY
return ro.metadata_pkey;
#else
return -1;
#endif
}
static inline void thread_set_metadata_access(UNUSED unsigned access) {
#ifdef USE_PKEY
if (ro.metadata_pkey == -1) {
return;
}
pkey_set(ro.metadata_pkey, access);
#endif
}
static inline void thread_unseal_metadata(void) {
thread_set_metadata_access(0);
}
static inline void thread_seal_metadata(void) {
#ifdef USE_PKEY
thread_set_metadata_access(PKEY_DISABLE_ACCESS);
#endif
}
static void full_lock(void) {
thread_unseal_metadata();
mutex_lock(&ro.region_allocator->lock);
for (unsigned arena = 0; arena < N_ARENA; arena++) {
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
mutex_lock(&ro.size_class_metadata[arena][class].lock);
}
}
thread_seal_metadata();
}
static void full_unlock(void) {
thread_unseal_metadata();
mutex_unlock(&ro.region_allocator->lock);
for (unsigned arena = 0; arena < N_ARENA; arena++) {
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
mutex_unlock(&ro.size_class_metadata[arena][class].lock);
}
}
thread_seal_metadata();
}
static void post_fork_child(void) {
thread_unseal_metadata();
mutex_init(&ro.region_allocator->lock);
random_state_init(&ro.region_allocator->rng);
for (unsigned arena = 0; arena < N_ARENA; arena++) {
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
struct size_class *c = &ro.size_class_metadata[arena][class];
mutex_init(&c->lock);
random_state_init(&c->rng);
}
}
thread_seal_metadata();
}
static inline bool is_init(void) {
return get_slab_region_end() != NULL;
}
static inline void enforce_init(void) {
if (!is_init()) {
fatal_error("invalid uninitialized allocator usage");
}
}
COLD static void init_slow_path(void) {
static struct mutex lock = MUTEX_INITIALIZER;
mutex_lock(&lock);
if (is_init()) {
mutex_unlock(&lock);
return;
}
#ifdef USE_PKEY
ro.metadata_pkey = pkey_alloc(0, 0);
#endif
if (sysconf(_SC_PAGESIZE) != PAGE_SIZE) {
fatal_error("runtime page size does not match compile-time page size which is not supported");
}
struct random_state *rng = allocate_pages(sizeof(struct random_state), PAGE_SIZE, true, "malloc init rng");
if (rng == NULL) {
fatal_error("failed to allocate init rng");
}
random_state_init(rng);
size_t metadata_guard_size =
(get_random_u64_uniform(rng, REAL_CLASS_REGION_SIZE / PAGE_SIZE) + 1) * PAGE_SIZE;
struct allocator_state *allocator_state =
allocate_pages(sizeof(struct allocator_state), metadata_guard_size, false, "malloc allocator_state");
if (allocator_state == NULL) {
fatal_error("failed to reserve allocator state");
}
if (memory_protect_rw_metadata(allocator_state, offsetof(struct allocator_state, regions_a))) {
fatal_error("failed to unprotect allocator state");
}
ro.region_allocator = &allocator_state->region_allocator;
struct region_allocator *ra = ro.region_allocator;
mutex_init(&ra->lock);
random_state_init_from_random_state(&ra->rng, rng);
ro.regions[0] = allocator_state->regions_a;
ro.regions[1] = allocator_state->regions_b;
ra->regions = ro.regions[0];
ra->total = INITIAL_REGION_TABLE_SIZE;
ra->free = INITIAL_REGION_TABLE_SIZE;
if (memory_protect_rw_metadata(ra->regions, ra->total * sizeof(struct region_metadata))) {
fatal_error("failed to unprotect memory for regions table");
}
ro.slab_region_start = memory_map(slab_region_size);
if (ro.slab_region_start == NULL) {
fatal_error("failed to allocate slab region");
}
void *slab_region_end = (char *)ro.slab_region_start + slab_region_size;
memory_set_name(ro.slab_region_start, slab_region_size, "malloc slab region gap");
for (unsigned arena = 0; arena < N_ARENA; arena++) {
ro.size_class_metadata[arena] = allocator_state->size_class_metadata[arena];
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
struct size_class *c = &ro.size_class_metadata[arena][class];
mutex_init(&c->lock);
random_state_init_from_random_state(&c->rng, rng);
size_t bound = (REAL_CLASS_REGION_SIZE - CLASS_REGION_SIZE) / PAGE_SIZE - 1;
size_t gap = (get_random_u64_uniform(rng, bound) + 1) * PAGE_SIZE;
c->class_region_start = (char *)ro.slab_region_start + ARENA_SIZE * arena + REAL_CLASS_REGION_SIZE * class + gap;
label_slab(c->class_region_start, CLASS_REGION_SIZE, class);
size_t size = size_classes[class];
if (size == 0) {
size = 16;
}
c->size_divisor = libdivide_u32_gen(size);
size_t slab_size = get_slab_size(size_class_slots[class], size);
c->slab_size_divisor = libdivide_u64_gen(slab_size);
c->slab_info = allocator_state->slab_info_mapping[arena][class].slab_info;
}
}
deallocate_pages(rng, sizeof(struct random_state), PAGE_SIZE);
atomic_store_explicit(&ro.slab_region_end, slab_region_end, memory_order_release);
if (memory_protect_ro(&ro, sizeof(ro))) {
fatal_error("failed to protect allocator data");
}
memory_set_name(&ro, sizeof(ro), "malloc read-only after init");
mutex_unlock(&lock);
// may allocate, so wait until the allocator is initialized to avoid deadlocking
if (pthread_atfork(full_lock, full_unlock, post_fork_child)) {
fatal_error("pthread_atfork failed");
}
}
static inline unsigned init(void) {
unsigned arena = thread_arena;
#if N_ARENA > 1
if (likely(arena < N_ARENA)) {
return arena;
}
thread_arena = arena = thread_arena_counter++ % N_ARENA;
#endif
if (unlikely(!is_init())) {
init_slow_path();
}
return arena;
}
// trigger early initialization to set up pthread_atfork and protect state as soon as possible
COLD __attribute__((constructor(101))) static void trigger_early_init(void) {
// avoid calling init directly to skip it if this isn't the malloc implementation
h_free(h_malloc(16));
}
// Returns 0 on overflow.
static size_t get_large_size_class(size_t size) {
if (CONFIG_LARGE_SIZE_CLASSES) {
// Continue small size class growth pattern of power of 2 spacing classes:
//
// 4 KiB [20 KiB, 24 KiB, 28 KiB, 32 KiB]
// 8 KiB [40 KiB, 48 KiB, 54 KiB, 64 KiB]
// 16 KiB [80 KiB, 96 KiB, 112 KiB, 128 KiB]
// 32 KiB [160 KiB, 192 KiB, 224 KiB, 256 KiB]
// 512 KiB [2560 KiB, 3 MiB, 3584 KiB, 4 MiB]
// 1 MiB [5 MiB, 6 MiB, 7 MiB, 8 MiB]
// etc.
size_t spacing_shift = 64 - __builtin_clzl(size - 1) - 3;
size_t spacing_class = 1ULL << spacing_shift;
return (size + (spacing_class - 1)) & ~(spacing_class - 1);
}
return PAGE_CEILING(size);
}
static size_t get_guard_size(struct random_state *state, size_t size) {
return (get_random_u64_uniform(state, size / PAGE_SIZE / GUARD_SIZE_DIVISOR) + 1) * PAGE_SIZE;
}
static void *allocate_large(size_t size) {
size = get_large_size_class(size);
if (unlikely(!size)) {
errno = ENOMEM;
return NULL;
}
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
size_t guard_size = get_guard_size(&ra->rng, size);
mutex_unlock(&ra->lock);
void *p = allocate_pages(size, guard_size, true, "malloc large");
if (p == NULL) {
return NULL;
}
mutex_lock(&ra->lock);
if (regions_insert(p, size, guard_size)) {
mutex_unlock(&ra->lock);
deallocate_pages(p, size, guard_size);
return NULL;
}
stats_large_allocate(ra, size);
mutex_unlock(&ra->lock);
return p;
}
static inline void *allocate(unsigned arena, size_t size) {
return size <= MAX_SLAB_SIZE_CLASS ? allocate_small(arena, size) : allocate_large(size);
}
static void deallocate_large(void *p, const size_t *expected_size) {
enforce_init();
thread_unseal_metadata();
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
struct region_metadata *region = regions_find(p);
if (region == NULL) {
fatal_error("invalid free");
}
size_t size = region->size;
if (expected_size && size != get_large_size_class(*expected_size)) {
fatal_error("sized deallocation mismatch (large)");
}
size_t guard_size = region->guard_size;
regions_delete(region);
stats_large_deallocate(ra, size);
mutex_unlock(&ra->lock);
regions_quarantine_deallocate_pages(p, size, guard_size);
}
static int alloc_aligned(unsigned arena, void **memptr, size_t alignment, size_t size, size_t min_alignment) {
if ((alignment - 1) & alignment || alignment < min_alignment) {
return EINVAL;
}
if (alignment <= PAGE_SIZE) {
if (size <= MAX_SLAB_SIZE_CLASS && alignment > min_align) {
size = get_size_info_align(size, alignment).size;
}
void *p = allocate(arena, size);
if (p == NULL) {
return ENOMEM;
}
*memptr = p;
return 0;
}
size = get_large_size_class(size);
if (unlikely(!size)) {
return ENOMEM;
}
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
size_t guard_size = get_guard_size(&ra->rng, size);
mutex_unlock(&ra->lock);
void *p = allocate_pages_aligned(size, alignment, guard_size, "malloc large");
if (p == NULL) {
return ENOMEM;
}
mutex_lock(&ra->lock);
if (regions_insert(p, size, guard_size)) {
mutex_unlock(&ra->lock);
deallocate_pages(p, size, guard_size);
return ENOMEM;
}
mutex_unlock(&ra->lock);
*memptr = p;
return 0;
}
static void *alloc_aligned_simple(unsigned arena, size_t alignment, size_t size) {
void *ptr;
int ret = alloc_aligned(arena, &ptr, alignment, size, 1);
if (ret) {
errno = ret;
return NULL;
}
return ptr;
}
static size_t adjust_size_for_canaries(size_t size) {
if (size > 0 && size <= MAX_SLAB_SIZE_CLASS) {
return size + canary_size;
}
return size;
}
static inline void *alloc(size_t size) {
unsigned arena = init();
thread_unseal_metadata();
size = adjust_size_for_canaries(size);
void *p = allocate(arena, size);
thread_seal_metadata();
return p;
}
EXPORT void *h_malloc(size_t size) {
return alloc(size);
}
EXPORT void *h_calloc(size_t nmemb, size_t size) {
size_t total_size;
if (unlikely(__builtin_mul_overflow(nmemb, size, &total_size))) {
errno = ENOMEM;
return NULL;
}
unsigned arena = init();
thread_unseal_metadata();
total_size = adjust_size_for_canaries(total_size);
void *p = allocate(arena, total_size);
thread_seal_metadata();
if (!ZERO_ON_FREE && likely(p != NULL) && total_size && total_size <= MAX_SLAB_SIZE_CLASS) {
memset(p, 0, total_size - canary_size);
}
return p;
}
EXPORT void *h_realloc(void *old, size_t size) {
if (old == NULL) {
return alloc(size);
}
size = adjust_size_for_canaries(size);
if (size > MAX_SLAB_SIZE_CLASS) {
size = get_large_size_class(size);
if (unlikely(!size)) {
errno = ENOMEM;
return NULL;
}
}
size_t old_size;
if (old < get_slab_region_end() && old >= ro.slab_region_start) {
old_size = slab_usable_size(old);
if (size <= MAX_SLAB_SIZE_CLASS && get_size_info(size).size == old_size) {
return old;
}
thread_unseal_metadata();
} else {
enforce_init();
thread_unseal_metadata();
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
struct region_metadata *region = regions_find(old);
if (region == NULL) {
fatal_error("invalid realloc");
}
old_size = region->size;
size_t old_guard_size = region->guard_size;
if (old_size == size) {
mutex_unlock(&ra->lock);
thread_seal_metadata();
return old;
}
mutex_unlock(&ra->lock);
if (size > MAX_SLAB_SIZE_CLASS) {
// in-place shrink
if (size < old_size) {
void *new_end = (char *)old + size;
if (memory_map_fixed(new_end, old_guard_size)) {
thread_seal_metadata();
return NULL;
}
memory_set_name(new_end, old_guard_size, "malloc large");
void *new_guard_end = (char *)new_end + old_guard_size;
regions_quarantine_deallocate_pages(new_guard_end, old_size - size, 0);
mutex_lock(&ra->lock);
struct region_metadata *region = regions_find(old);
if (region == NULL) {
fatal_error("invalid realloc");
}
region->size = size;
stats_large_deallocate(ra, old_size - size);
mutex_unlock(&ra->lock);
thread_seal_metadata();
return old;
}
#ifdef HAVE_COMPATIBLE_MREMAP
static const bool vma_merging_reliable = false;
if (vma_merging_reliable) {
// in-place growth
void *guard_end = (char *)old + old_size + old_guard_size;
size_t extra = size - old_size;
if (!memory_remap((char *)old + old_size, old_guard_size, old_guard_size + extra)) {
if (memory_protect_rw((char *)old + old_size, extra)) {
memory_unmap(guard_end, extra);
} else {
mutex_lock(&ra->lock);
struct region_metadata *region = regions_find(old);
if (region == NULL) {
fatal_error("invalid realloc");
}
region->size = size;
stats_large_allocate(ra, extra);
mutex_unlock(&ra->lock);
thread_seal_metadata();
return old;
}
}
}
size_t copy_size = min(size, old_size);
if (copy_size >= MREMAP_MOVE_THRESHOLD) {
void *new = allocate_large(size);
if (new == NULL) {
thread_seal_metadata();
return NULL;
}
mutex_lock(&ra->lock);
struct region_metadata *region = regions_find(old);
if (region == NULL) {
fatal_error("invalid realloc");
}
regions_delete(region);
stats_large_deallocate(ra, old_size);
mutex_unlock(&ra->lock);
if (memory_remap_fixed(old, old_size, new, size)) {
memcpy(new, old, copy_size);
deallocate_pages(old, old_size, old_guard_size);
} else {
memory_unmap((char *)old - old_guard_size, old_guard_size);
memory_unmap((char *)old + PAGE_CEILING(old_size), old_guard_size);
}
thread_seal_metadata();
return new;
}
#endif
}
}
void *new = allocate(thread_arena, size);
if (new == NULL) {
thread_seal_metadata();
return NULL;
}
size_t copy_size = min(size, old_size);
if (copy_size > 0 && copy_size <= MAX_SLAB_SIZE_CLASS) {
copy_size -= canary_size;
}
memcpy(new, old, copy_size);
if (old_size <= MAX_SLAB_SIZE_CLASS) {
deallocate_small(old, NULL);
} else {
deallocate_large(old, NULL);
}
thread_seal_metadata();
return new;
}
EXPORT int h_posix_memalign(void **memptr, size_t alignment, size_t size) {
unsigned arena = init();
thread_unseal_metadata();
size = adjust_size_for_canaries(size);
int ret = alloc_aligned(arena, memptr, alignment, size, sizeof(void *));
thread_seal_metadata();
return ret;
}
EXPORT void *h_aligned_alloc(size_t alignment, size_t size) {
unsigned arena = init();
thread_unseal_metadata();
size = adjust_size_for_canaries(size);
void *p = alloc_aligned_simple(arena, alignment, size);
thread_seal_metadata();
return p;
}
EXPORT void *h_memalign(size_t alignment, size_t size) ALIAS(h_aligned_alloc);
#ifndef __ANDROID__
EXPORT void *h_valloc(size_t size) {
unsigned arena = init();
thread_unseal_metadata();
size = adjust_size_for_canaries(size);
void *p = alloc_aligned_simple(arena, PAGE_SIZE, size);
thread_seal_metadata();
return p;
}
EXPORT void *h_pvalloc(size_t size) {
size = PAGE_CEILING(size);
if (!size) {
errno = ENOMEM;
return NULL;
}
unsigned arena = init();
thread_unseal_metadata();
size = adjust_size_for_canaries(size);
void *p = alloc_aligned_simple(arena, PAGE_SIZE, size);
thread_seal_metadata();
return p;
}
#endif
EXPORT void h_free(void *p) {
if (p == NULL) {
return;
}
if (p < get_slab_region_end() && p >= ro.slab_region_start) {
thread_unseal_metadata();
deallocate_small(p, NULL);
thread_seal_metadata();
return;
}
deallocate_large(p, NULL);
thread_seal_metadata();
}
#ifdef __GLIBC__
EXPORT void h_cfree(void *ptr) ALIAS(h_free);
#endif
EXPORT void h_free_sized(void *p, size_t expected_size) {
if (p == NULL) {
return;
}
expected_size = adjust_size_for_canaries(expected_size);
if (p < get_slab_region_end() && p >= ro.slab_region_start) {
thread_unseal_metadata();
expected_size = get_size_info(expected_size).size;
deallocate_small(p, &expected_size);
thread_seal_metadata();
return;
}
deallocate_large(p, &expected_size);
thread_seal_metadata();
}
static inline void memory_corruption_check_small(const void *p) {
struct slab_size_class_info size_class_info = slab_size_class(p);
size_t class = size_class_info.class;
struct size_class *c = &ro.size_class_metadata[size_class_info.arena][class];
size_t size = size_classes[class];
bool is_zero_size = size == 0;
if (is_zero_size) {
size = 16;
}
size_t slab_size = get_slab_size(size_class_slots[class], size);
mutex_lock(&c->lock);
struct slab_metadata *metadata = get_metadata(c, p);
void *slab = get_slab(c, slab_size, metadata);
size_t slot = libdivide_u32_do((const char *)p - (const char *)slab, &c->size_divisor);
if (slot_pointer(size, slab, slot) != p) {
fatal_error("invalid unaligned malloc_usable_size");
}
if (!get_slot(metadata, slot)) {
fatal_error("invalid malloc_usable_size");
}
if (!is_zero_size && canary_size) {
u64 canary_value;
memcpy(&canary_value, (const char *)p + size - canary_size, canary_size);
if (unlikely(canary_value != metadata->canary_value)) {
fatal_error("canary corrupted");
}
}
#if SLAB_QUARANTINE
if (get_quarantine(metadata, slot)) {
fatal_error("invalid malloc_usable_size (quarantine)");
}
#endif
mutex_unlock(&c->lock);
}
EXPORT size_t h_malloc_usable_size(H_MALLOC_USABLE_SIZE_CONST void *p) {
if (p == NULL) {
return 0;
}
if (p < get_slab_region_end() && p >= ro.slab_region_start) {
thread_unseal_metadata();
memory_corruption_check_small(p);
thread_seal_metadata();
size_t size = slab_usable_size(p);
return size ? size - canary_size : 0;
}
enforce_init();
thread_unseal_metadata();
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
struct region_metadata *region = regions_find(p);
if (p == NULL) {
fatal_error("invalid malloc_usable_size");
}
size_t size = region->size;
mutex_unlock(&ra->lock);
thread_seal_metadata();
return size;
}
EXPORT size_t h_malloc_object_size(void *p) {
if (p == NULL) {
return 0;
}
void *slab_region_end = get_slab_region_end();
if (p < slab_region_end && p >= ro.slab_region_start) {
thread_unseal_metadata();
struct slab_size_class_info size_class_info = slab_size_class(p);
size_t class = size_class_info.class;
size_t size_class = size_classes[class];
struct size_class *c = &ro.size_class_metadata[size_class_info.arena][class];
mutex_lock(&c->lock);
struct slab_metadata *metadata = get_metadata(c, p);
size_t slab_size = get_slab_size(size_class_slots[class], size_class);
void *slab = get_slab(c, slab_size, metadata);
size_t slot = libdivide_u32_do((const char *)p - (const char *)slab, &c->size_divisor);
if (!get_slot(metadata, slot)) {
fatal_error("invalid malloc_object_size");
}
#if SLAB_QUARANTINE
if (get_quarantine(metadata, slot)) {
fatal_error("invalid malloc_object_size (quarantine)");
}
#endif
void *start = slot_pointer(size_class, slab, slot);
size_t offset = (const char *)p - (const char *)start;
mutex_unlock(&c->lock);
thread_seal_metadata();
size_t size = slab_usable_size(p);
return size ? size - canary_size - offset : 0;
}
if (unlikely(slab_region_end == NULL)) {
return SIZE_MAX;
}
thread_unseal_metadata();
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
struct region_metadata *region = regions_find(p);
size_t size = p == NULL ? SIZE_MAX : region->size;
mutex_unlock(&ra->lock);
thread_seal_metadata();
return size;
}
EXPORT size_t h_malloc_object_size_fast(void *p) {
if (p == NULL) {
return 0;
}
void *slab_region_end = get_slab_region_end();
if (p < slab_region_end && p >= ro.slab_region_start) {
size_t size = slab_usable_size(p);
return size ? size - canary_size : 0;
}
if (unlikely(slab_region_end == NULL)) {
return 0;
}
return SIZE_MAX;
}
EXPORT int h_mallopt(UNUSED int param, UNUSED int value) {
#ifdef __ANDROID__
if (param == M_PURGE) {
h_malloc_trim(0);
return 1;
}
#endif
return 0;
}
EXPORT int h_malloc_trim(UNUSED size_t pad) {
if (unlikely(!is_init())) {
return 0;
}
thread_unseal_metadata();
bool is_trimmed = false;
for (unsigned arena = 0; arena < N_ARENA; arena++) {
// skip zero byte size class since there's nothing to change
for (unsigned class = 1; class < N_SIZE_CLASSES; class++) {
struct size_class *c = &ro.size_class_metadata[arena][class];
size_t slab_size = get_slab_size(size_class_slots[class], size_classes[class]);
mutex_lock(&c->lock);
struct slab_metadata *iterator = c->empty_slabs;
while (iterator) {
void *slab = get_slab(c, slab_size, iterator);
if (memory_map_fixed(slab, slab_size)) {
break;
}
label_slab(slab, slab_size, class);
stats_slab_deallocate(c, slab_size);
struct slab_metadata *trimmed = iterator;
iterator = iterator->next;
c->empty_slabs_total -= slab_size;
enqueue_free_slab(c, trimmed);
is_trimmed = true;
}
c->empty_slabs = iterator;
mutex_unlock(&c->lock);
}
}
thread_seal_metadata();
return is_trimmed;
}
EXPORT void h_malloc_stats(void) {}
#if defined(__GLIBC__) || defined(__ANDROID__)
EXPORT struct mallinfo h_mallinfo(void) {
struct mallinfo info = {0};
// glibc mallinfo type definition and implementation are both broken
#if CONFIG_STATS && !defined(__GLIBC__)
if (!is_init()) {
return info;
}
thread_unseal_metadata();
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
info.hblkhd += ra->allocated;
info.uordblks += ra->allocated;
mutex_unlock(&ra->lock);
for (unsigned arena = 0; arena < N_ARENA; arena++) {
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
struct size_class *c = &ro.size_class_metadata[arena][class];
mutex_lock(&c->lock);
info.hblkhd += c->slab_allocated;
info.uordblks += c->allocated;
mutex_unlock(&c->lock);
}
}
info.fordblks = info.hblkhd - info.uordblks;
info.usmblks = info.hblkhd;
thread_seal_metadata();
#endif
return info;
}
#endif
#ifndef __ANDROID__
EXPORT int h_malloc_info(int options, UNUSED FILE *fp) {
if (options) {
errno = EINVAL;
return -1;
}
fputs("<malloc version=\"hardened_malloc-1\">", fp);
#if CONFIG_STATS
if (is_init()) {
thread_unseal_metadata();
for (unsigned arena = 0; arena < N_ARENA; arena++) {
fprintf(fp, "<heap nr=\"%u\">", arena);
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
struct size_class *c = &ro.size_class_metadata[arena][class];
mutex_lock(&c->lock);
u64 nmalloc = c->nmalloc;
u64 ndalloc = c->ndalloc;
size_t slab_allocated = c->slab_allocated;
size_t allocated = c->allocated;
mutex_unlock(&c->lock);
if (nmalloc || ndalloc || slab_allocated || allocated) {
fprintf(fp, "<bin nr=\"%u\" size=\"%" PRIu32 "\">", class, size_classes[class]);
fprintf(fp, "<nmalloc>%" PRIu64 "</nmalloc>", nmalloc);
fprintf(fp, "<ndalloc>%" PRIu64 "</ndalloc>", ndalloc);
fprintf(fp, "<slab_allocated>%zu</slab_allocated>", slab_allocated);
fprintf(fp, "<allocated>%zu</allocated>", allocated);
fputs("</bin>", fp);
}
}
fputs("</heap>", fp);
}
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
size_t region_allocated = ra->allocated;
mutex_unlock(&ra->lock);
fprintf(fp, "<heap nr=\"%u\">", N_ARENA);
fprintf(fp, "<allocated_large>%zu</allocated_large>", region_allocated);
fputs("</heap>", fp);
thread_seal_metadata();
}
#endif
fputs("</malloc>", fp);
return 0;
}
#endif
#ifdef __ANDROID__
EXPORT size_t h_mallinfo_narenas(void) {
// Consider region allocator to be an arena with index N_ARENA.
return N_ARENA + 1;
}
EXPORT size_t h_mallinfo_nbins(void) {
return N_SIZE_CLASSES;
}
// This internal Android API uses mallinfo in a non-standard way to implement malloc_info:
//
// hblkhd: total mapped memory as usual
// ordblks: large allocations
// uordblks: huge allocations
// fsmblks: small allocations
// (other fields are unused)
EXPORT struct mallinfo h_mallinfo_arena_info(UNUSED size_t arena) {
struct mallinfo info = {0};
#if CONFIG_STATS
if (!is_init()) {
return info;
}
thread_unseal_metadata();
if (arena < N_ARENA) {
for (unsigned class = 0; class < N_SIZE_CLASSES; class++) {
struct size_class *c = &ro.size_class_metadata[arena][class];
mutex_lock(&c->lock);
info.hblkhd += c->slab_allocated;
info.fsmblks += c->allocated;
mutex_unlock(&c->lock);
}
} else if (arena == N_ARENA) {
struct region_allocator *ra = ro.region_allocator;
mutex_lock(&ra->lock);
info.hblkhd = ra->allocated;
// our large allocations are roughly comparable to jemalloc huge allocations
info.uordblks = ra->allocated;
mutex_unlock(&ra->lock);
}
thread_seal_metadata();
#endif
return info;
}
// This internal Android API uses mallinfo in a non-standard way to implement malloc_info:
//
// ordblks: total allocated space
// uordblks: nmalloc
// fordblks: ndalloc
// (other fields are unused)
EXPORT struct mallinfo h_mallinfo_bin_info(UNUSED size_t arena, UNUSED size_t bin) {
struct mallinfo info = {0};
#if CONFIG_STATS
if (!is_init()) {
return info;
}
if (arena < N_ARENA && bin < N_SIZE_CLASSES) {
thread_seal_metadata();
struct size_class *c = &ro.size_class_metadata[arena][bin];
mutex_lock(&c->lock);
info.ordblks = c->allocated;
info.uordblks = c->nmalloc;
info.fordblks = c->ndalloc;
mutex_unlock(&c->lock);
thread_unseal_metadata();
}
#endif
return info;
}
COLD EXPORT int h_malloc_iterate(UNUSED uintptr_t base, UNUSED size_t size,
UNUSED void (*callback)(uintptr_t ptr, size_t size, void *arg),
UNUSED void *arg) {
fatal_error("not implemented");
}
COLD EXPORT void h_malloc_disable(void) {
init();
full_lock();
}
COLD EXPORT void h_malloc_enable(void) {
enforce_init();
full_unlock();
}
#endif
#ifdef __GLIBC__
COLD EXPORT void *h_malloc_get_state(void) {
return NULL;
}
COLD EXPORT int h_malloc_set_state(UNUSED void *state) {
return -2;
}
#endif