hardened_malloc/androidtest/memtag/memtag_test.cc

352 lines
9.9 KiB
C++

// needed to uncondionally enable assertions
#undef NDEBUG
#include <assert.h>
#include <malloc.h>
#include <signal.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/utsname.h>
#include <unistd.h>
#include <map>
#include <set>
#include <string>
#include <unordered_map>
#include "../../arm_mte.h"
using namespace std;
using u8 = uint8_t;
using uptr = uintptr_t;
using u64 = uint64_t;
const size_t DEFAULT_ALLOC_SIZE = 8;
const size_t CANARY_SIZE = 8;
void do_context_switch() {
utsname s;
uname(&s);
}
u8 get_pointer_tag(void *ptr) {
return (((uptr) ptr) >> 56) & 0xf;
}
void *untag_pointer(void *ptr) {
const uintptr_t mask = UINTPTR_MAX >> 8;
return (void *) ((uintptr_t) ptr & mask);
}
void *set_pointer_tag(void *ptr, u8 tag) {
return (void *) (((uintptr_t) tag << 56) | (uintptr_t) untag_pointer(ptr));
}
// This test checks that slab slot allocation uses tag that is distint from tags of its neighbors
// and from the tag of the previous allocation that used the same slot
void tag_distinctness() {
// tag 0 is reserved
const int min_tag = 1;
const int max_tag = 0xf;
struct SizeClass {
int size;
int slot_cnt;
};
// values from size_classes[] and size_class_slots[] in h_malloc.c
SizeClass size_classes[] = {
{ .size = 16, .slot_cnt = 256, },
{ .size = 32, .slot_cnt = 128, },
// this size class is used by allocations that are made by the addr_tag_map, which breaks
// tag distinctess checks
// { .size = 48, .slot_cnt = 85, },
{ .size = 64, .slot_cnt = 64, },
{ .size = 80, .slot_cnt = 51, },
{ .size = 96, .slot_cnt = 42, },
{ .size = 112, .slot_cnt = 36, },
{ .size = 128, .slot_cnt = 64, },
{ .size = 160, .slot_cnt = 51, },
{ .size = 192, .slot_cnt = 64, },
{ .size = 224, .slot_cnt = 54, },
{ .size = 10240, .slot_cnt = 6, },
{ .size = 20480, .slot_cnt = 1, },
};
int tag_usage[max_tag + 1];
for (size_t sc_idx = 0; sc_idx < sizeof(size_classes) / sizeof(SizeClass); ++sc_idx) {
SizeClass &sc = size_classes[sc_idx];
const size_t full_alloc_size = sc.size;
const size_t alloc_size = full_alloc_size - CANARY_SIZE;
// "tdc" is short for "tag distinctness check"
int left_neighbor_tdc_cnt = 0;
int right_neighbor_tdc_cnt = 0;
int prev_alloc_tdc_cnt = 0;
int iter_cnt = 600;
unordered_map<uptr, u8> addr_tag_map;
addr_tag_map.reserve(iter_cnt * sc.slot_cnt);
u64 seen_tags = 0;
for (int iter = 0; iter < iter_cnt; ++iter) {
uptr allocations[256]; // 256 is max slot count
for (int i = 0; i < sc.slot_cnt; ++i) {
u8 *p = (u8 *) malloc(alloc_size);
assert(p);
uptr addr = (uptr) untag_pointer(p);
u8 tag = get_pointer_tag(p);
assert(tag >= min_tag && tag <= max_tag);
seen_tags |= 1 << tag;
++tag_usage[tag];
// check most recent tags of left and right neighbors
auto left = addr_tag_map.find(addr - full_alloc_size);
if (left != addr_tag_map.end()) {
assert(left->second != tag);
++left_neighbor_tdc_cnt;
}
auto right = addr_tag_map.find(addr + full_alloc_size);
if (right != addr_tag_map.end()) {
assert(right->second != tag);
++right_neighbor_tdc_cnt;
}
// check previous tag of this slot
auto prev = addr_tag_map.find(addr);
if (prev != addr_tag_map.end()) {
assert(prev->second != tag);
++prev_alloc_tdc_cnt;
addr_tag_map.erase(addr);
}
addr_tag_map.emplace(addr, tag);
for (size_t j = 0; j < alloc_size; ++j) {
// check that slot is zeroed
assert(p[j] == 0);
// check that slot is readable and writable
p[j]++;
}
allocations[i] = addr;
}
// free some of allocations to allow their slots to be reused
for (int i = sc.slot_cnt - 1; i >= 0; i -= 2) {
free((void *) allocations[i]);
}
}
// check that all of the tags were used, except for the reserved tag 0
assert(seen_tags == (0xffff & ~(1 << 0)));
printf("size_class\t%i\t" "tdc_left %i\t" "tdc_right %i\t" "tdc_prev_alloc %i\n",
sc.size, left_neighbor_tdc_cnt, right_neighbor_tdc_cnt, prev_alloc_tdc_cnt);
// make sure tag distinctess checks were actually performed
int min_tdc_cnt = sc.slot_cnt * iter_cnt / 5;
assert(prev_alloc_tdc_cnt > min_tdc_cnt);
if (sc.slot_cnt > 1) {
assert(left_neighbor_tdc_cnt > min_tdc_cnt);
assert(right_neighbor_tdc_cnt > min_tdc_cnt);
}
// async tag check failures are reported on context switch
do_context_switch();
}
printf("\nTag use counters:\n");
int min = INT_MAX;
int max = 0;
double geomean = 0.0;
for (int i = min_tag; i <= max_tag; ++i) {
int v = tag_usage[i];
geomean += log(v);
min = std::min(min, v);
max = std::max(max, v);
printf("%i\t%i\n", i, tag_usage[i]);
}
int tag_cnt = 1 + max_tag - min_tag;
geomean = exp(geomean / tag_cnt);
double max_deviation = std::max((double) max - geomean, geomean - min);
printf("geomean: %.2f, max deviation from geomean: %.2f%%\n", geomean, (100.0 * max_deviation) / geomean);
}
u8* alloc_default() {
const size_t full_alloc_size = DEFAULT_ALLOC_SIZE + CANARY_SIZE;
set<uptr> addrs;
// make sure allocation has both left and right neighbors, otherwise overflow/underflow tests
// will fail when allocation is at the end/beginning of slab
for (;;) {
u8 *p = (u8 *) malloc(DEFAULT_ALLOC_SIZE);
assert(p);
uptr addr = (uptr) untag_pointer(p);
uptr left = addr - full_alloc_size;
if (addrs.find(left) != addrs.end()) {
uptr right = addr + full_alloc_size;
if (addrs.find(right) != addrs.end()) {
return p;
}
}
addrs.emplace(addr);
}
}
int expected_segv_code;
#define expect_segv(exp, segv_code) ({\
expected_segv_code = segv_code; \
volatile auto val = exp; \
(void) val; \
do_context_switch(); \
fprintf(stderr, "didn't receive SEGV code %i", segv_code); \
exit(1); })
// it's expected that the device is configured to use asymm MTE tag checking mode (sync read checks,
// async write checks)
#define expect_read_segv(exp) expect_segv(exp, SEGV_MTESERR)
#define expect_write_segv(exp) expect_segv(exp, SEGV_MTEAERR)
void read_after_free() {
u8 *p = alloc_default();
free(p);
expect_read_segv(p[0]);
}
void write_after_free() {
u8 *p = alloc_default();
free(p);
expect_write_segv(p[0] = 1);
}
void underflow_read() {
u8 *p = alloc_default();
expect_read_segv(p[-1]);
}
void underflow_write() {
u8 *p = alloc_default();
expect_write_segv(p[-1] = 1);
}
void overflow_read() {
u8 *p = alloc_default();
expect_read_segv(p[DEFAULT_ALLOC_SIZE + CANARY_SIZE]);
}
void overflow_write() {
u8 *p = alloc_default();
expect_write_segv(p[DEFAULT_ALLOC_SIZE + CANARY_SIZE] = 1);
}
void untagged_read() {
u8 *p = alloc_default();
p = (u8 *) untag_pointer(p);
expect_read_segv(p[0]);
}
void untagged_write() {
u8 *p = alloc_default();
p = (u8 *) untag_pointer(p);
expect_write_segv(p[0] = 1);
}
// checks that each of memory locations inside the buffer is tagged with expected_tag
void check_tag(void *buf, size_t len, u8 expected_tag) {
for (size_t i = 0; i < len; ++i) {
assert(get_pointer_tag(__arm_mte_get_tag((void *) ((uintptr_t) buf + i))) == expected_tag);
}
}
void madvise_dontneed() {
const size_t len = 100'000;
void *ptr = mmap(NULL, len, PROT_READ | PROT_WRITE | PROT_MTE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
assert(ptr != MAP_FAILED);
// check that 0 is the initial tag
check_tag(ptr, len, 0);
arm_mte_tag_and_clear_mem(set_pointer_tag(ptr, 1), len);
check_tag(ptr, len, 1);
memset(set_pointer_tag(ptr, 1), 1, len);
assert(madvise(ptr, len, MADV_DONTNEED) == 0);
// check that MADV_DONTNEED resets the tag
check_tag(ptr, len, 0);
// check that MADV_DONTNEED clears the memory
for (size_t i = 0; i < len; ++i) {
assert(((u8 *) ptr)[i] == 0);
}
// check that mistagged read after MADV_DONTNEED fails
expect_read_segv(*((u8 *) set_pointer_tag(ptr, 1)));
}
map<string, function<void()>> tests = {
#define TEST(s) { #s, s }
TEST(tag_distinctness),
TEST(read_after_free),
TEST(write_after_free),
TEST(overflow_read),
TEST(overflow_write),
TEST(underflow_read),
TEST(underflow_write),
TEST(untagged_read),
TEST(untagged_write),
TEST(madvise_dontneed),
#undef TEST
};
void segv_handler(int, siginfo_t *si, void *) {
if (expected_segv_code == 0 || expected_segv_code != si->si_code) {
fprintf(stderr, "received unexpected SEGV_CODE %i", si->si_code);
exit(139); // standard exit code for SIGSEGV
}
exit(0);
}
int main(int argc, char **argv) {
setbuf(stdout, NULL);
assert(argc == 2);
auto test_name = string(argv[1]);
auto test_fn = tests[test_name];
assert(test_fn != nullptr);
assert(mallopt(M_BIONIC_SET_HEAP_TAGGING_LEVEL, M_HEAP_TAGGING_LEVEL_ASYNC) == 1);
struct sigaction sa = {
.sa_sigaction = segv_handler,
.sa_flags = SA_SIGINFO,
};
assert(sigaction(SIGSEGV, &sa, nullptr) == 0);
test_fn();
do_context_switch();
return 0;
}