// libdivide.h - Optimized integer division // https://libdivide.com // // Copyright (C) 2010 - 2022 ridiculous_fish, // Copyright (C) 2016 - 2022 Kim Walisch, // // libdivide is dual-licensed under the Boost or zlib licenses. // You may use libdivide under the terms of either of these. // See LICENSE.txt for more details. #ifndef LIBDIVIDE_H #define LIBDIVIDE_H #define LIBDIVIDE_VERSION "5.1" #define LIBDIVIDE_VERSION_MAJOR 5 #define LIBDIVIDE_VERSION_MINOR 1 #include #if !defined(__AVR__) #include #include #endif #if defined(LIBDIVIDE_SSE2) #include #endif #if defined(LIBDIVIDE_AVX2) || defined(LIBDIVIDE_AVX512) #include #endif #if defined(LIBDIVIDE_NEON) #include #endif #if defined(_MSC_VER) #include #pragma warning(push) // disable warning C4146: unary minus operator applied // to unsigned type, result still unsigned #pragma warning(disable : 4146) // disable warning C4204: nonstandard extension used : non-constant aggregate // initializer // // It's valid C99 #pragma warning(disable : 4204) #define LIBDIVIDE_VC #endif #if !defined(__has_builtin) #define __has_builtin(x) 0 #endif #if defined(__SIZEOF_INT128__) #define HAS_INT128_T // clang-cl on Windows does not yet support 128-bit division #if !(defined(__clang__) && defined(LIBDIVIDE_VC)) #define HAS_INT128_DIV #endif #endif #if defined(__x86_64__) || defined(_M_X64) #define LIBDIVIDE_X86_64 #endif #if defined(__i386__) #define LIBDIVIDE_i386 #endif #if defined(__GNUC__) || defined(__clang__) #define LIBDIVIDE_GCC_STYLE_ASM #endif #if defined(__cplusplus) || defined(LIBDIVIDE_VC) #define LIBDIVIDE_FUNCTION __FUNCTION__ #else #define LIBDIVIDE_FUNCTION __func__ #endif // Set up forced inlining if possible. // We need both the attribute and keyword to avoid "might not be inlineable" warnings. #ifdef __has_attribute #if __has_attribute(always_inline) #define LIBDIVIDE_INLINE __attribute__((always_inline)) inline #endif #endif #ifndef LIBDIVIDE_INLINE #define LIBDIVIDE_INLINE inline #endif #if defined(__AVR__) #define LIBDIVIDE_ERROR(msg) #else #define LIBDIVIDE_ERROR(msg) \ do { \ fprintf(stderr, "libdivide.h:%d: %s(): Error: %s\n", __LINE__, LIBDIVIDE_FUNCTION, msg); \ abort(); \ } while (0) #endif #if defined(LIBDIVIDE_ASSERTIONS_ON) && !defined(__AVR__) #define LIBDIVIDE_ASSERT(x) \ do { \ if (!(x)) { \ fprintf(stderr, "libdivide.h:%d: %s(): Assertion failed: %s\n", __LINE__, \ LIBDIVIDE_FUNCTION, #x); \ abort(); \ } \ } while (0) #else #define LIBDIVIDE_ASSERT(x) #endif #ifdef __cplusplus namespace libdivide { #endif // pack divider structs to prevent compilers from padding. // This reduces memory usage by up to 43% when using a large // array of libdivide dividers and improves performance // by up to 10% because of reduced memory bandwidth. #pragma pack(push, 1) struct libdivide_u16_t { uint16_t magic; uint8_t more; }; struct libdivide_s16_t { int16_t magic; uint8_t more; }; struct libdivide_u32_t { uint32_t magic; uint8_t more; }; struct libdivide_s32_t { int32_t magic; uint8_t more; }; struct libdivide_u64_t { uint64_t magic; uint8_t more; }; struct libdivide_s64_t { int64_t magic; uint8_t more; }; struct libdivide_u16_branchfree_t { uint16_t magic; uint8_t more; }; struct libdivide_s16_branchfree_t { int16_t magic; uint8_t more; }; struct libdivide_u32_branchfree_t { uint32_t magic; uint8_t more; }; struct libdivide_s32_branchfree_t { int32_t magic; uint8_t more; }; struct libdivide_u64_branchfree_t { uint64_t magic; uint8_t more; }; struct libdivide_s64_branchfree_t { int64_t magic; uint8_t more; }; #pragma pack(pop) // Explanation of the "more" field: // // * Bits 0-5 is the shift value (for shift path or mult path). // * Bit 6 is the add indicator for mult path. // * Bit 7 is set if the divisor is negative. We use bit 7 as the negative // divisor indicator so that we can efficiently use sign extension to // create a bitmask with all bits set to 1 (if the divisor is negative) // or 0 (if the divisor is positive). // // u32: [0-4] shift value // [5] ignored // [6] add indicator // magic number of 0 indicates shift path // // s32: [0-4] shift value // [5] ignored // [6] add indicator // [7] indicates negative divisor // magic number of 0 indicates shift path // // u64: [0-5] shift value // [6] add indicator // magic number of 0 indicates shift path // // s64: [0-5] shift value // [6] add indicator // [7] indicates negative divisor // magic number of 0 indicates shift path // // In s32 and s64 branchfree modes, the magic number is negated according to // whether the divisor is negated. In branchfree strategy, it is not negated. enum { LIBDIVIDE_16_SHIFT_MASK = 0x1F, LIBDIVIDE_32_SHIFT_MASK = 0x1F, LIBDIVIDE_64_SHIFT_MASK = 0x3F, LIBDIVIDE_ADD_MARKER = 0x40, LIBDIVIDE_NEGATIVE_DIVISOR = 0x80 }; static LIBDIVIDE_INLINE struct libdivide_s16_t libdivide_s16_gen(int16_t d); static LIBDIVIDE_INLINE struct libdivide_u16_t libdivide_u16_gen(uint16_t d); static LIBDIVIDE_INLINE struct libdivide_s32_t libdivide_s32_gen(int32_t d); static LIBDIVIDE_INLINE struct libdivide_u32_t libdivide_u32_gen(uint32_t d); static LIBDIVIDE_INLINE struct libdivide_s64_t libdivide_s64_gen(int64_t d); static LIBDIVIDE_INLINE struct libdivide_u64_t libdivide_u64_gen(uint64_t d); static LIBDIVIDE_INLINE struct libdivide_s16_branchfree_t libdivide_s16_branchfree_gen(int16_t d); static LIBDIVIDE_INLINE struct libdivide_u16_branchfree_t libdivide_u16_branchfree_gen(uint16_t d); static LIBDIVIDE_INLINE struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d); static LIBDIVIDE_INLINE struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d); static LIBDIVIDE_INLINE struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d); static LIBDIVIDE_INLINE struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d); static LIBDIVIDE_INLINE int16_t libdivide_s16_do_raw(int16_t numer, int16_t magic, uint8_t more); static LIBDIVIDE_INLINE int16_t libdivide_s16_do( int16_t numer, const struct libdivide_s16_t *denom); static LIBDIVIDE_INLINE uint16_t libdivide_u16_do_raw(uint16_t numer, uint16_t magic, uint8_t more); static LIBDIVIDE_INLINE uint16_t libdivide_u16_do( uint16_t numer, const struct libdivide_u16_t *denom); static LIBDIVIDE_INLINE int32_t libdivide_s32_do( int32_t numer, const struct libdivide_s32_t *denom); static LIBDIVIDE_INLINE uint32_t libdivide_u32_do( uint32_t numer, const struct libdivide_u32_t *denom); static LIBDIVIDE_INLINE int64_t libdivide_s64_do( int64_t numer, const struct libdivide_s64_t *denom); static LIBDIVIDE_INLINE uint64_t libdivide_u64_do( uint64_t numer, const struct libdivide_u64_t *denom); static LIBDIVIDE_INLINE int16_t libdivide_s16_branchfree_do( int16_t numer, const struct libdivide_s16_branchfree_t *denom); static LIBDIVIDE_INLINE uint16_t libdivide_u16_branchfree_do( uint16_t numer, const struct libdivide_u16_branchfree_t *denom); static LIBDIVIDE_INLINE int32_t libdivide_s32_branchfree_do( int32_t numer, const struct libdivide_s32_branchfree_t *denom); static LIBDIVIDE_INLINE uint32_t libdivide_u32_branchfree_do( uint32_t numer, const struct libdivide_u32_branchfree_t *denom); static LIBDIVIDE_INLINE int64_t libdivide_s64_branchfree_do( int64_t numer, const struct libdivide_s64_branchfree_t *denom); static LIBDIVIDE_INLINE uint64_t libdivide_u64_branchfree_do( uint64_t numer, const struct libdivide_u64_branchfree_t *denom); static LIBDIVIDE_INLINE int16_t libdivide_s16_recover(const struct libdivide_s16_t *denom); static LIBDIVIDE_INLINE uint16_t libdivide_u16_recover(const struct libdivide_u16_t *denom); static LIBDIVIDE_INLINE int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom); static LIBDIVIDE_INLINE uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom); static LIBDIVIDE_INLINE int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom); static LIBDIVIDE_INLINE uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom); static LIBDIVIDE_INLINE int16_t libdivide_s16_branchfree_recover( const struct libdivide_s16_branchfree_t *denom); static LIBDIVIDE_INLINE uint16_t libdivide_u16_branchfree_recover( const struct libdivide_u16_branchfree_t *denom); static LIBDIVIDE_INLINE int32_t libdivide_s32_branchfree_recover( const struct libdivide_s32_branchfree_t *denom); static LIBDIVIDE_INLINE uint32_t libdivide_u32_branchfree_recover( const struct libdivide_u32_branchfree_t *denom); static LIBDIVIDE_INLINE int64_t libdivide_s64_branchfree_recover( const struct libdivide_s64_branchfree_t *denom); static LIBDIVIDE_INLINE uint64_t libdivide_u64_branchfree_recover( const struct libdivide_u64_branchfree_t *denom); //////// Internal Utility Functions static LIBDIVIDE_INLINE uint16_t libdivide_mullhi_u16(uint16_t x, uint16_t y) { uint32_t xl = x, yl = y; uint32_t rl = xl * yl; return (uint16_t)(rl >> 16); } static LIBDIVIDE_INLINE int16_t libdivide_mullhi_s16(int16_t x, int16_t y) { int32_t xl = x, yl = y; int32_t rl = xl * yl; // needs to be arithmetic shift return (int16_t)(rl >> 16); } static LIBDIVIDE_INLINE uint32_t libdivide_mullhi_u32(uint32_t x, uint32_t y) { uint64_t xl = x, yl = y; uint64_t rl = xl * yl; return (uint32_t)(rl >> 32); } static LIBDIVIDE_INLINE int32_t libdivide_mullhi_s32(int32_t x, int32_t y) { int64_t xl = x, yl = y; int64_t rl = xl * yl; // needs to be arithmetic shift return (int32_t)(rl >> 32); } static LIBDIVIDE_INLINE uint64_t libdivide_mullhi_u64(uint64_t x, uint64_t y) { #if defined(LIBDIVIDE_VC) && defined(LIBDIVIDE_X86_64) return __umulh(x, y); #elif defined(HAS_INT128_T) __uint128_t xl = x, yl = y; __uint128_t rl = xl * yl; return (uint64_t)(rl >> 64); #else // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64) uint32_t mask = 0xFFFFFFFF; uint32_t x0 = (uint32_t)(x & mask); uint32_t x1 = (uint32_t)(x >> 32); uint32_t y0 = (uint32_t)(y & mask); uint32_t y1 = (uint32_t)(y >> 32); uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0); uint64_t x0y1 = x0 * (uint64_t)y1; uint64_t x1y0 = x1 * (uint64_t)y0; uint64_t x1y1 = x1 * (uint64_t)y1; uint64_t temp = x1y0 + x0y0_hi; uint64_t temp_lo = temp & mask; uint64_t temp_hi = temp >> 32; return x1y1 + temp_hi + ((temp_lo + x0y1) >> 32); #endif } static LIBDIVIDE_INLINE int64_t libdivide_mullhi_s64(int64_t x, int64_t y) { #if defined(LIBDIVIDE_VC) && defined(LIBDIVIDE_X86_64) return __mulh(x, y); #elif defined(HAS_INT128_T) __int128_t xl = x, yl = y; __int128_t rl = xl * yl; return (int64_t)(rl >> 64); #else // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64) uint32_t mask = 0xFFFFFFFF; uint32_t x0 = (uint32_t)(x & mask); uint32_t y0 = (uint32_t)(y & mask); int32_t x1 = (int32_t)(x >> 32); int32_t y1 = (int32_t)(y >> 32); uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0); int64_t t = x1 * (int64_t)y0 + x0y0_hi; int64_t w1 = x0 * (int64_t)y1 + (t & mask); return x1 * (int64_t)y1 + (t >> 32) + (w1 >> 32); #endif } static LIBDIVIDE_INLINE int16_t libdivide_count_leading_zeros16(uint16_t val) { #if defined(__AVR__) // Fast way to count leading zeros // On the AVR 8-bit architecture __builtin_clz() works on a int16_t. return __builtin_clz(val); #elif defined(__GNUC__) || __has_builtin(__builtin_clz) // Fast way to count leading zeros return __builtin_clz(val) - 16; #elif defined(LIBDIVIDE_VC) unsigned long result; if (_BitScanReverse(&result, (unsigned long)val)) { return (int16_t)(15 - result); } return 0; #else if (val == 0) return 16; int16_t result = 4; uint16_t hi = 0xFU << 12; while ((val & hi) == 0) { hi >>= 4; result += 4; } while (val & hi) { result -= 1; hi <<= 1; } return result; #endif } static LIBDIVIDE_INLINE int32_t libdivide_count_leading_zeros32(uint32_t val) { #if defined(__AVR__) // Fast way to count leading zeros return __builtin_clzl(val); #elif defined(__GNUC__) || __has_builtin(__builtin_clz) // Fast way to count leading zeros return __builtin_clz(val); #elif defined(LIBDIVIDE_VC) unsigned long result; if (_BitScanReverse(&result, val)) { return 31 - result; } return 0; #else if (val == 0) return 32; int32_t result = 8; uint32_t hi = 0xFFU << 24; while ((val & hi) == 0) { hi >>= 8; result += 8; } while (val & hi) { result -= 1; hi <<= 1; } return result; #endif } static LIBDIVIDE_INLINE int32_t libdivide_count_leading_zeros64(uint64_t val) { #if defined(__GNUC__) || __has_builtin(__builtin_clzll) // Fast way to count leading zeros return __builtin_clzll(val); #elif defined(LIBDIVIDE_VC) && defined(_WIN64) unsigned long result; if (_BitScanReverse64(&result, val)) { return 63 - result; } return 0; #else uint32_t hi = val >> 32; uint32_t lo = val & 0xFFFFFFFF; if (hi != 0) return libdivide_count_leading_zeros32(hi); return 32 + libdivide_count_leading_zeros32(lo); #endif } // libdivide_32_div_16_to_16: divides a 32-bit uint {u1, u0} by a 16-bit // uint {v}. The result must fit in 16 bits. // Returns the quotient directly and the remainder in *r static LIBDIVIDE_INLINE uint16_t libdivide_32_div_16_to_16( uint16_t u1, uint16_t u0, uint16_t v, uint16_t *r) { uint32_t n = ((uint32_t)u1 << 16) | u0; uint16_t result = (uint16_t)(n / v); *r = (uint16_t)(n - result * (uint32_t)v); return result; } // libdivide_64_div_32_to_32: divides a 64-bit uint {u1, u0} by a 32-bit // uint {v}. The result must fit in 32 bits. // Returns the quotient directly and the remainder in *r static LIBDIVIDE_INLINE uint32_t libdivide_64_div_32_to_32( uint32_t u1, uint32_t u0, uint32_t v, uint32_t *r) { #if (defined(LIBDIVIDE_i386) || defined(LIBDIVIDE_X86_64)) && defined(LIBDIVIDE_GCC_STYLE_ASM) uint32_t result; __asm__("divl %[v]" : "=a"(result), "=d"(*r) : [v] "r"(v), "a"(u0), "d"(u1)); return result; #else uint64_t n = ((uint64_t)u1 << 32) | u0; uint32_t result = (uint32_t)(n / v); *r = (uint32_t)(n - result * (uint64_t)v); return result; #endif } // libdivide_128_div_64_to_64: divides a 128-bit uint {numhi, numlo} by a 64-bit uint {den}. The // result must fit in 64 bits. Returns the quotient directly and the remainder in *r static LIBDIVIDE_INLINE uint64_t libdivide_128_div_64_to_64( uint64_t numhi, uint64_t numlo, uint64_t den, uint64_t *r) { // N.B. resist the temptation to use __uint128_t here. // In LLVM compiler-rt, it performs a 128/128 -> 128 division which is many times slower than // necessary. In gcc it's better but still slower than the divlu implementation, perhaps because // it's not LIBDIVIDE_INLINEd. #if defined(LIBDIVIDE_X86_64) && defined(LIBDIVIDE_GCC_STYLE_ASM) uint64_t result; __asm__("divq %[v]" : "=a"(result), "=d"(*r) : [v] "r"(den), "a"(numlo), "d"(numhi)); return result; #else // We work in base 2**32. // A uint32 holds a single digit. A uint64 holds two digits. // Our numerator is conceptually [num3, num2, num1, num0]. // Our denominator is [den1, den0]. const uint64_t b = ((uint64_t)1 << 32); // The high and low digits of our computed quotient. uint32_t q1; uint32_t q0; // The normalization shift factor. int shift; // The high and low digits of our denominator (after normalizing). // Also the low 2 digits of our numerator (after normalizing). uint32_t den1; uint32_t den0; uint32_t num1; uint32_t num0; // A partial remainder. uint64_t rem; // The estimated quotient, and its corresponding remainder (unrelated to true remainder). uint64_t qhat; uint64_t rhat; // Variables used to correct the estimated quotient. uint64_t c1; uint64_t c2; // Check for overflow and divide by 0. if (numhi >= den) { if (r) *r = ~0ull; return ~0ull; } // Determine the normalization factor. We multiply den by this, so that its leading digit is at // least half b. In binary this means just shifting left by the number of leading zeros, so that // there's a 1 in the MSB. // We also shift numer by the same amount. This cannot overflow because numhi < den. // The expression (-shift & 63) is the same as (64 - shift), except it avoids the UB of shifting // by 64. The funny bitwise 'and' ensures that numlo does not get shifted into numhi if shift is // 0. clang 11 has an x86 codegen bug here: see LLVM bug 50118. The sequence below avoids it. shift = libdivide_count_leading_zeros64(den); den <<= shift; numhi <<= shift; numhi |= (numlo >> (-shift & 63)) & (-(int64_t)shift >> 63); numlo <<= shift; // Extract the low digits of the numerator and both digits of the denominator. num1 = (uint32_t)(numlo >> 32); num0 = (uint32_t)(numlo & 0xFFFFFFFFu); den1 = (uint32_t)(den >> 32); den0 = (uint32_t)(den & 0xFFFFFFFFu); // We wish to compute q1 = [n3 n2 n1] / [d1 d0]. // Estimate q1 as [n3 n2] / [d1], and then correct it. // Note while qhat may be 2 digits, q1 is always 1 digit. qhat = numhi / den1; rhat = numhi % den1; c1 = qhat * den0; c2 = rhat * b + num1; if (c1 > c2) qhat -= (c1 - c2 > den) ? 2 : 1; q1 = (uint32_t)qhat; // Compute the true (partial) remainder. rem = numhi * b + num1 - q1 * den; // We wish to compute q0 = [rem1 rem0 n0] / [d1 d0]. // Estimate q0 as [rem1 rem0] / [d1] and correct it. qhat = rem / den1; rhat = rem % den1; c1 = qhat * den0; c2 = rhat * b + num0; if (c1 > c2) qhat -= (c1 - c2 > den) ? 2 : 1; q0 = (uint32_t)qhat; // Return remainder if requested. if (r) *r = (rem * b + num0 - q0 * den) >> shift; return ((uint64_t)q1 << 32) | q0; #endif } #if !(defined(HAS_INT128_T) && \ defined(HAS_INT128_DIV)) // Bitshift a u128 in place, left (signed_shift > 0) or right (signed_shift < 0) static LIBDIVIDE_INLINE void libdivide_u128_shift( uint64_t *u1, uint64_t *u0, int32_t signed_shift) { if (signed_shift > 0) { uint32_t shift = signed_shift; *u1 <<= shift; *u1 |= *u0 >> (64 - shift); *u0 <<= shift; } else if (signed_shift < 0) { uint32_t shift = -signed_shift; *u0 >>= shift; *u0 |= *u1 << (64 - shift); *u1 >>= shift; } } #endif // Computes a 128 / 128 -> 64 bit division, with a 128 bit remainder. static LIBDIVIDE_INLINE uint64_t libdivide_128_div_128_to_64( uint64_t u_hi, uint64_t u_lo, uint64_t v_hi, uint64_t v_lo, uint64_t *r_hi, uint64_t *r_lo) { #if defined(HAS_INT128_T) && defined(HAS_INT128_DIV) __uint128_t ufull = u_hi; __uint128_t vfull = v_hi; ufull = (ufull << 64) | u_lo; vfull = (vfull << 64) | v_lo; uint64_t res = (uint64_t)(ufull / vfull); __uint128_t remainder = ufull - (vfull * res); *r_lo = (uint64_t)remainder; *r_hi = (uint64_t)(remainder >> 64); return res; #else // Adapted from "Unsigned Doubleword Division" in Hacker's Delight // We want to compute u / v typedef struct { uint64_t hi; uint64_t lo; } u128_t; u128_t u = {u_hi, u_lo}; u128_t v = {v_hi, v_lo}; if (v.hi == 0) { // divisor v is a 64 bit value, so we just need one 128/64 division // Note that we are simpler than Hacker's Delight here, because we know // the quotient fits in 64 bits whereas Hacker's Delight demands a full // 128 bit quotient *r_hi = 0; return libdivide_128_div_64_to_64(u.hi, u.lo, v.lo, r_lo); } // Here v >= 2**64 // We know that v.hi != 0, so count leading zeros is OK // We have 0 <= n <= 63 uint32_t n = libdivide_count_leading_zeros64(v.hi); // Normalize the divisor so its MSB is 1 u128_t v1t = v; libdivide_u128_shift(&v1t.hi, &v1t.lo, n); uint64_t v1 = v1t.hi; // i.e. v1 = v1t >> 64 // To ensure no overflow u128_t u1 = u; libdivide_u128_shift(&u1.hi, &u1.lo, -1); // Get quotient from divide unsigned insn. uint64_t rem_ignored; uint64_t q1 = libdivide_128_div_64_to_64(u1.hi, u1.lo, v1, &rem_ignored); // Undo normalization and division of u by 2. u128_t q0 = {0, q1}; libdivide_u128_shift(&q0.hi, &q0.lo, n); libdivide_u128_shift(&q0.hi, &q0.lo, -63); // Make q0 correct or too small by 1 // Equivalent to `if (q0 != 0) q0 = q0 - 1;` if (q0.hi != 0 || q0.lo != 0) { q0.hi -= (q0.lo == 0); // borrow q0.lo -= 1; } // Now q0 is correct. // Compute q0 * v as q0v // = (q0.hi << 64 + q0.lo) * (v.hi << 64 + v.lo) // = (q0.hi * v.hi << 128) + (q0.hi * v.lo << 64) + // (q0.lo * v.hi << 64) + q0.lo * v.lo) // Each term is 128 bit // High half of full product (upper 128 bits!) are dropped u128_t q0v = {0, 0}; q0v.hi = q0.hi * v.lo + q0.lo * v.hi + libdivide_mullhi_u64(q0.lo, v.lo); q0v.lo = q0.lo * v.lo; // Compute u - q0v as u_q0v // This is the remainder u128_t u_q0v = u; u_q0v.hi -= q0v.hi + (u.lo < q0v.lo); // second term is borrow u_q0v.lo -= q0v.lo; // Check if u_q0v >= v // This checks if our remainder is larger than the divisor if ((u_q0v.hi > v.hi) || (u_q0v.hi == v.hi && u_q0v.lo >= v.lo)) { // Increment q0 q0.lo += 1; q0.hi += (q0.lo == 0); // carry // Subtract v from remainder u_q0v.hi -= v.hi + (u_q0v.lo < v.lo); u_q0v.lo -= v.lo; } *r_hi = u_q0v.hi; *r_lo = u_q0v.lo; LIBDIVIDE_ASSERT(q0.hi == 0); return q0.lo; #endif } ////////// UINT16 static LIBDIVIDE_INLINE struct libdivide_u16_t libdivide_internal_u16_gen( uint16_t d, int branchfree) { if (d == 0) { LIBDIVIDE_ERROR("divider must be != 0"); } struct libdivide_u16_t result; uint8_t floor_log_2_d = (uint8_t)(15 - libdivide_count_leading_zeros16(d)); // Power of 2 if ((d & (d - 1)) == 0) { // We need to subtract 1 from the shift value in case of an unsigned // branchfree divider because there is a hardcoded right shift by 1 // in its division algorithm. Because of this we also need to add back // 1 in its recovery algorithm. result.magic = 0; result.more = (uint8_t)(floor_log_2_d - (branchfree != 0)); } else { uint8_t more; uint16_t rem, proposed_m; proposed_m = libdivide_32_div_16_to_16((uint16_t)1 << floor_log_2_d, 0, d, &rem); LIBDIVIDE_ASSERT(rem > 0 && rem < d); const uint16_t e = d - rem; // This power works if e < 2**floor_log_2_d. if (!branchfree && (e < ((uint16_t)1 << floor_log_2_d))) { // This power works more = floor_log_2_d; } else { // We have to use the general 17-bit algorithm. We need to compute // (2**power) / d. However, we already have (2**(power-1))/d and // its remainder. By doubling both, and then correcting the // remainder, we can compute the larger division. // don't care about overflow here - in fact, we expect it proposed_m += proposed_m; const uint16_t twice_rem = rem + rem; if (twice_rem >= d || twice_rem < rem) proposed_m += 1; more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; } result.magic = 1 + proposed_m; result.more = more; // result.more's shift should in general be ceil_log_2_d. But if we // used the smaller power, we subtract one from the shift because we're // using the smaller power. If we're using the larger power, we // subtract one from the shift because it's taken care of by the add // indicator. So floor_log_2_d happens to be correct in both cases. } return result; } struct libdivide_u16_t libdivide_u16_gen(uint16_t d) { return libdivide_internal_u16_gen(d, 0); } struct libdivide_u16_branchfree_t libdivide_u16_branchfree_gen(uint16_t d) { if (d == 1) { LIBDIVIDE_ERROR("branchfree divider must be != 1"); } struct libdivide_u16_t tmp = libdivide_internal_u16_gen(d, 1); struct libdivide_u16_branchfree_t ret = { tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_16_SHIFT_MASK)}; return ret; } // The original libdivide_u16_do takes a const pointer. However, this cannot be used // with a compile time constant libdivide_u16_t: it will generate a warning about // taking the address of a temporary. Hence this overload. uint16_t libdivide_u16_do_raw(uint16_t numer, uint16_t magic, uint8_t more) { if (!magic) { return numer >> more; } else { uint16_t q = libdivide_mullhi_u16(magic, numer); if (more & LIBDIVIDE_ADD_MARKER) { uint16_t t = ((numer - q) >> 1) + q; return t >> (more & LIBDIVIDE_16_SHIFT_MASK); } else { // All upper bits are 0, // don't need to mask them off. return q >> more; } } } uint16_t libdivide_u16_do(uint16_t numer, const struct libdivide_u16_t *denom) { return libdivide_u16_do_raw(numer, denom->magic, denom->more); } uint16_t libdivide_u16_branchfree_do( uint16_t numer, const struct libdivide_u16_branchfree_t *denom) { uint16_t q = libdivide_mullhi_u16(denom->magic, numer); uint16_t t = ((numer - q) >> 1) + q; return t >> denom->more; } uint16_t libdivide_u16_recover(const struct libdivide_u16_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK; if (!denom->magic) { return (uint16_t)1 << shift; } else if (!(more & LIBDIVIDE_ADD_MARKER)) { // We compute q = n/d = n*m / 2^(16 + shift) // Therefore we have d = 2^(16 + shift) / m // We need to ceil it. // We know d is not a power of 2, so m is not a power of 2, // so we can just add 1 to the floor uint16_t hi_dividend = (uint16_t)1 << shift; uint16_t rem_ignored; return 1 + libdivide_32_div_16_to_16(hi_dividend, 0, denom->magic, &rem_ignored); } else { // Here we wish to compute d = 2^(16+shift+1)/(m+2^16). // Notice (m + 2^16) is a 17 bit number. Use 32 bit division for now // Also note that shift may be as high as 15, so shift + 1 will // overflow. So we have to compute it as 2^(16+shift)/(m+2^16), and // then double the quotient and remainder. uint32_t half_n = (uint32_t)1 << (16 + shift); uint32_t d = ((uint32_t)1 << 16) | denom->magic; // Note that the quotient is guaranteed <= 16 bits, but the remainder // may need 17! uint16_t half_q = (uint16_t)(half_n / d); uint32_t rem = half_n % d; // We computed 2^(16+shift)/(m+2^16) // Need to double it, and then add 1 to the quotient if doubling th // remainder would increase the quotient. // Note that rem<<1 cannot overflow, since rem < d and d is 17 bits uint16_t full_q = half_q + half_q + ((rem << 1) >= d); // We rounded down in gen (hence +1) return full_q + 1; } } uint16_t libdivide_u16_branchfree_recover(const struct libdivide_u16_branchfree_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK; if (!denom->magic) { return (uint16_t)1 << (shift + 1); } else { // Here we wish to compute d = 2^(16+shift+1)/(m+2^16). // Notice (m + 2^16) is a 17 bit number. Use 32 bit division for now // Also note that shift may be as high as 15, so shift + 1 will // overflow. So we have to compute it as 2^(16+shift)/(m+2^16), and // then double the quotient and remainder. uint32_t half_n = (uint32_t)1 << (16 + shift); uint32_t d = ((uint32_t)1 << 16) | denom->magic; // Note that the quotient is guaranteed <= 16 bits, but the remainder // may need 17! uint16_t half_q = (uint16_t)(half_n / d); uint32_t rem = half_n % d; // We computed 2^(16+shift)/(m+2^16) // Need to double it, and then add 1 to the quotient if doubling th // remainder would increase the quotient. // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits uint16_t full_q = half_q + half_q + ((rem << 1) >= d); // We rounded down in gen (hence +1) return full_q + 1; } } ////////// UINT32 static LIBDIVIDE_INLINE struct libdivide_u32_t libdivide_internal_u32_gen( uint32_t d, int branchfree) { if (d == 0) { LIBDIVIDE_ERROR("divider must be != 0"); } struct libdivide_u32_t result; uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(d); // Power of 2 if ((d & (d - 1)) == 0) { // We need to subtract 1 from the shift value in case of an unsigned // branchfree divider because there is a hardcoded right shift by 1 // in its division algorithm. Because of this we also need to add back // 1 in its recovery algorithm. result.magic = 0; result.more = (uint8_t)(floor_log_2_d - (branchfree != 0)); } else { uint8_t more; uint32_t rem, proposed_m; proposed_m = libdivide_64_div_32_to_32((uint32_t)1 << floor_log_2_d, 0, d, &rem); LIBDIVIDE_ASSERT(rem > 0 && rem < d); const uint32_t e = d - rem; // This power works if e < 2**floor_log_2_d. if (!branchfree && (e < ((uint32_t)1 << floor_log_2_d))) { // This power works more = (uint8_t)floor_log_2_d; } else { // We have to use the general 33-bit algorithm. We need to compute // (2**power) / d. However, we already have (2**(power-1))/d and // its remainder. By doubling both, and then correcting the // remainder, we can compute the larger division. // don't care about overflow here - in fact, we expect it proposed_m += proposed_m; const uint32_t twice_rem = rem + rem; if (twice_rem >= d || twice_rem < rem) proposed_m += 1; more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER); } result.magic = 1 + proposed_m; result.more = more; // result.more's shift should in general be ceil_log_2_d. But if we // used the smaller power, we subtract one from the shift because we're // using the smaller power. If we're using the larger power, we // subtract one from the shift because it's taken care of by the add // indicator. So floor_log_2_d happens to be correct in both cases. } return result; } struct libdivide_u32_t libdivide_u32_gen(uint32_t d) { return libdivide_internal_u32_gen(d, 0); } struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d) { if (d == 1) { LIBDIVIDE_ERROR("branchfree divider must be != 1"); } struct libdivide_u32_t tmp = libdivide_internal_u32_gen(d, 1); struct libdivide_u32_branchfree_t ret = { tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_32_SHIFT_MASK)}; return ret; } uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return numer >> more; } else { uint32_t q = libdivide_mullhi_u32(denom->magic, numer); if (more & LIBDIVIDE_ADD_MARKER) { uint32_t t = ((numer - q) >> 1) + q; return t >> (more & LIBDIVIDE_32_SHIFT_MASK); } else { // All upper bits are 0, // don't need to mask them off. return q >> more; } } } uint32_t libdivide_u32_branchfree_do( uint32_t numer, const struct libdivide_u32_branchfree_t *denom) { uint32_t q = libdivide_mullhi_u32(denom->magic, numer); uint32_t t = ((numer - q) >> 1) + q; return t >> denom->more; } uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; if (!denom->magic) { return (uint32_t)1 << shift; } else if (!(more & LIBDIVIDE_ADD_MARKER)) { // We compute q = n/d = n*m / 2^(32 + shift) // Therefore we have d = 2^(32 + shift) / m // We need to ceil it. // We know d is not a power of 2, so m is not a power of 2, // so we can just add 1 to the floor uint32_t hi_dividend = (uint32_t)1 << shift; uint32_t rem_ignored; return 1 + libdivide_64_div_32_to_32(hi_dividend, 0, denom->magic, &rem_ignored); } else { // Here we wish to compute d = 2^(32+shift+1)/(m+2^32). // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now // Also note that shift may be as high as 31, so shift + 1 will // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and // then double the quotient and remainder. uint64_t half_n = (uint64_t)1 << (32 + shift); uint64_t d = ((uint64_t)1 << 32) | denom->magic; // Note that the quotient is guaranteed <= 32 bits, but the remainder // may need 33! uint32_t half_q = (uint32_t)(half_n / d); uint64_t rem = half_n % d; // We computed 2^(32+shift)/(m+2^32) // Need to double it, and then add 1 to the quotient if doubling th // remainder would increase the quotient. // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits uint32_t full_q = half_q + half_q + ((rem << 1) >= d); // We rounded down in gen (hence +1) return full_q + 1; } } uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; if (!denom->magic) { return (uint32_t)1 << (shift + 1); } else { // Here we wish to compute d = 2^(32+shift+1)/(m+2^32). // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now // Also note that shift may be as high as 31, so shift + 1 will // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and // then double the quotient and remainder. uint64_t half_n = (uint64_t)1 << (32 + shift); uint64_t d = ((uint64_t)1 << 32) | denom->magic; // Note that the quotient is guaranteed <= 32 bits, but the remainder // may need 33! uint32_t half_q = (uint32_t)(half_n / d); uint64_t rem = half_n % d; // We computed 2^(32+shift)/(m+2^32) // Need to double it, and then add 1 to the quotient if doubling th // remainder would increase the quotient. // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits uint32_t full_q = half_q + half_q + ((rem << 1) >= d); // We rounded down in gen (hence +1) return full_q + 1; } } /////////// UINT64 static LIBDIVIDE_INLINE struct libdivide_u64_t libdivide_internal_u64_gen( uint64_t d, int branchfree) { if (d == 0) { LIBDIVIDE_ERROR("divider must be != 0"); } struct libdivide_u64_t result; uint32_t floor_log_2_d = 63 - libdivide_count_leading_zeros64(d); // Power of 2 if ((d & (d - 1)) == 0) { // We need to subtract 1 from the shift value in case of an unsigned // branchfree divider because there is a hardcoded right shift by 1 // in its division algorithm. Because of this we also need to add back // 1 in its recovery algorithm. result.magic = 0; result.more = (uint8_t)(floor_log_2_d - (branchfree != 0)); } else { uint64_t proposed_m, rem; uint8_t more; // (1 << (64 + floor_log_2_d)) / d proposed_m = libdivide_128_div_64_to_64((uint64_t)1 << floor_log_2_d, 0, d, &rem); LIBDIVIDE_ASSERT(rem > 0 && rem < d); const uint64_t e = d - rem; // This power works if e < 2**floor_log_2_d. if (!branchfree && e < ((uint64_t)1 << floor_log_2_d)) { // This power works more = (uint8_t)floor_log_2_d; } else { // We have to use the general 65-bit algorithm. We need to compute // (2**power) / d. However, we already have (2**(power-1))/d and // its remainder. By doubling both, and then correcting the // remainder, we can compute the larger division. // don't care about overflow here - in fact, we expect it proposed_m += proposed_m; const uint64_t twice_rem = rem + rem; if (twice_rem >= d || twice_rem < rem) proposed_m += 1; more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER); } result.magic = 1 + proposed_m; result.more = more; // result.more's shift should in general be ceil_log_2_d. But if we // used the smaller power, we subtract one from the shift because we're // using the smaller power. If we're using the larger power, we // subtract one from the shift because it's taken care of by the add // indicator. So floor_log_2_d happens to be correct in both cases, // which is why we do it outside of the if statement. } return result; } struct libdivide_u64_t libdivide_u64_gen(uint64_t d) { return libdivide_internal_u64_gen(d, 0); } struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d) { if (d == 1) { LIBDIVIDE_ERROR("branchfree divider must be != 1"); } struct libdivide_u64_t tmp = libdivide_internal_u64_gen(d, 1); struct libdivide_u64_branchfree_t ret = { tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_64_SHIFT_MASK)}; return ret; } uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return numer >> more; } else { uint64_t q = libdivide_mullhi_u64(denom->magic, numer); if (more & LIBDIVIDE_ADD_MARKER) { uint64_t t = ((numer - q) >> 1) + q; return t >> (more & LIBDIVIDE_64_SHIFT_MASK); } else { // All upper bits are 0, // don't need to mask them off. return q >> more; } } } uint64_t libdivide_u64_branchfree_do( uint64_t numer, const struct libdivide_u64_branchfree_t *denom) { uint64_t q = libdivide_mullhi_u64(denom->magic, numer); uint64_t t = ((numer - q) >> 1) + q; return t >> denom->more; } uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; if (!denom->magic) { return (uint64_t)1 << shift; } else if (!(more & LIBDIVIDE_ADD_MARKER)) { // We compute q = n/d = n*m / 2^(64 + shift) // Therefore we have d = 2^(64 + shift) / m // We need to ceil it. // We know d is not a power of 2, so m is not a power of 2, // so we can just add 1 to the floor uint64_t hi_dividend = (uint64_t)1 << shift; uint64_t rem_ignored; return 1 + libdivide_128_div_64_to_64(hi_dividend, 0, denom->magic, &rem_ignored); } else { // Here we wish to compute d = 2^(64+shift+1)/(m+2^64). // Notice (m + 2^64) is a 65 bit number. This gets hairy. See // libdivide_u32_recover for more on what we do here. // TODO: do something better than 128 bit math // Full n is a (potentially) 129 bit value // half_n is a 128 bit value // Compute the hi half of half_n. Low half is 0. uint64_t half_n_hi = (uint64_t)1 << shift, half_n_lo = 0; // d is a 65 bit value. The high bit is always set to 1. const uint64_t d_hi = 1, d_lo = denom->magic; // Note that the quotient is guaranteed <= 64 bits, // but the remainder may need 65! uint64_t r_hi, r_lo; uint64_t half_q = libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo); // We computed 2^(64+shift)/(m+2^64) // Double the remainder ('dr') and check if that is larger than d // Note that d is a 65 bit value, so r1 is small and so r1 + r1 // cannot overflow uint64_t dr_lo = r_lo + r_lo; uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo); // last term is carry int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo); uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0); return full_q + 1; } } uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; if (!denom->magic) { return (uint64_t)1 << (shift + 1); } else { // Here we wish to compute d = 2^(64+shift+1)/(m+2^64). // Notice (m + 2^64) is a 65 bit number. This gets hairy. See // libdivide_u32_recover for more on what we do here. // TODO: do something better than 128 bit math // Full n is a (potentially) 129 bit value // half_n is a 128 bit value // Compute the hi half of half_n. Low half is 0. uint64_t half_n_hi = (uint64_t)1 << shift, half_n_lo = 0; // d is a 65 bit value. The high bit is always set to 1. const uint64_t d_hi = 1, d_lo = denom->magic; // Note that the quotient is guaranteed <= 64 bits, // but the remainder may need 65! uint64_t r_hi, r_lo; uint64_t half_q = libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo); // We computed 2^(64+shift)/(m+2^64) // Double the remainder ('dr') and check if that is larger than d // Note that d is a 65 bit value, so r1 is small and so r1 + r1 // cannot overflow uint64_t dr_lo = r_lo + r_lo; uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo); // last term is carry int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo); uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0); return full_q + 1; } } /////////// SINT16 static LIBDIVIDE_INLINE struct libdivide_s16_t libdivide_internal_s16_gen( int16_t d, int branchfree) { if (d == 0) { LIBDIVIDE_ERROR("divider must be != 0"); } struct libdivide_s16_t result; // If d is a power of 2, or negative a power of 2, we have to use a shift. // This is especially important because the magic algorithm fails for -1. // To check if d is a power of 2 or its inverse, it suffices to check // whether its absolute value has exactly one bit set. This works even for // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set // and is a power of 2. uint16_t ud = (uint16_t)d; uint16_t absD = (d < 0) ? -ud : ud; uint16_t floor_log_2_d = 15 - libdivide_count_leading_zeros16(absD); // check if exactly one bit is set, // don't care if absD is 0 since that's divide by zero if ((absD & (absD - 1)) == 0) { // Branchfree and normal paths are exactly the same result.magic = 0; result.more = (uint8_t)(floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0)); } else { LIBDIVIDE_ASSERT(floor_log_2_d >= 1); uint8_t more; // the dividend here is 2**(floor_log_2_d + 31), so the low 16 bit word // is 0 and the high word is floor_log_2_d - 1 uint16_t rem, proposed_m; proposed_m = libdivide_32_div_16_to_16((uint16_t)1 << (floor_log_2_d - 1), 0, absD, &rem); const uint16_t e = absD - rem; // We are going to start with a power of floor_log_2_d - 1. // This works if works if e < 2**floor_log_2_d. if (!branchfree && e < ((uint16_t)1 << floor_log_2_d)) { // This power works more = (uint8_t)(floor_log_2_d - 1); } else { // We need to go one higher. This should not make proposed_m // overflow, but it will make it negative when interpreted as an // int16_t. proposed_m += proposed_m; const uint16_t twice_rem = rem + rem; if (twice_rem >= absD || twice_rem < rem) proposed_m += 1; more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER); } proposed_m += 1; int16_t magic = (int16_t)proposed_m; // Mark if we are negative. Note we only negate the magic number in the // branchfull case. if (d < 0) { more |= LIBDIVIDE_NEGATIVE_DIVISOR; if (!branchfree) { magic = -magic; } } result.more = more; result.magic = magic; } return result; } struct libdivide_s16_t libdivide_s16_gen(int16_t d) { return libdivide_internal_s16_gen(d, 0); } struct libdivide_s16_branchfree_t libdivide_s16_branchfree_gen(int16_t d) { struct libdivide_s16_t tmp = libdivide_internal_s16_gen(d, 1); struct libdivide_s16_branchfree_t result = {tmp.magic, tmp.more}; return result; } // The original libdivide_s16_do takes a const pointer. However, this cannot be used // with a compile time constant libdivide_s16_t: it will generate a warning about // taking the address of a temporary. Hence this overload. int16_t libdivide_s16_do_raw(int16_t numer, int16_t magic, uint8_t more) { uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK; if (!magic) { uint16_t sign = (int8_t)more >> 7; uint16_t mask = ((uint16_t)1 << shift) - 1; uint16_t uq = numer + ((numer >> 15) & mask); int16_t q = (int16_t)uq; q >>= shift; q = (q ^ sign) - sign; return q; } else { uint16_t uq = (uint16_t)libdivide_mullhi_s16(magic, numer); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift and then sign extend int16_t sign = (int8_t)more >> 7; // q += (more < 0 ? -numer : numer) // cast required to avoid UB uq += ((uint16_t)numer ^ sign) - sign; } int16_t q = (int16_t)uq; q >>= shift; q += (q < 0); return q; } } int16_t libdivide_s16_do(int16_t numer, const struct libdivide_s16_t *denom) { return libdivide_s16_do_raw(numer, denom->magic, denom->more); } int16_t libdivide_s16_branchfree_do(int16_t numer, const struct libdivide_s16_branchfree_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK; // must be arithmetic shift and then sign extend int16_t sign = (int8_t)more >> 7; int16_t magic = denom->magic; int16_t q = libdivide_mullhi_s16(magic, numer); q += numer; // If q is non-negative, we have nothing to do // If q is negative, we want to add either (2**shift)-1 if d is a power of // 2, or (2**shift) if it is not a power of 2 uint16_t is_power_of_2 = (magic == 0); uint16_t q_sign = (uint16_t)(q >> 15); q += q_sign & (((uint16_t)1 << shift) - is_power_of_2); // Now arithmetic right shift q >>= shift; // Negate if needed q = (q ^ sign) - sign; return q; } int16_t libdivide_s16_recover(const struct libdivide_s16_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK; if (!denom->magic) { uint16_t absD = (uint16_t)1 << shift; if (more & LIBDIVIDE_NEGATIVE_DIVISOR) { absD = -absD; } return (int16_t)absD; } else { // Unsigned math is much easier // We negate the magic number only in the branchfull case, and we don't // know which case we're in. However we have enough information to // determine the correct sign of the magic number. The divisor was // negative if LIBDIVIDE_NEGATIVE_DIVISOR is set. If ADD_MARKER is set, // the magic number's sign is opposite that of the divisor. // We want to compute the positive magic number. int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR); int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER) ? denom->magic > 0 : denom->magic < 0; // Handle the power of 2 case (including branchfree) if (denom->magic == 0) { int16_t result = (uint16_t)1 << shift; return negative_divisor ? -result : result; } uint16_t d = (uint16_t)(magic_was_negated ? -denom->magic : denom->magic); uint32_t n = (uint32_t)1 << (16 + shift); // this shift cannot exceed 30 uint16_t q = (uint16_t)(n / d); int16_t result = (int16_t)q; result += 1; return negative_divisor ? -result : result; } } int16_t libdivide_s16_branchfree_recover(const struct libdivide_s16_branchfree_t *denom) { return libdivide_s16_recover((const struct libdivide_s16_t *)denom); } /////////// SINT32 static LIBDIVIDE_INLINE struct libdivide_s32_t libdivide_internal_s32_gen( int32_t d, int branchfree) { if (d == 0) { LIBDIVIDE_ERROR("divider must be != 0"); } struct libdivide_s32_t result; // If d is a power of 2, or negative a power of 2, we have to use a shift. // This is especially important because the magic algorithm fails for -1. // To check if d is a power of 2 or its inverse, it suffices to check // whether its absolute value has exactly one bit set. This works even for // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set // and is a power of 2. uint32_t ud = (uint32_t)d; uint32_t absD = (d < 0) ? -ud : ud; uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(absD); // check if exactly one bit is set, // don't care if absD is 0 since that's divide by zero if ((absD & (absD - 1)) == 0) { // Branchfree and normal paths are exactly the same result.magic = 0; result.more = (uint8_t)(floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0)); } else { LIBDIVIDE_ASSERT(floor_log_2_d >= 1); uint8_t more; // the dividend here is 2**(floor_log_2_d + 31), so the low 32 bit word // is 0 and the high word is floor_log_2_d - 1 uint32_t rem, proposed_m; proposed_m = libdivide_64_div_32_to_32((uint32_t)1 << (floor_log_2_d - 1), 0, absD, &rem); const uint32_t e = absD - rem; // We are going to start with a power of floor_log_2_d - 1. // This works if works if e < 2**floor_log_2_d. if (!branchfree && e < ((uint32_t)1 << floor_log_2_d)) { // This power works more = (uint8_t)(floor_log_2_d - 1); } else { // We need to go one higher. This should not make proposed_m // overflow, but it will make it negative when interpreted as an // int32_t. proposed_m += proposed_m; const uint32_t twice_rem = rem + rem; if (twice_rem >= absD || twice_rem < rem) proposed_m += 1; more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER); } proposed_m += 1; int32_t magic = (int32_t)proposed_m; // Mark if we are negative. Note we only negate the magic number in the // branchfull case. if (d < 0) { more |= LIBDIVIDE_NEGATIVE_DIVISOR; if (!branchfree) { magic = -magic; } } result.more = more; result.magic = magic; } return result; } struct libdivide_s32_t libdivide_s32_gen(int32_t d) { return libdivide_internal_s32_gen(d, 0); } struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d) { struct libdivide_s32_t tmp = libdivide_internal_s32_gen(d, 1); struct libdivide_s32_branchfree_t result = {tmp.magic, tmp.more}; return result; } int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; if (!denom->magic) { uint32_t sign = (int8_t)more >> 7; uint32_t mask = ((uint32_t)1 << shift) - 1; uint32_t uq = numer + ((numer >> 31) & mask); int32_t q = (int32_t)uq; q >>= shift; q = (q ^ sign) - sign; return q; } else { uint32_t uq = (uint32_t)libdivide_mullhi_s32(denom->magic, numer); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift and then sign extend int32_t sign = (int8_t)more >> 7; // q += (more < 0 ? -numer : numer) // cast required to avoid UB uq += ((uint32_t)numer ^ sign) - sign; } int32_t q = (int32_t)uq; q >>= shift; q += (q < 0); return q; } } int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; // must be arithmetic shift and then sign extend int32_t sign = (int8_t)more >> 7; int32_t magic = denom->magic; int32_t q = libdivide_mullhi_s32(magic, numer); q += numer; // If q is non-negative, we have nothing to do // If q is negative, we want to add either (2**shift)-1 if d is a power of // 2, or (2**shift) if it is not a power of 2 uint32_t is_power_of_2 = (magic == 0); uint32_t q_sign = (uint32_t)(q >> 31); q += q_sign & (((uint32_t)1 << shift) - is_power_of_2); // Now arithmetic right shift q >>= shift; // Negate if needed q = (q ^ sign) - sign; return q; } int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; if (!denom->magic) { uint32_t absD = (uint32_t)1 << shift; if (more & LIBDIVIDE_NEGATIVE_DIVISOR) { absD = -absD; } return (int32_t)absD; } else { // Unsigned math is much easier // We negate the magic number only in the branchfull case, and we don't // know which case we're in. However we have enough information to // determine the correct sign of the magic number. The divisor was // negative if LIBDIVIDE_NEGATIVE_DIVISOR is set. If ADD_MARKER is set, // the magic number's sign is opposite that of the divisor. // We want to compute the positive magic number. int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR); int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER) ? denom->magic > 0 : denom->magic < 0; // Handle the power of 2 case (including branchfree) if (denom->magic == 0) { int32_t result = (uint32_t)1 << shift; return negative_divisor ? -result : result; } uint32_t d = (uint32_t)(magic_was_negated ? -denom->magic : denom->magic); uint64_t n = (uint64_t)1 << (32 + shift); // this shift cannot exceed 30 uint32_t q = (uint32_t)(n / d); int32_t result = (int32_t)q; result += 1; return negative_divisor ? -result : result; } } int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom) { return libdivide_s32_recover((const struct libdivide_s32_t *)denom); } ///////////// SINT64 static LIBDIVIDE_INLINE struct libdivide_s64_t libdivide_internal_s64_gen( int64_t d, int branchfree) { if (d == 0) { LIBDIVIDE_ERROR("divider must be != 0"); } struct libdivide_s64_t result; // If d is a power of 2, or negative a power of 2, we have to use a shift. // This is especially important because the magic algorithm fails for -1. // To check if d is a power of 2 or its inverse, it suffices to check // whether its absolute value has exactly one bit set. This works even for // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set // and is a power of 2. uint64_t ud = (uint64_t)d; uint64_t absD = (d < 0) ? -ud : ud; uint32_t floor_log_2_d = 63 - libdivide_count_leading_zeros64(absD); // check if exactly one bit is set, // don't care if absD is 0 since that's divide by zero if ((absD & (absD - 1)) == 0) { // Branchfree and non-branchfree cases are the same result.magic = 0; result.more = (uint8_t)(floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0)); } else { // the dividend here is 2**(floor_log_2_d + 63), so the low 64 bit word // is 0 and the high word is floor_log_2_d - 1 uint8_t more; uint64_t rem, proposed_m; proposed_m = libdivide_128_div_64_to_64((uint64_t)1 << (floor_log_2_d - 1), 0, absD, &rem); const uint64_t e = absD - rem; // We are going to start with a power of floor_log_2_d - 1. // This works if works if e < 2**floor_log_2_d. if (!branchfree && e < ((uint64_t)1 << floor_log_2_d)) { // This power works more = (uint8_t)(floor_log_2_d - 1); } else { // We need to go one higher. This should not make proposed_m // overflow, but it will make it negative when interpreted as an // int32_t. proposed_m += proposed_m; const uint64_t twice_rem = rem + rem; if (twice_rem >= absD || twice_rem < rem) proposed_m += 1; // note that we only set the LIBDIVIDE_NEGATIVE_DIVISOR bit if we // also set ADD_MARKER this is an annoying optimization that // enables algorithm #4 to avoid the mask. However we always set it // in the branchfree case more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER); } proposed_m += 1; int64_t magic = (int64_t)proposed_m; // Mark if we are negative if (d < 0) { more |= LIBDIVIDE_NEGATIVE_DIVISOR; if (!branchfree) { magic = -magic; } } result.more = more; result.magic = magic; } return result; } struct libdivide_s64_t libdivide_s64_gen(int64_t d) { return libdivide_internal_s64_gen(d, 0); } struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d) { struct libdivide_s64_t tmp = libdivide_internal_s64_gen(d, 1); struct libdivide_s64_branchfree_t ret = {tmp.magic, tmp.more}; return ret; } int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; if (!denom->magic) { // shift path uint64_t mask = ((uint64_t)1 << shift) - 1; uint64_t uq = numer + ((numer >> 63) & mask); int64_t q = (int64_t)uq; q >>= shift; // must be arithmetic shift and then sign-extend int64_t sign = (int8_t)more >> 7; q = (q ^ sign) - sign; return q; } else { uint64_t uq = (uint64_t)libdivide_mullhi_s64(denom->magic, numer); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift and then sign extend int64_t sign = (int8_t)more >> 7; // q += (more < 0 ? -numer : numer) // cast required to avoid UB uq += ((uint64_t)numer ^ sign) - sign; } int64_t q = (int64_t)uq; q >>= shift; q += (q < 0); return q; } } int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; // must be arithmetic shift and then sign extend int64_t sign = (int8_t)more >> 7; int64_t magic = denom->magic; int64_t q = libdivide_mullhi_s64(magic, numer); q += numer; // If q is non-negative, we have nothing to do. // If q is negative, we want to add either (2**shift)-1 if d is a power of // 2, or (2**shift) if it is not a power of 2. uint64_t is_power_of_2 = (magic == 0); uint64_t q_sign = (uint64_t)(q >> 63); q += q_sign & (((uint64_t)1 << shift) - is_power_of_2); // Arithmetic right shift q >>= shift; // Negate if needed q = (q ^ sign) - sign; return q; } int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom) { uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; if (denom->magic == 0) { // shift path uint64_t absD = (uint64_t)1 << shift; if (more & LIBDIVIDE_NEGATIVE_DIVISOR) { absD = -absD; } return (int64_t)absD; } else { // Unsigned math is much easier int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR); int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER) ? denom->magic > 0 : denom->magic < 0; uint64_t d = (uint64_t)(magic_was_negated ? -denom->magic : denom->magic); uint64_t n_hi = (uint64_t)1 << shift, n_lo = 0; uint64_t rem_ignored; uint64_t q = libdivide_128_div_64_to_64(n_hi, n_lo, d, &rem_ignored); int64_t result = (int64_t)(q + 1); if (negative_divisor) { result = -result; } return result; } } int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom) { return libdivide_s64_recover((const struct libdivide_s64_t *)denom); } // Simplest possible vector type division: treat the vector type as an array // of underlying native type. // // Use a union to read a vector via pointer-to-integer, without violating strict // aliasing. #define SIMPLE_VECTOR_DIVISION(IntT, VecT, Algo) \ const size_t count = sizeof(VecT) / sizeof(IntT); \ union type_pun_vec { \ VecT vec; \ IntT arr[sizeof(VecT) / sizeof(IntT)]; \ }; \ union type_pun_vec result; \ union type_pun_vec input; \ input.vec = numers; \ for (size_t loop = 0; loop < count; ++loop) { \ result.arr[loop] = libdivide_##Algo##_do(input.arr[loop], denom); \ } \ return result.vec; #if defined(LIBDIVIDE_NEON) static LIBDIVIDE_INLINE uint16x8_t libdivide_u16_do_vec128( uint16x8_t numers, const struct libdivide_u16_t *denom); static LIBDIVIDE_INLINE int16x8_t libdivide_s16_do_vec128( int16x8_t numers, const struct libdivide_s16_t *denom); static LIBDIVIDE_INLINE uint32x4_t libdivide_u32_do_vec128( uint32x4_t numers, const struct libdivide_u32_t *denom); static LIBDIVIDE_INLINE int32x4_t libdivide_s32_do_vec128( int32x4_t numers, const struct libdivide_s32_t *denom); static LIBDIVIDE_INLINE uint64x2_t libdivide_u64_do_vec128( uint64x2_t numers, const struct libdivide_u64_t *denom); static LIBDIVIDE_INLINE int64x2_t libdivide_s64_do_vec128( int64x2_t numers, const struct libdivide_s64_t *denom); static LIBDIVIDE_INLINE uint16x8_t libdivide_u16_branchfree_do_vec128( uint16x8_t numers, const struct libdivide_u16_branchfree_t *denom); static LIBDIVIDE_INLINE int16x8_t libdivide_s16_branchfree_do_vec128( int16x8_t numers, const struct libdivide_s16_branchfree_t *denom); static LIBDIVIDE_INLINE uint32x4_t libdivide_u32_branchfree_do_vec128( uint32x4_t numers, const struct libdivide_u32_branchfree_t *denom); static LIBDIVIDE_INLINE int32x4_t libdivide_s32_branchfree_do_vec128( int32x4_t numers, const struct libdivide_s32_branchfree_t *denom); static LIBDIVIDE_INLINE uint64x2_t libdivide_u64_branchfree_do_vec128( uint64x2_t numers, const struct libdivide_u64_branchfree_t *denom); static LIBDIVIDE_INLINE int64x2_t libdivide_s64_branchfree_do_vec128( int64x2_t numers, const struct libdivide_s64_branchfree_t *denom); //////// Internal Utility Functions // Logical right shift by runtime value. // NEON implements right shift as left shits by negative values. static LIBDIVIDE_INLINE uint32x4_t libdivide_u32_neon_srl(uint32x4_t v, uint8_t amt) { int32_t wamt = (int32_t)(amt); return vshlq_u32(v, vdupq_n_s32(-wamt)); } static LIBDIVIDE_INLINE uint64x2_t libdivide_u64_neon_srl(uint64x2_t v, uint8_t amt) { int64_t wamt = (int64_t)(amt); return vshlq_u64(v, vdupq_n_s64(-wamt)); } // Arithmetic right shift by runtime value. static LIBDIVIDE_INLINE int32x4_t libdivide_s32_neon_sra(int32x4_t v, uint8_t amt) { int32_t wamt = (int32_t)(amt); return vshlq_s32(v, vdupq_n_s32(-wamt)); } static LIBDIVIDE_INLINE int64x2_t libdivide_s64_neon_sra(int64x2_t v, uint8_t amt) { int64_t wamt = (int64_t)(amt); return vshlq_s64(v, vdupq_n_s64(-wamt)); } static LIBDIVIDE_INLINE int64x2_t libdivide_s64_signbits(int64x2_t v) { return vshrq_n_s64(v, 63); } static LIBDIVIDE_INLINE uint32x4_t libdivide_mullhi_u32_vec128(uint32x4_t a, uint32_t b) { // Desire is [x0, x1, x2, x3] uint32x4_t w1 = vreinterpretq_u32_u64(vmull_n_u32(vget_low_u32(a), b)); // [_, x0, _, x1] uint32x4_t w2 = vreinterpretq_u32_u64(vmull_high_n_u32(a, b)); //[_, x2, _, x3] return vuzp2q_u32(w1, w2); // [x0, x1, x2, x3] } static LIBDIVIDE_INLINE int32x4_t libdivide_mullhi_s32_vec128(int32x4_t a, int32_t b) { int32x4_t w1 = vreinterpretq_s32_s64(vmull_n_s32(vget_low_s32(a), b)); // [_, x0, _, x1] int32x4_t w2 = vreinterpretq_s32_s64(vmull_high_n_s32(a, b)); //[_, x2, _, x3] return vuzp2q_s32(w1, w2); // [x0, x1, x2, x3] } static LIBDIVIDE_INLINE uint64x2_t libdivide_mullhi_u64_vec128(uint64x2_t x, uint64_t sy) { // full 128 bits product is: // x0*y0 + (x0*y1 << 32) + (x1*y0 << 32) + (x1*y1 << 64) // Note x0,y0,x1,y1 are all conceptually uint32, products are 32x32->64. // Get low and high words. x0 contains low 32 bits, x1 is high 32 bits. uint64x2_t y = vdupq_n_u64(sy); uint32x2_t x0 = vmovn_u64(x); uint32x2_t y0 = vmovn_u64(y); uint32x2_t x1 = vshrn_n_u64(x, 32); uint32x2_t y1 = vshrn_n_u64(y, 32); // Compute x0*y0. uint64x2_t x0y0 = vmull_u32(x0, y0); uint64x2_t x0y0_hi = vshrq_n_u64(x0y0, 32); // Compute other intermediate products. uint64x2_t temp = vmlal_u32(x0y0_hi, x1, y0); // temp = x0y0_hi + x1*y0; // We want to split temp into its low 32 bits and high 32 bits, both // in the low half of 64 bit registers. // Use shifts to avoid needing a reg for the mask. uint64x2_t temp_lo = vshrq_n_u64(vshlq_n_u64(temp, 32), 32); // temp_lo = temp & 0xFFFFFFFF; uint64x2_t temp_hi = vshrq_n_u64(temp, 32); // temp_hi = temp >> 32; temp_lo = vmlal_u32(temp_lo, x0, y1); // temp_lo += x0*y0 temp_lo = vshrq_n_u64(temp_lo, 32); // temp_lo >>= 32 temp_hi = vmlal_u32(temp_hi, x1, y1); // temp_hi += x1*y1 uint64x2_t result = vaddq_u64(temp_hi, temp_lo); return result; } static LIBDIVIDE_INLINE int64x2_t libdivide_mullhi_s64_vec128(int64x2_t x, int64_t sy) { int64x2_t p = vreinterpretq_s64_u64( libdivide_mullhi_u64_vec128(vreinterpretq_u64_s64(x), (uint64_t)(sy))); int64x2_t y = vdupq_n_s64(sy); int64x2_t t1 = vandq_s64(libdivide_s64_signbits(x), y); int64x2_t t2 = vandq_s64(libdivide_s64_signbits(y), x); p = vsubq_s64(p, t1); p = vsubq_s64(p, t2); return p; } ////////// UINT16 uint16x8_t libdivide_u16_do_vec128(uint16x8_t numers, const struct libdivide_u16_t *denom){ SIMPLE_VECTOR_DIVISION(uint16_t, uint16x8_t, u16)} uint16x8_t libdivide_u16_branchfree_do_vec128( uint16x8_t numers, const struct libdivide_u16_branchfree_t *denom){ SIMPLE_VECTOR_DIVISION(uint16_t, uint16x8_t, u16_branchfree)} ////////// UINT32 uint32x4_t libdivide_u32_do_vec128(uint32x4_t numers, const struct libdivide_u32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return libdivide_u32_neon_srl(numers, more); } else { uint32x4_t q = libdivide_mullhi_u32_vec128(numers, denom->magic); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; // Note we can use halving-subtract to avoid the shift. uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; uint32x4_t t = vaddq_u32(vhsubq_u32(numers, q), q); return libdivide_u32_neon_srl(t, shift); } else { return libdivide_u32_neon_srl(q, more); } } } uint32x4_t libdivide_u32_branchfree_do_vec128( uint32x4_t numers, const struct libdivide_u32_branchfree_t *denom) { uint32x4_t q = libdivide_mullhi_u32_vec128(numers, denom->magic); uint32x4_t t = vaddq_u32(vhsubq_u32(numers, q), q); return libdivide_u32_neon_srl(t, denom->more); } ////////// UINT64 uint64x2_t libdivide_u64_do_vec128(uint64x2_t numers, const struct libdivide_u64_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return libdivide_u64_neon_srl(numers, more); } else { uint64x2_t q = libdivide_mullhi_u64_vec128(numers, denom->magic); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; // No 64-bit halving subtracts in NEON :( uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; uint64x2_t t = vaddq_u64(vshrq_n_u64(vsubq_u64(numers, q), 1), q); return libdivide_u64_neon_srl(t, shift); } else { return libdivide_u64_neon_srl(q, more); } } } uint64x2_t libdivide_u64_branchfree_do_vec128( uint64x2_t numers, const struct libdivide_u64_branchfree_t *denom) { uint64x2_t q = libdivide_mullhi_u64_vec128(numers, denom->magic); uint64x2_t t = vaddq_u64(vshrq_n_u64(vsubq_u64(numers, q), 1), q); return libdivide_u64_neon_srl(t, denom->more); } ////////// SINT16 int16x8_t libdivide_s16_do_vec128(int16x8_t numers, const struct libdivide_s16_t *denom){ SIMPLE_VECTOR_DIVISION(int16_t, int16x8_t, s16)} int16x8_t libdivide_s16_branchfree_do_vec128( int16x8_t numers, const struct libdivide_s16_branchfree_t *denom){ SIMPLE_VECTOR_DIVISION(int16_t, int16x8_t, s16_branchfree)} ////////// SINT32 int32x4_t libdivide_s32_do_vec128(int32x4_t numers, const struct libdivide_s32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; uint32_t mask = ((uint32_t)1 << shift) - 1; int32x4_t roundToZeroTweak = vdupq_n_s32((int)mask); // q = numer + ((numer >> 31) & roundToZeroTweak); int32x4_t q = vaddq_s32(numers, vandq_s32(vshrq_n_s32(numers, 31), roundToZeroTweak)); q = libdivide_s32_neon_sra(q, shift); int32x4_t sign = vdupq_n_s32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = vsubq_s32(veorq_s32(q, sign), sign); return q; } else { int32x4_t q = libdivide_mullhi_s32_vec128(numers, denom->magic); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift int32x4_t sign = vdupq_n_s32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = vaddq_s32(q, vsubq_s32(veorq_s32(numers, sign), sign)); } // q >>= shift q = libdivide_s32_neon_sra(q, more & LIBDIVIDE_32_SHIFT_MASK); q = vaddq_s32( q, vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_s32(q), 31))); // q += (q < 0) return q; } } int32x4_t libdivide_s32_branchfree_do_vec128( int32x4_t numers, const struct libdivide_s32_branchfree_t *denom) { int32_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; // must be arithmetic shift int32x4_t sign = vdupq_n_s32((int8_t)more >> 7); int32x4_t q = libdivide_mullhi_s32_vec128(numers, magic); q = vaddq_s32(q, numers); // q += numers // If q is non-negative, we have nothing to do // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2 uint32_t is_power_of_2 = (magic == 0); int32x4_t q_sign = vshrq_n_s32(q, 31); // q_sign = q >> 31 int32x4_t mask = vdupq_n_s32(((uint32_t)1 << shift) - is_power_of_2); q = vaddq_s32(q, vandq_s32(q_sign, mask)); // q = q + (q_sign & mask) q = libdivide_s32_neon_sra(q, shift); // q >>= shift q = vsubq_s32(veorq_s32(q, sign), sign); // q = (q ^ sign) - sign return q; } ////////// SINT64 int64x2_t libdivide_s64_do_vec128(int64x2_t numers, const struct libdivide_s64_t *denom) { uint8_t more = denom->more; int64_t magic = denom->magic; if (magic == 0) { // shift path uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; uint64_t mask = ((uint64_t)1 << shift) - 1; int64x2_t roundToZeroTweak = vdupq_n_s64(mask); // TODO: no need to sign extend // q = numer + ((numer >> 63) & roundToZeroTweak); int64x2_t q = vaddq_s64(numers, vandq_s64(libdivide_s64_signbits(numers), roundToZeroTweak)); q = libdivide_s64_neon_sra(q, shift); // q = (q ^ sign) - sign; int64x2_t sign = vreinterpretq_s64_s8(vdupq_n_s8((int8_t)more >> 7)); q = vsubq_s64(veorq_s64(q, sign), sign); return q; } else { int64x2_t q = libdivide_mullhi_s64_vec128(numers, magic); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift int64x2_t sign = vdupq_n_s64((int8_t)more >> 7); // TODO: no need to widen // q += ((numer ^ sign) - sign); q = vaddq_s64(q, vsubq_s64(veorq_s64(numers, sign), sign)); } // q >>= denom->mult_path.shift q = libdivide_s64_neon_sra(q, more & LIBDIVIDE_64_SHIFT_MASK); q = vaddq_s64( q, vreinterpretq_s64_u64(vshrq_n_u64(vreinterpretq_u64_s64(q), 63))); // q += (q < 0) return q; } } int64x2_t libdivide_s64_branchfree_do_vec128( int64x2_t numers, const struct libdivide_s64_branchfree_t *denom) { int64_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; // must be arithmetic shift int64x2_t sign = vdupq_n_s64((int8_t)more >> 7); // TODO: avoid sign extend // libdivide_mullhi_s64(numers, magic); int64x2_t q = libdivide_mullhi_s64_vec128(numers, magic); q = vaddq_s64(q, numers); // q += numers // If q is non-negative, we have nothing to do. // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2. uint32_t is_power_of_2 = (magic == 0); int64x2_t q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63 int64x2_t mask = vdupq_n_s64(((uint64_t)1 << shift) - is_power_of_2); q = vaddq_s64(q, vandq_s64(q_sign, mask)); // q = q + (q_sign & mask) q = libdivide_s64_neon_sra(q, shift); // q >>= shift q = vsubq_s64(veorq_s64(q, sign), sign); // q = (q ^ sign) - sign return q; } #endif #if defined(LIBDIVIDE_AVX512) static LIBDIVIDE_INLINE __m512i libdivide_u16_do_vec512( __m512i numers, const struct libdivide_u16_t *denom); static LIBDIVIDE_INLINE __m512i libdivide_s16_do_vec512( __m512i numers, const struct libdivide_s16_t *denom); static LIBDIVIDE_INLINE __m512i libdivide_u32_do_vec512( __m512i numers, const struct libdivide_u32_t *denom); static LIBDIVIDE_INLINE __m512i libdivide_s32_do_vec512( __m512i numers, const struct libdivide_s32_t *denom); static LIBDIVIDE_INLINE __m512i libdivide_u64_do_vec512( __m512i numers, const struct libdivide_u64_t *denom); static LIBDIVIDE_INLINE __m512i libdivide_s64_do_vec512( __m512i numers, const struct libdivide_s64_t *denom); static LIBDIVIDE_INLINE __m512i libdivide_u16_branchfree_do_vec512( __m512i numers, const struct libdivide_u16_branchfree_t *denom); static LIBDIVIDE_INLINE __m512i libdivide_s16_branchfree_do_vec512( __m512i numers, const struct libdivide_s16_branchfree_t *denom); static LIBDIVIDE_INLINE __m512i libdivide_u32_branchfree_do_vec512( __m512i numers, const struct libdivide_u32_branchfree_t *denom); static LIBDIVIDE_INLINE __m512i libdivide_s32_branchfree_do_vec512( __m512i numers, const struct libdivide_s32_branchfree_t *denom); static LIBDIVIDE_INLINE __m512i libdivide_u64_branchfree_do_vec512( __m512i numers, const struct libdivide_u64_branchfree_t *denom); static LIBDIVIDE_INLINE __m512i libdivide_s64_branchfree_do_vec512( __m512i numers, const struct libdivide_s64_branchfree_t *denom); //////// Internal Utility Functions static LIBDIVIDE_INLINE __m512i libdivide_s64_signbits_vec512(__m512i v) { ; return _mm512_srai_epi64(v, 63); } static LIBDIVIDE_INLINE __m512i libdivide_s64_shift_right_vec512(__m512i v, int amt) { return _mm512_srai_epi64(v, amt); } // Here, b is assumed to contain one 32-bit value repeated. static LIBDIVIDE_INLINE __m512i libdivide_mullhi_u32_vec512(__m512i a, __m512i b) { __m512i hi_product_0Z2Z = _mm512_srli_epi64(_mm512_mul_epu32(a, b), 32); __m512i a1X3X = _mm512_srli_epi64(a, 32); __m512i mask = _mm512_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0); __m512i hi_product_Z1Z3 = _mm512_and_si512(_mm512_mul_epu32(a1X3X, b), mask); return _mm512_or_si512(hi_product_0Z2Z, hi_product_Z1Z3); } // b is one 32-bit value repeated. static LIBDIVIDE_INLINE __m512i libdivide_mullhi_s32_vec512(__m512i a, __m512i b) { __m512i hi_product_0Z2Z = _mm512_srli_epi64(_mm512_mul_epi32(a, b), 32); __m512i a1X3X = _mm512_srli_epi64(a, 32); __m512i mask = _mm512_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0); __m512i hi_product_Z1Z3 = _mm512_and_si512(_mm512_mul_epi32(a1X3X, b), mask); return _mm512_or_si512(hi_product_0Z2Z, hi_product_Z1Z3); } // Here, y is assumed to contain one 64-bit value repeated. static LIBDIVIDE_INLINE __m512i libdivide_mullhi_u64_vec512(__m512i x, __m512i y) { // see m128i variant for comments. __m512i x0y0 = _mm512_mul_epu32(x, y); __m512i x0y0_hi = _mm512_srli_epi64(x0y0, 32); __m512i x1 = _mm512_shuffle_epi32(x, (_MM_PERM_ENUM)_MM_SHUFFLE(3, 3, 1, 1)); __m512i y1 = _mm512_shuffle_epi32(y, (_MM_PERM_ENUM)_MM_SHUFFLE(3, 3, 1, 1)); __m512i x0y1 = _mm512_mul_epu32(x, y1); __m512i x1y0 = _mm512_mul_epu32(x1, y); __m512i x1y1 = _mm512_mul_epu32(x1, y1); __m512i mask = _mm512_set1_epi64(0xFFFFFFFF); __m512i temp = _mm512_add_epi64(x1y0, x0y0_hi); __m512i temp_lo = _mm512_and_si512(temp, mask); __m512i temp_hi = _mm512_srli_epi64(temp, 32); temp_lo = _mm512_srli_epi64(_mm512_add_epi64(temp_lo, x0y1), 32); temp_hi = _mm512_add_epi64(x1y1, temp_hi); return _mm512_add_epi64(temp_lo, temp_hi); } // y is one 64-bit value repeated. static LIBDIVIDE_INLINE __m512i libdivide_mullhi_s64_vec512(__m512i x, __m512i y) { __m512i p = libdivide_mullhi_u64_vec512(x, y); __m512i t1 = _mm512_and_si512(libdivide_s64_signbits_vec512(x), y); __m512i t2 = _mm512_and_si512(libdivide_s64_signbits_vec512(y), x); p = _mm512_sub_epi64(p, t1); p = _mm512_sub_epi64(p, t2); return p; } ////////// UINT16 __m512i libdivide_u16_do_vec512(__m512i numers, const struct libdivide_u16_t *denom){ SIMPLE_VECTOR_DIVISION(uint16_t, __m512i, u16)} __m512i libdivide_u16_branchfree_do_vec512( __m512i numers, const struct libdivide_u16_branchfree_t *denom){ SIMPLE_VECTOR_DIVISION(uint16_t, __m512i, u16_branchfree)} ////////// UINT32 __m512i libdivide_u32_do_vec512(__m512i numers, const struct libdivide_u32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm512_srli_epi32(numers, more); } else { __m512i q = libdivide_mullhi_u32_vec512(numers, _mm512_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; __m512i t = _mm512_add_epi32(_mm512_srli_epi32(_mm512_sub_epi32(numers, q), 1), q); return _mm512_srli_epi32(t, shift); } else { return _mm512_srli_epi32(q, more); } } } __m512i libdivide_u32_branchfree_do_vec512( __m512i numers, const struct libdivide_u32_branchfree_t *denom) { __m512i q = libdivide_mullhi_u32_vec512(numers, _mm512_set1_epi32(denom->magic)); __m512i t = _mm512_add_epi32(_mm512_srli_epi32(_mm512_sub_epi32(numers, q), 1), q); return _mm512_srli_epi32(t, denom->more); } ////////// UINT64 __m512i libdivide_u64_do_vec512(__m512i numers, const struct libdivide_u64_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm512_srli_epi64(numers, more); } else { __m512i q = libdivide_mullhi_u64_vec512(numers, _mm512_set1_epi64(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; __m512i t = _mm512_add_epi64(_mm512_srli_epi64(_mm512_sub_epi64(numers, q), 1), q); return _mm512_srli_epi64(t, shift); } else { return _mm512_srli_epi64(q, more); } } } __m512i libdivide_u64_branchfree_do_vec512( __m512i numers, const struct libdivide_u64_branchfree_t *denom) { __m512i q = libdivide_mullhi_u64_vec512(numers, _mm512_set1_epi64(denom->magic)); __m512i t = _mm512_add_epi64(_mm512_srli_epi64(_mm512_sub_epi64(numers, q), 1), q); return _mm512_srli_epi64(t, denom->more); } ////////// SINT16 __m512i libdivide_s16_do_vec512(__m512i numers, const struct libdivide_s16_t *denom){ SIMPLE_VECTOR_DIVISION(int16_t, __m512i, s16)} __m512i libdivide_s16_branchfree_do_vec512( __m512i numers, const struct libdivide_s16_branchfree_t *denom){ SIMPLE_VECTOR_DIVISION(int16_t, __m512i, s16_branchfree)} ////////// SINT32 __m512i libdivide_s32_do_vec512(__m512i numers, const struct libdivide_s32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; uint32_t mask = ((uint32_t)1 << shift) - 1; __m512i roundToZeroTweak = _mm512_set1_epi32(mask); // q = numer + ((numer >> 31) & roundToZeroTweak); __m512i q = _mm512_add_epi32( numers, _mm512_and_si512(_mm512_srai_epi32(numers, 31), roundToZeroTweak)); q = _mm512_srai_epi32(q, shift); __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm512_sub_epi32(_mm512_xor_si512(q, sign), sign); return q; } else { __m512i q = libdivide_mullhi_s32_vec512(numers, _mm512_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm512_add_epi32(q, _mm512_sub_epi32(_mm512_xor_si512(numers, sign), sign)); } // q >>= shift q = _mm512_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK); q = _mm512_add_epi32(q, _mm512_srli_epi32(q, 31)); // q += (q < 0) return q; } } __m512i libdivide_s32_branchfree_do_vec512( __m512i numers, const struct libdivide_s32_branchfree_t *denom) { int32_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; // must be arithmetic shift __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); __m512i q = libdivide_mullhi_s32_vec512(numers, _mm512_set1_epi32(magic)); q = _mm512_add_epi32(q, numers); // q += numers // If q is non-negative, we have nothing to do // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2 uint32_t is_power_of_2 = (magic == 0); __m512i q_sign = _mm512_srai_epi32(q, 31); // q_sign = q >> 31 __m512i mask = _mm512_set1_epi32(((uint32_t)1 << shift) - is_power_of_2); q = _mm512_add_epi32(q, _mm512_and_si512(q_sign, mask)); // q = q + (q_sign & mask) q = _mm512_srai_epi32(q, shift); // q >>= shift q = _mm512_sub_epi32(_mm512_xor_si512(q, sign), sign); // q = (q ^ sign) - sign return q; } ////////// SINT64 __m512i libdivide_s64_do_vec512(__m512i numers, const struct libdivide_s64_t *denom) { uint8_t more = denom->more; int64_t magic = denom->magic; if (magic == 0) { // shift path uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; uint64_t mask = ((uint64_t)1 << shift) - 1; __m512i roundToZeroTweak = _mm512_set1_epi64(mask); // q = numer + ((numer >> 63) & roundToZeroTweak); __m512i q = _mm512_add_epi64( numers, _mm512_and_si512(libdivide_s64_signbits_vec512(numers), roundToZeroTweak)); q = libdivide_s64_shift_right_vec512(q, shift); __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm512_sub_epi64(_mm512_xor_si512(q, sign), sign); return q; } else { __m512i q = libdivide_mullhi_s64_vec512(numers, _mm512_set1_epi64(magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm512_add_epi64(q, _mm512_sub_epi64(_mm512_xor_si512(numers, sign), sign)); } // q >>= denom->mult_path.shift q = libdivide_s64_shift_right_vec512(q, more & LIBDIVIDE_64_SHIFT_MASK); q = _mm512_add_epi64(q, _mm512_srli_epi64(q, 63)); // q += (q < 0) return q; } } __m512i libdivide_s64_branchfree_do_vec512( __m512i numers, const struct libdivide_s64_branchfree_t *denom) { int64_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; // must be arithmetic shift __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); // libdivide_mullhi_s64(numers, magic); __m512i q = libdivide_mullhi_s64_vec512(numers, _mm512_set1_epi64(magic)); q = _mm512_add_epi64(q, numers); // q += numers // If q is non-negative, we have nothing to do. // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2. uint32_t is_power_of_2 = (magic == 0); __m512i q_sign = libdivide_s64_signbits_vec512(q); // q_sign = q >> 63 __m512i mask = _mm512_set1_epi64(((uint64_t)1 << shift) - is_power_of_2); q = _mm512_add_epi64(q, _mm512_and_si512(q_sign, mask)); // q = q + (q_sign & mask) q = libdivide_s64_shift_right_vec512(q, shift); // q >>= shift q = _mm512_sub_epi64(_mm512_xor_si512(q, sign), sign); // q = (q ^ sign) - sign return q; } #endif #if defined(LIBDIVIDE_AVX2) static LIBDIVIDE_INLINE __m256i libdivide_u16_do_vec256( __m256i numers, const struct libdivide_u16_t *denom); static LIBDIVIDE_INLINE __m256i libdivide_s16_do_vec256( __m256i numers, const struct libdivide_s16_t *denom); static LIBDIVIDE_INLINE __m256i libdivide_u32_do_vec256( __m256i numers, const struct libdivide_u32_t *denom); static LIBDIVIDE_INLINE __m256i libdivide_s32_do_vec256( __m256i numers, const struct libdivide_s32_t *denom); static LIBDIVIDE_INLINE __m256i libdivide_u64_do_vec256( __m256i numers, const struct libdivide_u64_t *denom); static LIBDIVIDE_INLINE __m256i libdivide_s64_do_vec256( __m256i numers, const struct libdivide_s64_t *denom); static LIBDIVIDE_INLINE __m256i libdivide_u16_branchfree_do_vec256( __m256i numers, const struct libdivide_u16_branchfree_t *denom); static LIBDIVIDE_INLINE __m256i libdivide_s16_branchfree_do_vec256( __m256i numers, const struct libdivide_s16_branchfree_t *denom); static LIBDIVIDE_INLINE __m256i libdivide_u32_branchfree_do_vec256( __m256i numers, const struct libdivide_u32_branchfree_t *denom); static LIBDIVIDE_INLINE __m256i libdivide_s32_branchfree_do_vec256( __m256i numers, const struct libdivide_s32_branchfree_t *denom); static LIBDIVIDE_INLINE __m256i libdivide_u64_branchfree_do_vec256( __m256i numers, const struct libdivide_u64_branchfree_t *denom); static LIBDIVIDE_INLINE __m256i libdivide_s64_branchfree_do_vec256( __m256i numers, const struct libdivide_s64_branchfree_t *denom); //////// Internal Utility Functions // Implementation of _mm256_srai_epi64(v, 63) (from AVX512). static LIBDIVIDE_INLINE __m256i libdivide_s64_signbits_vec256(__m256i v) { __m256i hiBitsDuped = _mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1)); __m256i signBits = _mm256_srai_epi32(hiBitsDuped, 31); return signBits; } // Implementation of _mm256_srai_epi64 (from AVX512). static LIBDIVIDE_INLINE __m256i libdivide_s64_shift_right_vec256(__m256i v, int amt) { const int b = 64 - amt; __m256i m = _mm256_set1_epi64x((uint64_t)1 << (b - 1)); __m256i x = _mm256_srli_epi64(v, amt); __m256i result = _mm256_sub_epi64(_mm256_xor_si256(x, m), m); return result; } // Here, b is assumed to contain one 32-bit value repeated. static LIBDIVIDE_INLINE __m256i libdivide_mullhi_u32_vec256(__m256i a, __m256i b) { __m256i hi_product_0Z2Z = _mm256_srli_epi64(_mm256_mul_epu32(a, b), 32); __m256i a1X3X = _mm256_srli_epi64(a, 32); __m256i mask = _mm256_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0); __m256i hi_product_Z1Z3 = _mm256_and_si256(_mm256_mul_epu32(a1X3X, b), mask); return _mm256_or_si256(hi_product_0Z2Z, hi_product_Z1Z3); } // b is one 32-bit value repeated. static LIBDIVIDE_INLINE __m256i libdivide_mullhi_s32_vec256(__m256i a, __m256i b) { __m256i hi_product_0Z2Z = _mm256_srli_epi64(_mm256_mul_epi32(a, b), 32); __m256i a1X3X = _mm256_srli_epi64(a, 32); __m256i mask = _mm256_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0); __m256i hi_product_Z1Z3 = _mm256_and_si256(_mm256_mul_epi32(a1X3X, b), mask); return _mm256_or_si256(hi_product_0Z2Z, hi_product_Z1Z3); } // Here, y is assumed to contain one 64-bit value repeated. static LIBDIVIDE_INLINE __m256i libdivide_mullhi_u64_vec256(__m256i x, __m256i y) { // see m128i variant for comments. __m256i x0y0 = _mm256_mul_epu32(x, y); __m256i x0y0_hi = _mm256_srli_epi64(x0y0, 32); __m256i x1 = _mm256_shuffle_epi32(x, _MM_SHUFFLE(3, 3, 1, 1)); __m256i y1 = _mm256_shuffle_epi32(y, _MM_SHUFFLE(3, 3, 1, 1)); __m256i x0y1 = _mm256_mul_epu32(x, y1); __m256i x1y0 = _mm256_mul_epu32(x1, y); __m256i x1y1 = _mm256_mul_epu32(x1, y1); __m256i mask = _mm256_set1_epi64x(0xFFFFFFFF); __m256i temp = _mm256_add_epi64(x1y0, x0y0_hi); __m256i temp_lo = _mm256_and_si256(temp, mask); __m256i temp_hi = _mm256_srli_epi64(temp, 32); temp_lo = _mm256_srli_epi64(_mm256_add_epi64(temp_lo, x0y1), 32); temp_hi = _mm256_add_epi64(x1y1, temp_hi); return _mm256_add_epi64(temp_lo, temp_hi); } // y is one 64-bit value repeated. static LIBDIVIDE_INLINE __m256i libdivide_mullhi_s64_vec256(__m256i x, __m256i y) { __m256i p = libdivide_mullhi_u64_vec256(x, y); __m256i t1 = _mm256_and_si256(libdivide_s64_signbits_vec256(x), y); __m256i t2 = _mm256_and_si256(libdivide_s64_signbits_vec256(y), x); p = _mm256_sub_epi64(p, t1); p = _mm256_sub_epi64(p, t2); return p; } ////////// UINT16 __m256i libdivide_u16_do_vec256(__m256i numers, const struct libdivide_u16_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm256_srli_epi16(numers, more); } else { __m256i q = _mm256_mulhi_epu16(numers, _mm256_set1_epi16(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { __m256i t = _mm256_adds_epu16(_mm256_srli_epi16(_mm256_subs_epu16(numers, q), 1), q); return _mm256_srli_epi16(t, (more & LIBDIVIDE_16_SHIFT_MASK)); } else { return _mm256_srli_epi16(q, more); } } } __m256i libdivide_u16_branchfree_do_vec256( __m256i numers, const struct libdivide_u16_branchfree_t *denom) { __m256i q = _mm256_mulhi_epu16(numers, _mm256_set1_epi16(denom->magic)); __m256i t = _mm256_adds_epu16(_mm256_srli_epi16(_mm256_subs_epu16(numers, q), 1), q); return _mm256_srli_epi16(t, denom->more); } ////////// UINT32 __m256i libdivide_u32_do_vec256(__m256i numers, const struct libdivide_u32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm256_srli_epi32(numers, more); } else { __m256i q = libdivide_mullhi_u32_vec256(numers, _mm256_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; __m256i t = _mm256_add_epi32(_mm256_srli_epi32(_mm256_sub_epi32(numers, q), 1), q); return _mm256_srli_epi32(t, shift); } else { return _mm256_srli_epi32(q, more); } } } __m256i libdivide_u32_branchfree_do_vec256( __m256i numers, const struct libdivide_u32_branchfree_t *denom) { __m256i q = libdivide_mullhi_u32_vec256(numers, _mm256_set1_epi32(denom->magic)); __m256i t = _mm256_add_epi32(_mm256_srli_epi32(_mm256_sub_epi32(numers, q), 1), q); return _mm256_srli_epi32(t, denom->more); } ////////// UINT64 __m256i libdivide_u64_do_vec256(__m256i numers, const struct libdivide_u64_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm256_srli_epi64(numers, more); } else { __m256i q = libdivide_mullhi_u64_vec256(numers, _mm256_set1_epi64x(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; __m256i t = _mm256_add_epi64(_mm256_srli_epi64(_mm256_sub_epi64(numers, q), 1), q); return _mm256_srli_epi64(t, shift); } else { return _mm256_srli_epi64(q, more); } } } __m256i libdivide_u64_branchfree_do_vec256( __m256i numers, const struct libdivide_u64_branchfree_t *denom) { __m256i q = libdivide_mullhi_u64_vec256(numers, _mm256_set1_epi64x(denom->magic)); __m256i t = _mm256_add_epi64(_mm256_srli_epi64(_mm256_sub_epi64(numers, q), 1), q); return _mm256_srli_epi64(t, denom->more); } ////////// SINT16 __m256i libdivide_s16_do_vec256(__m256i numers, const struct libdivide_s16_t *denom) { uint8_t more = denom->more; if (!denom->magic) { uint16_t shift = more & LIBDIVIDE_16_SHIFT_MASK; uint16_t mask = ((uint16_t)1 << shift) - 1; __m256i roundToZeroTweak = _mm256_set1_epi16(mask); // q = numer + ((numer >> 15) & roundToZeroTweak); __m256i q = _mm256_add_epi16( numers, _mm256_and_si256(_mm256_srai_epi16(numers, 15), roundToZeroTweak)); q = _mm256_srai_epi16(q, shift); __m256i sign = _mm256_set1_epi16((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm256_sub_epi16(_mm256_xor_si256(q, sign), sign); return q; } else { __m256i q = _mm256_mulhi_epi16(numers, _mm256_set1_epi16(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m256i sign = _mm256_set1_epi16((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm256_add_epi16(q, _mm256_sub_epi16(_mm256_xor_si256(numers, sign), sign)); } // q >>= shift q = _mm256_srai_epi16(q, more & LIBDIVIDE_16_SHIFT_MASK); q = _mm256_add_epi16(q, _mm256_srli_epi16(q, 15)); // q += (q < 0) return q; } } __m256i libdivide_s16_branchfree_do_vec256( __m256i numers, const struct libdivide_s16_branchfree_t *denom) { int16_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK; // must be arithmetic shift __m256i sign = _mm256_set1_epi16((int8_t)more >> 7); __m256i q = _mm256_mulhi_epi16(numers, _mm256_set1_epi16(magic)); q = _mm256_add_epi16(q, numers); // q += numers // If q is non-negative, we have nothing to do // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2 uint16_t is_power_of_2 = (magic == 0); __m256i q_sign = _mm256_srai_epi16(q, 15); // q_sign = q >> 15 __m256i mask = _mm256_set1_epi16(((uint16_t)1 << shift) - is_power_of_2); q = _mm256_add_epi16(q, _mm256_and_si256(q_sign, mask)); // q = q + (q_sign & mask) q = _mm256_srai_epi16(q, shift); // q >>= shift q = _mm256_sub_epi16(_mm256_xor_si256(q, sign), sign); // q = (q ^ sign) - sign return q; } ////////// SINT32 __m256i libdivide_s32_do_vec256(__m256i numers, const struct libdivide_s32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; uint32_t mask = ((uint32_t)1 << shift) - 1; __m256i roundToZeroTweak = _mm256_set1_epi32(mask); // q = numer + ((numer >> 31) & roundToZeroTweak); __m256i q = _mm256_add_epi32( numers, _mm256_and_si256(_mm256_srai_epi32(numers, 31), roundToZeroTweak)); q = _mm256_srai_epi32(q, shift); __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm256_sub_epi32(_mm256_xor_si256(q, sign), sign); return q; } else { __m256i q = libdivide_mullhi_s32_vec256(numers, _mm256_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm256_add_epi32(q, _mm256_sub_epi32(_mm256_xor_si256(numers, sign), sign)); } // q >>= shift q = _mm256_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK); q = _mm256_add_epi32(q, _mm256_srli_epi32(q, 31)); // q += (q < 0) return q; } } __m256i libdivide_s32_branchfree_do_vec256( __m256i numers, const struct libdivide_s32_branchfree_t *denom) { int32_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; // must be arithmetic shift __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); __m256i q = libdivide_mullhi_s32_vec256(numers, _mm256_set1_epi32(magic)); q = _mm256_add_epi32(q, numers); // q += numers // If q is non-negative, we have nothing to do // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2 uint32_t is_power_of_2 = (magic == 0); __m256i q_sign = _mm256_srai_epi32(q, 31); // q_sign = q >> 31 __m256i mask = _mm256_set1_epi32(((uint32_t)1 << shift) - is_power_of_2); q = _mm256_add_epi32(q, _mm256_and_si256(q_sign, mask)); // q = q + (q_sign & mask) q = _mm256_srai_epi32(q, shift); // q >>= shift q = _mm256_sub_epi32(_mm256_xor_si256(q, sign), sign); // q = (q ^ sign) - sign return q; } ////////// SINT64 __m256i libdivide_s64_do_vec256(__m256i numers, const struct libdivide_s64_t *denom) { uint8_t more = denom->more; int64_t magic = denom->magic; if (magic == 0) { // shift path uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; uint64_t mask = ((uint64_t)1 << shift) - 1; __m256i roundToZeroTweak = _mm256_set1_epi64x(mask); // q = numer + ((numer >> 63) & roundToZeroTweak); __m256i q = _mm256_add_epi64( numers, _mm256_and_si256(libdivide_s64_signbits_vec256(numers), roundToZeroTweak)); q = libdivide_s64_shift_right_vec256(q, shift); __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm256_sub_epi64(_mm256_xor_si256(q, sign), sign); return q; } else { __m256i q = libdivide_mullhi_s64_vec256(numers, _mm256_set1_epi64x(magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm256_add_epi64(q, _mm256_sub_epi64(_mm256_xor_si256(numers, sign), sign)); } // q >>= denom->mult_path.shift q = libdivide_s64_shift_right_vec256(q, more & LIBDIVIDE_64_SHIFT_MASK); q = _mm256_add_epi64(q, _mm256_srli_epi64(q, 63)); // q += (q < 0) return q; } } __m256i libdivide_s64_branchfree_do_vec256( __m256i numers, const struct libdivide_s64_branchfree_t *denom) { int64_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; // must be arithmetic shift __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); // libdivide_mullhi_s64(numers, magic); __m256i q = libdivide_mullhi_s64_vec256(numers, _mm256_set1_epi64x(magic)); q = _mm256_add_epi64(q, numers); // q += numers // If q is non-negative, we have nothing to do. // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2. uint32_t is_power_of_2 = (magic == 0); __m256i q_sign = libdivide_s64_signbits_vec256(q); // q_sign = q >> 63 __m256i mask = _mm256_set1_epi64x(((uint64_t)1 << shift) - is_power_of_2); q = _mm256_add_epi64(q, _mm256_and_si256(q_sign, mask)); // q = q + (q_sign & mask) q = libdivide_s64_shift_right_vec256(q, shift); // q >>= shift q = _mm256_sub_epi64(_mm256_xor_si256(q, sign), sign); // q = (q ^ sign) - sign return q; } #endif #if defined(LIBDIVIDE_SSE2) static LIBDIVIDE_INLINE __m128i libdivide_u16_do_vec128( __m128i numers, const struct libdivide_u16_t *denom); static LIBDIVIDE_INLINE __m128i libdivide_s16_do_vec128( __m128i numers, const struct libdivide_s16_t *denom); static LIBDIVIDE_INLINE __m128i libdivide_u32_do_vec128( __m128i numers, const struct libdivide_u32_t *denom); static LIBDIVIDE_INLINE __m128i libdivide_s32_do_vec128( __m128i numers, const struct libdivide_s32_t *denom); static LIBDIVIDE_INLINE __m128i libdivide_u64_do_vec128( __m128i numers, const struct libdivide_u64_t *denom); static LIBDIVIDE_INLINE __m128i libdivide_s64_do_vec128( __m128i numers, const struct libdivide_s64_t *denom); static LIBDIVIDE_INLINE __m128i libdivide_u16_branchfree_do_vec128( __m128i numers, const struct libdivide_u16_branchfree_t *denom); static LIBDIVIDE_INLINE __m128i libdivide_s16_branchfree_do_vec128( __m128i numers, const struct libdivide_s16_branchfree_t *denom); static LIBDIVIDE_INLINE __m128i libdivide_u32_branchfree_do_vec128( __m128i numers, const struct libdivide_u32_branchfree_t *denom); static LIBDIVIDE_INLINE __m128i libdivide_s32_branchfree_do_vec128( __m128i numers, const struct libdivide_s32_branchfree_t *denom); static LIBDIVIDE_INLINE __m128i libdivide_u64_branchfree_do_vec128( __m128i numers, const struct libdivide_u64_branchfree_t *denom); static LIBDIVIDE_INLINE __m128i libdivide_s64_branchfree_do_vec128( __m128i numers, const struct libdivide_s64_branchfree_t *denom); //////// Internal Utility Functions // Implementation of _mm_srai_epi64(v, 63) (from AVX512). static LIBDIVIDE_INLINE __m128i libdivide_s64_signbits_vec128(__m128i v) { __m128i hiBitsDuped = _mm_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1)); __m128i signBits = _mm_srai_epi32(hiBitsDuped, 31); return signBits; } // Implementation of _mm_srai_epi64 (from AVX512). static LIBDIVIDE_INLINE __m128i libdivide_s64_shift_right_vec128(__m128i v, int amt) { const int b = 64 - amt; __m128i m = _mm_set1_epi64x((uint64_t)1 << (b - 1)); __m128i x = _mm_srli_epi64(v, amt); __m128i result = _mm_sub_epi64(_mm_xor_si128(x, m), m); return result; } // Here, b is assumed to contain one 32-bit value repeated. static LIBDIVIDE_INLINE __m128i libdivide_mullhi_u32_vec128(__m128i a, __m128i b) { __m128i hi_product_0Z2Z = _mm_srli_epi64(_mm_mul_epu32(a, b), 32); __m128i a1X3X = _mm_srli_epi64(a, 32); __m128i mask = _mm_set_epi32(-1, 0, -1, 0); __m128i hi_product_Z1Z3 = _mm_and_si128(_mm_mul_epu32(a1X3X, b), mask); return _mm_or_si128(hi_product_0Z2Z, hi_product_Z1Z3); } // SSE2 does not have a signed multiplication instruction, but we can convert // unsigned to signed pretty efficiently. Again, b is just a 32 bit value // repeated four times. static LIBDIVIDE_INLINE __m128i libdivide_mullhi_s32_vec128(__m128i a, __m128i b) { __m128i p = libdivide_mullhi_u32_vec128(a, b); // t1 = (a >> 31) & y, arithmetic shift __m128i t1 = _mm_and_si128(_mm_srai_epi32(a, 31), b); __m128i t2 = _mm_and_si128(_mm_srai_epi32(b, 31), a); p = _mm_sub_epi32(p, t1); p = _mm_sub_epi32(p, t2); return p; } // Here, y is assumed to contain one 64-bit value repeated. static LIBDIVIDE_INLINE __m128i libdivide_mullhi_u64_vec128(__m128i x, __m128i y) { // full 128 bits product is: // x0*y0 + (x0*y1 << 32) + (x1*y0 << 32) + (x1*y1 << 64) // Note x0,y0,x1,y1 are all conceptually uint32, products are 32x32->64. // Compute x0*y0. // Note x1, y1 are ignored by mul_epu32. __m128i x0y0 = _mm_mul_epu32(x, y); __m128i x0y0_hi = _mm_srli_epi64(x0y0, 32); // Get x1, y1 in the low bits. // We could shuffle or right shift. Shuffles are preferred as they preserve // the source register for the next computation. __m128i x1 = _mm_shuffle_epi32(x, _MM_SHUFFLE(3, 3, 1, 1)); __m128i y1 = _mm_shuffle_epi32(y, _MM_SHUFFLE(3, 3, 1, 1)); // No need to mask off top 32 bits for mul_epu32. __m128i x0y1 = _mm_mul_epu32(x, y1); __m128i x1y0 = _mm_mul_epu32(x1, y); __m128i x1y1 = _mm_mul_epu32(x1, y1); // Mask here selects low bits only. __m128i mask = _mm_set1_epi64x(0xFFFFFFFF); __m128i temp = _mm_add_epi64(x1y0, x0y0_hi); __m128i temp_lo = _mm_and_si128(temp, mask); __m128i temp_hi = _mm_srli_epi64(temp, 32); temp_lo = _mm_srli_epi64(_mm_add_epi64(temp_lo, x0y1), 32); temp_hi = _mm_add_epi64(x1y1, temp_hi); return _mm_add_epi64(temp_lo, temp_hi); } // y is one 64-bit value repeated. static LIBDIVIDE_INLINE __m128i libdivide_mullhi_s64_vec128(__m128i x, __m128i y) { __m128i p = libdivide_mullhi_u64_vec128(x, y); __m128i t1 = _mm_and_si128(libdivide_s64_signbits_vec128(x), y); __m128i t2 = _mm_and_si128(libdivide_s64_signbits_vec128(y), x); p = _mm_sub_epi64(p, t1); p = _mm_sub_epi64(p, t2); return p; } ////////// UINT26 __m128i libdivide_u16_do_vec128(__m128i numers, const struct libdivide_u16_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm_srli_epi16(numers, more); } else { __m128i q = _mm_mulhi_epu16(numers, _mm_set1_epi16(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { __m128i t = _mm_adds_epu16(_mm_srli_epi16(_mm_subs_epu16(numers, q), 1), q); return _mm_srli_epi16(t, (more & LIBDIVIDE_16_SHIFT_MASK)); } else { return _mm_srli_epi16(q, more); } } } __m128i libdivide_u16_branchfree_do_vec128( __m128i numers, const struct libdivide_u16_branchfree_t *denom) { __m128i q = _mm_mulhi_epu16(numers, _mm_set1_epi16(denom->magic)); __m128i t = _mm_adds_epu16(_mm_srli_epi16(_mm_subs_epu16(numers, q), 1), q); return _mm_srli_epi16(t, denom->more); } ////////// UINT32 __m128i libdivide_u32_do_vec128(__m128i numers, const struct libdivide_u32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm_srli_epi32(numers, more); } else { __m128i q = libdivide_mullhi_u32_vec128(numers, _mm_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q); return _mm_srli_epi32(t, shift); } else { return _mm_srli_epi32(q, more); } } } __m128i libdivide_u32_branchfree_do_vec128( __m128i numers, const struct libdivide_u32_branchfree_t *denom) { __m128i q = libdivide_mullhi_u32_vec128(numers, _mm_set1_epi32(denom->magic)); __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q); return _mm_srli_epi32(t, denom->more); } ////////// UINT64 __m128i libdivide_u64_do_vec128(__m128i numers, const struct libdivide_u64_t *denom) { uint8_t more = denom->more; if (!denom->magic) { return _mm_srli_epi64(numers, more); } else { __m128i q = libdivide_mullhi_u64_vec128(numers, _mm_set1_epi64x(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // uint32_t t = ((numer - q) >> 1) + q; // return t >> denom->shift; uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q); return _mm_srli_epi64(t, shift); } else { return _mm_srli_epi64(q, more); } } } __m128i libdivide_u64_branchfree_do_vec128( __m128i numers, const struct libdivide_u64_branchfree_t *denom) { __m128i q = libdivide_mullhi_u64_vec128(numers, _mm_set1_epi64x(denom->magic)); __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q); return _mm_srli_epi64(t, denom->more); } ////////// SINT16 __m128i libdivide_s16_do_vec128(__m128i numers, const struct libdivide_s16_t *denom) { uint8_t more = denom->more; if (!denom->magic) { uint16_t shift = more & LIBDIVIDE_16_SHIFT_MASK; uint16_t mask = ((uint16_t)1 << shift) - 1; __m128i roundToZeroTweak = _mm_set1_epi16(mask); // q = numer + ((numer >> 15) & roundToZeroTweak); __m128i q = _mm_add_epi16(numers, _mm_and_si128(_mm_srai_epi16(numers, 15), roundToZeroTweak)); q = _mm_srai_epi16(q, shift); __m128i sign = _mm_set1_epi16((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm_sub_epi16(_mm_xor_si128(q, sign), sign); return q; } else { __m128i q = _mm_mulhi_epi16(numers, _mm_set1_epi16(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m128i sign = _mm_set1_epi16((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm_add_epi16(q, _mm_sub_epi16(_mm_xor_si128(numers, sign), sign)); } // q >>= shift q = _mm_srai_epi16(q, more & LIBDIVIDE_16_SHIFT_MASK); q = _mm_add_epi16(q, _mm_srli_epi16(q, 15)); // q += (q < 0) return q; } } __m128i libdivide_s16_branchfree_do_vec128( __m128i numers, const struct libdivide_s16_branchfree_t *denom) { int16_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK; // must be arithmetic shift __m128i sign = _mm_set1_epi16((int8_t)more >> 7); __m128i q = _mm_mulhi_epi16(numers, _mm_set1_epi16(magic)); q = _mm_add_epi16(q, numers); // q += numers // If q is non-negative, we have nothing to do // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2 uint16_t is_power_of_2 = (magic == 0); __m128i q_sign = _mm_srai_epi16(q, 15); // q_sign = q >> 15 __m128i mask = _mm_set1_epi16(((uint16_t)1 << shift) - is_power_of_2); q = _mm_add_epi16(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask) q = _mm_srai_epi16(q, shift); // q >>= shift q = _mm_sub_epi16(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign return q; } ////////// SINT32 __m128i libdivide_s32_do_vec128(__m128i numers, const struct libdivide_s32_t *denom) { uint8_t more = denom->more; if (!denom->magic) { uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; uint32_t mask = ((uint32_t)1 << shift) - 1; __m128i roundToZeroTweak = _mm_set1_epi32(mask); // q = numer + ((numer >> 31) & roundToZeroTweak); __m128i q = _mm_add_epi32(numers, _mm_and_si128(_mm_srai_epi32(numers, 31), roundToZeroTweak)); q = _mm_srai_epi32(q, shift); __m128i sign = _mm_set1_epi32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign); return q; } else { __m128i q = libdivide_mullhi_s32_vec128(numers, _mm_set1_epi32(denom->magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m128i sign = _mm_set1_epi32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm_add_epi32(q, _mm_sub_epi32(_mm_xor_si128(numers, sign), sign)); } // q >>= shift q = _mm_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK); q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); // q += (q < 0) return q; } } __m128i libdivide_s32_branchfree_do_vec128( __m128i numers, const struct libdivide_s32_branchfree_t *denom) { int32_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; // must be arithmetic shift __m128i sign = _mm_set1_epi32((int8_t)more >> 7); __m128i q = libdivide_mullhi_s32_vec128(numers, _mm_set1_epi32(magic)); q = _mm_add_epi32(q, numers); // q += numers // If q is non-negative, we have nothing to do // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2 uint32_t is_power_of_2 = (magic == 0); __m128i q_sign = _mm_srai_epi32(q, 31); // q_sign = q >> 31 __m128i mask = _mm_set1_epi32(((uint32_t)1 << shift) - is_power_of_2); q = _mm_add_epi32(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask) q = _mm_srai_epi32(q, shift); // q >>= shift q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign return q; } ////////// SINT64 __m128i libdivide_s64_do_vec128(__m128i numers, const struct libdivide_s64_t *denom) { uint8_t more = denom->more; int64_t magic = denom->magic; if (magic == 0) { // shift path uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; uint64_t mask = ((uint64_t)1 << shift) - 1; __m128i roundToZeroTweak = _mm_set1_epi64x(mask); // q = numer + ((numer >> 63) & roundToZeroTweak); __m128i q = _mm_add_epi64( numers, _mm_and_si128(libdivide_s64_signbits_vec128(numers), roundToZeroTweak)); q = libdivide_s64_shift_right_vec128(q, shift); __m128i sign = _mm_set1_epi32((int8_t)more >> 7); // q = (q ^ sign) - sign; q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign); return q; } else { __m128i q = libdivide_mullhi_s64_vec128(numers, _mm_set1_epi64x(magic)); if (more & LIBDIVIDE_ADD_MARKER) { // must be arithmetic shift __m128i sign = _mm_set1_epi32((int8_t)more >> 7); // q += ((numer ^ sign) - sign); q = _mm_add_epi64(q, _mm_sub_epi64(_mm_xor_si128(numers, sign), sign)); } // q >>= denom->mult_path.shift q = libdivide_s64_shift_right_vec128(q, more & LIBDIVIDE_64_SHIFT_MASK); q = _mm_add_epi64(q, _mm_srli_epi64(q, 63)); // q += (q < 0) return q; } } __m128i libdivide_s64_branchfree_do_vec128( __m128i numers, const struct libdivide_s64_branchfree_t *denom) { int64_t magic = denom->magic; uint8_t more = denom->more; uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; // must be arithmetic shift __m128i sign = _mm_set1_epi32((int8_t)more >> 7); // libdivide_mullhi_s64(numers, magic); __m128i q = libdivide_mullhi_s64_vec128(numers, _mm_set1_epi64x(magic)); q = _mm_add_epi64(q, numers); // q += numers // If q is non-negative, we have nothing to do. // If q is negative, we want to add either (2**shift)-1 if d is // a power of 2, or (2**shift) if it is not a power of 2. uint32_t is_power_of_2 = (magic == 0); __m128i q_sign = libdivide_s64_signbits_vec128(q); // q_sign = q >> 63 __m128i mask = _mm_set1_epi64x(((uint64_t)1 << shift) - is_power_of_2); q = _mm_add_epi64(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask) q = libdivide_s64_shift_right_vec128(q, shift); // q >>= shift q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign return q; } #endif /////////// C++ stuff #ifdef __cplusplus //for constexpr zero initialization, //c++11 might handle things ok, //but just limit to at least c++14 to ensure //we don't break anyone's code: // for gcc and clang, use https://en.cppreference.com/w/cpp/feature_test#cpp_constexpr #if (defined(__GNUC__) || defined(__clang__)) && (__cpp_constexpr >= 201304L) #define LIBDIVIDE_CONSTEXPR constexpr // supposedly, MSVC might not implement feature test macros right (https://stackoverflow.com/questions/49316752/feature-test-macros-not-working-properly-in-visual-c) // so check that _MSVC_LANG corresponds to at least c++14, and _MSC_VER corresponds to at least VS 2017 15.0 (for extended constexpr support https://learn.microsoft.com/en-us/cpp/overview/visual-cpp-language-conformance?view=msvc-170) #elif defined(_MSC_VER) && _MSC_VER >= 1910 && defined(_MSVC_LANG) && _MSVC_LANG >=201402L #define LIBDIVIDE_CONSTEXPR constexpr // in case some other obscure compiler has the right __cpp_constexpr : #elif defined(__cpp_constexpr) && __cpp_constexpr >= 201304L #define LIBDIVIDE_CONSTEXPR constexpr #else #define LIBDIVIDE_CONSTEXPR LIBDIVIDE_INLINE #endif enum Branching { BRANCHFULL, // use branching algorithms BRANCHFREE // use branchfree algorithms }; namespace detail { enum Signedness { SIGNED, UNSIGNED, }; #if defined(LIBDIVIDE_NEON) // Helper to deduce NEON vector type for integral type. template struct NeonVec {}; template <> struct NeonVec<16, UNSIGNED> { typedef uint16x8_t type; }; template <> struct NeonVec<16, SIGNED> { typedef int16x8_t type; }; template <> struct NeonVec<32, UNSIGNED> { typedef uint32x4_t type; }; template <> struct NeonVec<32, SIGNED> { typedef int32x4_t type; }; template <> struct NeonVec<64, UNSIGNED> { typedef uint64x2_t type; }; template <> struct NeonVec<64, SIGNED> { typedef int64x2_t type; }; template struct NeonVecFor { // See 'class divider' for an explanation of these template parameters. typedef typename NeonVec> 0) > (T)(-1) ? SIGNED : UNSIGNED)>::type type; }; #define LIBDIVIDE_DIVIDE_NEON(ALGO, INT_TYPE) \ LIBDIVIDE_INLINE typename NeonVecFor::type divide( \ typename NeonVecFor::type n) const { \ return libdivide_##ALGO##_do_vec128(n, &denom); \ } #else #define LIBDIVIDE_DIVIDE_NEON(ALGO, INT_TYPE) #endif #if defined(LIBDIVIDE_SSE2) #define LIBDIVIDE_DIVIDE_SSE2(ALGO) \ LIBDIVIDE_INLINE __m128i divide(__m128i n) const { \ return libdivide_##ALGO##_do_vec128(n, &denom); \ } #else #define LIBDIVIDE_DIVIDE_SSE2(ALGO) #endif #if defined(LIBDIVIDE_AVX2) #define LIBDIVIDE_DIVIDE_AVX2(ALGO) \ LIBDIVIDE_INLINE __m256i divide(__m256i n) const { \ return libdivide_##ALGO##_do_vec256(n, &denom); \ } #else #define LIBDIVIDE_DIVIDE_AVX2(ALGO) #endif #if defined(LIBDIVIDE_AVX512) #define LIBDIVIDE_DIVIDE_AVX512(ALGO) \ LIBDIVIDE_INLINE __m512i divide(__m512i n) const { \ return libdivide_##ALGO##_do_vec512(n, &denom); \ } #else #define LIBDIVIDE_DIVIDE_AVX512(ALGO) #endif // The DISPATCHER_GEN() macro generates C++ methods (for the given integer // and algorithm types) that redirect to libdivide's C API. #define DISPATCHER_GEN(T, ALGO) \ libdivide_##ALGO##_t denom; \ LIBDIVIDE_INLINE dispatcher() {} \ explicit LIBDIVIDE_CONSTEXPR dispatcher(decltype(nullptr)) : denom{} {} \ LIBDIVIDE_INLINE dispatcher(T d) : denom(libdivide_##ALGO##_gen(d)) {} \ LIBDIVIDE_INLINE T divide(T n) const { return libdivide_##ALGO##_do(n, &denom); } \ LIBDIVIDE_INLINE T recover() const { return libdivide_##ALGO##_recover(&denom); } \ LIBDIVIDE_DIVIDE_NEON(ALGO, T) \ LIBDIVIDE_DIVIDE_SSE2(ALGO) \ LIBDIVIDE_DIVIDE_AVX2(ALGO) \ LIBDIVIDE_DIVIDE_AVX512(ALGO) // The dispatcher selects a specific division algorithm for a given // width, signedness, and ALGO using partial template specialization. template struct dispatcher {}; template <> struct dispatcher<16, SIGNED, BRANCHFULL> { DISPATCHER_GEN(int16_t, s16) }; template <> struct dispatcher<16, SIGNED, BRANCHFREE> { DISPATCHER_GEN(int16_t, s16_branchfree) }; template <> struct dispatcher<16, UNSIGNED, BRANCHFULL> { DISPATCHER_GEN(uint16_t, u16) }; template <> struct dispatcher<16, UNSIGNED, BRANCHFREE> { DISPATCHER_GEN(uint16_t, u16_branchfree) }; template <> struct dispatcher<32, SIGNED, BRANCHFULL> { DISPATCHER_GEN(int32_t, s32) }; template <> struct dispatcher<32, SIGNED, BRANCHFREE> { DISPATCHER_GEN(int32_t, s32_branchfree) }; template <> struct dispatcher<32, UNSIGNED, BRANCHFULL> { DISPATCHER_GEN(uint32_t, u32) }; template <> struct dispatcher<32, UNSIGNED, BRANCHFREE> { DISPATCHER_GEN(uint32_t, u32_branchfree) }; template <> struct dispatcher<64, SIGNED, BRANCHFULL> { DISPATCHER_GEN(int64_t, s64) }; template <> struct dispatcher<64, SIGNED, BRANCHFREE> { DISPATCHER_GEN(int64_t, s64_branchfree) }; template <> struct dispatcher<64, UNSIGNED, BRANCHFULL> { DISPATCHER_GEN(uint64_t, u64) }; template <> struct dispatcher<64, UNSIGNED, BRANCHFREE> { DISPATCHER_GEN(uint64_t, u64_branchfree) }; } // namespace detail #if defined(LIBDIVIDE_NEON) // Allow NeonVecFor outside of detail namespace. template struct NeonVecFor { typedef typename detail::NeonVecFor::type type; }; #endif // This is the main divider class for use by the user (C++ API). // The actual division algorithm is selected using the dispatcher struct // based on the integer width and algorithm template parameters. template class divider { private: // Dispatch based on the size and signedness. // We avoid using type_traits as it's not available in AVR. // Detect signedness by checking if T(-1) is less than T(0). // Also throw in a shift by 0, which prevents floating point types from being passed. typedef detail::dispatcher> 0) > (T)(-1) ? detail::SIGNED : detail::UNSIGNED), ALGO> dispatcher_t; public: // We leave the default constructor empty so that creating // an array of dividers and then initializing them // later doesn't slow us down. divider() {} // constexpr zero-initialization to allow for use w/ static constinit explicit LIBDIVIDE_CONSTEXPR divider(decltype(nullptr)) : div(nullptr) {} // Constructor that takes the divisor as a parameter LIBDIVIDE_INLINE divider(T d) : div(d) {} // Divides n by the divisor LIBDIVIDE_INLINE T divide(T n) const { return div.divide(n); } // Recovers the divisor, returns the value that was // used to initialize this divider object. T recover() const { return div.recover(); } bool operator==(const divider &other) const { return div.denom.magic == other.div.denom.magic && div.denom.more == other.div.denom.more; } bool operator!=(const divider &other) const { return !(*this == other); } // Vector variants treat the input as packed integer values with the same type as the divider // (e.g. s32, u32, s64, u64) and divides each of them by the divider, returning the packed // quotients. #if defined(LIBDIVIDE_SSE2) LIBDIVIDE_INLINE __m128i divide(__m128i n) const { return div.divide(n); } #endif #if defined(LIBDIVIDE_AVX2) LIBDIVIDE_INLINE __m256i divide(__m256i n) const { return div.divide(n); } #endif #if defined(LIBDIVIDE_AVX512) LIBDIVIDE_INLINE __m512i divide(__m512i n) const { return div.divide(n); } #endif #if defined(LIBDIVIDE_NEON) LIBDIVIDE_INLINE typename NeonVecFor::type divide(typename NeonVecFor::type n) const { return div.divide(n); } #endif private: // Storage for the actual divisor dispatcher_t div; }; // Overload of operator / for scalar division template LIBDIVIDE_INLINE T operator/(T n, const divider &div) { return div.divide(n); } // Overload of operator /= for scalar division template LIBDIVIDE_INLINE T &operator/=(T &n, const divider &div) { n = div.divide(n); return n; } // Overloads for vector types. #if defined(LIBDIVIDE_SSE2) template LIBDIVIDE_INLINE __m128i operator/(__m128i n, const divider &div) { return div.divide(n); } template LIBDIVIDE_INLINE __m128i operator/=(__m128i &n, const divider &div) { n = div.divide(n); return n; } #endif #if defined(LIBDIVIDE_AVX2) template LIBDIVIDE_INLINE __m256i operator/(__m256i n, const divider &div) { return div.divide(n); } template LIBDIVIDE_INLINE __m256i operator/=(__m256i &n, const divider &div) { n = div.divide(n); return n; } #endif #if defined(LIBDIVIDE_AVX512) template LIBDIVIDE_INLINE __m512i operator/(__m512i n, const divider &div) { return div.divide(n); } template LIBDIVIDE_INLINE __m512i operator/=(__m512i &n, const divider &div) { n = div.divide(n); return n; } #endif #if defined(LIBDIVIDE_NEON) template LIBDIVIDE_INLINE typename NeonVecFor::type operator/( typename NeonVecFor::type n, const divider &div) { return div.divide(n); } template LIBDIVIDE_INLINE typename NeonVecFor::type operator/=( typename NeonVecFor::type &n, const divider &div) { n = div.divide(n); return n; } #endif #if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1900) // libdivide::branchfree_divider template using branchfree_divider = divider; #endif } // namespace libdivide #endif // __cplusplus #if defined(_MSC_VER) #pragma warning(pop) #endif #endif // LIBDIVIDE_H