add documentation on scalability design choices

This commit is contained in:
Daniel Micay 2019-02-04 15:01:15 -05:00
parent 41df5005e8
commit e4061899aa

101
README.md
View File

@ -404,6 +404,107 @@ size for 2048 byte spacing and the next spacing class matches the page size of
classes required to avoid substantial waste from rounding. Further slab classes required to avoid substantial waste from rounding. Further slab
allocation size classes may be offered as an option in the future. allocation size classes may be offered as an option in the future.
## Scalability
## Small (slab) allocations
As a baseline form of fine-grained locking, the slab allocator has entirely
separate allocators for each size class. Each size class has a dedicated lock,
CSPRNG and other state.
The slab allocator's scalability will primarily come from dividing up the slab
allocation region into separate arenas assigned to threads. The arenas will
essentially just be entirely separate slab allocators with the same sub-regions
for each size class. Having 4 arenas will simply require reserving a region 4
times as large and choosing the correct metadata based on address, similar to
how finding the slab and slot index within the slab already works. The part
that's still open to different design choices is how arenas are assigned to
threads. One approach is statically assigning arenas via round-robin like the
standard jemalloc implementation, or statically assigning to a random arena.
Another option is dynamic load balancing via a heuristic like `sched_getcpu`
for per-CPU arenas, which would offer better performance than randomly choosing
an arena each time while being more predictable for an attacker. There are
actually some security benefits from this assignment being completely static,
since it isolates threads from each other. Static assignment can also reduce
memory usage since threads may have varying usage of size classes.
When there's substantial allocation or deallocation pressure, the allocator
does end up calling into the kernel to purge / protect unused slabs by
replacing them with fresh `PROT_NONE` regions along with unprotecting slabs
when partially filled and cached empty slabs are depleted. There will be
configuration over the amount of cached empty slabs, but it's not entirely a
performance vs. memory trade-off since memory protecting unused slabs is a nice
opportunistic boost to security. However, it's not really part of the core
security model or features so it's quite reasonable to use much larger empty
slab caches when the memory usage is acceptable. It would also be reasonable to
attempt to use heuristics for dynamically tuning the size, but there's not a
great one size fits all approach so it isn't currently part of this allocator
implementation.
### Thread caching (or lack thereof)
Thread caches are a commonly implemented optimization in modern allocators but
aren't very suitable for a hardened allocator even when implemented via arrays
like jemalloc rather than free lists. They would prevent the allocator from
having perfect knowledge about which memory is free in a way that's both race
free and works with fully out-of-line metadata. It would also interfere with
the quality of fine-grained randomization even with randomization support in
the thread caches. The caches would also end up with much weaker protection
than the dedicated metadata region. Potentially worst of all, it's inherently
incompatible with the important quarantine feature.
The primary benefit from a thread cache is performing batches of allocations
and batches of deallocations to amortize the cost of the synchronization used
by locking. The issue is not contention but rather the cost of synchronization
itself. Performing operations in large batches isn't necessarily a good thing
in terms of reducing contention to improve scalability. Large thread caches
like TCMalloc are a legacy design choice and aren't a good approach for a
modern allocator. In jemalloc, thread caches are fairly small and have a form
of garbage collection to clear them out when they aren't being heavily used.
Since this is a hardened allocator with a bunch of small costs for the security
features, the synchronization is already a smaller percentage of the overall
time compared to a much leaner performance-oriented allocator. These benefits
could be obtained via allocation queues and deallocation queues which would
avoid bypassing the quarantine and wouldn't have as much of an impact on
randomization. However, deallocation queues would also interfere with having
global knowledge about what is free. An allocation queue alone wouldn't have
many drawbacks, but it isn't currently planned even as an optional feature
since it probably wouldn't be enabled by default and isn't worth the added
complexity.
The secondary benefit of thread caches is being able to avoid the underlying
allocator implementation entirely for some allocations and deallocations when
they're mixed together rather than many allocations being done together or many
frees being done together. The value of this depends a lot on the application
and it's entirely unsuitable / incompatible with a hardened allocator since it
bypasses all of the underlying security and would destroy much of the security
value.
## Large allocations
The expectation is that the allocator does not need to perform well for large
allocations, especially in terms of scalability. When the performance for large
allocations isn't good enough, the approach will be to enable more slab
allocation size classes. Doubling the maximum size of slab allocations only
requires adding 4 size classes while keeping internal waste bounded below 20%.
Large allocations are implemented as a wrapper on top of the kernel memory
mapping API. The addresses and sizes are tracked in a global data structure
with a global lock. The current implementation is a hash table and could easily
use fine-grained locking, but it would have little benefit since most of the
locking is in the kernel. Most of the contention will be on the `mmap_sem` lock
for the process in the kernel. Ideally, it could simply map memory when
allocating and unmap memory when freeing. However, this is a hardened allocator
and the security features require extra system calls due to lack of direct
support for this kind of hardening in the kernel. Randomly sized guard regions
are placed around each allocation which requires mapping a `PROT_NONE` region
including the guard regions and then unprotecting the usable area between them.
The quarantine implementation requires clobbering the mapping with a fresh
`PROT_NONE` mapping using `MAP_FIXED` on free to hold onto the region while
it's in the quarantine, until it's eventually unmapped when it's pushed out of
the quarantine. This means there are 2x as many system calls for allocating and
freeing as there would be if the kernel supported these features directly.
## Memory tagging ## Memory tagging
Integrating extensive support for ARMv8.5 memory tagging is planned and this Integrating extensive support for ARMv8.5 memory tagging is planned and this