hardened_malloc/calculate_waste.py

82 lines
2.1 KiB
Python
Raw Normal View History

2018-08-21 15:23:22 -04:00
#!/usr/bin/env python3
from sys import argv
2018-08-21 15:23:22 -04:00
size_classes = [
16, 32, 48, 64, 80, 96, 112, 128,
160, 192, 224, 256,
320, 384, 448, 512,
640, 768, 896, 1024,
1280, 1536, 1792, 2048,
2560, 3072, 3584, 4096,
5120, 6144, 7168, 8192,
2019-04-10 08:42:32 -04:00
10240, 12288, 14336, 16384,
20480, 24576, 28672, 32768,
40960, 49152, 57344, 65536,
81920, 98304, 114688, 131072,
2018-08-21 15:23:22 -04:00
]
size_class_slots = [
256, 128, 85, 64, 51, 42, 36, 64,
51, 64, 54, 64,
64, 64, 64, 64,
64, 64, 64, 64,
16, 16, 16, 16,
8, 8, 8, 8,
8, 8, 8, 8,
2019-04-10 08:42:32 -04:00
6, 5, 4, 4,
2, 2, 2, 2,
1, 1, 1, 1,
1, 1, 1, 1,
]
fragmentation = [100 - 1 / 16 * 100]
for i in range(len(size_classes) - 1):
size_class = size_classes[i + 1]
worst_case = size_classes[i] + 1
used = worst_case / size_class
fragmentation.append(100 - used * 100);
2018-08-21 15:23:22 -04:00
def page_align(size):
return (size + 4095) & ~4095
print("| ", end="")
print("size class", "worst case internal fragmentation", "slab slots", "slab size", "internal fragmentation for slabs", sep=" | ", end=" |\n")
print("| ", end='')
print("-", "-", "-", "-", "-", sep=" | ", end=" |\n")
for size, slots, fragmentation in zip(size_classes, size_class_slots, fragmentation):
used = size * slots
real = page_align(used)
print("| ", end='')
print(size, str(fragmentation) + "%", slots, real, str(100 - used / real * 100) + "%", sep=" | ", end=" |\n")
if len(argv) < 2:
exit()
2018-08-21 15:23:22 -04:00
max_bits = 256
max_page_span = 16
print()
2018-08-21 15:23:22 -04:00
print("maximum bitmap size is {}-bit".format(max_bits))
print("maximum page span size is {} ({})".format(max_page_span, max_page_span * 4096))
for size_class in size_classes:
choices = []
for bits in range(1, max_bits + 1):
used = size_class * bits
real = page_align(used)
if real > 65536:
continue
pages = real / 4096
efficiency = used / real * 100
choices.append((bits, used, real, pages, efficiency))
choices.sort(key=lambda x: x[4], reverse=True)
print()
print("size_class:", size_class)
for choice in choices[:10]:
print(choice)