# K-Bench ## Continuous Benchmarking The K-Bench action runs K-Bench benchmarks on Constellation clusters. The benchmark suite records storage, network, and Kubernetes API benchmarks. After testing, the action compares the results of the benchmarks to previous results of Constellation on the same cloud provider. That way, it is possible to evaluate performance progression throughout the development. The data of previous benchmarks is stored in the private S3 artifact store. In order to support encrypted storage, the action deploys the [Azure CSI](https://github.com/edgelesssys/constellation-azuredisk-csi-driver) and [GCP CSI](https://github.com/edgelesssys/constellation-gcp-compute-persistent-disk-csi-driver) drivers. It uses a [fork](https://github.com/edgelesssys/k-bench) of VMware's K-Bench. The fork deploys volumes that use the `encrypted-storage` storage class. Also, it has support to authenticate against GCP which is required to update the stored records for GKE. ### Displaying Performance Progression The action creates a summary of the action and attaches it the workflow execution log. The table compares the current benchmark results of Constellation on the selected cloud provider to the previous records (of Constellation on the cloud provider). The hashes of the two commits that are the base for the comparison are prepended to the table. Example table:
- Commit of current benchmark: 8eb0a6803bc431bcebc2f6766ab2c6376500e106 - Commit of previous benchmark: 8f733daaf5c5509f024745260220d89ef8e6e440 | Benchmark suite | Current | Previous | Ratio | |-|-|-|-| | pod_create (ms) | 135 | 198 | 0.682 ⬇️ | | pod_list (ms) | 100 | 99 | 1.01 ⬆️ | | pod_get (ms) | 98 | 98 | 1.0 ⬆️ | | pod_update (ms) | 187 | 132 | 1.417 ⬆️ | | pod_delete (ms) | 119 | 108 | 1.102 ⬆️ | | svc_create (ms) | 156 | 149 | 1.047 ⬆️ | | svc_list (ms) | 97 | 96 | 1.01 ⬆️ | | svc_get (ms) | 97 | 96 | 1.01 ⬆️ | | svc_update (ms) | 100 | 101 | 0.99 ⬇️ | | svc_delete (ms) | 143 | 139 | 1.029 ⬆️ | | depl_create (ms) | 201 | 218 | 0.922 ⬇️ | | depl_list (ms) | 101 | 101 | 1.0 ⬆️ | | depl_update (ms) | 111 | 110 | 1.009 ⬆️ | | depl_scale (ms) | 391 | 391 | 1.0 ⬆️ | | depl_delete (ms) | 401 | 402 | 0.998 ⬇️ | | net_internode_snd (Mbit/s) | 953.0 | 964.0 | 1.01 ⬆️ | | net_intranode_snd (Mbit/s) | 18500.0 | 18600.0 | 1.01 ⬆️ | | fio_root_async_R70W30_R (MiB/s) | 0.45 | 0.45| 1.0 ⬆️ | | fio_root_async_R70W30_W (MiB/s) | 0.20 | 0.20 | 1.0 ⬆️ | | fio_root_async_R100W0_R (MiB/s) | 0.59 | 0.59 | 1.0 ⬆️ | | fio_root_async_R0W100_W (MiB/s) | 1.18 | 1.18 | 1.0 ⬆️ |
### Drawing Performance Charts The action also draws graphs as used in the [Constellation docs](https://docs.edgeless.systems/constellation/next/overview/performance). The graphs compare the performance of Constellation to the performance of managed Kubernetes clusters. Graphs are created with every run of the benchmarking action. The action attaches them to the `benchmark` artifact of the workflow run. ## Updating Stored Records ### Managed Kubernetes One must manually update the stored benchmark records of managed Kubernetes: ### AKS Follow the [Azure documentation](https://learn.microsoft.com/en-us/azure/aks/learn/quick-kubernetes-deploy-portal?tabs=azure-cli) to create an AKS cluster of desired benchmarking settings (region, instance types). If comparing against Constellation clusters with CVM instances, make sure to select the matching CVM instance type on Azure as well. Once the cluster is ready, set up managing access via `kubectl` and take the benchmark: ```bash # Setup git clone https://github.com/edgelesssys/k-bench.git cd k-bench && git checkout feat/constellation ./install.sh # Remove the Constellation encrypted storage class # Remember to revert this change before running K-Bench on Constellation! yq 'del(.spec.storageClassName)' config/dp_fio/fio_pvc.yaml yq 'del(.spec.storageClassName)' config/dp_netperf_internode/netperf_pvc.yml yq 'del(.spec.storageClassName)' config/dp_network_internode/netperf_pvc.yaml yq 'del(.spec.storageClassName)' config/dp_network_intranode/netperf_pvc.yml # Run K-Bench mkdir -p ./out kubectl create namespace kbench-pod-namespace --dry-run=client -o yaml | kubectl apply -f - ./run.sh -r "kbench-AKS" -t "default" -o "./out/" kubectl delete namespace kbench-pod-namespace --wait=true || true kubectl create namespace kbench-pod-namespace --dry-run=client -o yaml | kubectl apply -f - ./run.sh -r "kbench-AKS" -t "dp_fio" -o "./out/" kubectl delete namespace kbench-pod-namespace --wait=true || true kubectl create namespace kbench-pod-namespace --dry-run=client -o yaml | kubectl apply -f - ./run.sh -r "kbench-AKS" -t "dp_network_internode" -o "./out/" kubectl delete namespace kbench-pod-namespace --wait=true || true kubectl create namespace kbench-pod-namespace --dry-run=client -o yaml | kubectl apply -f - ./run.sh -r "kbench-AKS" -t "dp_network_intranode" -o "./out/" # Benchmarks done, do processing. mkdir -p "./out/AKS" mv ./out/results_kbench-AKS_*m/* "./out/kbench-AKS/" # Parse git clone https://github.com/edgelesssys/constellation.git mkdir -p benchmarks BDIR=benchmarks EXT_NAME=AKS KBENCH_RESULTS=k-bench/out/ python constellation/.github/actions/e2e_kbench/evaluate/parse.py # Upload result to S3 S3_PATH=s3://edgeless-artifact-store/constellation/benchmarks aws s3 cp benchmarks/AKS.json ${S3_PATH}/AKS.json ``` ### GKE Create a GKE cluster of desired benchmarking settings (region, instance types). If comparing against Constellation clusters with CVM instances, make sure to select the matching CVM instance type on GCP and enable **confidential** VMs as well. Once the cluster is ready, set up managing access via `kubectl` and take the benchmark: ```bash # Setup git clone https://github.com/edgelesssys/k-bench.git cd k-bench && git checkout feat/constellation ./install.sh # Remove the Constellation encrypted storage class # Remember to revert this change before running K-Bench on Constellation! yq 'del(.spec.storageClassName)' config/dp_fio/fio_pvc.yaml yq 'del(.spec.storageClassName)' config/dp_netperf_internode/netperf_pvc.yml yq 'del(.spec.storageClassName)' config/dp_network_internode/netperf_pvc.yaml yq 'del(.spec.storageClassName)' config/dp_network_intranode/netperf_pvc.yml # Run K-Bench mkdir -p ./out kubectl create namespace kbench-pod-namespace --dry-run=client -o yaml | kubectl apply -f - ./run.sh -r "kbench-GKE" -t "default" -o "./out/" kubectl delete namespace kbench-pod-namespace --wait=true || true kubectl create namespace kbench-pod-namespace --dry-run=client -o yaml | kubectl apply -f - ./run.sh -r "kbench-GKE" -t "dp_fio" -o "./out/" kubectl delete namespace kbench-pod-namespace --wait=true || true kubectl create namespace kbench-pod-namespace --dry-run=client -o yaml | kubectl apply -f - ./run.sh -r "kbench-GKE" -t "dp_network_internode" -o "./out/" kubectl delete namespace kbench-pod-namespace --wait=true || true kubectl create namespace kbench-pod-namespace --dry-run=client -o yaml | kubectl apply -f - ./run.sh -r "kbench-GKE" -t "dp_network_intranode" -o "./out/" # Benchmarks done, do processing. mkdir -p "./out/GKE" mv ./out/results_kbench-GKE_*m/* "./out/kbench-GKE/" # Parse git clone https://github.com/edgelesssys/constellation.git mkdir -p benchmarks BDIR=benchmarks EXT_NAME=GKE KBENCH_RESULTS=k-bench/out/ python constellation/.github/actions/e2e_kbench/evaluate/parse.py # Upload result to S3 S3_PATH=s3://edgeless-artifact-store/constellation/benchmarks aws s3 cp benchmarks/GKE.json ${S3_PATH}/GKE.json ``` ### Constellation The action updates the stored Constellation records for the selected cloud provider when running on the main branch.