docs: minor wording fixes in overview pages

This commit is contained in:
Thomas Tendyck 2022-09-16 11:44:24 +02:00 committed by Thomas Tendyck
parent 6401c345f0
commit a283f96b87
14 changed files with 68 additions and 68 deletions

View file

@ -4,20 +4,20 @@ We use the term *Confidential Kubernetes* to refer to the concept of using confi
1. **Workload shielding**: the confidentiality and integrity of all workload-related data and code are enforced.
2. **Control plane shielding**: the confidentiality and integrity of the cluster's control plane, state, and workload configuration are enforced.
3. **Attestation and verifiability**: the two properties above can be verified remotely based on hardware-rooted cryptographic certificates.
3. **Attestation and verifiability**: the two properties above can be verified remotely based on hardware-rooted cryptographic certificates.
Each of the above properties is equally important. Only with all three in conjunction, an entire cluster can be shielded without gaps.
Each of the above properties is equally important. Only with all three in conjunction, an entire cluster can be shielded without gaps.
## Constellation security features
Constellation implements the Confidential Kubernetes concept with the following security features.
* **Runtime encryption**: Constellation runs all Kubernetes nodes inside Confidential VMs (CVMs). This gives runtime encryption for the entire cluster.
* **Network and storage encryption**: Constellation augments this with transparent encryption of the [network](../architecture/networking.md) and [persistent storage](../architecture/encrypted-storage.md). Thus, workloads and control plane are truly end-to-end encrypted: at rest, in transit, and at runtime.
* **Transparent key management**: Constellation manages the corresponding [cryptographic keys](../architecture/keys.md) inside CVMs.
* **Node attestation & verification**: Constellation verifies the integrity of each new CVM-based node using [remote attestation](../architecture/attestation.md). Only "good" nodes receive the cryptographic keys required to access the network and storage of a cluster.
* **Confidential computing-optimized images**: A node is "good" if it's running a signed Constellation [node image](../architecture/networking.md) inside a CVM and is in the expected state. (Node images are hardware-measured during boot and are reflected. The measurements are reflected in the attestation statements that are produced by nodes and verified by Constellation.)
* **"Whole cluster" attestation**: Towards the DevOps engineer, Constellation provides a single hardware-rooted certificate from which all of the above can be verified.
* **Runtime encryption**: Constellation runs all Kubernetes nodes inside Confidential VMs (CVMs). This gives runtime encryption for the entire cluster.
* **Network and storage encryption**: Constellation augments this with transparent encryption of the [network](../architecture/networking.md) and [persistent storage](../architecture/encrypted-storage.md). Thus, workloads and control plane are truly end-to-end encrypted: at rest, in transit, and at runtime.
* **Transparent key management**: Constellation manages the corresponding [cryptographic keys](../architecture/keys.md) inside CVMs.
* **Node attestation and verification**: Constellation verifies the integrity of each new CVM-based node using [remote attestation](../architecture/attestation.md). Only "good" nodes receive the cryptographic keys required to access the network and storage of a cluster.
* **Confidential computing-optimized images**: A node is "good" if it's running a signed Constellation [node image](../architecture/images.md) inside a CVM and is in the expected state. (Node images are hardware-measured during boot. The measurements are reflected in the attestation statements that are produced by nodes and verified by Constellation.)
* **"Whole cluster" attestation**: Towards the DevOps engineer, Constellation provides a single hardware-rooted certificate from which all of the above can be verified.
With the above, Constellation wraps an entire cluster into one coherent and verifiable *confidential context*. The concept is depicted in the following.
@ -29,7 +29,7 @@ In contrast, managed Kubernetes with CVMs, as it's for example offered in [AKS](
![Concept: Managed Kubernetes plus CVMs](../_media/concept-managed.svg)
The following table highlights the key differences in terms of features:
The following table highlights the key differences in terms of features.
| | Managed Kubernetes with CVMs | Confidential Kubernetes (Constellation✨) |
|-------------------------------------|------------------------------|--------------------------------------------|