docs: order csp strictly alphabetically (#2986)

This commit is contained in:
Moritz Eckert 2024-03-15 10:13:57 +01:00 committed by GitHub
parent e0bbb447a9
commit 912575eb31
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
17 changed files with 677 additions and 681 deletions

View file

@ -122,6 +122,38 @@ Enforcing non-reproducible measurements controlled by the cloud provider means t
By default, Constellation only enforces measurements that are stable values produced by the infrastructure or by Constellation directly.
<tabs groupId="csp">
<tabItem value="aws" label="AWS">
Constellation uses the [vTPM](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/nitrotpm.html) (NitroTPM) feature of the [AWS Nitro System](http://aws.amazon.com/ec2/nitro/) on AWS for runtime measurements.
The vTPM adheres to the [TPM 2.0](https://trustedcomputinggroup.org/resource/tpm-library-specification/) specification.
The VMs are attested by obtaining signed PCR values over the VM's boot configuration from the TPM and comparing them to a known, good state (measured boot).
The following table lists all PCR values of the vTPM and the measured components.
It also lists what components of the boot chain did the measurements and if the value is reproducible and verifiable.
The latter means that the value can be generated offline and compared to the one in the vTPM.
| PCR | Components | Measured by | Reproducible and verifiable |
| ----------- | ---------------------------------------------------------------- | -------------------------------------- | --------------------------- |
| 0 | Firmware | AWS | No |
| 1 | Firmware | AWS | No |
| 2 | Firmware | AWS | No |
| 3 | Firmware | AWS | No |
| 4 | Constellation Bootloader, Kernel, initramfs, Kernel command line | AWS, Constellation Bootloader | Yes |
| 5 | Firmware | AWS | No |
| 6 | Firmware | AWS | No |
| 7 | Secure Boot Policy | AWS, Constellation Bootloader | No |
| 8 | - | - | - |
| 9 | initramfs, Kernel command line | Linux Kernel | Yes |
| 10 | User space | Linux IMA | No[^1] |
| 11 | Unified Kernel Image components | Constellation Bootloader | Yes |
| 12 | Reserved | (User space, Constellation Bootloader) | Yes |
| 13 | Reserved | (Constellation Bootloader) | Yes |
| 14 | Secure Boot State | Constellation Bootloader | No |
| 15 | ClusterID | Constellation Bootstrapper | Yes |
| 16&ndash;23 | Unused | - | - |
</tabItem>
<tabItem value="azure" label="Azure">
Constellation uses the [vTPM](https://docs.microsoft.com/en-us/azure/virtual-machines/trusted-launch#vtpm) feature of Azure CVMs for runtime measurements.
@ -185,38 +217,6 @@ The latter means that the value can be generated offline and compared to the one
| 15 | ClusterID | Constellation Bootstrapper | Yes |
| 16&ndash;23 | Unused | - | - |
</tabItem>
<tabItem value="aws" label="AWS">
Constellation uses the [vTPM](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/nitrotpm.html) (NitroTPM) feature of the [AWS Nitro System](http://aws.amazon.com/ec2/nitro/) on AWS for runtime measurements.
The vTPM adheres to the [TPM 2.0](https://trustedcomputinggroup.org/resource/tpm-library-specification/) specification.
The VMs are attested by obtaining signed PCR values over the VM's boot configuration from the TPM and comparing them to a known, good state (measured boot).
The following table lists all PCR values of the vTPM and the measured components.
It also lists what components of the boot chain did the measurements and if the value is reproducible and verifiable.
The latter means that the value can be generated offline and compared to the one in the vTPM.
| PCR | Components | Measured by | Reproducible and verifiable |
| ----------- | ---------------------------------------------------------------- | -------------------------------------- | --------------------------- |
| 0 | Firmware | AWS | No |
| 1 | Firmware | AWS | No |
| 2 | Firmware | AWS | No |
| 3 | Firmware | AWS | No |
| 4 | Constellation Bootloader, Kernel, initramfs, Kernel command line | AWS, Constellation Bootloader | Yes |
| 5 | Firmware | AWS | No |
| 6 | Firmware | AWS | No |
| 7 | Secure Boot Policy | AWS, Constellation Bootloader | No |
| 8 | - | - | - |
| 9 | initramfs, Kernel command line | Linux Kernel | Yes |
| 10 | User space | Linux IMA | No[^1] |
| 11 | Unified Kernel Image components | Constellation Bootloader | Yes |
| 12 | Reserved | (User space, Constellation Bootloader) | Yes |
| 13 | Reserved | (Constellation Bootloader) | Yes |
| 14 | Secure Boot State | Constellation Bootloader | No |
| 15 | ClusterID | Constellation Bootstrapper | Yes |
| 16&ndash;23 | Unused | - | - |
</tabItem>
<tabItem value="stackit" label="STACKIT">
@ -258,6 +258,28 @@ To verify the integrity of the received attestation statement, a chain of trust
For verification of the CVM technology, Constellation may expose additional options in its config file.
<tabs groupId="csp">
<tabItem value="aws" label="AWS">
On AWS, AMD SEV-SNP is used to provide runtime encryption to the VMs.
An SEV-SNP attestation report is used to establish trust in the VM.
You may customize certain parameters for verification of the attestation statement using the Constellation config file.
* TCB versions
You can set the minimum version numbers of components in the SEV-SNP TCB.
Use the latest versions to enforce that only machines with the most recent firmware updates are allowed to join the cluster.
Alternatively, you can set a lower minimum version to allow slightly out-of-date machines to still be able to join the cluster.
* AMD Root Key Certificate
This certificate is the root of trust for verifying the SEV-SNP certificate chain.
* AMD Signing Key Certificate
This is the intermediate certificate for verifying the SEV-SNP report's signature.
If it's not specified, the CLI fetches it from the AMD key distribution server.
</tabItem>
<tabItem value="azure" label="Azure SEV-SNP">
On Azure, AMD SEV-SNP is used to provide runtime encryption to the VMs.
@ -287,28 +309,6 @@ On GCP, AMD SEV-ES is used to provide runtime encryption to the VMs.
The hypervisor-based vTPM is used to establish trust in the VM via [runtime measurements](#runtime-measurements).
There is no additional configuration available for GCP.
</tabItem>
<tabItem value="aws" label="AWS">
On AWS, AMD SEV-SNP is used to provide runtime encryption to the VMs.
An SEV-SNP attestation report is used to establish trust in the VM.
You may customize certain parameters for verification of the attestation statement using the Constellation config file.
* TCB versions
You can set the minimum version numbers of components in the SEV-SNP TCB.
Use the latest versions to enforce that only machines with the most recent firmware updates are allowed to join the cluster.
Alternatively, you can set a lower minimum version to allow slightly out-of-date machines to still be able to join the cluster.
* AMD Root Key Certificate
This certificate is the root of trust for verifying the SEV-SNP certificate chain.
* AMD Signing Key Certificate
This is the intermediate certificate for verifying the SEV-SNP report's signature.
If it's not specified, the CLI fetches it from the AMD key distribution server.
</tabItem>
<tabItem value="stackit" label="STACKIT">