constellation/internal/attestation/azure/snp/validator.go

438 lines
14 KiB
Go
Raw Normal View History

/*
Copyright (c) Edgeless Systems GmbH
SPDX-License-Identifier: AGPL-3.0-only
*/
package snp
import (
"bytes"
"context"
"crypto"
"crypto/sha256"
"crypto/x509"
"encoding/asn1"
"encoding/base64"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"math/big"
"github.com/edgelesssys/constellation/v2/internal/attestation"
"github.com/edgelesssys/constellation/v2/internal/attestation/idkeydigest"
"github.com/edgelesssys/constellation/v2/internal/attestation/variant"
2022-09-21 07:47:57 -04:00
"github.com/edgelesssys/constellation/v2/internal/attestation/vtpm"
"github.com/edgelesssys/constellation/v2/internal/config"
2022-09-21 07:47:57 -04:00
internalCrypto "github.com/edgelesssys/constellation/v2/internal/crypto"
"github.com/google/go-tpm-tools/proto/attest"
"github.com/google/go-tpm/tpm2"
)
// Validator for Azure confidential VM attestation.
type Validator struct {
variant.AzureSEVSNP
*vtpm.Validator
hclValidator hclAkValidator
maa maaValidator
config *config.AzureSEVSNP
log attestation.Logger
}
// NewValidator initializes a new Azure validator with the provided PCR values.
func NewValidator(cfg *config.AzureSEVSNP, log attestation.Logger) *Validator {
if log == nil {
log = nopAttestationLogger{}
}
v := &Validator{
hclValidator: &azureInstanceInfo{},
maa: newMAAClient(),
config: cfg,
log: log,
}
v.Validator = vtpm.NewValidator(
cfg.Measurements,
v.getTrustedKey,
validateCVM,
log,
)
return v
}
// validateCVM is a stub, since SEV-SNP attestation is already verified in trustedKeyFromSNP().
func validateCVM(vtpm.AttestationDocument, *attest.MachineState) error {
return nil
}
func newSNPReportFromBytes(reportRaw []byte) (snpAttestationReport, error) {
var report snpAttestationReport
if err := binary.Read(bytes.NewReader(reportRaw), binary.LittleEndian, &report); err != nil {
return snpAttestationReport{}, fmt.Errorf("reading attestation report: %w", err)
}
return report, nil
}
func reverseEndian(b []byte) {
for i := 0; i < len(b)/2; i++ {
b[i], b[len(b)-i-1] = b[len(b)-i-1], b[i]
}
}
// getTrustedKey establishes trust in the given public key.
// It does so by verifying the SNP attestation statement in instanceInfo.
func (v *Validator) getTrustedKey(ctx context.Context, attDoc vtpm.AttestationDocument, extraData []byte) (crypto.PublicKey, error) {
var instanceInfo azureInstanceInfo
if err := json.Unmarshal(attDoc.InstanceInfo, &instanceInfo); err != nil {
return nil, fmt.Errorf("unmarshalling instanceInfoRaw: %w", err)
}
report, err := newSNPReportFromBytes(instanceInfo.AttestationReport)
if err != nil {
return nil, fmt.Errorf("parsing attestation report: %w", err)
}
vcek, err := v.validateVCEK(instanceInfo.Vcek, instanceInfo.CertChain)
if err != nil {
return nil, fmt.Errorf("validating VCEK: %w", err)
}
if err := v.validateSNPReport(ctx, vcek, report, instanceInfo.MAAToken, extraData); err != nil {
return nil, fmt.Errorf("validating SNP report: %w", err)
}
pubArea, err := tpm2.DecodePublic(attDoc.Attestation.AkPub)
if err != nil {
return nil, err
}
if err = v.hclValidator.validateAk(instanceInfo.RuntimeData, report.ReportData[:], pubArea.RSAParameters); err != nil {
return nil, fmt.Errorf("validating HCLAkPub: %w", err)
}
return pubArea.Key()
}
// validateVCEK takes the PEM-encoded X509 certificate VCEK, ASK and ARK and verifies the integrity of the chain.
// ARK (hardcoded) validates ASK (cloud metadata API) validates VCEK (cloud metadata API).
func (v *Validator) validateVCEK(vcekRaw []byte, certChain []byte) (*x509.Certificate, error) {
vcek, err := internalCrypto.PemToX509Cert(vcekRaw)
if err != nil {
return nil, fmt.Errorf("loading vcek: %w", err)
}
// certChain includes two PEM encoded certs. The ASK and the ARK, in that order.
ask, err := internalCrypto.PemToX509Cert(certChain)
if err != nil {
return nil, fmt.Errorf("loading askPEM: %w", err)
}
if err = ask.CheckSignatureFrom((*x509.Certificate)(&v.config.AMDRootKey)); err != nil {
return nil, &askError{err}
}
if err = vcek.CheckSignatureFrom(ask); err != nil {
return nil, &vcekError{err}
}
return vcek, nil
}
func (v *Validator) validateSNPReport(
ctx context.Context, cert *x509.Certificate, report snpAttestationReport, maaToken string, extraData []byte,
) error {
if report.Policy.Debug() {
return errDebugEnabled
}
if !report.CommittedTCB.isVersion(v.config.BootloaderVersion.Value, v.config.TEEVersion.Value, v.config.SNPVersion.Value, v.config.MicrocodeVersion.Value) {
return &versionError{"COMMITTED_TCB", report.CommittedTCB}
}
if report.LaunchTCB != report.CommittedTCB {
return &versionError{"LAUNCH_TCB", report.LaunchTCB}
}
if !report.CommittedTCB.supersededBy(report.CurrentTCB) {
return &versionError{"CURRENT_TCB", report.CurrentTCB}
}
if err := validateVCEKExtensions(cert, report); err != nil {
return fmt.Errorf("mismatching vcek extensions: %w", err)
}
sigR := report.Signature.R[:]
sigS := report.Signature.S[:]
// Table 107 in https://www.amd.com/system/files/TechDocs/56860.pdf mentions little endian signature components.
// They come out of the certificate as big endian.
reverseEndian(sigR)
reverseEndian(sigS)
rParam := new(big.Int).SetBytes(sigR)
sParam := new(big.Int).SetBytes(sigS)
sequence := ecdsaSig{rParam, sParam}
sigEncoded, err := asn1.Marshal(sequence)
if err != nil {
return fmt.Errorf("marshalling ecdsa signature: %w", err)
}
buf := new(bytes.Buffer)
if err = binary.Write(buf, binary.LittleEndian, report); err != nil {
return fmt.Errorf("writing report to buf: %w", err)
}
// signature is only calculated from 0x0 to 0x2a0
if err := cert.CheckSignature(x509.ECDSAWithSHA384, buf.Bytes()[:0x2a0], sigEncoded); err != nil {
return &signatureError{err}
}
hasExpectedIDKeyDigest := false
for _, digest := range v.config.FirmwareSignerConfig.AcceptedKeyDigests {
if bytes.Equal(digest, report.IDKeyDigest[:]) {
hasExpectedIDKeyDigest = true
break
}
}
if !hasExpectedIDKeyDigest {
switch v.config.FirmwareSignerConfig.EnforcementPolicy {
case idkeydigest.MAAFallback:
v.log.Infof(
"configured idkeydigests %x don't contain reported idkeydigest %x, falling back to MAA validation",
v.config.FirmwareSignerConfig.AcceptedKeyDigests,
report.IDKeyDigest[:],
)
return v.maa.validateToken(ctx, v.config.FirmwareSignerConfig.MAAURL, maaToken, extraData)
case idkeydigest.WarnOnly:
v.log.Warnf(
"configured idkeydigests %x don't contain reported idkeydigest %x",
v.config.FirmwareSignerConfig.AcceptedKeyDigests,
report.IDKeyDigest[:],
)
default:
return &idKeyError{report.IDKeyDigest[:], v.config.FirmwareSignerConfig.AcceptedKeyDigests}
}
}
return nil
}
// validateVCEKExtensions checks that the certificate extension values in cert match the values described in report.
func validateVCEKExtensions(cert *x509.Certificate, report snpAttestationReport) error {
var certVersion int
for _, extension := range cert.Extensions {
switch extension.Id.String() {
// check bootloader version
case "1.3.6.1.4.1.3704.1.3.1":
{
_, err := asn1.Unmarshal(extension.Value, &certVersion)
if err != nil {
return fmt.Errorf("unmarshalling bootloader version: %w", err)
}
if certVersion != int(report.CommittedTCB.Bootloader) {
return fmt.Errorf("bootloader version %d from report does not match VCEK version %d", int(report.CommittedTCB.Bootloader), certVersion)
}
}
// check TEE version
case "1.3.6.1.4.1.3704.1.3.2":
{
_, err := asn1.Unmarshal(extension.Value, &certVersion)
if err != nil {
return fmt.Errorf("unmarshalling tee version: %w", err)
}
if certVersion != int(report.CommittedTCB.TEE) {
return fmt.Errorf("bootloader version %d from report does not match VCEK version %d", int(report.CommittedTCB.TEE), certVersion)
}
}
// check SNP Firmware version
case "1.3.6.1.4.1.3704.1.3.3":
{
_, err := asn1.Unmarshal(extension.Value, &certVersion)
if err != nil {
return fmt.Errorf("unmarshalling snp version: %w", err)
}
if certVersion != int(report.CommittedTCB.SNP) {
return fmt.Errorf("bootloader version %d from report does not match VCEK version %d", int(report.CommittedTCB.SNP), certVersion)
}
}
// check microcode version
case "1.3.6.1.4.1.3704.1.3.8":
{
_, err := asn1.Unmarshal(extension.Value, &certVersion)
if err != nil {
return fmt.Errorf("unmarshalling microcode version: %w", err)
}
if certVersion != int(report.CommittedTCB.Microcode) {
return fmt.Errorf("bootloader version %d from report does not match VCEK version %d", int(report.CommittedTCB.Microcode), certVersion)
}
}
}
}
return nil
}
type azureInstanceInfo struct {
Vcek []byte
CertChain []byte
AttestationReport []byte
RuntimeData []byte
MAAToken string
}
// validateAk validates that the attestation key from the TPM is trustworthy. The steps are:
// 1. runtime data read from the TPM has the same sha256 digest as reported in `report_data` of the SNP report.
// 2. modulus reported in runtime data matches modulus from key at idx 0x81000003.
// 3. exponent reported in runtime data matches exponent from key at idx 0x81000003.
// The function is currently tested manually on a Azure Ubuntu CVM.
func (a *azureInstanceInfo) validateAk(runtimeDataRaw []byte, reportData []byte, rsaParameters *tpm2.RSAParams) error {
var runtimeData runtimeData
if err := json.Unmarshal(runtimeDataRaw, &runtimeData); err != nil {
return fmt.Errorf("unmarshalling json: %w", err)
}
sum := sha256.Sum256(runtimeDataRaw)
if len(reportData) < len(sum) {
return fmt.Errorf("reportData has unexpected size: %d", len(reportData))
}
if !bytes.Equal(sum[:], reportData[:len(sum)]) {
return errors.New("unexpected runtimeData digest in TPM")
}
if len(runtimeData.Keys) < 1 {
return errors.New("did not receive any keys in runtime data")
}
rawN, err := base64.RawURLEncoding.DecodeString(runtimeData.Keys[0].N)
if err != nil {
return fmt.Errorf("decoding modulus string: %w", err)
}
if !bytes.Equal(rawN, rsaParameters.ModulusRaw) {
return fmt.Errorf("unexpected modulus value in TPM")
}
rawE, err := base64.RawURLEncoding.DecodeString(runtimeData.Keys[0].E)
if err != nil {
return fmt.Errorf("decoding exponent string: %w", err)
}
paddedRawE := make([]byte, 4)
copy(paddedRawE, rawE)
exponent := binary.LittleEndian.Uint32(paddedRawE)
// According to this comment [1] the TPM uses "0" to represent the default exponent "65537".
// The go tpm library also reports the exponent as 0. Thus we have to handle it specially.
// [1] https://github.com/tpm2-software/tpm2-tools/pull/1973#issue-596685005
if !((exponent == 65537 && rsaParameters.ExponentRaw == 0) || exponent == rsaParameters.ExponentRaw) {
return fmt.Errorf("unexpected N value in TPM")
}
return nil
}
// hclAkValidator validates an attestation key issued by the Host Compatibility Layer (HCL).
// The HCL is written by Azure, and sits between the Hypervisor and CVM OS.
// The HCL runs in the protected context of the CVM.
type hclAkValidator interface {
validateAk(runtimeDataRaw []byte, reportData []byte, rsaParameters *tpm2.RSAParams) error
}
// Reference: https://github.com/AMDESE/sev-guest/blob/main/include/attestation.h
type snpAttestationReport struct {
Version uint32 // 0x000
GuestSVN uint32 // 0x004
Policy guestPolicy // 0x008
FamilyID [16]byte // 0x010
ImageID [16]byte // 0x020
VMPL uint32 // 0x030
SignatureAlgo uint32 // 0x034
CurrentTCB tcbVersion // 0x038
PlatformInfo uint64 // 0x040
Flags uint32 // 0x048
Reserved0 uint32 // 0x04C
ReportData [64]byte // 0x050
Measurement [48]byte // 0x090
HostData [32]byte // 0x0C0
IDKeyDigest [48]byte // 0x0E0
AuthorKeyDigest [48]byte // 0x110
ReportID [32]byte // 0x140
ReportIDMa [32]byte // 0x160
ReportedTCB tcbVersion // 0x180
_ [24]byte // 0x188
ChipID [64]byte // 0x1A0
CommittedTCB tcbVersion // 0x1E0
CurrentBuild byte // 0x1E8
CurrentMinor byte // 0x1E9
CurrentMajor byte // 0x1EA
_ byte // 0x1EB
CommittedBuild byte // 0x1EC
CommittedMinor byte // 0x1ED
CommittedMajor byte // 0x1EE
_ byte // 0x1EF
LaunchTCB tcbVersion // 0x1F0
_ [168]byte // 0x1F8
Signature snpSignature // 0x2A0
}
type guestPolicy struct {
AbiMinor uint8 // 0x0
AbiMajor uint8 // 0x8
ContainerValue byte // 0x10 - encodes the following four values:
// Smt bool // 0x10 - bit 0 in 'ContainerValue'.
// _ bool // 0x11 - bit 1 in 'ContainerValue'.
// MigrateMa bool // 0x12 - bit 2 in 'ContainerValue'.
// Debug bool // 0x13 - bit 3 in 'ContainerValue'.
// SingleSocket bool // 0x14 - bit 4 in 'ContainerValue'.
_ [5]byte // 0x15
}
func (g *guestPolicy) Debug() bool {
return (g.ContainerValue & 0b00001000) != 0
}
type tcbVersion struct {
Bootloader uint8 // 0x0
TEE uint8 // 0x10
_ [4]byte // 0x2F
SNP uint8 // 0x37
Microcode uint8 // 0x3F
}
func (t *tcbVersion) isVersion(expectedBootloader, expectedTEE, expectedSNP, expectedMicrocode uint8) bool {
return t.Bootloader >= expectedBootloader && t.TEE >= expectedTEE && t.SNP >= expectedSNP && t.Microcode >= expectedMicrocode
}
func (t *tcbVersion) supersededBy(new tcbVersion) bool {
return new.Bootloader >= t.Bootloader && new.TEE >= t.TEE && new.SNP >= t.SNP && new.Microcode >= t.Microcode
}
type snpSignature struct {
R [72]byte
S [72]byte
Reserved [512 - 144]byte
}
type ecdsaSig struct {
R, S *big.Int
}
type akPub struct {
E string
N string
}
type runtimeData struct {
Keys []akPub
}
// nopAttestationLogger is a no-op implementation of AttestationLogger.
type nopAttestationLogger struct{}
// Infof is a no-op.
func (nopAttestationLogger) Infof(string, ...interface{}) {}
// Warnf is a no-op.
func (nopAttestationLogger) Warnf(string, ...interface{}) {}
type maaValidator interface {
validateToken(ctx context.Context, maaURL string, token string, extraData []byte) error
}