
Failure Detection
Heartbeats and Pings 2

Gossip and Failure Detection 3

Reversing Failure Detection Problem Statement 4

Applications 5

*References 5

In order for a system to appropriately react to failures, failures should be detected in a timely manner. A faulty process might get
contacted even though it won’t be able to respond, increasing latencies and reducing overall system availability.

Failures may occur on the link level (messages between processes are lost or delivered slowly), or on the process level (the
process crashes or is running slowly), and slowness may not always be distinguishable from failure. This means there’s always a
trade-off between wrongly suspecting alive processes as dead (producing false-positives), and delaying marking an
unresponsive process as dead, giving it the benefit of doubt and expecting it to respond eventually (producing false-negatives).

A failure detector is a local subsystem responsible for identifying failed or unreachable processes to exclude them from the
algorithm and guarantee liveness while preserving safety.

Liveness and safety are the properties that describe an algorithm’s ability to solve a specific problem and the correctness of its
output. More formally, liveness is a property that guarantees that a specific intended event must occur. For example, if one of the
processes has failed, a failure detector must detect that failure. Safety guarantees that unintended events will not occur. For
example, if a failure detector has marked a process as dead, this process had to be, in fact, dead.

Many distributed systems implement failure detectors by using heartbeats. This approach is quite popular because of its simplicity
and strong completeness. Algorithms we discuss here assume the absence of Byzantine failures: processes do not attempt to
intentionally lie about their state or states of their neighbors.

Heartbeats and Pings
We can query the state of remote processes by triggering one of two periodic processes:

● We can trigger a ping, which sends messages to remote processes, checking if they are still alive by expecting a response
within a specified time period.

● We can trigger a heartbeat when the process is actively notifying its peers that it’s still running by sending messages to
them.

We’ll use pings as an example here, but the same problem can be solved using heartbeats, producing similar results.

Pings for failure detection: normal functioning, no message delays

Pings for failure detection: responses are delayed, coming after the next message is sent

Gossip and Failure Detection
It avoids relying on a single-node view to make a decision.

Each member maintains a list of other members, and timestamps, specifying when the heartbeat was incremented for the last time.
Periodically, each member updates its list and distributes it to neighbors. Upon the message receipt, the neighboring node merges
the list with its own, updating the list for the other neighbors.

Nodes also periodically check the list. If any node has no updates for long enough, it is considered failed. This timeout period should
be chosen carefully to minimize the probability of false-positives.

As the graph below shows
a) All three can communicate and update their timestamps.
b) P3 isn’t able to communicate with P1, but its timestamp t6 can still be propagated through P2.
c) P3 crashes. Since it doesn’t send updates anymore, it is detected as failed by other processes.

Reversing Failure Detection Problem Statement
To detect process failures, this approach arranges all active processes in groups. If one of the groups becomes unavailable, all
participants detect the failure. In other words, every time a single process failure is detected, it is converted and propagated as a
group failure. This allows detecting failures in the presence of any pattern of disconnects, partitions, and node failures.

Processes in the group periodically send ping messages to other members, querying whether they’re still alive. If one of the members
cannot respond to this message because of a crash, network partition, or link failure, the member that has initiated this ping will, in
turn, stop responding to ping messages itself.

The graph below shows four communicating processes:
a) Initial state: all processes are alive and can communicate.
b) P2 crashes and stops responding to ping messages.
c) P4 detects the failure of P2 and stops responding to ping messages itself.
d) Eventually, P1 and P3 notice that both P1 and P2 do not respond, and process failure propagates to the entire group.

Here, we use the absence of communication as a means of propagation. An advantage of using this approach is that every member
is guaranteed to learn about group failure. One of the downsides is that a link failure separating a single process from other ones can
be converted to the group failure as well, but this can be seen as an advantage, depending on the use case.

Applications
● MongoDB

Replica set members send heartbeats (pings) to each other every two seconds. If a heartbeat does not return within 10 seconds, the
other members mark the delinquent member as inaccessible.

● Spark
Executors keep sending metrics for active tasks to the driver every spark.executor.heartbeatInterval. Heartbeats let the driver
know that the executor is still alive and update it with metrics for in-progress tasks.

*References
Chapter 9. Failure Detection, Database Internals: A Deep Dive into How Distributed Data Systems Work by Alex Petrov
https://spark.apache.org/docs/latest/configuration.html
https://docs.mongodb.com/manual/core/replica-set-elections/#heartbeats

https://spark.apache.org/docs/latest/configuration.html
https://docs.mongodb.com/manual/core/replica-set-elections/#heartbeats

