
Database Partitioning

Database Partitioning 1
Intro 1
Horizontal partitioning / Sharding 2

Partitioning criteria 3
Vertical partitioning 3
Case Study: Apache Cassandra 4
Case Study: Apache Spark 5
* References 6

Intro
Consider partitioning as a fundamental part of system design even if the system initially only contains a single partition.

A partition is a division of a logical database or its constituent elements into distinct independent parts.

Partitioning is normally done for manageability, performance, availability and load balancing.

It is popular in distributed database management systems.

Horizontal partitioning / Sharding
Horizontal partitioning / Sharding involves putting different rows into different tables.

Below is an example of horizontal partitioning.

Product inventory data is
divided into shards based
on the product key.

Each shard holds the data
for a contiguous range of
shard keys (A-G and H-Z),
organized alphabetically.

The sharding key must ensure that data is partitioned to spread the workload as evenly as possible across the shards.

The shards don't have to be the same size. It's more important to balance the number of requests.

In practice, we will need to repartition: split large shards, coalesce small shards into larger partitions, or change the schema.

These operations are time consuming, and might require taking one or more shards offline while they are performed. Replication
comes into play.

Partitioning criteria

Definition Explanation

Range partitioning A partition is selected based on column values falling
within a given range.

e.g. A partition for all rows where the column
Age has a value between 0 and 18.

List partitioning A partition is selected based on column values
matching one of a set of discrete values.

e.g. A partition for all rows where the column
City is either Palo Alto, Mountain View,
Sunnyvale or San Jose, etc for Santa Clara
County.

Round-robin partitioning With n partitions, the ith row in insertion order is
assigned to the partition (i mod n).

Pros: sequential access to a relation to be done
in parallel

Cons: direct access to individual row, based on
a predicate, requires accessing the entire
relation

Hash partitioning Applies a hash function to some attribute that yields
the partition number

Composite partitioning Combinations of the above. e.g. Consistent hashing could be considered a
composite of hash and list partitioning where
the hash reduces the key space to a size that
can be listed.

Vertical partitioning
Vertical partitioning involves putting different columns into different tables.

Below is an example of vertical partitioning.

One partition holds Name, Description, Price, which are
slow-moving and accessed more frequently.

The other holds Stock, LastOrdered, which are dynamic,
commonly used together, and sensitive.

Case Study: Apache Cassandra

Cassandra is a horizontally-partitioned row store.

In Cassandra, each node owns a range of tokens.

When data is inserted into the cluster, the first step is to apply a hash function to the partition key.

The output token is used to determine what node (based on the token range) will get the data.

Cassandra uses consistent hashing: it maps every node to one or more tokens on a continuous hash ring, and defines ownership
by hashing a key onto the ring and then "walking" the ring in one direction.

The main difference of consistent hashing to naive data hashing is that when the number of nodes to hash into changes, consistent
hashing only has to move a small fraction of the keys.

Case Study: Apache Spark

Spark is a distributed computing engine. Its low-level data abstraction is a resilient distributed dataset (RDD). Resilient because
RDDs are immutable (can't be modified once created) and fault tolerant.

RDD is a distributed collection of objects, which are stored in partitions.

Hash partitioning, range partitioning and custom spark partitioning are supported. Operations such as groupByKey, reduceByKey and
sort automatically result in a hash or range partitioned RDD.

Spark creates one task per partition, if there are too many partitions, most of the time goes into creating, scheduling, and managing
the tasks then executing. If there are too few partitions, cluster resources may not be fully utilized due to less parallelism.

Relations between partitions of RDDs are categorized as below:

Narrow dependency Wide dependencies

each partition of the parent RDD is used by at
most one partition of the child RDD

each partition of the parent RDD is used by multiple
partitions of the child RDD

pipelined execution on one node shuffled across nodes

We may repartition wisely to

* References
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://www.digitalocean.com/community/tutorials/understanding-database-sharding
https://en.wikipedia.org/wiki/Partition_(database)
https://github.com/apache/cassandra
https://cassandra.apache.org/_/index.html
https://techmagie.wordpress.com/2015/12/19/understanding-spark-partitioning/
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://www.digitalocean.com/community/tutorials/understanding-database-sharding
https://en.wikipedia.org/wiki/Partition_(database)
https://github.com/apache/cassandra
https://cassandra.apache.org/_/index.html
https://techmagie.wordpress.com/2015/12/19/understanding-spark-partitioning/
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

