
Messaging System
Overview 1

Messaging Patterns 2
Message Queue (point-to-point) 2

Case Study: Amazon SQS 2
Pub/Sub Messaging 4

Case Study: Google Pub/Sub 5

Judging Performance 7

References* 7

Overview
A message system enables asynchronous communication.

In modern cloud architecture, applications are decoupled into smaller, independent building blocks that are easier to develop, deploy
and maintain. Message queues provide communication and coordination for these distributed applications.

Message queues can significantly simplify coding of decoupled applications, while improving performance, reliability and
scalability.

A messaging system maintains a queue in its disks or memory, allowing it to store the messages producers add to the system while
deleting messages that consumers have consumed/executed.

The messages are usually small, and can be things like requests, replies, error messages, or just plain information.



Messaging Patterns

Messaging systems may follow one of two patterns: message queuing(point-to-point) or a pub-sub pattern.

Message Queue (point-to-point)

A message queue is a form of asynchronous point-to-point communication. Many producers and consumers can use the queue, but
each message is processed only once, by a single consumer.

Case Study: Amazon SQS

Achieving reliability through data redundancy and visibility timeout.

https://aws.amazon.com/sqs/


A producer (component 1) sends message A to a queue, and the message is distributed across the Amazon SQS servers
redundantly.



When a consumer (component 2) is ready to process messages, it consumes messages from the queue, and message A is
returned. While message A is being processed, it remains in the queue and isn't returned to subsequent receive requests for the
duration of the visibility timeout.

Amazon SQS doesn't automatically delete the message. Because Amazon SQS is a distributed system, there's no guarantee that the
consumer actually receives the message (for example, due to a connectivity issue, or due to an issue in the consumer application).

The consumer (component 2) deletes message A from the queue to prevent the message from being received and processed
again when the visibility timeout expires.

Pub/Sub Messaging
A pub/sub model allows messages to be broadcasted asynchronously across multiple sections of the applications. The core
component that facilitates this functionality is something called a Topic. The publisher will push messages to a Topic, and the Topic
will instantly push the message to all the subscribers.

Pub/sub messaging can be used to enable event-driven architectures.

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html


An event-driven architecture uses events to trigger and communicate between decoupled services and is common in modern
applications built with microservices. An event is a change in state, or an update, like an item being placed in a shopping cart on an
e-commerce website.

Event-driven architectures have three key components: event producers, event routers, and event consumers. A producer
publishes an event to the router, which filters and pushes the events to consumers. Producer services and consumer services are
decoupled.



The subscribers to the message topic often perform different functions, and can each do something different with the message in
parallel.

In the pubsub model, the messaging system doesn't need to know about any of the subscribers. It doesn't track which messages
have been received and it doesn't manage the load on the consuming process. Instead, the subscribers track which messages have
been received and are responsible for self-managing load levels and scaling.

Case Study: Google Pub/Sub

There are several key concepts in a Pub/Sub service:
● Message: the data that moves through the service.
● Topic: a named entity that represents a feed of messages.
● Subscription: a named entity that represents an interest in receiving messages on a particular topic.
● Publisher (also called a producer): creates messages and sends (publishes) them to the messaging service on a specified

topic.
● Subscriber (also called a consumer): receives messages on a specified subscription.

The following diagram shows the basic flow of messages through Pub/Sub:

In this scenario, there are two publishers publishing messages on a single topic. There are two subscriptions to the topic.

https://cloud.google.com/pubsub/architecture


The first subscription has two subscribers, meaning messages will be load-balanced across them, with each subscriber receiving a
subset of the messages. The second subscription has one subscriber that will receive all of the messages.

The bold letters represent messages. Message A comes from Publisher 1 and is sent to Subscriber 2 via Subscription 1, and to
Subscriber 3 via Subscription 2. Message B comes from Publisher 2 and is sent to Subscriber 1 via Subscription 1 and to Subscriber
3 via Subscription 2.

More differences between point-to-point and pub/sub systems : https://cloud.google.com/solutions/event-driven-architecture-pubsub

Judging Performance
A messaging service can be judged on its performance in three aspects: scalability, availability, and latency. These three factors
are often at odds with each other, requiring compromises on one to improve the other two.

A scalable service should be able to handle increases in load.

A system’s availability is measured on how well it deals with different types of issues, gracefully failing over in a way that is
unnoticeable to end users.

Latency is a time-based measure of the performance of a system. A service generally wants to minimize latency wherever possible.

References*
https://aws.amazon.com/message-queue/
https://aws.amazon.com/pub-sub-messaging/
https://en.wikipedia.org/wiki/Message_queue
https://blog.iron.io/message-queue-vs-publish-subscribe/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-basic-architecture.html

https://cloud.google.com/solutions/event-driven-architecture-pubsub
https://aws.amazon.com/message-queue/
https://aws.amazon.com/pub-sub-messaging/
https://en.wikipedia.org/wiki/Message_queue
https://blog.iron.io/message-queue-vs-publish-subscribe/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-basic-architecture.html


https://www.bmc.com/blogs/pub-sub-publish-subscribe/
https://aws.amazon.com/event-driven-architecture/

https://www.bmc.com/blogs/pub-sub-publish-subscribe/
https://aws.amazon.com/event-driven-architecture/

