
Database Overview

Database Overview 1
Types of data 1
Types of databases 2
Types of NoSQL Databases 4

Key-value 4
Document 4
Column-oriented 5
Graph 6

References* 8

Types of data

● Structured Data

Structured data is generally tabular data that is represented by columns and rows in a database.
Databases that hold tables in this form are called relational databases.
The mathematical term “relation” specify to a formed set of data held as a table.
In structured data, all row in a table has the same set of columns.
SQL programming language used for structured data.

● Unstructured Data



Unstructured data is information that either does not organize in a pre-defined manner or does not have a pre-defined data
model.
Videos, audio, and binary data files might not have a specific structure. They’re assigned to unstructured data.

● Semi-structured Data

Two of the key attributes that distinguish semi-structured data from structured data are nested data structures and the lack
of a fixed schema:

Unlike structured data, which represents data as a flat table, semi-structured data can contain n-level hierarchies of
nested information.

Structured data requires a fixed schema that is defined before the data can be loaded and queried in a relational
database system. Semi-structured data does not require a prior definition of a schema and can constantly evolve, i.e.
new attributes can be added at any time.
In addition, entities within the same class may have different attributes even though they are grouped together, and
the order of the attributes is not important.

Semi-structured data consist of documents held in JSON format. It also includes key-value stores and graph databases.

Types of databases

SQL Databases NoSQL Databases

Data Storage Model Tables with fixed rows and columns Document: JSON documents

Key-value: key-value pairs

Wide-column: tables with rows and dynamic columns



Graph: nodes and edges

Development History Developed in the 1970s with a focus
on reducing data duplication

Developed in the late 2000s with a focus on scaling and
allowing for rapid application change

Examples Oracle, MySQL, Microsoft SQL
Server, and PostgreSQL

Document: MongoDB

Key-value: Redis and DynamoDB

Wide-column: Cassandra and HBase

Graph: Neo4j

Primary Purpose General purpose Document: general purpose

Key-value: large amounts of data with simple lookup
queries

Wide-column: large amounts of data with predictable
query patterns

Graph: analyzing and traversing relationships between
connected data

Schemas Fixed Flexible

Scaling Vertical (scale-up with a larger server) Horizontal (scale-out across commodity servers)

CAP Tradeoffs Prioritize strong consistency over
everything else

Prioritize availability and partition tolerance and offer only
eventual consistency



Types of NoSQL Databases

Key-value
Key-value stores are the least complex of the NoSQL databases. They are, as the name suggests, a collection of key-value pairs,
and this simplicity makes them the most scalable of the NoSQL database types, capable of storing huge amounts of data.

The value in a key-value store can be anything: a string, a number, but also an entire new set of key-value pairs encapsulated in an
object.

Document
Document stores are one step up in complexity from key-value stores: a document store does assume a certain document structure
that can be specified with a schema.



The way things are stored in a relational database makes sense from a normalization point of view: everything should be stored only
once and connected via foreign keys. Document stores care little about normalization as long as the data is in a structure that makes
sense.

Column-oriented

Traditional relational databases are row-oriented, with each row having a row-id and each field within the row stored together in a
table.



A database index is a data structure that allows for quick lookups on data at the cost of storage space and additional writes (index
update).
An index maps the row number to the data, whereas a column database maps the data to the row numbers.

Storing the columns separately also allows for optimized compression because there’s only one data type per table.

In a column-oriented database, it’s easy to add another column because none of the existing columns are affected by it. But adding
an entire record requires adapting all tables. This makes the row-oriented database preferable over the column-oriented database for
online transaction processing (OLTP) because this implies adding or changing records constantly.

Graph
The last big NoSQL database type is the most complex one, geared toward storing relations between entities in an efficient manner.
When the data is highly interconnected, such as for social networks or scientific paper citations, graph databases are the answer.



Graph or network data has two main components:
Node: The entities themselves. In a social network, this could be people.

Edge: The relationship between two entities. This relationship is represented by a line and has its own properties. An edge
can have a direction, for example, if the arrow indicates who is whose boss.



References*
https://k21academy.com/microsoft-azure/dp-900/structured-data-vs-unstructured-data-vs-semi-structured-data/
https://docs.snowflake.com/en/user-guide/semistructured-intro.html
https://www.mongodb.com/nosql-explained/nosql-vs-sql
https://dzone.com/articles/nosql-database-types-1
https://towardsdatascience.com/datastore-choices-sql-vs-nosql-database-ebec24d56106#17c3

*Ranking of database management systems: https://db-engines.com/en/ranking

https://k21academy.com/microsoft-azure/dp-900/structured-data-vs-unstructured-data-vs-semi-structured-data/
https://docs.snowflake.com/en/user-guide/semistructured-intro.html
https://www.mongodb.com/nosql-explained/nosql-vs-sql
https://dzone.com/articles/nosql-database-types-1
https://towardsdatascience.com/datastore-choices-sql-vs-nosql-database-ebec24d56106#17c3
https://db-engines.com/en/ranking

