2020-10-13 00:34:04 -07:00
2020-10-13 00:23:40 -07:00
2020-10-12 18:02:26 -04:00
2020-10-13 00:34:04 -07:00

Table of Contents

  1. Adversarial ML 101
  2. Why Adversarial ML Threat Matrix?
  3. Structure of Adversarial ML Threat Matrix
  4. Things to keep in mind before you use the framework
  5. Contributors
  6. Feedback and Contact Information
  7. Adversarial ML Threat Matrix
  8. Case Studies Page

The goal of this project is to position attacks on ML systems in an ATT&CK-style framework so that security analysts can orient themselves in this new and upcoming threats.

Contributors

Want to get involved? See Feedback and Contact Information

Organization Contributors
Microsoft Ram Shankar Siva Kumar, Hyrum Anderson, Will Pearce, Suzy Shapperle, Blake Strom, Madeline Carmichael, Matt Swann, Nick Beede, Kathy Vu, Andi Comissioneru, Sharon Xia, Mario Goertzel, Jeffrey Snover, Abhishek Gupta
MITRE Mikel D. Rodriguez, Christina E Liaghati, Keith R. Manville, Michael R Krumdick
Bosch Manojkumar Parmar
IBM Pin-Yu Chen
NVIDIA David Reber Jr., Keith Kozo, Christopher Cottrell, Daniel Rohrer
Airbus Adam Wedgbury
Deep Instinct Nadav Maman
TwoSix David Slater
University of Toronto Adelin Travers, Jonas Guan, Nicolas Papernot
Cardiff University Pete Burnap
Software Engineering Institute/Carnegie Mellon University Nathan M. VanHoudnos
Berryville Institute of Machine Learning Gary McGraw, Harold Figueroa, Victor Shepardson, Richie Bonett
Description
Adversarial Threat Landscape for AI Systems
Readme 2.4 MiB
Languages
Markdown 100%