mirror of
https://github.com/markqvist/Sideband.git
synced 2025-01-27 15:36:59 -05:00
450 lines
13 KiB
Python
450 lines
13 KiB
Python
# coding=utf-8
|
|
"""
|
|
Layer that support point clustering
|
|
===================================
|
|
"""
|
|
|
|
from math import atan, exp, floor, log, pi, sin, sqrt
|
|
from os.path import dirname, join
|
|
|
|
from kivy.lang import Builder
|
|
from kivy.metrics import dp
|
|
from kivy.properties import (
|
|
ListProperty,
|
|
NumericProperty,
|
|
ObjectProperty,
|
|
StringProperty,
|
|
)
|
|
|
|
from mapview.view import MapLayer, MapMarker
|
|
|
|
Builder.load_string(
|
|
"""
|
|
<ClusterMapMarker>:
|
|
size_hint: None, None
|
|
source: root.source
|
|
size: list(map(dp, self.texture_size))
|
|
allow_stretch: True
|
|
|
|
Label:
|
|
color: root.text_color
|
|
pos: root.pos
|
|
size: root.size
|
|
text: "{}".format(root.num_points)
|
|
font_size: dp(18)
|
|
"""
|
|
)
|
|
|
|
|
|
# longitude/latitude to spherical mercator in [0..1] range
|
|
def lngX(lng):
|
|
return lng / 360.0 + 0.5
|
|
|
|
|
|
def latY(lat):
|
|
if lat == 90:
|
|
return 0
|
|
if lat == -90:
|
|
return 1
|
|
s = sin(lat * pi / 180.0)
|
|
y = 0.5 - 0.25 * log((1 + s) / (1 - s)) / pi
|
|
return min(1, max(0, y))
|
|
|
|
|
|
# spherical mercator to longitude/latitude
|
|
def xLng(x):
|
|
return (x - 0.5) * 360
|
|
|
|
|
|
def yLat(y):
|
|
y2 = (180 - y * 360) * pi / 180
|
|
return 360 * atan(exp(y2)) / pi - 90
|
|
|
|
|
|
class KDBush:
|
|
"""
|
|
kdbush implementation from:
|
|
https://github.com/mourner/kdbush/blob/master/src/kdbush.js
|
|
"""
|
|
|
|
def __init__(self, points, node_size=64):
|
|
self.points = points
|
|
self.node_size = node_size
|
|
|
|
self.ids = ids = [0] * len(points)
|
|
self.coords = coords = [0] * len(points) * 2
|
|
for i, point in enumerate(points):
|
|
ids[i] = i
|
|
coords[2 * i] = point.x
|
|
coords[2 * i + 1] = point.y
|
|
|
|
self._sort(ids, coords, node_size, 0, len(ids) - 1, 0)
|
|
|
|
def range(self, min_x, min_y, max_x, max_y):
|
|
return self._range(
|
|
self.ids, self.coords, min_x, min_y, max_x, max_y, self.node_size
|
|
)
|
|
|
|
def within(self, x, y, r):
|
|
return self._within(self.ids, self.coords, x, y, r, self.node_size)
|
|
|
|
def _sort(self, ids, coords, node_size, left, right, depth):
|
|
if right - left <= node_size:
|
|
return
|
|
m = int(floor((left + right) / 2.0))
|
|
self._select(ids, coords, m, left, right, depth % 2)
|
|
self._sort(ids, coords, node_size, left, m - 1, depth + 1)
|
|
self._sort(ids, coords, node_size, m + 1, right, depth + 1)
|
|
|
|
def _select(self, ids, coords, k, left, right, inc):
|
|
swap_item = self._swap_item
|
|
while right > left:
|
|
if (right - left) > 600:
|
|
n = float(right - left + 1)
|
|
m = k - left + 1
|
|
z = log(n)
|
|
s = 0.5 + exp(2 * z / 3.0)
|
|
sd = 0.5 * sqrt(z * s * (n - s) / n) * (-1 if (m - n / 2.0) < 0 else 1)
|
|
new_left = max(left, int(floor(k - m * s / n + sd)))
|
|
new_right = min(right, int(floor(k + (n - m) * s / n + sd)))
|
|
self._select(ids, coords, k, new_left, new_right, inc)
|
|
|
|
t = coords[2 * k + inc]
|
|
i = left
|
|
j = right
|
|
|
|
swap_item(ids, coords, left, k)
|
|
if coords[2 * right + inc] > t:
|
|
swap_item(ids, coords, left, right)
|
|
|
|
while i < j:
|
|
swap_item(ids, coords, i, j)
|
|
i += 1
|
|
j -= 1
|
|
while coords[2 * i + inc] < t:
|
|
i += 1
|
|
while coords[2 * j + inc] > t:
|
|
j -= 1
|
|
|
|
if coords[2 * left + inc] == t:
|
|
swap_item(ids, coords, left, j)
|
|
else:
|
|
j += 1
|
|
swap_item(ids, coords, j, right)
|
|
|
|
if j <= k:
|
|
left = j + 1
|
|
if k <= j:
|
|
right = j - 1
|
|
|
|
def _swap_item(self, ids, coords, i, j):
|
|
swap = self._swap
|
|
swap(ids, i, j)
|
|
swap(coords, 2 * i, 2 * j)
|
|
swap(coords, 2 * i + 1, 2 * j + 1)
|
|
|
|
def _swap(self, arr, i, j):
|
|
tmp = arr[i]
|
|
arr[i] = arr[j]
|
|
arr[j] = tmp
|
|
|
|
def _range(self, ids, coords, min_x, min_y, max_x, max_y, node_size):
|
|
stack = [0, len(ids) - 1, 0]
|
|
result = []
|
|
x = y = 0
|
|
|
|
while stack:
|
|
axis = stack.pop()
|
|
right = stack.pop()
|
|
left = stack.pop()
|
|
|
|
if right - left <= node_size:
|
|
for i in range(left, right + 1):
|
|
x = coords[2 * i]
|
|
y = coords[2 * i + 1]
|
|
if x >= min_x and x <= max_x and y >= min_y and y <= max_y:
|
|
result.append(ids[i])
|
|
continue
|
|
|
|
m = int(floor((left + right) / 2.0))
|
|
|
|
x = coords[2 * m]
|
|
y = coords[2 * m + 1]
|
|
|
|
if x >= min_x and x <= max_x and y >= min_y and y <= max_y:
|
|
result.append(ids[m])
|
|
|
|
nextAxis = (axis + 1) % 2
|
|
|
|
if min_x <= x if axis == 0 else min_y <= y:
|
|
stack.append(left)
|
|
stack.append(m - 1)
|
|
stack.append(nextAxis)
|
|
if max_x >= x if axis == 0 else max_y >= y:
|
|
stack.append(m + 1)
|
|
stack.append(right)
|
|
stack.append(nextAxis)
|
|
|
|
return result
|
|
|
|
def _within(self, ids, coords, qx, qy, r, node_size):
|
|
sq_dist = self._sq_dist
|
|
stack = [0, len(ids) - 1, 0]
|
|
result = []
|
|
r2 = r * r
|
|
|
|
while stack:
|
|
axis = stack.pop()
|
|
right = stack.pop()
|
|
left = stack.pop()
|
|
|
|
if right - left <= node_size:
|
|
for i in range(left, right + 1):
|
|
if sq_dist(coords[2 * i], coords[2 * i + 1], qx, qy) <= r2:
|
|
result.append(ids[i])
|
|
continue
|
|
|
|
m = int(floor((left + right) / 2.0))
|
|
|
|
x = coords[2 * m]
|
|
y = coords[2 * m + 1]
|
|
|
|
if sq_dist(x, y, qx, qy) <= r2:
|
|
result.append(ids[m])
|
|
|
|
nextAxis = (axis + 1) % 2
|
|
|
|
if (qx - r <= x) if axis == 0 else (qy - r <= y):
|
|
stack.append(left)
|
|
stack.append(m - 1)
|
|
stack.append(nextAxis)
|
|
if (qx + r >= x) if axis == 0 else (qy + r >= y):
|
|
stack.append(m + 1)
|
|
stack.append(right)
|
|
stack.append(nextAxis)
|
|
|
|
return result
|
|
|
|
def _sq_dist(self, ax, ay, bx, by):
|
|
dx = ax - bx
|
|
dy = ay - by
|
|
return dx * dx + dy * dy
|
|
|
|
|
|
class Cluster:
|
|
def __init__(self, x, y, num_points, id, props):
|
|
self.x = x
|
|
self.y = y
|
|
self.num_points = num_points
|
|
self.zoom = float("inf")
|
|
self.id = id
|
|
self.props = props
|
|
self.parent_id = None
|
|
self.widget = None
|
|
|
|
# preprocess lon/lat
|
|
self.lon = xLng(x)
|
|
self.lat = yLat(y)
|
|
|
|
|
|
class Marker:
|
|
def __init__(self, lon, lat, cls=MapMarker, options=None):
|
|
self.lon = lon
|
|
self.lat = lat
|
|
self.cls = cls
|
|
self.options = options
|
|
|
|
# preprocess x/y from lon/lat
|
|
self.x = lngX(lon)
|
|
self.y = latY(lat)
|
|
|
|
# cluster information
|
|
self.id = None
|
|
self.zoom = float("inf")
|
|
self.parent_id = None
|
|
self.widget = None
|
|
|
|
def __repr__(self):
|
|
return "<Marker lon={} lat={} source={}>".format(
|
|
self.lon, self.lat, self.source
|
|
)
|
|
|
|
|
|
class SuperCluster:
|
|
"""Port of supercluster from mapbox in pure python
|
|
"""
|
|
|
|
def __init__(self, min_zoom=0, max_zoom=16, radius=40, extent=512, node_size=64):
|
|
self.min_zoom = min_zoom
|
|
self.max_zoom = max_zoom
|
|
self.radius = radius
|
|
self.extent = extent
|
|
self.node_size = node_size
|
|
|
|
def load(self, points):
|
|
"""Load an array of markers.
|
|
Once loaded, the index is immutable.
|
|
"""
|
|
from time import time
|
|
|
|
self.trees = {}
|
|
self.points = points
|
|
|
|
for index, point in enumerate(points):
|
|
point.id = index
|
|
|
|
clusters = points
|
|
for z in range(self.max_zoom, self.min_zoom - 1, -1):
|
|
start = time()
|
|
print("build tree", z)
|
|
self.trees[z + 1] = KDBush(clusters, self.node_size)
|
|
print("kdbush", (time() - start) * 1000)
|
|
start = time()
|
|
clusters = self._cluster(clusters, z)
|
|
print(len(clusters))
|
|
print("clustering", (time() - start) * 1000)
|
|
self.trees[self.min_zoom] = KDBush(clusters, self.node_size)
|
|
|
|
def get_clusters(self, bbox, zoom):
|
|
"""For the given bbox [westLng, southLat, eastLng, northLat], and
|
|
integer zoom, returns an array of clusters and markers
|
|
"""
|
|
tree = self.trees[self._limit_zoom(zoom)]
|
|
ids = tree.range(lngX(bbox[0]), latY(bbox[3]), lngX(bbox[2]), latY(bbox[1]))
|
|
clusters = []
|
|
for i in range(len(ids)):
|
|
c = tree.points[ids[i]]
|
|
if isinstance(c, Cluster):
|
|
clusters.append(c)
|
|
else:
|
|
clusters.append(self.points[c.id])
|
|
return clusters
|
|
|
|
def _limit_zoom(self, z):
|
|
return max(self.min_zoom, min(self.max_zoom + 1, z))
|
|
|
|
def _cluster(self, points, zoom):
|
|
clusters = []
|
|
c_append = clusters.append
|
|
trees = self.trees
|
|
r = self.radius / float(self.extent * pow(2, zoom))
|
|
|
|
# loop through each point
|
|
for i in range(len(points)):
|
|
p = points[i]
|
|
# if we've already visited the point at this zoom level, skip it
|
|
if p.zoom <= zoom:
|
|
continue
|
|
p.zoom = zoom
|
|
|
|
# find all nearby points
|
|
tree = trees[zoom + 1]
|
|
neighbor_ids = tree.within(p.x, p.y, r)
|
|
|
|
num_points = 1
|
|
if isinstance(p, Cluster):
|
|
num_points = p.num_points
|
|
wx = p.x * num_points
|
|
wy = p.y * num_points
|
|
|
|
props = None
|
|
|
|
for j in range(len(neighbor_ids)):
|
|
b = tree.points[neighbor_ids[j]]
|
|
# filter out neighbors that are too far or already processed
|
|
if zoom < b.zoom:
|
|
num_points2 = 1
|
|
if isinstance(b, Cluster):
|
|
num_points2 = b.num_points
|
|
# save the zoom (so it doesn't get processed twice)
|
|
b.zoom = zoom
|
|
# accumulate coordinates for calculating weighted center
|
|
wx += b.x * num_points2
|
|
wy += b.y * num_points2
|
|
num_points += num_points2
|
|
b.parent_id = i
|
|
|
|
if num_points == 1:
|
|
c_append(p)
|
|
else:
|
|
p.parent_id = i
|
|
c_append(
|
|
Cluster(wx / num_points, wy / num_points, num_points, i, props)
|
|
)
|
|
return clusters
|
|
|
|
|
|
class ClusterMapMarker(MapMarker):
|
|
source = StringProperty(join(dirname(__file__), "icons", "cluster.png"))
|
|
cluster = ObjectProperty()
|
|
num_points = NumericProperty()
|
|
text_color = ListProperty([0.1, 0.1, 0.1, 1])
|
|
|
|
def on_cluster(self, instance, cluster):
|
|
self.num_points = cluster.num_points
|
|
|
|
def on_touch_down(self, touch):
|
|
return False
|
|
|
|
|
|
class ClusteredMarkerLayer(MapLayer):
|
|
cluster_cls = ObjectProperty(ClusterMapMarker)
|
|
cluster_min_zoom = NumericProperty(0)
|
|
cluster_max_zoom = NumericProperty(16)
|
|
cluster_radius = NumericProperty("40dp")
|
|
cluster_extent = NumericProperty(512)
|
|
cluster_node_size = NumericProperty(64)
|
|
|
|
def __init__(self, **kwargs):
|
|
self.cluster = None
|
|
self.cluster_markers = []
|
|
super().__init__(**kwargs)
|
|
|
|
def add_marker(self, lon, lat, cls=MapMarker, options=None):
|
|
if options is None:
|
|
options = {}
|
|
marker = Marker(lon, lat, cls, options)
|
|
self.cluster_markers.append(marker)
|
|
return marker
|
|
|
|
def remove_marker(self, marker):
|
|
self.cluster_markers.remove(marker)
|
|
|
|
def reposition(self):
|
|
if self.cluster is None:
|
|
self.build_cluster()
|
|
margin = dp(48)
|
|
mapview = self.parent
|
|
set_marker_position = self.set_marker_position
|
|
bbox = mapview.get_bbox(margin)
|
|
bbox = (bbox[1], bbox[0], bbox[3], bbox[2])
|
|
self.clear_widgets()
|
|
for point in self.cluster.get_clusters(bbox, mapview.zoom):
|
|
widget = point.widget
|
|
if widget is None:
|
|
widget = self.create_widget_for(point)
|
|
set_marker_position(mapview, widget)
|
|
self.add_widget(widget)
|
|
|
|
def build_cluster(self):
|
|
self.cluster = SuperCluster(
|
|
min_zoom=self.cluster_min_zoom,
|
|
max_zoom=self.cluster_max_zoom,
|
|
radius=self.cluster_radius,
|
|
extent=self.cluster_extent,
|
|
node_size=self.cluster_node_size,
|
|
)
|
|
self.cluster.load(self.cluster_markers)
|
|
|
|
def create_widget_for(self, point):
|
|
if isinstance(point, Marker):
|
|
point.widget = point.cls(lon=point.lon, lat=point.lat, **point.options)
|
|
elif isinstance(point, Cluster):
|
|
point.widget = self.cluster_cls(lon=point.lon, lat=point.lat, cluster=point)
|
|
return point.widget
|
|
|
|
def set_marker_position(self, mapview, marker):
|
|
x, y = mapview.get_window_xy_from(marker.lat, marker.lon, mapview.zoom)
|
|
marker.x = int(x - marker.width * marker.anchor_x)
|
|
marker.y = int(y - marker.height * marker.anchor_y)
|