mirror of
https://github.com/markqvist/Sideband.git
synced 2024-12-27 08:29:27 -05:00
Added a true radio horizon calculator to geodesy functions
This commit is contained in:
parent
e6be975e6e
commit
07202396ae
@ -1,5 +1,6 @@
|
||||
import time
|
||||
from math import pi, sin, cos, acos, tan, atan, atan2
|
||||
import RNS
|
||||
from math import pi, sin, cos, acos, asin, tan, atan, atan2
|
||||
from math import radians, degrees, sqrt
|
||||
|
||||
# WGS84 Parameters
|
||||
@ -17,18 +18,6 @@ eccentricity_squared = 2*ellipsoid_flattening-pow(ellipsoid_flattening,2)
|
||||
|
||||
mean_earth_radius = (1/3)*(2*equatorial_radius+polar_radius)
|
||||
|
||||
def central_angle(c1, c2):
|
||||
lat1 = radians(c1[0]); lon1 = radians(c1[1])
|
||||
lat2 = radians(c2[0]); lon2 = radians(c2[1])
|
||||
|
||||
d_lat = abs(lat1-lat2)
|
||||
d_lon = abs(lon1-lon2)
|
||||
ca = acos(
|
||||
sin(lat1) * sin(lat2) +
|
||||
cos(lat1) * cos(lat2) * cos(d_lon)
|
||||
)
|
||||
return ca
|
||||
|
||||
def geocentric_latitude(geodetic_latitude):
|
||||
e2 = eccentricity_squared
|
||||
lat = radians(geodetic_latitude)
|
||||
@ -95,6 +84,21 @@ def euclidian_distance(c1, c2, ellipsoid=True):
|
||||
else:
|
||||
return None
|
||||
|
||||
def central_angle(c1, c2):
|
||||
lat1 = radians(c1[0]); lon1 = radians(c1[1])
|
||||
lat2 = radians(c2[0]); lon2 = radians(c2[1])
|
||||
|
||||
d_lat = abs(lat1-lat2)
|
||||
d_lon = abs(lon1-lon2)
|
||||
ca = acos(
|
||||
sin(lat1) * sin(lat2) +
|
||||
cos(lat1) * cos(lat2) * cos(d_lon)
|
||||
)
|
||||
return ca
|
||||
|
||||
def arc_length(central_angle, r=mean_earth_radius):
|
||||
return r*central_angle;
|
||||
|
||||
def spherical_distance(c1, c2, altitude=0, r=mean_earth_radius):
|
||||
d = (r+altitude)*central_angle(c1, c2)
|
||||
return d
|
||||
@ -243,20 +247,48 @@ def angle_to_horizon(c, ellipsoid=False):
|
||||
else:
|
||||
r = mean_earth_radius
|
||||
h = c[2]
|
||||
if h < 0: h = 0
|
||||
return degrees(-acos(r/(r+h)))
|
||||
|
||||
def radio_horizon(c1, c2, ellipsoid=False):
|
||||
# dr = 4.12*(√h1 + √h2)
|
||||
def euclidian_horizon_distance(h):
|
||||
r = mean_earth_radius
|
||||
b = r
|
||||
c = r+h
|
||||
a = c**2 - b**2
|
||||
return sqrt(a)
|
||||
|
||||
def euclidian_horizon_arc(h):
|
||||
r = mean_earth_radius
|
||||
d = euclidian_horizon_distance(h)
|
||||
a = d; b = r; c = r+h
|
||||
arc = acos( (b**2+c**2-a**2) / (2*b*c) )
|
||||
return arc
|
||||
|
||||
def radio_horizon(h, rh=0, ellipsoid=False):
|
||||
if ellipsoid:
|
||||
raise NotImplementedError("Radio horizon on the ellipsoid is not yet implemented")
|
||||
else:
|
||||
h1 = c1[2]
|
||||
h2 = c2[2]
|
||||
ed = euclidian_distance(c1,c2)
|
||||
rh1 = 1e3*4.12*(sqrt(h1))
|
||||
rh2 = 1e3*4.12*(sqrt(h2))
|
||||
rhc = 1e3*4.12*(sqrt(h1) + sqrt(h2))
|
||||
return (rh1, rh2, rhc, rhc > ed)
|
||||
geocentric_angle_to_horizon = euclidian_horizon_arc(h)
|
||||
geodesic_distance = arc_length(geocentric_angle_to_horizon, r=mean_earth_radius)
|
||||
|
||||
return geodesic_distance
|
||||
|
||||
def shared_radio_horizon(c1, c2,):
|
||||
lat1 = c1[0]; lon1 = c1[1]; h1 = c1[2]
|
||||
lat2 = c2[0]; lon2 = c2[1]; h2 = c2[2]
|
||||
|
||||
geodesic_distance = orthodromic_distance((lat1, lon1, 0.0), (lat2, lon2, 0.0) , ellipsoid=False)
|
||||
antenna_distance = euclidian_distance(c1,c2,ellipsoid=False)
|
||||
rh1 = radio_horizon(h1)
|
||||
rh2 = radio_horizon(h2)
|
||||
rhc = rh1+rh2
|
||||
|
||||
return {
|
||||
"horizon1":rh1, "horizon2":rh2, "shared":rhc,
|
||||
"within":rhc > geodesic_distance,
|
||||
"geodesic_distance": geodesic_distance,
|
||||
"antenna_distance": antenna_distance
|
||||
}
|
||||
|
||||
def tests():
|
||||
import RNS
|
||||
|
Loading…
Reference in New Issue
Block a user