2024-03-26 09:18:42 -04:00
|
|
|
import os
|
2023-10-24 15:04:45 -04:00
|
|
|
import time
|
2024-03-26 09:18:42 -04:00
|
|
|
import mmap
|
|
|
|
import struct
|
2023-10-25 12:50:27 -04:00
|
|
|
import RNS
|
|
|
|
from math import pi, sin, cos, acos, asin, tan, atan, atan2
|
2023-10-24 15:04:45 -04:00
|
|
|
from math import radians, degrees, sqrt
|
|
|
|
|
2023-10-24 19:35:46 -04:00
|
|
|
# WGS84 Parameters
|
|
|
|
# a = 6378137.0,
|
|
|
|
# f = 0.0033528106647474805,
|
|
|
|
# e2 = 0.0066943799901413165,
|
|
|
|
# b = 6356752.314245179,
|
2023-10-24 15:04:45 -04:00
|
|
|
|
2023-10-24 19:35:46 -04:00
|
|
|
# Planetary metrics
|
|
|
|
equatorial_radius = 6378.137 *1e3
|
2023-10-24 15:04:45 -04:00
|
|
|
polar_radius = 6356.7523142 *1e3
|
|
|
|
ellipsoid_flattening = 1-(polar_radius/equatorial_radius)
|
|
|
|
eccentricity_squared = 2*ellipsoid_flattening-pow(ellipsoid_flattening,2)
|
2023-10-24 19:35:46 -04:00
|
|
|
###############################
|
|
|
|
|
2023-10-24 15:04:45 -04:00
|
|
|
mean_earth_radius = (1/3)*(2*equatorial_radius+polar_radius)
|
2024-03-26 09:18:42 -04:00
|
|
|
geoid_height = None
|
2023-10-24 15:04:45 -04:00
|
|
|
|
|
|
|
def geocentric_latitude(geodetic_latitude):
|
|
|
|
e2 = eccentricity_squared
|
|
|
|
lat = radians(geodetic_latitude)
|
|
|
|
return degrees(atan((1.0 - e2) * tan(lat)))
|
|
|
|
|
|
|
|
def geodetic_latitude(geocentric_latitude):
|
|
|
|
e2 = eccentricity_squared
|
|
|
|
lat = radians(geocentric_latitude)
|
|
|
|
return degrees(atan( (1/(1.0 - e2)) * tan(lat)))
|
|
|
|
|
|
|
|
def ellipsoid_radius_at(latitude):
|
|
|
|
lat = radians(latitude)
|
|
|
|
a = equatorial_radius; b = polar_radius;
|
|
|
|
a2 = pow(a,2); b2 = pow(b,2)
|
|
|
|
r = sqrt(
|
|
|
|
( pow(a2*cos(lat), 2) + pow(b2*sin(lat), 2) )
|
|
|
|
/
|
|
|
|
( pow(a*cos(lat), 2) + pow(b*sin(lat), 2) )
|
|
|
|
)
|
|
|
|
return r
|
|
|
|
|
2023-11-13 09:56:33 -05:00
|
|
|
def euclidian_point(latitude, longitude, altitude=0, ellipsoid=True):
|
|
|
|
# Convert latitude and longitude to radians
|
2023-10-24 15:04:45 -04:00
|
|
|
# and get ellipsoid or sphere radius
|
2023-11-13 09:56:33 -05:00
|
|
|
lat = radians(latitude); lon = radians(longitude)
|
2023-10-24 15:04:45 -04:00
|
|
|
r = ellipsoid_radius_at(latitude) if ellipsoid else mean_earth_radius
|
|
|
|
|
2023-11-13 09:56:33 -05:00
|
|
|
# Calculate euclidian coordinates from longitude
|
2023-10-24 15:04:45 -04:00
|
|
|
# and geocentric latitude.
|
|
|
|
gclat = radians(geocentric_latitude(latitude)) if ellipsoid else lat
|
2023-10-24 19:35:46 -04:00
|
|
|
x = cos(lon)*cos(gclat)*r
|
2023-10-24 15:04:45 -04:00
|
|
|
y = cos(gclat)*sin(lon)*r
|
|
|
|
z = sin(gclat)*r
|
|
|
|
|
|
|
|
# Calculate surface normal of ellipsoid at
|
|
|
|
# coordinates to add altitude to point
|
|
|
|
normal_x = cos(lat)*cos(lon)
|
|
|
|
normal_y = cos(lat)*sin(lon)
|
|
|
|
normal_z = sin(lat)
|
|
|
|
|
|
|
|
if altitude != 0:
|
|
|
|
x += altitude*normal_x
|
|
|
|
y += altitude*normal_y
|
|
|
|
z += altitude*normal_z
|
|
|
|
|
2023-10-24 19:35:46 -04:00
|
|
|
return (x,y,z, normal_x, normal_y, normal_z)
|
2023-10-24 15:04:45 -04:00
|
|
|
|
|
|
|
def distance(p1, p2):
|
|
|
|
dx = p1[0]-p2[0]
|
|
|
|
dy = p1[1]-p2[1]
|
|
|
|
dz = p1[2]-p2[2]
|
2023-10-24 19:35:46 -04:00
|
|
|
return sqrt(dx*dx + dy*dy + dz*dz)
|
2023-10-24 15:04:45 -04:00
|
|
|
|
|
|
|
def euclidian_distance(c1, c2, ellipsoid=True):
|
2023-10-24 19:35:46 -04:00
|
|
|
lat1 = c1[0]; lon1 = c1[1]; alt1 = c1[2]
|
|
|
|
lat2 = c2[0]; lon2 = c2[1]; alt2 = c2[2]
|
2023-10-24 15:04:45 -04:00
|
|
|
if len(c1) >= 2 and len(c2) >= 2:
|
|
|
|
if len(c1) == 2: c1 += (0,)
|
|
|
|
if len(c2) == 2: c2 += (0,)
|
|
|
|
return distance(
|
2023-10-24 19:35:46 -04:00
|
|
|
euclidian_point(lat1, lon1, alt1, ellipsoid=ellipsoid),
|
|
|
|
euclidian_point(lat2, lon2, alt2, ellipsoid=ellipsoid)
|
2023-10-24 15:04:45 -04:00
|
|
|
)
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
2023-10-25 12:50:27 -04:00
|
|
|
def central_angle(c1, c2):
|
|
|
|
lat1 = radians(c1[0]); lon1 = radians(c1[1])
|
|
|
|
lat2 = radians(c2[0]); lon2 = radians(c2[1])
|
|
|
|
|
|
|
|
d_lat = abs(lat1-lat2)
|
|
|
|
d_lon = abs(lon1-lon2)
|
|
|
|
ca = acos(
|
|
|
|
sin(lat1) * sin(lat2) +
|
|
|
|
cos(lat1) * cos(lat2) * cos(d_lon)
|
|
|
|
)
|
|
|
|
return ca
|
|
|
|
|
|
|
|
def arc_length(central_angle, r=mean_earth_radius):
|
|
|
|
return r*central_angle;
|
|
|
|
|
2023-10-24 15:04:45 -04:00
|
|
|
def spherical_distance(c1, c2, altitude=0, r=mean_earth_radius):
|
|
|
|
d = (r+altitude)*central_angle(c1, c2)
|
|
|
|
return d
|
|
|
|
|
|
|
|
def ellipsoid_distance(c1, c2):
|
|
|
|
# TODO: Update this to the method described by Karney in 2013
|
|
|
|
# instead of using Vincenty's algorithm.
|
|
|
|
try:
|
2023-10-24 19:35:46 -04:00
|
|
|
if c1[:2] == c2[:2]:
|
|
|
|
return 0
|
|
|
|
|
2023-10-24 15:04:45 -04:00
|
|
|
if c1[0] == 0.0: c1 = (1e-6, c1[1])
|
|
|
|
a = equatorial_radius
|
|
|
|
f = ellipsoid_flattening
|
|
|
|
b = (1 - f)*a # polar radius
|
|
|
|
tolerance = 1e-9 # to stop iteration
|
|
|
|
|
|
|
|
phi1, phi2 = radians(c1[0]), radians(c2[0])
|
|
|
|
U1 = atan((1-f)*tan(phi1))
|
|
|
|
U2 = atan((1-f)*tan(phi2))
|
|
|
|
L1, L2 = radians(c1[1]), radians(c2[1])
|
|
|
|
L = L2 - L1
|
|
|
|
|
|
|
|
lambda_old = L + 0
|
|
|
|
|
|
|
|
max_iterations = 10000
|
|
|
|
iteration = 0
|
|
|
|
timeout = 1.0
|
|
|
|
st = time.time()
|
|
|
|
while True:
|
|
|
|
iteration += 1
|
|
|
|
t = (cos(U2)*sin(lambda_old))**2
|
|
|
|
t += (cos(U1)*sin(U2) - sin(U1)*cos(U2)*cos(lambda_old))**2
|
|
|
|
sin_sigma = t**0.5
|
|
|
|
cos_sigma = sin(U1)*sin(U2) + cos(U1)*cos(U2)*cos(lambda_old)
|
|
|
|
sigma = atan2(sin_sigma, cos_sigma)
|
|
|
|
|
|
|
|
sin_alpha = cos(U1)*cos(U2)*sin(lambda_old) / sin_sigma
|
|
|
|
cos_sq_alpha = 1 - sin_alpha**2
|
|
|
|
cos_2sigma_m = cos_sigma - 2*sin(U1)*sin(U2)/cos_sq_alpha
|
|
|
|
C = f*cos_sq_alpha*(4 + f*(4-3*cos_sq_alpha))/16
|
|
|
|
|
|
|
|
t = sigma + C*sin_sigma*(cos_2sigma_m + C*cos_sigma*(-1 + 2*cos_2sigma_m**2))
|
|
|
|
lambda_new = L + (1 - C)*f*sin_alpha*t
|
|
|
|
if abs(lambda_new - lambda_old) <= tolerance:
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
lambda_old = lambda_new
|
|
|
|
|
|
|
|
if iteration%1000 == 0:
|
|
|
|
if iteration >= max_iterations:
|
|
|
|
return None
|
|
|
|
|
|
|
|
if time.time() > st+timeout:
|
|
|
|
return None
|
|
|
|
|
|
|
|
u2 = cos_sq_alpha*((a**2 - b**2)/b**2)
|
|
|
|
A = 1 + (u2/16384)*(4096 + u2*(-768+u2*(320 - 175*u2)))
|
|
|
|
B = (u2/1024)*(256 + u2*(-128 + u2*(74 - 47*u2)))
|
|
|
|
t = cos_2sigma_m + 0.25*B*(cos_sigma*(-1 + 2*cos_2sigma_m**2))
|
|
|
|
t -= (B/6)*cos_2sigma_m*(-3 + 4*sin_sigma**2)*(-3 + 4*cos_2sigma_m**2)
|
|
|
|
delta_sigma = B * sin_sigma * t
|
|
|
|
s = b*A*(sigma - delta_sigma)
|
|
|
|
return s
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
return None
|
|
|
|
|
2023-10-24 19:35:46 -04:00
|
|
|
def azalt(c1, c2, ellipsoid=True):
|
|
|
|
c2rp = rotate_globe(c1, c2, ellipsoid=ellipsoid)
|
|
|
|
altitude = None
|
|
|
|
azimuth = None
|
|
|
|
if (c2rp[2]*c2rp[2]) + (c2rp[1]*c2rp[1]) > 1e-6:
|
|
|
|
theta = degrees(atan2(c2rp[2], c2rp[1]))
|
2023-10-26 15:45:17 -04:00
|
|
|
azimuth = 90 - theta
|
2023-10-24 19:35:46 -04:00
|
|
|
if azimuth < 0: azimuth += 360
|
|
|
|
if azimuth > 360: azimuth -= 360
|
|
|
|
azimuth = round(azimuth,4)
|
|
|
|
|
|
|
|
c1p = euclidian_point(c1[0], c1[1], c1[2], ellipsoid=ellipsoid)
|
|
|
|
c2p = euclidian_point(c2[0], c2[1], c2[2], ellipsoid=ellipsoid)
|
|
|
|
nvd = normalised_vector_diff(c2p, c1p)
|
|
|
|
if nvd != None:
|
|
|
|
cax = nvd[0]; cay = nvd[1]; caz = nvd[2]
|
|
|
|
cnx = c1p[3]; cny = c1p[4]; cnz = c1p[5]
|
|
|
|
a = acos(cax*cnx + cay*cny + caz*cnz)
|
|
|
|
altitude = round(90 - degrees(a),4)
|
|
|
|
|
|
|
|
return (azimuth, altitude,4)
|
|
|
|
|
|
|
|
def normalised_vector_diff(b, a):
|
|
|
|
dx = b[0] - a[0]
|
|
|
|
dy = b[1] - a[1]
|
|
|
|
dz = b[2] - a[2]
|
|
|
|
d_squared = dx*dx + dy*dy + dz*dz
|
|
|
|
if d_squared == 0:
|
|
|
|
return None
|
|
|
|
|
|
|
|
d = sqrt(d_squared)
|
|
|
|
return (dx/d, dy/d, dz/d)
|
|
|
|
|
|
|
|
def rotate_globe(c1, c2, ellipsoid=True):
|
|
|
|
if len(c1) >= 2 and len(c2) >= 2:
|
|
|
|
if len(c1) == 2: c1 += (0,)
|
|
|
|
if len(c2) == 2: c2 += (0,)
|
|
|
|
|
|
|
|
c2r = (c2[0], c2[1]-c1[1], c2[2])
|
|
|
|
c2rp = euclidian_point(c2r[0], c2r[1], c2r[2], ellipsoid=ellipsoid)
|
|
|
|
|
|
|
|
lat1 = -1*radians(c1[0])
|
|
|
|
if ellipsoid:
|
|
|
|
lat1 = radians(geocentric_latitude(degrees(lat1)))
|
|
|
|
|
|
|
|
lat1cos = cos(lat1)
|
|
|
|
lat1sin = sin(lat1)
|
|
|
|
|
|
|
|
c2x = (c2rp[0] * lat1cos) - (c2rp[2] * lat1sin)
|
|
|
|
c2y = c2rp[1]
|
|
|
|
c2z = (c2rp[0] * lat1sin) + (c2rp[2] * lat1cos)
|
|
|
|
|
|
|
|
return (c2x, c2y, c2z)
|
|
|
|
|
|
|
|
def orthodromic_distance(c1, c2, ellipsoid=True):
|
|
|
|
if ellipsoid:
|
2023-10-24 15:04:45 -04:00
|
|
|
return ellipsoid_distance(c1, c2)
|
2023-10-24 19:35:46 -04:00
|
|
|
else:
|
|
|
|
return spherical_distance(c1, c2)
|
2023-10-24 15:04:45 -04:00
|
|
|
|
2023-10-24 20:57:28 -04:00
|
|
|
def distance_to_horizon(c, ellipsoid=False):
|
|
|
|
if ellipsoid:
|
|
|
|
raise NotImplementedError("Distance to horizon on the ellipsoid is not yet implemented")
|
|
|
|
else:
|
|
|
|
# TODO: This is a only barely functional simplification.
|
|
|
|
# Need to calculate the geodesic distance to the horizon
|
|
|
|
# instead.
|
|
|
|
if len(c) >= 3:
|
|
|
|
r = mean_earth_radius
|
|
|
|
h = c[2]
|
|
|
|
return sqrt(pow((h+r),2) - r*r)
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
|
|
|
def angle_to_horizon(c, ellipsoid=False):
|
|
|
|
if ellipsoid:
|
|
|
|
raise NotImplementedError("Angle to horizon on the ellipsoid is not yet implemented")
|
|
|
|
else:
|
|
|
|
r = mean_earth_radius
|
|
|
|
h = c[2]
|
2023-10-25 12:50:27 -04:00
|
|
|
if h < 0: h = 0
|
2023-10-24 20:57:28 -04:00
|
|
|
return degrees(-acos(r/(r+h)))
|
|
|
|
|
2023-10-25 12:50:27 -04:00
|
|
|
def euclidian_horizon_distance(h):
|
|
|
|
r = mean_earth_radius
|
|
|
|
b = r
|
|
|
|
c = r+h
|
|
|
|
a = c**2 - b**2
|
|
|
|
return sqrt(a)
|
|
|
|
|
|
|
|
def euclidian_horizon_arc(h):
|
|
|
|
r = mean_earth_radius
|
|
|
|
d = euclidian_horizon_distance(h)
|
|
|
|
a = d; b = r; c = r+h
|
|
|
|
arc = acos( (b**2+c**2-a**2) / (2*b*c) )
|
|
|
|
return arc
|
|
|
|
|
|
|
|
def radio_horizon(h, rh=0, ellipsoid=False):
|
2023-10-24 20:57:28 -04:00
|
|
|
if ellipsoid:
|
|
|
|
raise NotImplementedError("Radio horizon on the ellipsoid is not yet implemented")
|
|
|
|
else:
|
2023-10-25 12:50:27 -04:00
|
|
|
geocentric_angle_to_horizon = euclidian_horizon_arc(h)
|
|
|
|
geodesic_distance = arc_length(geocentric_angle_to_horizon, r=mean_earth_radius)
|
|
|
|
|
|
|
|
return geodesic_distance
|
|
|
|
|
|
|
|
def shared_radio_horizon(c1, c2,):
|
|
|
|
lat1 = c1[0]; lon1 = c1[1]; h1 = c1[2]
|
|
|
|
lat2 = c2[0]; lon2 = c2[1]; h2 = c2[2]
|
|
|
|
|
|
|
|
geodesic_distance = orthodromic_distance((lat1, lon1, 0.0), (lat2, lon2, 0.0) , ellipsoid=False)
|
|
|
|
antenna_distance = euclidian_distance(c1,c2,ellipsoid=False)
|
|
|
|
rh1 = radio_horizon(h1)
|
|
|
|
rh2 = radio_horizon(h2)
|
|
|
|
rhc = rh1+rh2
|
|
|
|
|
|
|
|
return {
|
|
|
|
"horizon1":rh1, "horizon2":rh2, "shared":rhc,
|
|
|
|
"within":rhc > geodesic_distance,
|
|
|
|
"geodesic_distance": geodesic_distance,
|
|
|
|
"antenna_distance": antenna_distance
|
|
|
|
}
|
2023-10-24 20:57:28 -04:00
|
|
|
|
2024-03-26 09:18:42 -04:00
|
|
|
def geoid_offset(lat, lon):
|
|
|
|
global geoid_height
|
|
|
|
if geoid_height == None:
|
|
|
|
geoid_height = GeoidHeight()
|
|
|
|
return geoid_height.get(lat, lon)
|
2023-12-05 14:37:05 -05:00
|
|
|
|
2024-03-26 09:18:42 -04:00
|
|
|
def altitude_to_aamsl(alt, lat, lon):
|
|
|
|
if alt == None or lat == None or lon == None:
|
|
|
|
return None
|
|
|
|
else:
|
|
|
|
return alt-geoid_offset(lat, lon)
|
|
|
|
|
|
|
|
######################################################
|
|
|
|
# GeoidHeight class by Kim Vandry <vandry@TZoNE.ORG> #
|
|
|
|
# Originally ported fromGeographicLib/src/Geoid.cpp #
|
|
|
|
# LGPLv3 License #
|
|
|
|
######################################################
|
|
|
|
|
|
|
|
class GeoidHeight(object):
|
|
|
|
c0 = 240
|
|
|
|
c3 = (
|
|
|
|
( 9, -18, -88, 0, 96, 90, 0, 0, -60, -20),
|
|
|
|
( -9, 18, 8, 0, -96, 30, 0, 0, 60, -20),
|
|
|
|
( 9, -88, -18, 90, 96, 0, -20, -60, 0, 0),
|
|
|
|
(186, -42, -42, -150, -96, -150, 60, 60, 60, 60),
|
|
|
|
( 54, 162, -78, 30, -24, -90, -60, 60, -60, 60),
|
|
|
|
( -9, -32, 18, 30, 24, 0, 20, -60, 0, 0),
|
|
|
|
( -9, 8, 18, 30, -96, 0, -20, 60, 0, 0),
|
|
|
|
( 54, -78, 162, -90, -24, 30, 60, -60, 60, -60),
|
|
|
|
(-54, 78, 78, 90, 144, 90, -60, -60, -60, -60),
|
|
|
|
( 9, -8, -18, -30, -24, 0, 20, 60, 0, 0),
|
|
|
|
( -9, 18, -32, 0, 24, 30, 0, 0, -60, 20),
|
|
|
|
( 9, -18, -8, 0, -24, -30, 0, 0, 60, 20),
|
|
|
|
)
|
|
|
|
|
|
|
|
c0n = 372
|
|
|
|
c3n = (
|
|
|
|
( 0, 0, -131, 0, 138, 144, 0, 0, -102, -31),
|
|
|
|
( 0, 0, 7, 0, -138, 42, 0, 0, 102, -31),
|
|
|
|
( 62, 0, -31, 0, 0, -62, 0, 0, 0, 31),
|
|
|
|
(124, 0, -62, 0, 0, -124, 0, 0, 0, 62),
|
|
|
|
(124, 0, -62, 0, 0, -124, 0, 0, 0, 62),
|
|
|
|
( 62, 0, -31, 0, 0, -62, 0, 0, 0, 31),
|
|
|
|
( 0, 0, 45, 0, -183, -9, 0, 93, 18, 0),
|
|
|
|
( 0, 0, 216, 0, 33, 87, 0, -93, 12, -93),
|
|
|
|
( 0, 0, 156, 0, 153, 99, 0, -93, -12, -93),
|
|
|
|
( 0, 0, -45, 0, -3, 9, 0, 93, -18, 0),
|
|
|
|
( 0, 0, -55, 0, 48, 42, 0, 0, -84, 31),
|
|
|
|
( 0, 0, -7, 0, -48, -42, 0, 0, 84, 31),
|
|
|
|
)
|
|
|
|
|
|
|
|
c0s = 372
|
|
|
|
c3s = (
|
|
|
|
( 18, -36, -122, 0, 120, 135, 0, 0, -84, -31),
|
|
|
|
(-18, 36, -2, 0, -120, 51, 0, 0, 84, -31),
|
|
|
|
( 36, -165, -27, 93, 147, -9, 0, -93, 18, 0),
|
|
|
|
(210, 45, -111, -93, -57, -192, 0, 93, 12, 93),
|
|
|
|
(162, 141, -75, -93, -129, -180, 0, 93, -12, 93),
|
|
|
|
(-36, -21, 27, 93, 39, 9, 0, -93, -18, 0),
|
|
|
|
( 0, 0, 62, 0, 0, 31, 0, 0, 0, -31),
|
|
|
|
( 0, 0, 124, 0, 0, 62, 0, 0, 0, -62),
|
|
|
|
( 0, 0, 124, 0, 0, 62, 0, 0, 0, -62),
|
|
|
|
( 0, 0, 62, 0, 0, 31, 0, 0, 0, -31),
|
|
|
|
(-18, 36, -64, 0, 66, 51, 0, 0, -102, 31),
|
|
|
|
( 18, -36, 2, 0, -66, -51, 0, 0, 102, 31),
|
|
|
|
)
|
|
|
|
|
|
|
|
def __init__(self, name="egm2008-5.pgm"):
|
|
|
|
self.offset = None
|
|
|
|
self.scale = None
|
|
|
|
|
|
|
|
if "TELEMETER_GEOID_PATH" in os.environ:
|
|
|
|
geoid_dir = os.environ["TELEMETER_GEOID_PATH"]
|
|
|
|
else:
|
|
|
|
geoid_dir = "./"
|
|
|
|
|
|
|
|
pgm_path = os.path.join(geoid_dir, name)
|
|
|
|
RNS.log(f"Opening {pgm_path} as EGM for altitude correction", RNS.LOG_DEBUG)
|
|
|
|
with open(pgm_path, "rb") as f:
|
|
|
|
line = f.readline()
|
|
|
|
if line != b"P5\012" and line != b"P5\015\012":
|
|
|
|
raise Exception("No PGM header")
|
|
|
|
headerlen = len(line)
|
|
|
|
while True:
|
|
|
|
line = f.readline()
|
|
|
|
if len(line) == 0:
|
|
|
|
raise Exception("EOF before end of file header")
|
|
|
|
headerlen += len(line)
|
|
|
|
if line.startswith(b'# Offset '):
|
|
|
|
try:
|
|
|
|
self.offset = int(line[9:])
|
|
|
|
except ValueError as e:
|
|
|
|
raise Exception("Error reading offset", e)
|
|
|
|
elif line.startswith(b'# Scale '):
|
|
|
|
try:
|
|
|
|
self.scale = float(line[8:])
|
|
|
|
except ValueError as e:
|
|
|
|
raise Exception("Error reading scale", e)
|
|
|
|
elif not line.startswith(b'#'):
|
|
|
|
try:
|
|
|
|
self.width, self.height = list(map(int, line.split()))
|
|
|
|
except ValueError as e:
|
|
|
|
raise Exception("Bad PGM width&height line", e)
|
|
|
|
break
|
|
|
|
line = f.readline()
|
|
|
|
headerlen += len(line)
|
|
|
|
levels = int(line)
|
|
|
|
if levels != 65535:
|
|
|
|
raise Exception("PGM file must have 65535 gray levels")
|
|
|
|
if self.offset is None:
|
|
|
|
raise Exception("PGM file does not contain offset")
|
|
|
|
if self.scale is None:
|
|
|
|
raise Exception("PGM file does not contain scale")
|
|
|
|
|
|
|
|
if self.width < 2 or self.height < 2:
|
|
|
|
raise Exception("Raster size too small")
|
|
|
|
|
|
|
|
fd = f.fileno()
|
|
|
|
fullsize = os.fstat(fd).st_size
|
|
|
|
|
|
|
|
if fullsize - headerlen != self.width * self.height * 2:
|
|
|
|
raise Exception("File has the wrong length")
|
|
|
|
|
|
|
|
self.headerlen = headerlen
|
2024-03-27 22:41:31 -04:00
|
|
|
if RNS.vendor.platformutils.is_windows():
|
|
|
|
self.raw = mmap.mmap(fd, fullsize, access=mmap.ACCESS_READ)
|
|
|
|
else:
|
|
|
|
self.raw = mmap.mmap(fd, fullsize, mmap.MAP_SHARED, mmap.PROT_READ)
|
2024-03-26 09:18:42 -04:00
|
|
|
|
|
|
|
self.rlonres = self.width / 360.0
|
|
|
|
self.rlatres = (self.height - 1) / 180.0
|
|
|
|
self.ix = None
|
|
|
|
self.iy = None
|
|
|
|
|
|
|
|
def _rawval(self, ix, iy):
|
|
|
|
if iy < 0:
|
|
|
|
iy = -iy
|
|
|
|
ix += self.width/2
|
|
|
|
elif iy >= self.height:
|
|
|
|
iy = 2 * (self.height - 1) - iy
|
|
|
|
ix += self.width/2
|
|
|
|
if ix < 0:
|
|
|
|
ix += self.width
|
|
|
|
elif ix >= self.width:
|
|
|
|
ix -= self.width
|
|
|
|
|
|
|
|
return struct.unpack_from('>H', self.raw,
|
|
|
|
(iy * self.width + ix) * 2 + self.headerlen
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
def get(self, lat, lon, cubic=True):
|
|
|
|
if lon < 0:
|
|
|
|
lon += 360
|
|
|
|
fy = (90 - lat) * self.rlatres
|
|
|
|
fx = lon * self.rlonres
|
|
|
|
iy = int(fy)
|
|
|
|
ix = int(fx)
|
|
|
|
fx -= ix
|
|
|
|
fy -= iy
|
|
|
|
if iy == self.height - 1:
|
|
|
|
iy -= 1
|
|
|
|
|
|
|
|
if ix != self.ix or iy != self.iy:
|
|
|
|
self.ix = ix
|
|
|
|
self.iy = iy
|
|
|
|
if not cubic:
|
|
|
|
self.v00 = self._rawval(ix, iy)
|
|
|
|
self.v01 = self._rawval(ix+1, iy)
|
|
|
|
self.v10 = self._rawval(ix, iy+1)
|
|
|
|
self.v11 = self._rawval(ix+1, iy+1)
|
|
|
|
else:
|
|
|
|
v = (
|
|
|
|
self._rawval(ix , iy - 1),
|
|
|
|
self._rawval(ix + 1, iy - 1),
|
|
|
|
self._rawval(ix - 1, iy ),
|
|
|
|
self._rawval(ix , iy ),
|
|
|
|
self._rawval(ix + 1, iy ),
|
|
|
|
self._rawval(ix + 2, iy ),
|
|
|
|
self._rawval(ix - 1, iy + 1),
|
|
|
|
self._rawval(ix , iy + 1),
|
|
|
|
self._rawval(ix + 1, iy + 1),
|
|
|
|
self._rawval(ix + 2, iy + 1),
|
|
|
|
self._rawval(ix , iy + 2),
|
|
|
|
self._rawval(ix + 1, iy + 2)
|
|
|
|
)
|
|
|
|
if iy == 0:
|
|
|
|
c3x = GeoidHeight.c3n
|
|
|
|
c0x = GeoidHeight.c0n
|
|
|
|
elif iy == self.height - 2:
|
|
|
|
c3x = GeoidHeight.c3s
|
|
|
|
c0x = GeoidHeight.c0s
|
|
|
|
else:
|
|
|
|
c3x = GeoidHeight.c3
|
|
|
|
c0x = GeoidHeight.c0
|
|
|
|
self.t = [
|
|
|
|
sum([ v[j] * c3x[j][i] for j in range(12) ]) / float(c0x)
|
|
|
|
for i in range(10)
|
|
|
|
]
|
|
|
|
if not cubic:
|
|
|
|
a = (1 - fx) * self.v00 + fx * self.v01
|
|
|
|
b = (1 - fx) * self.v10 + fx * self.v11
|
|
|
|
h = (1 - fy) * a + fy * b
|
|
|
|
else:
|
|
|
|
h = (
|
|
|
|
self.t[0] +
|
|
|
|
fx * (self.t[1] + fx * (self.t[3] + fx * self.t[6])) +
|
|
|
|
fy * (
|
|
|
|
self.t[2] + fx * (self.t[4] + fx * self.t[7]) +
|
|
|
|
fy * (self.t[5] + fx * self.t[8] + fy * self.t[9])
|
|
|
|
)
|
|
|
|
)
|
|
|
|
return self.offset + self.scale * h
|
2023-12-05 14:37:05 -05:00
|
|
|
|
|
|
|
|
2023-10-26 15:45:17 -04:00
|
|
|
# def tests():
|
|
|
|
# import RNS
|
|
|
|
# import numpy as np
|
|
|
|
# from geographiclib.geodesic import Geodesic
|
|
|
|
# geod = Geodesic.WGS84
|
|
|
|
# coords = [
|
|
|
|
# [(51.2308, 4.38703, 0.0), (47.699437, 9.268651, 0.0)],
|
|
|
|
# [(51.2308, 4.38703, 0.0), (47.699437, 9.268651, 30.0*1e3)],
|
|
|
|
# [(0.0, 0.0, 0.0), (0.0, 1.0/60/60, 30.0)],
|
|
|
|
# # [(51.230800, 4.38703, 0.0), (51.230801, 4.38703, 0.0)],
|
|
|
|
# # [(35.3524, 135.0302, 100), (35.3532,135.0305, 500)],
|
|
|
|
# # [(57.758793, 22.605194, 0.0), (43.048838, -9.241343, 0.0)],
|
|
|
|
# # [(0.0, 0.0, 0.0), (0.0, 0.0, 0.0)],
|
|
|
|
# # [(-90.0, 0.0, 0.0), (90.0, 0.0, 0.0)],
|
|
|
|
# # [(-90.0, 0.0, 0.0), (78.0, 0.0, 0.0)],
|
|
|
|
# # [(0.0, 0.0, 0.0), (0.5, 179.5, 0.0)],
|
|
|
|
# # [(0.7, 0.0, 0.0), (0.0, -180.0, 0.0)],
|
|
|
|
# ]
|
|
|
|
# for cs in coords:
|
|
|
|
# c1 = cs[0]; c2 = cs[1]
|
|
|
|
# print("Testing: "+str(c1)+" -> "+str(c2))
|
|
|
|
# us = time.time()
|
|
|
|
# ld = c1+c2; g = geod.Inverse(c1[0], c1[1], c2[0], c2[1])
|
|
|
|
# print("Lib computed in "+str(round((time.time()-us)*1e6, 3))+"us")
|
|
|
|
# us = time.time()
|
|
|
|
# eld = orthodromic_distance(c1,c2,ellipsoid=True)
|
|
|
|
# if eld:
|
|
|
|
# print("Own computed in "+str(round((time.time()-us)*1e6, 3))+"us")
|
|
|
|
# else:
|
|
|
|
# print("Own timed out in "+str(round((time.time()-us)*1e6, 3))+"us")
|
|
|
|
# ed_own = euclidian_distance(c1,c2,ellipsoid=True)
|
|
|
|
# sd_own = orthodromic_distance(c1,c2,ellipsoid=False)
|
|
|
|
# aa = azalt(c1,c2,ellipsoid=True)
|
|
|
|
# fac = 1
|
|
|
|
# if eld: print("LibDiff = "+RNS.prettydistance(g['s12']-eld)+f" {fac*g['s12']-fac*eld}")
|
|
|
|
# print("Spherical = "+RNS.prettydistance(sd_own)+f" {fac*sd_own}")
|
|
|
|
# # print("EllipLib = "+RNS.prettydistance(g['s12'])+f" {fac*g['s12']}")
|
|
|
|
# if eld: print("Ellipsoid = "+RNS.prettydistance(eld)+f" {fac*eld}")
|
|
|
|
# print("Euclidian = "+RNS.prettydistance(ed_own)+f" {fac*ed_own}")
|
|
|
|
# print("AzAlt = "+f" {aa[0]} / {aa[1]}")
|
|
|
|
# print("")
|
2024-03-26 09:18:42 -04:00
|
|
|
|
|
|
|
# def ghtest():
|
|
|
|
# import pygeodesy
|
|
|
|
# from pygeodesy.ellipsoidalKarney import LatLon
|
|
|
|
# ginterpolator = pygeodesy.GeoidKarney("./assets/geoids/egm2008-5.pgm")
|
|
|
|
# # Make an example location
|
|
|
|
# lat=51.416422
|
|
|
|
# lon=-116.217151
|
|
|
|
# if geoid_height == None:
|
|
|
|
# geoid_height = GeoidHeight()
|
|
|
|
# h2 = geoid_height.get(lat, lon)
|
|
|
|
# # Get the geoid height
|
|
|
|
# single_position=LatLon(lat, lon)
|
|
|
|
# h1 = ginterpolator(single_position)
|
|
|
|
# print(h1)
|
|
|
|
# print(h2)
|