RetroShare/retroshare-gui/src/util/imageutil.cpp

260 lines
8.1 KiB
C++

#include "imageutil.h"
#include "util/misc.h"
#include "util/rstime.h"
#include <QApplication>
#include <QByteArray>
#include <QImage>
#include <QMessageBox>
#include <QString>
#include <QTextCursor>
#include <QTextDocumentFragment>
#include <QBuffer>
#include <QtGlobal>
#include <QSet>
#include <cmath>
#include <iostream>
ImageUtil::ImageUtil() {}
void ImageUtil::extractImage(QWidget *window, QTextCursor cursor)
{
cursor.movePosition(QTextCursor::Left, QTextCursor::MoveAnchor, 1);
cursor.movePosition(QTextCursor::Right, QTextCursor::KeepAnchor, 2);
QString imagestr = cursor.selection().toHtml();
bool success = false;
int start = imagestr.indexOf("base64,") + 7;
int stop = imagestr.indexOf("\"", start);
int length = stop - start;
if((start >= 0) && (length > 0))
{
QByteArray ba = QByteArray::fromBase64(imagestr.mid(start, length).toLatin1());
QImage image = QImage::fromData(ba);
if(!image.isNull())
{
QString file;
success = true;
if(misc::getSaveFileName(window, RshareSettings::LASTDIR_IMAGES, "Save Picture File", "Pictures (*.png *.xpm *.jpg)", file))
{
if(!image.save(file, 0, 100))
if(!image.save(file + ".png", 0, 100))
QMessageBox::warning(window, QApplication::translate("ImageUtil", "Save image"), QApplication::translate("ImageUtil", "Cannot save the image, invalid filename"));
}
}
}
if(!success)
{
QMessageBox::warning(window, QApplication::translate("ImageUtil", "Save image"), QApplication::translate("ImageUtil", "Not an image"));
}
}
bool ImageUtil::optimizeSize(QString &html, const QImage& original, QImage &optimized, int maxPixels, int maxBytes)
{
//nothing to do if it fits into the limits
optimized = original;
if ((maxPixels <= 0) || (optimized.width()*optimized.height() <= maxPixels)) {
if(checkSize(html, optimized, maxBytes) <= maxBytes) {
return true;
}
}
QVector<QRgb> ct;
quantization(original, ct);
//Downscale the image to fit into maxPixels
double whratio = (qreal)original.width() / (qreal)original.height();
int maxwidth;
if(maxPixels > 0) {
int maxwidth2 = (int)sqrt((double)(maxPixels) * whratio);
maxwidth = (original.width() > maxwidth2) ? maxwidth2 : original.width();
} else
maxwidth = original.width();
int minwidth = (int)sqrt(100.0 * whratio);
//if maxBytes not defined, do not reduce color space, just downscale
if(maxBytes <= 0) {
checkSize(html, optimized = original.scaledToWidth(maxwidth, Qt::SmoothTransformation), maxBytes);
return true;
}
//Use binary search to find a suitable image size + linear regression to guess the file size
double maxsize = (double)checkSize(html, optimized = original.scaledToWidth(maxwidth, Qt::SmoothTransformation).convertToFormat(QImage::Format_Indexed8, ct), maxBytes);
if(maxsize <= maxBytes) return true; //success
double minsize = (double)checkSize(html, optimized = original.scaledToWidth(minwidth, Qt::SmoothTransformation).convertToFormat(QImage::Format_Indexed8, ct), maxBytes);
if(minsize > maxBytes) return false; //impossible
// std::cout << "maxS: " << maxsize << " minS: " << minsize << std::endl;
// std::cout << "maxW: " << maxwidth << " minW: " << minwidth << std::endl;
int region = 500;
bool success = false;
do {
double m = (maxsize - minsize) / ((double)maxwidth * (double)maxwidth / whratio - (double)minwidth * (double)minwidth / whratio);
double b = maxsize - m * ((double)maxwidth * (double)maxwidth / whratio);
double a = ((double)(maxBytes - region/2) - b) / m; //maxBytes - region/2 target the center of the accepted region
int nextwidth = (int)sqrt(a * whratio);
double nextsize = (double)checkSize(html, optimized = original.scaledToWidth(nextwidth, Qt::SmoothTransformation).convertToFormat(QImage::Format_Indexed8, ct), maxBytes);
if(nextsize <= maxBytes) {
minsize = nextsize;
minwidth = nextwidth;
if(nextsize >= (maxBytes - region)) //the file size is close anough to the limit
success = true;
} else {
maxsize = nextsize;
maxwidth = nextwidth;
}
// std::cout << "maxS: " << maxsize << " minS: " << minsize << std::endl;
// std::cout << "maxW: " << maxwidth << " minW: " << minwidth << std::endl;
} while(!success);
return true;
//html = html.arg(original.width());
//std::cout << html.toStdString() << std::endl;
}
int ImageUtil::checkSize(QString &embeddedImage, const QImage &img, int maxBytes)
{
rstime::RsScopeTimer st("Check size");
QByteArray bytearray;
QBuffer buffer(&bytearray);
int size = 0;
//std::cout << QString("Trying image: format PNG, size %1x%2, colors %3\n").arg(img.width()).arg(img.height()).arg(img.colorCount()).toStdString();
if (buffer.open(QIODevice::WriteOnly)) {
if (img.save(&buffer, "PNG", 0)) {
size = bytearray.length() * 4/3;
if((maxBytes > 0) && (size > maxBytes)) // *4/3 for base64
{
//std::cout << QString("\tToo large, size: %1, limit: %2 bytes\n").arg(bytearray.length() * 4/3).arg(maxBytes).toStdString();
}else{
//std::cout << QString("\tOK, size: %1, limit: %2 bytes\n").arg(bytearray.length() * 4/3).arg(maxBytes).toStdString();
QByteArray encodedByteArray = bytearray.toBase64();
//embeddedImage = "<img width=\"%1\" src=\"data:image/png;base64,";
embeddedImage = "<img src=\"data:image/png;base64,";
embeddedImage.append(encodedByteArray);
embeddedImage.append("\">");
}
} else {
std::cerr << "ImageUtil: image can't be saved to buffer" << std::endl;
}
buffer.close();
bytearray.clear();
} else {
std::cerr << "ImageUtil: buffer can't be opened" << std::endl;
}
return size;
}
bool redLessThan(const QRgb &c1, const QRgb &c2)
{
return qRed(c1) < qRed(c2);
}
bool greenLessThan(const QRgb &c1, const QRgb &c2)
{
return qGreen(c1) < qGreen(c2);
}
bool blueLessThan(const QRgb &c1, const QRgb &c2)
{
return qBlue(c1) < qBlue(c2);
}
//median cut algoritmh
void ImageUtil::quantization(const QImage &img, QVector<QRgb> &palette)
{
int bits = 4; // bits/pixel
int samplesize = 100000; //only take this many color samples
rstime::RsScopeTimer st("Quantization");
QSet<QRgb> colors;
//collect color information
int imgsize = img.width()*img.height();
int width = img.width();
samplesize = qMin(samplesize, imgsize);
double sampledist = (double)imgsize / (double)samplesize;
for (double i = 0; i < imgsize; i += sampledist) {
QRgb pixel = img.pixel((int)i % width, (int)i / width);
colors.insert(pixel);
}
QList<QRgb> colorlist = colors.toList();
//don't do the algoritmh if we have less than 16 different colors
if(colorlist.size() <= (1 << bits)) {
for(int i = 0; i < colors.count(); ++i)
palette.append(colorlist[i]);
} else {
quantization(colorlist.begin(), colorlist.end(), bits, palette);
}
}
void ImageUtil::quantization(QList<QRgb>::iterator begin, QList<QRgb>::iterator end, int depth, QVector<QRgb> &palette)
{
//the buckets are ready
if(depth == 0) {
avgbucket(begin, end, palette);
return;
}
//nothing to do
int count = end - begin;
if(count == 1) {
palette.append(*begin);
return;
}
//widest color channel
int rl = 255;
int gl = 255;
int bl = 255;
int rh = 0;
int gh = 0;
int bh = 0;
for(QList<QRgb>::iterator it = begin; it < end; ++it) {
rl = qMin(rl, qRed(*it));
gl = qMin(gl, qGreen(*it));
bl = qMin(bl, qBlue(*it));
rh = qMax(rh, qRed(*it));
gh = qMax(gh, qGreen(*it));
bh = qMax(bh, qBlue(*it));
}
int red = rh - rl;
int green = gh - gl;
int blue = bh - bl;
//order by the widest channel
if(red > green)
if(red > blue)
qSort(begin, end, redLessThan);
else
qSort(begin, end, blueLessThan);
else
if(green > blue)
qSort(begin, end, greenLessThan);
else
qSort(begin, end, blueLessThan);
//split into two buckets
QList<QRgb>::iterator split = begin + count / 2;
quantization(begin, split, depth - 1, palette);
quantization(split, end, depth - 1, palette);
}
void ImageUtil::avgbucket(QList<QRgb>::iterator begin, QList<QRgb>::iterator end, QVector<QRgb> &palette)
{
int red = 0;
int green = 0;
int blue = 0;
int count = end - begin;
for(QList<QRgb>::iterator it = begin; it < end; ++it) {
red += qRed(*it);
green += qGreen(*it);
blue += qBlue(*it);
}
QRgb color = qRgb(red/count, green/count, blue/count);
palette.append(color);
}