RetroShare/libretroshare/src/util/pugixml.cc
chrisparker126 ec0ce30103 checked in first bits of code for cache service data optimisation,
distrib can build grps xml document
added pugixml src code into utilities

pls see design document:
http://retroshare.sourceforge.net/wiki/index.php/Documentation:design_services_histories

git-svn-id: http://svn.code.sf.net/p/retroshare/code/trunk@4076 b45a01b8-16f6-495d-af2f-9b41ad6348cc
2011-03-04 22:16:25 +00:00

9577 lines
233 KiB
C++

/**
* pugixml parser - version 1.0
* --------------------------------------------------------
* Copyright (C) 2006-2010, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
* Report bugs and download new versions at http://pugixml.org/
*
* This library is distributed under the MIT License. See notice at the end
* of this file.
*
* This work is based on the pugxml parser, which is:
* Copyright (C) 2003, by Kristen Wegner (kristen@tima.net)
*/
#include "pugixml.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <setjmp.h>
#include <wchar.h>
#ifndef PUGIXML_NO_XPATH
# include <math.h>
# include <float.h>
#endif
#ifndef PUGIXML_NO_STL
# include <istream>
# include <ostream>
# include <string>
#endif
// For placement new
#include <new>
#ifdef _MSC_VER
# pragma warning(disable: 4127) // conditional expression is constant
# pragma warning(disable: 4324) // structure was padded due to __declspec(align())
# pragma warning(disable: 4611) // interaction between '_setjmp' and C++ object destruction is non-portable
# pragma warning(disable: 4702) // unreachable code
# pragma warning(disable: 4996) // this function or variable may be unsafe
#endif
#ifdef __INTEL_COMPILER
# pragma warning(disable: 177) // function was declared but never referenced
# pragma warning(disable: 1478 1786) // function was declared "deprecated"
#endif
#ifdef __BORLANDC__
# pragma warn -8008 // condition is always false
# pragma warn -8066 // unreachable code
#endif
#ifdef __SNC__
# pragma diag_suppress=178 // function was declared but never referenced
# pragma diag_suppress=237 // controlling expression is constant
#endif
// uintptr_t
#if !defined(_MSC_VER) || _MSC_VER >= 1600
# include <stdint.h>
#else
# if _MSC_VER < 1300
// No native uintptr_t in MSVC6
typedef size_t uintptr_t;
# endif
typedef unsigned __int8 uint8_t;
typedef unsigned __int16 uint16_t;
typedef unsigned __int32 uint32_t;
typedef __int32 int32_t;
#endif
// Inlining controls
#if defined(_MSC_VER) && _MSC_VER >= 1300
# define PUGIXML_NO_INLINE __declspec(noinline)
#elif defined(__GNUC__)
# define PUGIXML_NO_INLINE __attribute__((noinline))
#else
# define PUGIXML_NO_INLINE
#endif
// Simple static assertion
#define STATIC_ASSERT(cond) { static const char condition_failed[(cond) ? 1 : -1] = {0}; (void)condition_failed[0]; }
// Digital Mars C++ bug workaround for passing char loaded from memory via stack
#ifdef __DMC__
# define DMC_VOLATILE volatile
#else
# define DMC_VOLATILE
#endif
using namespace pugi;
// Memory allocation
namespace
{
void* default_allocate(size_t size)
{
return malloc(size);
}
void default_deallocate(void* ptr)
{
free(ptr);
}
allocation_function global_allocate = default_allocate;
deallocation_function global_deallocate = default_deallocate;
}
// String utilities
namespace
{
// Get string length
size_t strlength(const char_t* s)
{
assert(s);
#ifdef PUGIXML_WCHAR_MODE
return wcslen(s);
#else
return strlen(s);
#endif
}
// Compare two strings
bool strequal(const char_t* src, const char_t* dst)
{
assert(src && dst);
#ifdef PUGIXML_WCHAR_MODE
return wcscmp(src, dst) == 0;
#else
return strcmp(src, dst) == 0;
#endif
}
// Compare lhs with [rhs_begin, rhs_end)
bool strequalrange(const char_t* lhs, const char_t* rhs, size_t count)
{
for (size_t i = 0; i < count; ++i)
if (lhs[i] != rhs[i])
return false;
return lhs[count] == 0;
}
#ifdef PUGIXML_WCHAR_MODE
// Convert string to wide string, assuming all symbols are ASCII
void widen_ascii(wchar_t* dest, const char* source)
{
for (const char* i = source; *i; ++i) *dest++ = *i;
*dest = 0;
}
#endif
}
#if !defined(PUGIXML_NO_STL) || !defined(PUGIXML_NO_XPATH)
// auto_ptr-like buffer holder for exception recovery
namespace
{
struct buffer_holder
{
void* data;
void (*deleter)(void*);
buffer_holder(void* data, void (*deleter)(void*)): data(data), deleter(deleter)
{
}
~buffer_holder()
{
if (data) deleter(data);
}
void* release()
{
void* result = data;
data = 0;
return result;
}
};
}
#endif
namespace
{
static const size_t xml_memory_page_size = 32768;
static const uintptr_t xml_memory_page_alignment = 32;
static const uintptr_t xml_memory_page_pointer_mask = ~(xml_memory_page_alignment - 1);
static const uintptr_t xml_memory_page_name_allocated_mask = 16;
static const uintptr_t xml_memory_page_value_allocated_mask = 8;
static const uintptr_t xml_memory_page_type_mask = 7;
struct xml_allocator;
struct xml_memory_page
{
static xml_memory_page* construct(void* memory)
{
if (!memory) return 0; //$ redundant, left for performance
xml_memory_page* result = static_cast<xml_memory_page*>(memory);
result->allocator = 0;
result->memory = 0;
result->prev = 0;
result->next = 0;
result->busy_size = 0;
result->freed_size = 0;
return result;
}
xml_allocator* allocator;
void* memory;
xml_memory_page* prev;
xml_memory_page* next;
size_t busy_size;
size_t freed_size;
char data[1];
};
struct xml_memory_string_header
{
uint16_t page_offset; // offset from page->data
uint16_t full_size; // 0 if string occupies whole page
};
struct xml_allocator
{
xml_allocator(xml_memory_page* root): _root(root), _busy_size(root->busy_size)
{
}
xml_memory_page* allocate_page(size_t data_size)
{
size_t size = offsetof(xml_memory_page, data) + data_size;
// allocate block with some alignment, leaving memory for worst-case padding
void* memory = global_allocate(size + xml_memory_page_alignment);
if (!memory) return 0;
// align upwards to page boundary
void* page_memory = reinterpret_cast<void*>((reinterpret_cast<uintptr_t>(memory) + (xml_memory_page_alignment - 1)) & ~(xml_memory_page_alignment - 1));
// prepare page structure
xml_memory_page* page = xml_memory_page::construct(page_memory);
page->memory = memory;
page->allocator = _root->allocator;
return page;
}
static void deallocate_page(xml_memory_page* page)
{
global_deallocate(page->memory);
}
void* allocate_memory_oob(size_t size, xml_memory_page*& out_page);
void* allocate_memory(size_t size, xml_memory_page*& out_page)
{
if (_busy_size + size > xml_memory_page_size) return allocate_memory_oob(size, out_page);
void* buf = _root->data + _busy_size;
_busy_size += size;
out_page = _root;
return buf;
}
void deallocate_memory(void* ptr, size_t size, xml_memory_page* page)
{
if (page == _root) page->busy_size = _busy_size;
assert(ptr >= page->data && ptr < page->data + page->busy_size);
(void)!ptr;
page->freed_size += size;
assert(page->freed_size <= page->busy_size);
if (page->freed_size == page->busy_size)
{
if (page->next == 0)
{
assert(_root == page);
// top page freed, just reset sizes
page->busy_size = page->freed_size = 0;
_busy_size = 0;
}
else
{
assert(_root != page);
assert(page->prev);
// remove from the list
page->prev->next = page->next;
page->next->prev = page->prev;
// deallocate
deallocate_page(page);
}
}
}
char_t* allocate_string(size_t length)
{
// allocate memory for string and header block
size_t size = sizeof(xml_memory_string_header) + length * sizeof(char_t);
// round size up to pointer alignment boundary
size_t full_size = (size + (sizeof(void*) - 1)) & ~(sizeof(void*) - 1);
xml_memory_page* page;
xml_memory_string_header* header = static_cast<xml_memory_string_header*>(allocate_memory(full_size, page));
if (!header) return 0;
// setup header
ptrdiff_t page_offset = reinterpret_cast<char*>(header) - page->data;
assert(page_offset >= 0 && page_offset < (1 << 16));
header->page_offset = static_cast<uint16_t>(page_offset);
// full_size == 0 for large strings that occupy the whole page
assert(full_size < (1 << 16) || (page->busy_size == full_size && page_offset == 0));
header->full_size = static_cast<uint16_t>(full_size < (1 << 16) ? full_size : 0);
return reinterpret_cast<char_t*>(header + 1);
}
void deallocate_string(char_t* string)
{
// get header
xml_memory_string_header* header = reinterpret_cast<xml_memory_string_header*>(string) - 1;
// deallocate
size_t page_offset = offsetof(xml_memory_page, data) + header->page_offset;
xml_memory_page* page = reinterpret_cast<xml_memory_page*>(reinterpret_cast<char*>(header) - page_offset);
// if full_size == 0 then this string occupies the whole page
size_t full_size = header->full_size == 0 ? page->busy_size : header->full_size;
deallocate_memory(header, full_size, page);
}
xml_memory_page* _root;
size_t _busy_size;
};
PUGIXML_NO_INLINE void* xml_allocator::allocate_memory_oob(size_t size, xml_memory_page*& out_page)
{
const size_t large_allocation_threshold = xml_memory_page_size / 4;
xml_memory_page* page = allocate_page(size <= large_allocation_threshold ? xml_memory_page_size : size);
if (!page) return 0;
if (size <= large_allocation_threshold)
{
_root->busy_size = _busy_size;
// insert page at the end of linked list
page->prev = _root;
_root->next = page;
_root = page;
_busy_size = size;
}
else
{
// insert page before the end of linked list, so that it is deleted as soon as possible
// the last page is not deleted even if it's empty (see deallocate_memory)
assert(_root->prev);
page->prev = _root->prev;
page->next = _root;
_root->prev->next = page;
_root->prev = page;
}
// allocate inside page
page->busy_size = size;
out_page = page;
return page->data;
}
}
namespace pugi
{
/// A 'name=value' XML attribute structure.
struct xml_attribute_struct
{
/// Default ctor
xml_attribute_struct(xml_memory_page* page): header(reinterpret_cast<uintptr_t>(page)), name(0), value(0), prev_attribute_c(0), next_attribute(0)
{
}
uintptr_t header;
char_t* name; ///< Pointer to attribute name.
char_t* value; ///< Pointer to attribute value.
xml_attribute_struct* prev_attribute_c; ///< Previous attribute (cyclic list)
xml_attribute_struct* next_attribute; ///< Next attribute
};
/// An XML document tree node.
struct xml_node_struct
{
/// Default ctor
/// \param type - node type
xml_node_struct(xml_memory_page* page, xml_node_type type): header(reinterpret_cast<uintptr_t>(page) | (type - 1)), parent(0), name(0), value(0), first_child(0), prev_sibling_c(0), next_sibling(0), first_attribute(0)
{
}
uintptr_t header;
xml_node_struct* parent; ///< Pointer to parent
char_t* name; ///< Pointer to element name.
char_t* value; ///< Pointer to any associated string data.
xml_node_struct* first_child; ///< First child
xml_node_struct* prev_sibling_c; ///< Left brother (cyclic list)
xml_node_struct* next_sibling; ///< Right brother
xml_attribute_struct* first_attribute; ///< First attribute
};
}
namespace
{
struct xml_document_struct: public xml_node_struct, public xml_allocator
{
xml_document_struct(xml_memory_page* page): xml_node_struct(page, node_document), xml_allocator(page), buffer(0)
{
}
const char_t* buffer;
};
static inline xml_allocator& get_allocator(const xml_node_struct* node)
{
assert(node);
return *reinterpret_cast<xml_memory_page*>(node->header & xml_memory_page_pointer_mask)->allocator;
}
}
// Low-level DOM operations
namespace
{
inline xml_attribute_struct* allocate_attribute(xml_allocator& alloc)
{
xml_memory_page* page;
void* memory = alloc.allocate_memory(sizeof(xml_attribute_struct), page);
return new (memory) xml_attribute_struct(page);
}
inline xml_node_struct* allocate_node(xml_allocator& alloc, xml_node_type type)
{
xml_memory_page* page;
void* memory = alloc.allocate_memory(sizeof(xml_node_struct), page);
return new (memory) xml_node_struct(page, type);
}
inline void destroy_attribute(xml_attribute_struct* a, xml_allocator& alloc)
{
uintptr_t header = a->header;
if (header & xml_memory_page_name_allocated_mask) alloc.deallocate_string(a->name);
if (header & xml_memory_page_value_allocated_mask) alloc.deallocate_string(a->value);
alloc.deallocate_memory(a, sizeof(xml_attribute_struct), reinterpret_cast<xml_memory_page*>(header & xml_memory_page_pointer_mask));
}
inline void destroy_node(xml_node_struct* n, xml_allocator& alloc)
{
uintptr_t header = n->header;
if (header & xml_memory_page_name_allocated_mask) alloc.deallocate_string(n->name);
if (header & xml_memory_page_value_allocated_mask) alloc.deallocate_string(n->value);
for (xml_attribute_struct* attr = n->first_attribute; attr; )
{
xml_attribute_struct* next = attr->next_attribute;
destroy_attribute(attr, alloc);
attr = next;
}
for (xml_node_struct* child = n->first_child; child; )
{
xml_node_struct* next = child->next_sibling;
destroy_node(child, alloc);
child = next;
}
alloc.deallocate_memory(n, sizeof(xml_node_struct), reinterpret_cast<xml_memory_page*>(header & xml_memory_page_pointer_mask));
}
PUGIXML_NO_INLINE xml_node_struct* append_node(xml_node_struct* node, xml_allocator& alloc, xml_node_type type = node_element)
{
xml_node_struct* child = allocate_node(alloc, type);
if (!child) return 0;
child->parent = node;
xml_node_struct* first_child = node->first_child;
if (first_child)
{
xml_node_struct* last_child = first_child->prev_sibling_c;
last_child->next_sibling = child;
child->prev_sibling_c = last_child;
first_child->prev_sibling_c = child;
}
else
{
node->first_child = child;
child->prev_sibling_c = child;
}
return child;
}
PUGIXML_NO_INLINE xml_attribute_struct* append_attribute_ll(xml_node_struct* node, xml_allocator& alloc)
{
xml_attribute_struct* a = allocate_attribute(alloc);
if (!a) return 0;
xml_attribute_struct* first_attribute = node->first_attribute;
if (first_attribute)
{
xml_attribute_struct* last_attribute = first_attribute->prev_attribute_c;
last_attribute->next_attribute = a;
a->prev_attribute_c = last_attribute;
first_attribute->prev_attribute_c = a;
}
else
{
node->first_attribute = a;
a->prev_attribute_c = a;
}
return a;
}
}
// Helper classes for code generation
namespace
{
struct opt_false
{
enum { value = 0 };
};
struct opt_true
{
enum { value = 1 };
};
}
// Unicode utilities
namespace
{
inline uint16_t endian_swap(uint16_t value)
{
return static_cast<uint16_t>(((value & 0xff) << 8) | (value >> 8));
}
inline uint32_t endian_swap(uint32_t value)
{
return ((value & 0xff) << 24) | ((value & 0xff00) << 8) | ((value & 0xff0000) >> 8) | (value >> 24);
}
struct utf8_counter
{
typedef size_t value_type;
static value_type low(value_type result, uint32_t ch)
{
// U+0000..U+007F
if (ch < 0x80) return result + 1;
// U+0080..U+07FF
else if (ch < 0x800) return result + 2;
// U+0800..U+FFFF
else return result + 3;
}
static value_type high(value_type result, uint32_t)
{
// U+10000..U+10FFFF
return result + 4;
}
};
struct utf8_writer
{
typedef uint8_t* value_type;
static value_type low(value_type result, uint32_t ch)
{
// U+0000..U+007F
if (ch < 0x80)
{
*result = static_cast<uint8_t>(ch);
return result + 1;
}
// U+0080..U+07FF
else if (ch < 0x800)
{
result[0] = static_cast<uint8_t>(0xC0 | (ch >> 6));
result[1] = static_cast<uint8_t>(0x80 | (ch & 0x3F));
return result + 2;
}
// U+0800..U+FFFF
else
{
result[0] = static_cast<uint8_t>(0xE0 | (ch >> 12));
result[1] = static_cast<uint8_t>(0x80 | ((ch >> 6) & 0x3F));
result[2] = static_cast<uint8_t>(0x80 | (ch & 0x3F));
return result + 3;
}
}
static value_type high(value_type result, uint32_t ch)
{
// U+10000..U+10FFFF
result[0] = static_cast<uint8_t>(0xF0 | (ch >> 18));
result[1] = static_cast<uint8_t>(0x80 | ((ch >> 12) & 0x3F));
result[2] = static_cast<uint8_t>(0x80 | ((ch >> 6) & 0x3F));
result[3] = static_cast<uint8_t>(0x80 | (ch & 0x3F));
return result + 4;
}
static value_type any(value_type result, uint32_t ch)
{
return (ch < 0x10000) ? low(result, ch) : high(result, ch);
}
};
struct utf16_counter
{
typedef size_t value_type;
static value_type low(value_type result, uint32_t)
{
return result + 1;
}
static value_type high(value_type result, uint32_t)
{
return result + 2;
}
};
struct utf16_writer
{
typedef uint16_t* value_type;
static value_type low(value_type result, uint32_t ch)
{
*result = static_cast<uint16_t>(ch);
return result + 1;
}
static value_type high(value_type result, uint32_t ch)
{
uint32_t msh = (uint32_t)(ch - 0x10000) >> 10;
uint32_t lsh = (uint32_t)(ch - 0x10000) & 0x3ff;
result[0] = static_cast<uint16_t>(0xD800 + msh);
result[1] = static_cast<uint16_t>(0xDC00 + lsh);
return result + 2;
}
static value_type any(value_type result, uint32_t ch)
{
return (ch < 0x10000) ? low(result, ch) : high(result, ch);
}
};
struct utf32_counter
{
typedef size_t value_type;
static value_type low(value_type result, uint32_t)
{
return result + 1;
}
static value_type high(value_type result, uint32_t)
{
return result + 1;
}
};
struct utf32_writer
{
typedef uint32_t* value_type;
static value_type low(value_type result, uint32_t ch)
{
*result = ch;
return result + 1;
}
static value_type high(value_type result, uint32_t ch)
{
*result = ch;
return result + 1;
}
static value_type any(value_type result, uint32_t ch)
{
*result = ch;
return result + 1;
}
};
template <size_t size> struct wchar_selector;
template <> struct wchar_selector<2>
{
typedef uint16_t type;
typedef utf16_counter counter;
typedef utf16_writer writer;
};
template <> struct wchar_selector<4>
{
typedef uint32_t type;
typedef utf32_counter counter;
typedef utf32_writer writer;
};
typedef wchar_selector<sizeof(wchar_t)>::counter wchar_counter;
typedef wchar_selector<sizeof(wchar_t)>::writer wchar_writer;
template <typename Traits, typename opt_swap = opt_false> struct utf_decoder
{
static inline typename Traits::value_type decode_utf8_block(const uint8_t* data, size_t size, typename Traits::value_type result)
{
const uint8_t utf8_byte_mask = 0x3f;
while (size)
{
uint8_t lead = *data;
// 0xxxxxxx -> U+0000..U+007F
if (lead < 0x80)
{
result = Traits::low(result, lead);
data += 1;
size -= 1;
// process aligned single-byte (ascii) blocks
if ((reinterpret_cast<uintptr_t>(data) & 3) == 0)
{
while (size >= 4 && (*reinterpret_cast<const uint32_t*>(data) & 0x80808080) == 0)
{
result = Traits::low(result, data[0]);
result = Traits::low(result, data[1]);
result = Traits::low(result, data[2]);
result = Traits::low(result, data[3]);
data += 4;
size -= 4;
}
}
}
// 110xxxxx -> U+0080..U+07FF
else if ((unsigned)(lead - 0xC0) < 0x20 && size >= 2 && (data[1] & 0xc0) == 0x80)
{
result = Traits::low(result, ((lead & ~0xC0) << 6) | (data[1] & utf8_byte_mask));
data += 2;
size -= 2;
}
// 1110xxxx -> U+0800-U+FFFF
else if ((unsigned)(lead - 0xE0) < 0x10 && size >= 3 && (data[1] & 0xc0) == 0x80 && (data[2] & 0xc0) == 0x80)
{
result = Traits::low(result, ((lead & ~0xE0) << 12) | ((data[1] & utf8_byte_mask) << 6) | (data[2] & utf8_byte_mask));
data += 3;
size -= 3;
}
// 11110xxx -> U+10000..U+10FFFF
else if ((unsigned)(lead - 0xF0) < 0x08 && size >= 4 && (data[1] & 0xc0) == 0x80 && (data[2] & 0xc0) == 0x80 && (data[3] & 0xc0) == 0x80)
{
result = Traits::high(result, ((lead & ~0xF0) << 18) | ((data[1] & utf8_byte_mask) << 12) | ((data[2] & utf8_byte_mask) << 6) | (data[3] & utf8_byte_mask));
data += 4;
size -= 4;
}
// 10xxxxxx or 11111xxx -> invalid
else
{
data += 1;
size -= 1;
}
}
return result;
}
static inline typename Traits::value_type decode_utf16_block(const uint16_t* data, size_t size, typename Traits::value_type result)
{
const uint16_t* end = data + size;
while (data < end)
{
uint16_t lead = opt_swap::value ? endian_swap(*data) : *data;
// U+0000..U+D7FF
if (lead < 0xD800)
{
result = Traits::low(result, lead);
data += 1;
}
// U+E000..U+FFFF
else if ((unsigned)(lead - 0xE000) < 0x2000)
{
result = Traits::low(result, lead);
data += 1;
}
// surrogate pair lead
else if ((unsigned)(lead - 0xD800) < 0x400 && data + 1 < end)
{
uint16_t next = opt_swap::value ? endian_swap(data[1]) : data[1];
if ((unsigned)(next - 0xDC00) < 0x400)
{
result = Traits::high(result, 0x10000 + ((lead & 0x3ff) << 10) + (next & 0x3ff));
data += 2;
}
else
{
data += 1;
}
}
else
{
data += 1;
}
}
return result;
}
static inline typename Traits::value_type decode_utf32_block(const uint32_t* data, size_t size, typename Traits::value_type result)
{
const uint32_t* end = data + size;
while (data < end)
{
uint32_t lead = opt_swap::value ? endian_swap(*data) : *data;
// U+0000..U+FFFF
if (lead < 0x10000)
{
result = Traits::low(result, lead);
data += 1;
}
// U+10000..U+10FFFF
else
{
result = Traits::high(result, lead);
data += 1;
}
}
return result;
}
};
template <typename T> inline void convert_utf_endian_swap(T* result, const T* data, size_t length)
{
for (size_t i = 0; i < length; ++i) result[i] = endian_swap(data[i]);
}
inline void convert_wchar_endian_swap(wchar_t* result, const wchar_t* data, size_t length)
{
for (size_t i = 0; i < length; ++i) result[i] = static_cast<wchar_t>(endian_swap(static_cast<wchar_selector<sizeof(wchar_t)>::type>(data[i])));
}
}
namespace
{
enum chartype_t
{
ct_parse_pcdata = 1, // \0, &, \r, <
ct_parse_attr = 2, // \0, &, \r, ', "
ct_parse_attr_ws = 4, // \0, &, \r, ', ", \n, tab
ct_space = 8, // \r, \n, space, tab
ct_parse_cdata = 16, // \0, ], >, \r
ct_parse_comment = 32, // \0, -, >, \r
ct_symbol = 64, // Any symbol > 127, a-z, A-Z, 0-9, _, :, -, .
ct_start_symbol = 128 // Any symbol > 127, a-z, A-Z, _, :
};
const unsigned char chartype_table[256] =
{
55, 0, 0, 0, 0, 0, 0, 0, 0, 12, 12, 0, 0, 63, 0, 0, // 0-15
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 16-31
8, 0, 6, 0, 0, 0, 7, 6, 0, 0, 0, 0, 0, 96, 64, 0, // 32-47
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 192, 0, 1, 0, 48, 0, // 48-63
0, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, // 64-79
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 0, 0, 16, 0, 192, // 80-95
0, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, // 96-111
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 0, 0, 0, 0, 0, // 112-127
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, // 128+
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192
};
enum chartypex_t
{
ctx_special_pcdata = 1, // Any symbol >= 0 and < 32 (except \t, \r, \n), &, <, >
ctx_special_attr = 2, // Any symbol >= 0 and < 32 (except \t), &, <, >, "
ctx_start_symbol = 4, // Any symbol > 127, a-z, A-Z, _
ctx_digit = 8, // 0-9
ctx_symbol = 16 // Any symbol > 127, a-z, A-Z, 0-9, _, -, .
};
const unsigned char chartypex_table[256] =
{
3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 2, 3, 3, // 0-15
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // 16-31
0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 16, 16, 0, // 32-47
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 0, 0, 3, 0, 3, 0, // 48-63
0, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, // 64-79
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 0, 0, 0, 0, 20, // 80-95
0, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, // 96-111
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 0, 0, 0, 0, 0, // 112-127
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, // 128+
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
};
#ifdef PUGIXML_WCHAR_MODE
#define IS_CHARTYPE_IMPL(c, ct, table) ((static_cast<unsigned int>(c) < 128 ? table[static_cast<unsigned int>(c)] : table[128]) & (ct))
#else
#define IS_CHARTYPE_IMPL(c, ct, table) (table[static_cast<unsigned char>(c)] & (ct))
#endif
#define IS_CHARTYPE(c, ct) IS_CHARTYPE_IMPL(c, ct, chartype_table)
#define IS_CHARTYPEX(c, ct) IS_CHARTYPE_IMPL(c, ct, chartypex_table)
bool is_little_endian()
{
unsigned int ui = 1;
return *reinterpret_cast<unsigned char*>(&ui) == 1;
}
xml_encoding get_wchar_encoding()
{
STATIC_ASSERT(sizeof(wchar_t) == 2 || sizeof(wchar_t) == 4);
if (sizeof(wchar_t) == 2)
return is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
else
return is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
}
xml_encoding guess_buffer_encoding(uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3)
{
// look for BOM in first few bytes
if (d0 == 0 && d1 == 0 && d2 == 0xfe && d3 == 0xff) return encoding_utf32_be;
if (d0 == 0xff && d1 == 0xfe && d2 == 0 && d3 == 0) return encoding_utf32_le;
if (d0 == 0xfe && d1 == 0xff) return encoding_utf16_be;
if (d0 == 0xff && d1 == 0xfe) return encoding_utf16_le;
if (d0 == 0xef && d1 == 0xbb && d2 == 0xbf) return encoding_utf8;
// look for <, <? or <?xm in various encodings
if (d0 == 0 && d1 == 0 && d2 == 0 && d3 == 0x3c) return encoding_utf32_be;
if (d0 == 0x3c && d1 == 0 && d2 == 0 && d3 == 0) return encoding_utf32_le;
if (d0 == 0 && d1 == 0x3c && d2 == 0 && d3 == 0x3f) return encoding_utf16_be;
if (d0 == 0x3c && d1 == 0 && d2 == 0x3f && d3 == 0) return encoding_utf16_le;
if (d0 == 0x3c && d1 == 0x3f && d2 == 0x78 && d3 == 0x6d) return encoding_utf8;
// look for utf16 < followed by node name (this may fail, but is better than utf8 since it's zero terminated so early)
if (d0 == 0 && d1 == 0x3c) return encoding_utf16_be;
if (d0 == 0x3c && d1 == 0) return encoding_utf16_le;
// no known BOM detected, assume utf8
return encoding_utf8;
}
xml_encoding get_buffer_encoding(xml_encoding encoding, const void* contents, size_t size)
{
// replace wchar encoding with utf implementation
if (encoding == encoding_wchar) return get_wchar_encoding();
// replace utf16 encoding with utf16 with specific endianness
if (encoding == encoding_utf16) return is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
// replace utf32 encoding with utf32 with specific endianness
if (encoding == encoding_utf32) return is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
// only do autodetection if no explicit encoding is requested
if (encoding != encoding_auto) return encoding;
// skip encoding autodetection if input buffer is too small
if (size < 4) return encoding_utf8;
// try to guess encoding (based on XML specification, Appendix F.1)
const uint8_t* data = static_cast<const uint8_t*>(contents);
DMC_VOLATILE uint8_t d0 = data[0], d1 = data[1], d2 = data[2], d3 = data[3];
return guess_buffer_encoding(d0, d1, d2, d3);
}
bool get_mutable_buffer(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, bool is_mutable)
{
if (is_mutable)
{
out_buffer = static_cast<char_t*>(const_cast<void*>(contents));
}
else
{
void* buffer = global_allocate(size > 0 ? size : 1);
if (!buffer) return false;
memcpy(buffer, contents, size);
out_buffer = static_cast<char_t*>(buffer);
}
out_length = size / sizeof(char_t);
return true;
}
#ifdef PUGIXML_WCHAR_MODE
inline bool need_endian_swap_utf(xml_encoding le, xml_encoding re)
{
return (le == encoding_utf16_be && re == encoding_utf16_le) || (le == encoding_utf16_le && re == encoding_utf16_be) ||
(le == encoding_utf32_be && re == encoding_utf32_le) || (le == encoding_utf32_le && re == encoding_utf32_be);
}
bool convert_buffer_endian_swap(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, bool is_mutable)
{
const char_t* data = static_cast<const char_t*>(contents);
if (is_mutable)
{
out_buffer = const_cast<char_t*>(data);
}
else
{
out_buffer = static_cast<char_t*>(global_allocate(size > 0 ? size : 1));
if (!out_buffer) return false;
}
out_length = size / sizeof(char_t);
convert_wchar_endian_swap(out_buffer, data, out_length);
return true;
}
bool convert_buffer_utf8(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size)
{
const uint8_t* data = static_cast<const uint8_t*>(contents);
// first pass: get length in wchar_t units
out_length = utf_decoder<wchar_counter>::decode_utf8_block(data, size, 0);
// allocate buffer of suitable length
out_buffer = static_cast<char_t*>(global_allocate((out_length > 0 ? out_length : 1) * sizeof(char_t)));
if (!out_buffer) return false;
// second pass: convert utf8 input to wchar_t
wchar_writer::value_type out_begin = reinterpret_cast<wchar_writer::value_type>(out_buffer);
wchar_writer::value_type out_end = utf_decoder<wchar_writer>::decode_utf8_block(data, size, out_begin);
assert(out_end == out_begin + out_length);
(void)!out_end;
return true;
}
template <typename opt_swap> bool convert_buffer_utf16(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, opt_swap)
{
const uint16_t* data = static_cast<const uint16_t*>(contents);
size_t length = size / sizeof(uint16_t);
// first pass: get length in wchar_t units
out_length = utf_decoder<wchar_counter, opt_swap>::decode_utf16_block(data, length, 0);
// allocate buffer of suitable length
out_buffer = static_cast<char_t*>(global_allocate((out_length > 0 ? out_length : 1) * sizeof(char_t)));
if (!out_buffer) return false;
// second pass: convert utf16 input to wchar_t
wchar_writer::value_type out_begin = reinterpret_cast<wchar_writer::value_type>(out_buffer);
wchar_writer::value_type out_end = utf_decoder<wchar_writer, opt_swap>::decode_utf16_block(data, length, out_begin);
assert(out_end == out_begin + out_length);
(void)!out_end;
return true;
}
template <typename opt_swap> bool convert_buffer_utf32(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, opt_swap)
{
const uint32_t* data = static_cast<const uint32_t*>(contents);
size_t length = size / sizeof(uint32_t);
// first pass: get length in wchar_t units
out_length = utf_decoder<wchar_counter, opt_swap>::decode_utf32_block(data, length, 0);
// allocate buffer of suitable length
out_buffer = static_cast<char_t*>(global_allocate((out_length > 0 ? out_length : 1) * sizeof(char_t)));
if (!out_buffer) return false;
// second pass: convert utf32 input to wchar_t
wchar_writer::value_type out_begin = reinterpret_cast<wchar_writer::value_type>(out_buffer);
wchar_writer::value_type out_end = utf_decoder<wchar_writer, opt_swap>::decode_utf32_block(data, length, out_begin);
assert(out_end == out_begin + out_length);
(void)!out_end;
return true;
}
bool convert_buffer(char_t*& out_buffer, size_t& out_length, xml_encoding encoding, const void* contents, size_t size, bool is_mutable)
{
// get native encoding
xml_encoding wchar_encoding = get_wchar_encoding();
// fast path: no conversion required
if (encoding == wchar_encoding) return get_mutable_buffer(out_buffer, out_length, contents, size, is_mutable);
// only endian-swapping is required
if (need_endian_swap_utf(encoding, wchar_encoding)) return convert_buffer_endian_swap(out_buffer, out_length, contents, size, is_mutable);
// source encoding is utf8
if (encoding == encoding_utf8) return convert_buffer_utf8(out_buffer, out_length, contents, size);
// source encoding is utf16
if (encoding == encoding_utf16_be || encoding == encoding_utf16_le)
{
xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
return (native_encoding == encoding) ?
convert_buffer_utf16(out_buffer, out_length, contents, size, opt_false()) :
convert_buffer_utf16(out_buffer, out_length, contents, size, opt_true());
}
// source encoding is utf32
if (encoding == encoding_utf32_be || encoding == encoding_utf32_le)
{
xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
return (native_encoding == encoding) ?
convert_buffer_utf32(out_buffer, out_length, contents, size, opt_false()) :
convert_buffer_utf32(out_buffer, out_length, contents, size, opt_true());
}
assert(!"Invalid encoding");
return false;
}
#else
template <typename opt_swap> bool convert_buffer_utf16(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, opt_swap)
{
const uint16_t* data = static_cast<const uint16_t*>(contents);
size_t length = size / sizeof(uint16_t);
// first pass: get length in utf8 units
out_length = utf_decoder<utf8_counter, opt_swap>::decode_utf16_block(data, length, 0);
// allocate buffer of suitable length
out_buffer = static_cast<char_t*>(global_allocate((out_length > 0 ? out_length : 1) * sizeof(char_t)));
if (!out_buffer) return false;
// second pass: convert utf16 input to utf8
uint8_t* out_begin = reinterpret_cast<uint8_t*>(out_buffer);
uint8_t* out_end = utf_decoder<utf8_writer, opt_swap>::decode_utf16_block(data, length, out_begin);
assert(out_end == out_begin + out_length);
(void)!out_end;
return true;
}
template <typename opt_swap> bool convert_buffer_utf32(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, opt_swap)
{
const uint32_t* data = static_cast<const uint32_t*>(contents);
size_t length = size / sizeof(uint32_t);
// first pass: get length in utf8 units
out_length = utf_decoder<utf8_counter, opt_swap>::decode_utf32_block(data, length, 0);
// allocate buffer of suitable length
out_buffer = static_cast<char_t*>(global_allocate((out_length > 0 ? out_length : 1) * sizeof(char_t)));
if (!out_buffer) return false;
// second pass: convert utf32 input to utf8
uint8_t* out_begin = reinterpret_cast<uint8_t*>(out_buffer);
uint8_t* out_end = utf_decoder<utf8_writer, opt_swap>::decode_utf32_block(data, length, out_begin);
assert(out_end == out_begin + out_length);
(void)!out_end;
return true;
}
bool convert_buffer(char_t*& out_buffer, size_t& out_length, xml_encoding encoding, const void* contents, size_t size, bool is_mutable)
{
// fast path: no conversion required
if (encoding == encoding_utf8) return get_mutable_buffer(out_buffer, out_length, contents, size, is_mutable);
// source encoding is utf16
if (encoding == encoding_utf16_be || encoding == encoding_utf16_le)
{
xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
return (native_encoding == encoding) ?
convert_buffer_utf16(out_buffer, out_length, contents, size, opt_false()) :
convert_buffer_utf16(out_buffer, out_length, contents, size, opt_true());
}
// source encoding is utf32
if (encoding == encoding_utf32_be || encoding == encoding_utf32_le)
{
xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
return (native_encoding == encoding) ?
convert_buffer_utf32(out_buffer, out_length, contents, size, opt_false()) :
convert_buffer_utf32(out_buffer, out_length, contents, size, opt_true());
}
assert(!"Invalid encoding");
return false;
}
#endif
size_t as_utf8_begin(const wchar_t* str, size_t length)
{
STATIC_ASSERT(sizeof(wchar_t) == 2 || sizeof(wchar_t) == 4);
// get length in utf8 characters
return sizeof(wchar_t) == 2 ?
utf_decoder<utf8_counter>::decode_utf16_block(reinterpret_cast<const uint16_t*>(str), length, 0) :
utf_decoder<utf8_counter>::decode_utf32_block(reinterpret_cast<const uint32_t*>(str), length, 0);
}
void as_utf8_end(char* buffer, size_t size, const wchar_t* str, size_t length)
{
STATIC_ASSERT(sizeof(wchar_t) == 2 || sizeof(wchar_t) == 4);
// convert to utf8
uint8_t* begin = reinterpret_cast<uint8_t*>(buffer);
uint8_t* end = sizeof(wchar_t) == 2 ?
utf_decoder<utf8_writer>::decode_utf16_block(reinterpret_cast<const uint16_t*>(str), length, begin) :
utf_decoder<utf8_writer>::decode_utf32_block(reinterpret_cast<const uint32_t*>(str), length, begin);
assert(begin + size == end);
(void)!end;
// zero-terminate
buffer[size] = 0;
}
#ifndef PUGIXML_NO_STL
std::string as_utf8_impl(const wchar_t* str, size_t length)
{
// first pass: get length in utf8 characters
size_t size = as_utf8_begin(str, length);
// allocate resulting string
std::string result;
result.resize(size);
// second pass: convert to utf8
if (size > 0) as_utf8_end(&result[0], size, str, length);
return result;
}
std::wstring as_wide_impl(const char* str, size_t size)
{
const uint8_t* data = reinterpret_cast<const uint8_t*>(str);
// first pass: get length in wchar_t units
size_t length = utf_decoder<wchar_counter>::decode_utf8_block(data, size, 0);
// allocate resulting string
std::wstring result;
result.resize(length);
// second pass: convert to wchar_t
if (length > 0)
{
wchar_writer::value_type begin = reinterpret_cast<wchar_writer::value_type>(&result[0]);
wchar_writer::value_type end = utf_decoder<wchar_writer>::decode_utf8_block(data, size, begin);
assert(begin + length == end);
(void)!end;
}
return result;
}
#endif
inline bool strcpy_insitu_allow(size_t length, uintptr_t allocated, char_t* target)
{
assert(target);
size_t target_length = strlength(target);
// always reuse document buffer memory if possible
if (!allocated) return target_length >= length;
// reuse heap memory if waste is not too great
const size_t reuse_threshold = 32;
return target_length >= length && (target_length < reuse_threshold || target_length - length < target_length / 2);
}
bool strcpy_insitu(char_t*& dest, uintptr_t& header, uintptr_t header_mask, const char_t* source)
{
size_t source_length = strlength(source);
if (source_length == 0)
{
// empty string and null pointer are equivalent, so just deallocate old memory
xml_allocator* alloc = reinterpret_cast<xml_memory_page*>(header & xml_memory_page_pointer_mask)->allocator;
if (header & header_mask) alloc->deallocate_string(dest);
// mark the string as not allocated
dest = 0;
header &= ~header_mask;
return true;
}
else if (dest && strcpy_insitu_allow(source_length, header & header_mask, dest))
{
// we can reuse old buffer, so just copy the new data (including zero terminator)
memcpy(dest, source, (source_length + 1) * sizeof(char_t));
return true;
}
else
{
xml_allocator* alloc = reinterpret_cast<xml_memory_page*>(header & xml_memory_page_pointer_mask)->allocator;
// allocate new buffer
char_t* buf = alloc->allocate_string(source_length + 1);
if (!buf) return false;
// copy the string (including zero terminator)
memcpy(buf, source, (source_length + 1) * sizeof(char_t));
// deallocate old buffer (*after* the above to protect against overlapping memory and/or allocation failures)
if (header & header_mask) alloc->deallocate_string(dest);
// the string is now allocated, so set the flag
dest = buf;
header |= header_mask;
return true;
}
}
struct gap
{
char_t* end;
size_t size;
gap(): end(0), size(0)
{
}
// Push new gap, move s count bytes further (skipping the gap).
// Collapse previous gap.
void push(char_t*& s, size_t count)
{
if (end) // there was a gap already; collapse it
{
// Move [old_gap_end, new_gap_start) to [old_gap_start, ...)
assert(s >= end);
memmove(end - size, end, reinterpret_cast<char*>(s) - reinterpret_cast<char*>(end));
}
s += count; // end of current gap
// "merge" two gaps
end = s;
size += count;
}
// Collapse all gaps, return past-the-end pointer
char_t* flush(char_t* s)
{
if (end)
{
// Move [old_gap_end, current_pos) to [old_gap_start, ...)
assert(s >= end);
memmove(end - size, end, reinterpret_cast<char*>(s) - reinterpret_cast<char*>(end));
return s - size;
}
else return s;
}
};
char_t* strconv_escape(char_t* s, gap& g)
{
char_t* stre = s + 1;
switch (*stre)
{
case '#': // &#...
{
unsigned int ucsc = 0;
if (stre[1] == 'x') // &#x... (hex code)
{
stre += 2;
char_t ch = *stre;
if (ch == ';') return stre;
for (;;)
{
if (static_cast<unsigned int>(ch - '0') <= 9)
ucsc = 16 * ucsc + (ch - '0');
else if (static_cast<unsigned int>((ch | ' ') - 'a') <= 5)
ucsc = 16 * ucsc + ((ch | ' ') - 'a' + 10);
else if (ch == ';')
break;
else // cancel
return stre;
ch = *++stre;
}
++stre;
}
else // &#... (dec code)
{
char_t ch = *++stre;
if (ch == ';') return stre;
for (;;)
{
if (static_cast<unsigned int>(ch - '0') <= 9)
ucsc = 10 * ucsc + (ch - '0');
else if (ch == ';')
break;
else // cancel
return stre;
ch = *++stre;
}
++stre;
}
#ifdef PUGIXML_WCHAR_MODE
s = reinterpret_cast<char_t*>(wchar_writer::any(reinterpret_cast<wchar_writer::value_type>(s), ucsc));
#else
s = reinterpret_cast<char_t*>(utf8_writer::any(reinterpret_cast<uint8_t*>(s), ucsc));
#endif
g.push(s, stre - s);
return stre;
}
case 'a': // &a
{
++stre;
if (*stre == 'm') // &am
{
if (*++stre == 'p' && *++stre == ';') // &amp;
{
*s++ = '&';
++stre;
g.push(s, stre - s);
return stre;
}
}
else if (*stre == 'p') // &ap
{
if (*++stre == 'o' && *++stre == 's' && *++stre == ';') // &apos;
{
*s++ = '\'';
++stre;
g.push(s, stre - s);
return stre;
}
}
break;
}
case 'g': // &g
{
if (*++stre == 't' && *++stre == ';') // &gt;
{
*s++ = '>';
++stre;
g.push(s, stre - s);
return stre;
}
break;
}
case 'l': // &l
{
if (*++stre == 't' && *++stre == ';') // &lt;
{
*s++ = '<';
++stre;
g.push(s, stre - s);
return stre;
}
break;
}
case 'q': // &q
{
if (*++stre == 'u' && *++stre == 'o' && *++stre == 't' && *++stre == ';') // &quot;
{
*s++ = '"';
++stre;
g.push(s, stre - s);
return stre;
}
break;
}
}
return stre;
}
// Utility macro for last character handling
#define ENDSWITH(c, e) ((c) == (e) || ((c) == 0 && endch == (e)))
char_t* strconv_comment(char_t* s, char_t endch)
{
gap g;
while (true)
{
while (!IS_CHARTYPE(*s, ct_parse_comment)) ++s;
if (*s == '\r') // Either a single 0x0d or 0x0d 0x0a pair
{
*s++ = '\n'; // replace first one with 0x0a
if (*s == '\n') g.push(s, 1);
}
else if (s[0] == '-' && s[1] == '-' && ENDSWITH(s[2], '>')) // comment ends here
{
*g.flush(s) = 0;
return s + (s[2] == '>' ? 3 : 2);
}
else if (*s == 0)
{
return 0;
}
else ++s;
}
}
char_t* strconv_cdata(char_t* s, char_t endch)
{
gap g;
while (true)
{
while (!IS_CHARTYPE(*s, ct_parse_cdata)) ++s;
if (*s == '\r') // Either a single 0x0d or 0x0d 0x0a pair
{
*s++ = '\n'; // replace first one with 0x0a
if (*s == '\n') g.push(s, 1);
}
else if (s[0] == ']' && s[1] == ']' && ENDSWITH(s[2], '>')) // CDATA ends here
{
*g.flush(s) = 0;
return s + 1;
}
else if (*s == 0)
{
return 0;
}
else ++s;
}
}
typedef char_t* (*strconv_pcdata_t)(char_t*);
template <typename opt_eol, typename opt_escape> struct strconv_pcdata_impl
{
static char_t* parse(char_t* s)
{
gap g;
while (true)
{
while (!IS_CHARTYPE(*s, ct_parse_pcdata)) ++s;
if (*s == '<') // PCDATA ends here
{
*g.flush(s) = 0;
return s + 1;
}
else if (opt_eol::value && *s == '\r') // Either a single 0x0d or 0x0d 0x0a pair
{
*s++ = '\n'; // replace first one with 0x0a
if (*s == '\n') g.push(s, 1);
}
else if (opt_escape::value && *s == '&')
{
s = strconv_escape(s, g);
}
else if (*s == 0)
{
return s;
}
else ++s;
}
}
};
strconv_pcdata_t get_strconv_pcdata(unsigned int optmask)
{
STATIC_ASSERT(parse_escapes == 0x10 && parse_eol == 0x20);
switch ((optmask >> 4) & 3) // get bitmask for flags (eol escapes)
{
case 0: return strconv_pcdata_impl<opt_false, opt_false>::parse;
case 1: return strconv_pcdata_impl<opt_false, opt_true>::parse;
case 2: return strconv_pcdata_impl<opt_true, opt_false>::parse;
case 3: return strconv_pcdata_impl<opt_true, opt_true>::parse;
default: return 0; // should not get here
}
}
typedef char_t* (*strconv_attribute_t)(char_t*, char_t);
template <typename opt_escape> struct strconv_attribute_impl
{
static char_t* parse_wnorm(char_t* s, char_t end_quote)
{
gap g;
// trim leading whitespaces
if (IS_CHARTYPE(*s, ct_space))
{
char_t* str = s;
do ++str;
while (IS_CHARTYPE(*str, ct_space));
g.push(s, str - s);
}
while (true)
{
while (!IS_CHARTYPE(*s, ct_parse_attr_ws | ct_space)) ++s;
if (*s == end_quote)
{
char_t* str = g.flush(s);
do *str-- = 0;
while (IS_CHARTYPE(*str, ct_space));
return s + 1;
}
else if (IS_CHARTYPE(*s, ct_space))
{
*s++ = ' ';
if (IS_CHARTYPE(*s, ct_space))
{
char_t* str = s + 1;
while (IS_CHARTYPE(*str, ct_space)) ++str;
g.push(s, str - s);
}
}
else if (opt_escape::value && *s == '&')
{
s = strconv_escape(s, g);
}
else if (!*s)
{
return 0;
}
else ++s;
}
}
static char_t* parse_wconv(char_t* s, char_t end_quote)
{
gap g;
while (true)
{
while (!IS_CHARTYPE(*s, ct_parse_attr_ws)) ++s;
if (*s == end_quote)
{
*g.flush(s) = 0;
return s + 1;
}
else if (IS_CHARTYPE(*s, ct_space))
{
if (*s == '\r')
{
*s++ = ' ';
if (*s == '\n') g.push(s, 1);
}
else *s++ = ' ';
}
else if (opt_escape::value && *s == '&')
{
s = strconv_escape(s, g);
}
else if (!*s)
{
return 0;
}
else ++s;
}
}
static char_t* parse_eol(char_t* s, char_t end_quote)
{
gap g;
while (true)
{
while (!IS_CHARTYPE(*s, ct_parse_attr)) ++s;
if (*s == end_quote)
{
*g.flush(s) = 0;
return s + 1;
}
else if (*s == '\r')
{
*s++ = '\n';
if (*s == '\n') g.push(s, 1);
}
else if (opt_escape::value && *s == '&')
{
s = strconv_escape(s, g);
}
else if (!*s)
{
return 0;
}
else ++s;
}
}
static char_t* parse_simple(char_t* s, char_t end_quote)
{
gap g;
while (true)
{
while (!IS_CHARTYPE(*s, ct_parse_attr)) ++s;
if (*s == end_quote)
{
*g.flush(s) = 0;
return s + 1;
}
else if (opt_escape::value && *s == '&')
{
s = strconv_escape(s, g);
}
else if (!*s)
{
return 0;
}
else ++s;
}
}
};
strconv_attribute_t get_strconv_attribute(unsigned int optmask)
{
STATIC_ASSERT(parse_escapes == 0x10 && parse_eol == 0x20 && parse_wconv_attribute == 0x40 && parse_wnorm_attribute == 0x80);
switch ((optmask >> 4) & 15) // get bitmask for flags (wconv wnorm eol escapes)
{
case 0: return strconv_attribute_impl<opt_false>::parse_simple;
case 1: return strconv_attribute_impl<opt_true>::parse_simple;
case 2: return strconv_attribute_impl<opt_false>::parse_eol;
case 3: return strconv_attribute_impl<opt_true>::parse_eol;
case 4: return strconv_attribute_impl<opt_false>::parse_wconv;
case 5: return strconv_attribute_impl<opt_true>::parse_wconv;
case 6: return strconv_attribute_impl<opt_false>::parse_wconv;
case 7: return strconv_attribute_impl<opt_true>::parse_wconv;
case 8: return strconv_attribute_impl<opt_false>::parse_wnorm;
case 9: return strconv_attribute_impl<opt_true>::parse_wnorm;
case 10: return strconv_attribute_impl<opt_false>::parse_wnorm;
case 11: return strconv_attribute_impl<opt_true>::parse_wnorm;
case 12: return strconv_attribute_impl<opt_false>::parse_wnorm;
case 13: return strconv_attribute_impl<opt_true>::parse_wnorm;
case 14: return strconv_attribute_impl<opt_false>::parse_wnorm;
case 15: return strconv_attribute_impl<opt_true>::parse_wnorm;
default: return 0; // should not get here
}
}
inline xml_parse_result make_parse_result(xml_parse_status status, ptrdiff_t offset = 0)
{
xml_parse_result result;
result.status = status;
result.offset = offset;
return result;
}
struct xml_parser
{
xml_allocator alloc;
char_t* error_offset;
jmp_buf error_handler;
// Parser utilities.
#define SKIPWS() { while (IS_CHARTYPE(*s, ct_space)) ++s; }
#define OPTSET(OPT) ( optmsk & OPT )
#define PUSHNODE(TYPE) { cursor = append_node(cursor, alloc, TYPE); if (!cursor) THROW_ERROR(status_out_of_memory, s); }
#define POPNODE() { cursor = cursor->parent; }
#define SCANFOR(X) { while (*s != 0 && !(X)) ++s; }
#define SCANWHILE(X) { while ((X)) ++s; }
#define ENDSEG() { ch = *s; *s = 0; ++s; }
#define THROW_ERROR(err, m) error_offset = m, longjmp(error_handler, err)
#define CHECK_ERROR(err, m) { if (*s == 0) THROW_ERROR(err, m); }
xml_parser(const xml_allocator& alloc): alloc(alloc), error_offset(0)
{
}
// DOCTYPE consists of nested sections of the following possible types:
// <!-- ... -->, <? ... ?>, "...", '...'
// <![...]]>
// <!...>
// First group can not contain nested groups
// Second group can contain nested groups of the same type
// Third group can contain all other groups
char_t* parse_doctype_primitive(char_t* s)
{
if (*s == '"' || *s == '\'')
{
// quoted string
char_t ch = *s++;
SCANFOR(*s == ch);
if (!*s) THROW_ERROR(status_bad_doctype, s);
s++;
}
else if (s[0] == '<' && s[1] == '?')
{
// <? ... ?>
s += 2;
SCANFOR(s[0] == '?' && s[1] == '>'); // no need for ENDSWITH because ?> can't terminate proper doctype
if (!*s) THROW_ERROR(status_bad_doctype, s);
s += 2;
}
else if (s[0] == '<' && s[1] == '!' && s[2] == '-' && s[3] == '-')
{
s += 4;
SCANFOR(s[0] == '-' && s[1] == '-' && s[2] == '>'); // no need for ENDSWITH because --> can't terminate proper doctype
if (!*s) THROW_ERROR(status_bad_doctype, s);
s += 4;
}
else THROW_ERROR(status_bad_doctype, s);
return s;
}
char_t* parse_doctype_ignore(char_t* s)
{
assert(s[0] == '<' && s[1] == '!' && s[2] == '[');
s++;
while (*s)
{
if (s[0] == '<' && s[1] == '!' && s[2] == '[')
{
// nested ignore section
s = parse_doctype_ignore(s);
}
else if (s[0] == ']' && s[1] == ']' && s[2] == '>')
{
// ignore section end
s += 3;
return s;
}
else s++;
}
THROW_ERROR(status_bad_doctype, s);
return s;
}
char_t* parse_doctype_group(char_t* s, char_t endch, bool toplevel)
{
assert(s[0] == '<' && s[1] == '!');
s++;
while (*s)
{
if (s[0] == '<' && s[1] == '!' && s[2] != '-')
{
if (s[2] == '[')
{
// ignore
s = parse_doctype_ignore(s);
}
else
{
// some control group
s = parse_doctype_group(s, endch, false);
}
}
else if (s[0] == '<' || s[0] == '"' || s[0] == '\'')
{
// unknown tag (forbidden), or some primitive group
s = parse_doctype_primitive(s);
}
else if (*s == '>')
{
s++;
return s;
}
else s++;
}
if (!toplevel || endch != '>') THROW_ERROR(status_bad_doctype, s);
return s;
}
char_t* parse_exclamation(char_t* s, xml_node_struct* cursor, unsigned int optmsk, char_t endch)
{
// parse node contents, starting with exclamation mark
++s;
if (*s == '-') // '<!-...'
{
++s;
if (*s == '-') // '<!--...'
{
++s;
if (OPTSET(parse_comments))
{
PUSHNODE(node_comment); // Append a new node on the tree.
cursor->value = s; // Save the offset.
}
if (OPTSET(parse_eol) && OPTSET(parse_comments))
{
s = strconv_comment(s, endch);
if (!s) THROW_ERROR(status_bad_comment, cursor->value);
}
else
{
// Scan for terminating '-->'.
SCANFOR(s[0] == '-' && s[1] == '-' && ENDSWITH(s[2], '>'));
CHECK_ERROR(status_bad_comment, s);
if (OPTSET(parse_comments))
*s = 0; // Zero-terminate this segment at the first terminating '-'.
s += (s[2] == '>' ? 3 : 2); // Step over the '\0->'.
}
}
else THROW_ERROR(status_bad_comment, s);
}
else if (*s == '[')
{
// '<![CDATA[...'
if (*++s=='C' && *++s=='D' && *++s=='A' && *++s=='T' && *++s=='A' && *++s == '[')
{
++s;
if (OPTSET(parse_cdata))
{
PUSHNODE(node_cdata); // Append a new node on the tree.
cursor->value = s; // Save the offset.
if (OPTSET(parse_eol))
{
s = strconv_cdata(s, endch);
if (!s) THROW_ERROR(status_bad_cdata, cursor->value);
}
else
{
// Scan for terminating ']]>'.
SCANFOR(s[0] == ']' && s[1] == ']' && ENDSWITH(s[2], '>'));
CHECK_ERROR(status_bad_cdata, s);
*s++ = 0; // Zero-terminate this segment.
}
}
else // Flagged for discard, but we still have to scan for the terminator.
{
// Scan for terminating ']]>'.
SCANFOR(s[0] == ']' && s[1] == ']' && ENDSWITH(s[2], '>'));
CHECK_ERROR(status_bad_cdata, s);
++s;
}
s += (s[1] == '>' ? 2 : 1); // Step over the last ']>'.
}
else THROW_ERROR(status_bad_cdata, s);
}
else if (s[0] == 'D' && s[1] == 'O' && s[2] == 'C' && s[3] == 'T' && s[4] == 'Y' && s[5] == 'P' && ENDSWITH(s[6], 'E'))
{
s -= 2;
if (cursor->parent) THROW_ERROR(status_bad_doctype, s);
char_t* mark = s + 9;
s = parse_doctype_group(s, endch, true);
if (OPTSET(parse_doctype))
{
while (IS_CHARTYPE(*mark, ct_space)) ++mark;
PUSHNODE(node_doctype);
cursor->value = mark;
assert((s[0] == 0 && endch == '>') || s[-1] == '>');
s[*s == 0 ? 0 : -1] = 0;
POPNODE();
}
}
else if (*s == 0 && endch == '-') THROW_ERROR(status_bad_comment, s);
else if (*s == 0 && endch == '[') THROW_ERROR(status_bad_cdata, s);
else THROW_ERROR(status_unrecognized_tag, s);
return s;
}
char_t* parse_question(char_t* s, xml_node_struct*& ref_cursor, unsigned int optmsk, char_t endch)
{
// load into registers
xml_node_struct* cursor = ref_cursor;
char_t ch = 0;
// parse node contents, starting with question mark
++s;
// read PI target
char_t* target = s;
if (!IS_CHARTYPE(*s, ct_start_symbol)) THROW_ERROR(status_bad_pi, s);
SCANWHILE(IS_CHARTYPE(*s, ct_symbol));
CHECK_ERROR(status_bad_pi, s);
// determine node type; stricmp / strcasecmp is not portable
bool declaration = (target[0] | ' ') == 'x' && (target[1] | ' ') == 'm' && (target[2] | ' ') == 'l' && target + 3 == s;
if (declaration ? OPTSET(parse_declaration) : OPTSET(parse_pi))
{
if (declaration)
{
// disallow non top-level declarations
if (cursor->parent) THROW_ERROR(status_bad_pi, s);
PUSHNODE(node_declaration);
}
else
{
PUSHNODE(node_pi);
}
cursor->name = target;
ENDSEG();
// parse value/attributes
if (ch == '?')
{
// empty node
if (!ENDSWITH(*s, '>')) THROW_ERROR(status_bad_pi, s);
s += (*s == '>');
POPNODE();
}
else if (IS_CHARTYPE(ch, ct_space))
{
SKIPWS();
// scan for tag end
char_t* value = s;
SCANFOR(s[0] == '?' && ENDSWITH(s[1], '>'));
CHECK_ERROR(status_bad_pi, s);
if (declaration)
{
// replace ending ? with / so that 'element' terminates properly
*s = '/';
// we exit from this function with cursor at node_declaration, which is a signal to parse() to go to LOC_ATTRIBUTES
s = value;
}
else
{
// store value and step over >
cursor->value = value;
POPNODE();
ENDSEG();
s += (*s == '>');
}
}
else THROW_ERROR(status_bad_pi, s);
}
else
{
// scan for tag end
SCANFOR(s[0] == '?' && ENDSWITH(s[1], '>'));
CHECK_ERROR(status_bad_pi, s);
s += (s[1] == '>' ? 2 : 1);
}
// store from registers
ref_cursor = cursor;
return s;
}
void parse(char_t* s, xml_node_struct* xmldoc, unsigned int optmsk, char_t endch)
{
strconv_attribute_t strconv_attribute = get_strconv_attribute(optmsk);
strconv_pcdata_t strconv_pcdata = get_strconv_pcdata(optmsk);
char_t ch = 0;
xml_node_struct* cursor = xmldoc;
char_t* mark = s;
while (*s != 0)
{
if (*s == '<')
{
++s;
LOC_TAG:
if (IS_CHARTYPE(*s, ct_start_symbol)) // '<#...'
{
PUSHNODE(node_element); // Append a new node to the tree.
cursor->name = s;
SCANWHILE(IS_CHARTYPE(*s, ct_symbol)); // Scan for a terminator.
ENDSEG(); // Save char in 'ch', terminate & step over.
if (ch == '>')
{
// end of tag
}
else if (IS_CHARTYPE(ch, ct_space))
{
LOC_ATTRIBUTES:
while (true)
{
SKIPWS(); // Eat any whitespace.
if (IS_CHARTYPE(*s, ct_start_symbol)) // <... #...
{
xml_attribute_struct* a = append_attribute_ll(cursor, alloc); // Make space for this attribute.
if (!a) THROW_ERROR(status_out_of_memory, s);
a->name = s; // Save the offset.
SCANWHILE(IS_CHARTYPE(*s, ct_symbol)); // Scan for a terminator.
CHECK_ERROR(status_bad_attribute, s); //$ redundant, left for performance
ENDSEG(); // Save char in 'ch', terminate & step over.
CHECK_ERROR(status_bad_attribute, s); //$ redundant, left for performance
if (IS_CHARTYPE(ch, ct_space))
{
SKIPWS(); // Eat any whitespace.
CHECK_ERROR(status_bad_attribute, s); //$ redundant, left for performance
ch = *s;
++s;
}
if (ch == '=') // '<... #=...'
{
SKIPWS(); // Eat any whitespace.
if (*s == '"' || *s == '\'') // '<... #="...'
{
ch = *s; // Save quote char to avoid breaking on "''" -or- '""'.
++s; // Step over the quote.
a->value = s; // Save the offset.
s = strconv_attribute(s, ch);
if (!s) THROW_ERROR(status_bad_attribute, a->value);
// After this line the loop continues from the start;
// Whitespaces, / and > are ok, symbols and EOF are wrong,
// everything else will be detected
if (IS_CHARTYPE(*s, ct_start_symbol)) THROW_ERROR(status_bad_attribute, s);
}
else THROW_ERROR(status_bad_attribute, s);
}
else THROW_ERROR(status_bad_attribute, s);
}
else if (*s == '/')
{
++s;
if (*s == '>')
{
POPNODE();
s++;
break;
}
else if (*s == 0 && endch == '>')
{
POPNODE();
break;
}
else THROW_ERROR(status_bad_start_element, s);
}
else if (*s == '>')
{
++s;
break;
}
else if (*s == 0 && endch == '>')
{
break;
}
else THROW_ERROR(status_bad_start_element, s);
}
// !!!
}
else if (ch == '/') // '<#.../'
{
if (!ENDSWITH(*s, '>')) THROW_ERROR(status_bad_start_element, s);
POPNODE(); // Pop.
s += (*s == '>');
}
else if (ch == 0)
{
// we stepped over null terminator, backtrack & handle closing tag
--s;
if (endch != '>') THROW_ERROR(status_bad_start_element, s);
}
else THROW_ERROR(status_bad_start_element, s);
}
else if (*s == '/')
{
++s;
char_t* name = cursor->name;
if (!name) THROW_ERROR(status_end_element_mismatch, s);
while (IS_CHARTYPE(*s, ct_symbol))
{
if (*s++ != *name++) THROW_ERROR(status_end_element_mismatch, s);
}
if (*name)
{
if (*s == 0 && name[0] == endch && name[1] == 0) THROW_ERROR(status_bad_end_element, s);
else THROW_ERROR(status_end_element_mismatch, s);
}
POPNODE(); // Pop.
SKIPWS();
if (*s == 0)
{
if (endch != '>') THROW_ERROR(status_bad_end_element, s);
}
else
{
if (*s != '>') THROW_ERROR(status_bad_end_element, s);
++s;
}
}
else if (*s == '?') // '<?...'
{
s = parse_question(s, cursor, optmsk, endch);
assert(cursor);
if ((cursor->header & xml_memory_page_type_mask) + 1 == node_declaration) goto LOC_ATTRIBUTES;
}
else if (*s == '!') // '<!...'
{
s = parse_exclamation(s, cursor, optmsk, endch);
}
else if (*s == 0 && endch == '?') THROW_ERROR(status_bad_pi, s);
else THROW_ERROR(status_unrecognized_tag, s);
}
else
{
mark = s; // Save this offset while searching for a terminator.
SKIPWS(); // Eat whitespace if no genuine PCDATA here.
if ((!OPTSET(parse_ws_pcdata) || mark == s) && (*s == '<' || !*s))
{
continue;
}
s = mark;
if (cursor->parent)
{
PUSHNODE(node_pcdata); // Append a new node on the tree.
cursor->value = s; // Save the offset.
s = strconv_pcdata(s);
POPNODE(); // Pop since this is a standalone.
if (!*s) break;
}
else
{
SCANFOR(*s == '<'); // '...<'
if (!*s) break;
++s;
}
// We're after '<'
goto LOC_TAG;
}
}
// check that last tag is closed
if (cursor != xmldoc) THROW_ERROR(status_end_element_mismatch, s);
}
static xml_parse_result parse(char_t* buffer, size_t length, xml_node_struct* root, unsigned int optmsk)
{
xml_document_struct* xmldoc = static_cast<xml_document_struct*>(root);
// store buffer for offset_debug
xmldoc->buffer = buffer;
// early-out for empty documents
if (length == 0) return make_parse_result(status_ok);
// create parser on stack
xml_parser parser(*xmldoc);
// save last character and make buffer zero-terminated (speeds up parsing)
char_t endch = buffer[length - 1];
buffer[length - 1] = 0;
// perform actual parsing
int error = setjmp(parser.error_handler);
if (error == 0)
{
parser.parse(buffer, xmldoc, optmsk, endch);
}
xml_parse_result result = make_parse_result(static_cast<xml_parse_status>(error), parser.error_offset ? parser.error_offset - buffer : 0);
assert(result.offset >= 0 && static_cast<size_t>(result.offset) <= length);
// update allocator state
*static_cast<xml_allocator*>(xmldoc) = parser.alloc;
// since we removed last character, we have to handle the only possible false positive
if (result && endch == '<')
{
// there's no possible well-formed document with < at the end
return make_parse_result(status_unrecognized_tag, length);
}
return result;
}
};
// Output facilities
xml_encoding get_write_native_encoding()
{
#ifdef PUGIXML_WCHAR_MODE
return get_wchar_encoding();
#else
return encoding_utf8;
#endif
}
xml_encoding get_write_encoding(xml_encoding encoding)
{
// replace wchar encoding with utf implementation
if (encoding == encoding_wchar) return get_wchar_encoding();
// replace utf16 encoding with utf16 with specific endianness
if (encoding == encoding_utf16) return is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
// replace utf32 encoding with utf32 with specific endianness
if (encoding == encoding_utf32) return is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
// only do autodetection if no explicit encoding is requested
if (encoding != encoding_auto) return encoding;
// assume utf8 encoding
return encoding_utf8;
}
#ifdef PUGIXML_WCHAR_MODE
size_t get_valid_length(const char_t* data, size_t length)
{
assert(length > 0);
// discard last character if it's the lead of a surrogate pair
return (sizeof(wchar_t) == 2 && (unsigned)(static_cast<uint16_t>(data[length - 1]) - 0xD800) < 0x400) ? length - 1 : length;
}
size_t convert_buffer(char* result, const char_t* data, size_t length, xml_encoding encoding)
{
// only endian-swapping is required
if (need_endian_swap_utf(encoding, get_wchar_encoding()))
{
convert_wchar_endian_swap(reinterpret_cast<char_t*>(result), data, length);
return length * sizeof(char_t);
}
// convert to utf8
if (encoding == encoding_utf8)
{
uint8_t* dest = reinterpret_cast<uint8_t*>(result);
uint8_t* end = sizeof(wchar_t) == 2 ?
utf_decoder<utf8_writer>::decode_utf16_block(reinterpret_cast<const uint16_t*>(data), length, dest) :
utf_decoder<utf8_writer>::decode_utf32_block(reinterpret_cast<const uint32_t*>(data), length, dest);
return static_cast<size_t>(end - dest);
}
// convert to utf16
if (encoding == encoding_utf16_be || encoding == encoding_utf16_le)
{
uint16_t* dest = reinterpret_cast<uint16_t*>(result);
// convert to native utf16
uint16_t* end = utf_decoder<utf16_writer>::decode_utf32_block(reinterpret_cast<const uint32_t*>(data), length, dest);
// swap if necessary
xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
if (native_encoding != encoding) convert_utf_endian_swap(dest, dest, static_cast<size_t>(end - dest));
return static_cast<size_t>(end - dest) * sizeof(uint16_t);
}
// convert to utf32
if (encoding == encoding_utf32_be || encoding == encoding_utf32_le)
{
uint32_t* dest = reinterpret_cast<uint32_t*>(result);
// convert to native utf32
uint32_t* end = utf_decoder<utf32_writer>::decode_utf16_block(reinterpret_cast<const uint16_t*>(data), length, dest);
// swap if necessary
xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
if (native_encoding != encoding) convert_utf_endian_swap(dest, dest, static_cast<size_t>(end - dest));
return static_cast<size_t>(end - dest) * sizeof(uint32_t);
}
assert(!"Invalid encoding");
return 0;
}
#else
size_t get_valid_length(const char_t* data, size_t length)
{
assert(length > 4);
for (size_t i = 1; i <= 4; ++i)
{
uint8_t ch = static_cast<uint8_t>(data[length - i]);
// either a standalone character or a leading one
if ((ch & 0xc0) != 0x80) return length - i;
}
// there are four non-leading characters at the end, sequence tail is broken so might as well process the whole chunk
return length;
}
size_t convert_buffer(char* result, const char_t* data, size_t length, xml_encoding encoding)
{
if (encoding == encoding_utf16_be || encoding == encoding_utf16_le)
{
uint16_t* dest = reinterpret_cast<uint16_t*>(result);
// convert to native utf16
uint16_t* end = utf_decoder<utf16_writer>::decode_utf8_block(reinterpret_cast<const uint8_t*>(data), length, dest);
// swap if necessary
xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
if (native_encoding != encoding) convert_utf_endian_swap(dest, dest, static_cast<size_t>(end - dest));
return static_cast<size_t>(end - dest) * sizeof(uint16_t);
}
if (encoding == encoding_utf32_be || encoding == encoding_utf32_le)
{
uint32_t* dest = reinterpret_cast<uint32_t*>(result);
// convert to native utf32
uint32_t* end = utf_decoder<utf32_writer>::decode_utf8_block(reinterpret_cast<const uint8_t*>(data), length, dest);
// swap if necessary
xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
if (native_encoding != encoding) convert_utf_endian_swap(dest, dest, static_cast<size_t>(end - dest));
return static_cast<size_t>(end - dest) * sizeof(uint32_t);
}
assert(!"Invalid encoding");
return 0;
}
#endif
class xml_buffered_writer
{
xml_buffered_writer(const xml_buffered_writer&);
xml_buffered_writer& operator=(const xml_buffered_writer&);
public:
xml_buffered_writer(xml_writer& writer, xml_encoding user_encoding): writer(writer), bufsize(0), encoding(get_write_encoding(user_encoding))
{
}
~xml_buffered_writer()
{
flush();
}
void flush()
{
flush(buffer, bufsize);
bufsize = 0;
}
void flush(const char_t* data, size_t size)
{
if (size == 0) return;
// fast path, just write data
if (encoding == get_write_native_encoding())
writer.write(data, size * sizeof(char_t));
else
{
// convert chunk
size_t result = convert_buffer(scratch, data, size, encoding);
assert(result <= sizeof(scratch));
// write data
writer.write(scratch, result);
}
}
void write(const char_t* data, size_t length)
{
if (bufsize + length > bufcapacity)
{
// flush the remaining buffer contents
flush();
// handle large chunks
if (length > bufcapacity)
{
if (encoding == get_write_native_encoding())
{
// fast path, can just write data chunk
writer.write(data, length * sizeof(char_t));
return;
}
// need to convert in suitable chunks
while (length > bufcapacity)
{
// get chunk size by selecting such number of characters that are guaranteed to fit into scratch buffer
// and form a complete codepoint sequence (i.e. discard start of last codepoint if necessary)
size_t chunk_size = get_valid_length(data, bufcapacity);
// convert chunk and write
flush(data, chunk_size);
// iterate
data += chunk_size;
length -= chunk_size;
}
// small tail is copied below
bufsize = 0;
}
}
memcpy(buffer + bufsize, data, length * sizeof(char_t));
bufsize += length;
}
void write(const char_t* data)
{
write(data, strlength(data));
}
void write(char_t d0)
{
if (bufsize + 1 > bufcapacity) flush();
buffer[bufsize + 0] = d0;
bufsize += 1;
}
void write(char_t d0, char_t d1)
{
if (bufsize + 2 > bufcapacity) flush();
buffer[bufsize + 0] = d0;
buffer[bufsize + 1] = d1;
bufsize += 2;
}
void write(char_t d0, char_t d1, char_t d2)
{
if (bufsize + 3 > bufcapacity) flush();
buffer[bufsize + 0] = d0;
buffer[bufsize + 1] = d1;
buffer[bufsize + 2] = d2;
bufsize += 3;
}
void write(char_t d0, char_t d1, char_t d2, char_t d3)
{
if (bufsize + 4 > bufcapacity) flush();
buffer[bufsize + 0] = d0;
buffer[bufsize + 1] = d1;
buffer[bufsize + 2] = d2;
buffer[bufsize + 3] = d3;
bufsize += 4;
}
void write(char_t d0, char_t d1, char_t d2, char_t d3, char_t d4)
{
if (bufsize + 5 > bufcapacity) flush();
buffer[bufsize + 0] = d0;
buffer[bufsize + 1] = d1;
buffer[bufsize + 2] = d2;
buffer[bufsize + 3] = d3;
buffer[bufsize + 4] = d4;
bufsize += 5;
}
void write(char_t d0, char_t d1, char_t d2, char_t d3, char_t d4, char_t d5)
{
if (bufsize + 6 > bufcapacity) flush();
buffer[bufsize + 0] = d0;
buffer[bufsize + 1] = d1;
buffer[bufsize + 2] = d2;
buffer[bufsize + 3] = d3;
buffer[bufsize + 4] = d4;
buffer[bufsize + 5] = d5;
bufsize += 6;
}
// utf8 maximum expansion: x4 (-> utf32)
// utf16 maximum expansion: x2 (-> utf32)
// utf32 maximum expansion: x1
enum { bufcapacity = 2048 };
char_t buffer[bufcapacity];
char scratch[4 * bufcapacity];
xml_writer& writer;
size_t bufsize;
xml_encoding encoding;
};
void write_bom(xml_writer& writer, xml_encoding encoding)
{
switch (encoding)
{
case encoding_utf8:
writer.write("\xef\xbb\xbf", 3);
break;
case encoding_utf16_be:
writer.write("\xfe\xff", 2);
break;
case encoding_utf16_le:
writer.write("\xff\xfe", 2);
break;
case encoding_utf32_be:
writer.write("\x00\x00\xfe\xff", 4);
break;
case encoding_utf32_le:
writer.write("\xff\xfe\x00\x00", 4);
break;
default:
assert(!"Invalid encoding");
}
}
void text_output_escaped(xml_buffered_writer& writer, const char_t* s, chartypex_t type)
{
while (*s)
{
const char_t* prev = s;
// While *s is a usual symbol
while (!IS_CHARTYPEX(*s, type)) ++s;
writer.write(prev, static_cast<size_t>(s - prev));
switch (*s)
{
case 0: break;
case '&':
writer.write('&', 'a', 'm', 'p', ';');
++s;
break;
case '<':
writer.write('&', 'l', 't', ';');
++s;
break;
case '>':
writer.write('&', 'g', 't', ';');
++s;
break;
case '"':
writer.write('&', 'q', 'u', 'o', 't', ';');
++s;
break;
default: // s is not a usual symbol
{
unsigned int ch = static_cast<unsigned int>(*s++);
assert(ch < 32);
writer.write('&', '#', static_cast<char_t>((ch / 10) + '0'), static_cast<char_t>((ch % 10) + '0'), ';');
}
}
}
}
void text_output_cdata(xml_buffered_writer& writer, const char_t* s)
{
do
{
writer.write('<', '!', '[', 'C', 'D');
writer.write('A', 'T', 'A', '[');
const char_t* prev = s;
// look for ]]> sequence - we can't output it as is since it terminates CDATA
while (*s && !(s[0] == ']' && s[1] == ']' && s[2] == '>')) ++s;
// skip ]] if we stopped at ]]>, > will go to the next CDATA section
if (*s) s += 2;
writer.write(prev, static_cast<size_t>(s - prev));
writer.write(']', ']', '>');
}
while (*s);
}
void node_output_attributes(xml_buffered_writer& writer, const xml_node& node)
{
const char_t* default_name = PUGIXML_TEXT(":anonymous");
for (xml_attribute a = node.first_attribute(); a; a = a.next_attribute())
{
writer.write(' ');
writer.write(a.name()[0] ? a.name() : default_name);
writer.write('=', '"');
text_output_escaped(writer, a.value(), ctx_special_attr);
writer.write('"');
}
}
void node_output(xml_buffered_writer& writer, const xml_node& node, const char_t* indent, unsigned int flags, unsigned int depth)
{
const char_t* default_name = PUGIXML_TEXT(":anonymous");
if ((flags & format_indent) != 0 && (flags & format_raw) == 0)
for (unsigned int i = 0; i < depth; ++i) writer.write(indent);
switch (node.type())
{
case node_document:
{
for (xml_node n = node.first_child(); n; n = n.next_sibling())
node_output(writer, n, indent, flags, depth);
break;
}
case node_element:
{
const char_t* name = node.name()[0] ? node.name() : default_name;
writer.write('<');
writer.write(name);
node_output_attributes(writer, node);
if (flags & format_raw)
{
if (!node.first_child())
writer.write(' ', '/', '>');
else
{
writer.write('>');
for (xml_node n = node.first_child(); n; n = n.next_sibling())
node_output(writer, n, indent, flags, depth + 1);
writer.write('<', '/');
writer.write(name);
writer.write('>');
}
}
else if (!node.first_child())
writer.write(' ', '/', '>', '\n');
else if (node.first_child() == node.last_child() && (node.first_child().type() == node_pcdata || node.first_child().type() == node_cdata))
{
writer.write('>');
if (node.first_child().type() == node_pcdata)
text_output_escaped(writer, node.first_child().value(), ctx_special_pcdata);
else
text_output_cdata(writer, node.first_child().value());
writer.write('<', '/');
writer.write(name);
writer.write('>', '\n');
}
else
{
writer.write('>', '\n');
for (xml_node n = node.first_child(); n; n = n.next_sibling())
node_output(writer, n, indent, flags, depth + 1);
if ((flags & format_indent) != 0 && (flags & format_raw) == 0)
for (unsigned int i = 0; i < depth; ++i) writer.write(indent);
writer.write('<', '/');
writer.write(name);
writer.write('>', '\n');
}
break;
}
case node_pcdata:
text_output_escaped(writer, node.value(), ctx_special_pcdata);
if ((flags & format_raw) == 0) writer.write('\n');
break;
case node_cdata:
text_output_cdata(writer, node.value());
if ((flags & format_raw) == 0) writer.write('\n');
break;
case node_comment:
writer.write('<', '!', '-', '-');
writer.write(node.value());
writer.write('-', '-', '>');
if ((flags & format_raw) == 0) writer.write('\n');
break;
case node_pi:
case node_declaration:
writer.write('<', '?');
writer.write(node.name()[0] ? node.name() : default_name);
if (node.type() == node_declaration)
{
node_output_attributes(writer, node);
}
else if (node.value()[0])
{
writer.write(' ');
writer.write(node.value());
}
writer.write('?', '>');
if ((flags & format_raw) == 0) writer.write('\n');
break;
case node_doctype:
writer.write('<', '!', 'D', 'O', 'C');
writer.write('T', 'Y', 'P', 'E');
if (node.value()[0])
{
writer.write(' ');
writer.write(node.value());
}
writer.write('>');
if ((flags & format_raw) == 0) writer.write('\n');
break;
default:
assert(!"Invalid node type");
}
}
inline bool has_declaration(const xml_node& node)
{
for (xml_node child = node.first_child(); child; child = child.next_sibling())
{
xml_node_type type = child.type();
if (type == node_declaration) return true;
if (type == node_element) return false;
}
return false;
}
inline bool allow_insert_child(xml_node_type parent, xml_node_type child)
{
if (parent != node_document && parent != node_element) return false;
if (child == node_document || child == node_null) return false;
if (parent != node_document && (child == node_declaration || child == node_doctype)) return false;
return true;
}
void recursive_copy_skip(xml_node& dest, const xml_node& source, const xml_node& skip)
{
assert(dest.type() == source.type());
switch (source.type())
{
case node_element:
{
dest.set_name(source.name());
for (xml_attribute a = source.first_attribute(); a; a = a.next_attribute())
dest.append_attribute(a.name()).set_value(a.value());
for (xml_node c = source.first_child(); c; c = c.next_sibling())
{
if (c == skip) continue;
xml_node cc = dest.append_child(c.type());
assert(cc);
recursive_copy_skip(cc, c, skip);
}
break;
}
case node_pcdata:
case node_cdata:
case node_comment:
case node_doctype:
dest.set_value(source.value());
break;
case node_pi:
dest.set_name(source.name());
dest.set_value(source.value());
break;
case node_declaration:
{
dest.set_name(source.name());
for (xml_attribute a = source.first_attribute(); a; a = a.next_attribute())
dest.append_attribute(a.name()).set_value(a.value());
break;
}
default:
assert(!"Invalid node type");
}
}
// we need to get length of entire file to load it in memory; the only (relatively) sane way to do it is via seek/tell trick
xml_parse_status get_file_size(FILE* file, size_t& out_result)
{
#if defined(_MSC_VER) && _MSC_VER >= 1400
// there are 64-bit versions of fseek/ftell, let's use them
typedef __int64 length_type;
_fseeki64(file, 0, SEEK_END);
length_type length = _ftelli64(file);
_fseeki64(file, 0, SEEK_SET);
#elif defined(__MINGW32__) && !defined(__NO_MINGW_LFS) && !defined(__STRICT_ANSI__)
// there are 64-bit versions of fseek/ftell, let's use them
typedef off64_t length_type;
fseeko64(file, 0, SEEK_END);
length_type length = ftello64(file);
fseeko64(file, 0, SEEK_SET);
#else
// if this is a 32-bit OS, long is enough; if this is a unix system, long is 64-bit, which is enough; otherwise we can't do anything anyway.
typedef long length_type;
fseek(file, 0, SEEK_END);
length_type length = ftell(file);
fseek(file, 0, SEEK_SET);
#endif
// check for I/O errors
if (length < 0) return status_io_error;
// check for overflow
size_t result = static_cast<size_t>(length);
if (static_cast<length_type>(result) != length) return status_out_of_memory;
// finalize
out_result = result;
return status_ok;
}
xml_parse_result load_file_impl(xml_document& doc, FILE* file, unsigned int options, xml_encoding encoding)
{
if (!file) return make_parse_result(status_file_not_found);
// get file size (can result in I/O errors)
size_t size = 0;
xml_parse_status size_status = get_file_size(file, size);
if (size_status != status_ok)
{
fclose(file);
return make_parse_result(size_status);
}
// allocate buffer for the whole file
char* contents = static_cast<char*>(global_allocate(size > 0 ? size : 1));
if (!contents)
{
fclose(file);
return make_parse_result(status_out_of_memory);
}
// read file in memory
size_t read_size = fread(contents, 1, size, file);
fclose(file);
if (read_size != size)
{
global_deallocate(contents);
return make_parse_result(status_io_error);
}
return doc.load_buffer_inplace_own(contents, size, options, encoding);
}
#ifndef PUGIXML_NO_STL
template <typename T> xml_parse_result load_stream_impl(xml_document& doc, std::basic_istream<T>& stream, unsigned int options, xml_encoding encoding)
{
// get length of remaining data in stream
typename std::basic_istream<T>::pos_type pos = stream.tellg();
stream.seekg(0, std::ios::end);
std::streamoff length = stream.tellg() - pos;
stream.seekg(pos);
if (stream.fail() || pos < 0) return make_parse_result(status_io_error);
// guard against huge files
size_t read_length = static_cast<size_t>(length);
if (static_cast<std::streamsize>(read_length) != length || length < 0) return make_parse_result(status_out_of_memory);
// read stream data into memory (guard against stream exceptions with buffer holder)
buffer_holder buffer(global_allocate((read_length > 0 ? read_length : 1) * sizeof(T)), global_deallocate);
if (!buffer.data) return make_parse_result(status_out_of_memory);
stream.read(static_cast<T*>(buffer.data), static_cast<std::streamsize>(read_length));
// read may set failbit | eofbit in case gcount() is less than read_length (i.e. line ending conversion), so check for other I/O errors
if (stream.bad()) return make_parse_result(status_io_error);
// load data from buffer
size_t actual_length = static_cast<size_t>(stream.gcount());
assert(actual_length <= read_length);
return doc.load_buffer_inplace_own(buffer.release(), actual_length * sizeof(T), options, encoding);
}
#endif
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__MINGW32__)
FILE* open_file_wide(const wchar_t* path, const wchar_t* mode)
{
return _wfopen(path, mode);
}
#else
char* convert_path_heap(const wchar_t* str)
{
assert(str);
// first pass: get length in utf8 characters
size_t length = wcslen(str);
size_t size = as_utf8_begin(str, length);
// allocate resulting string
char* result = static_cast<char*>(global_allocate(size + 1));
if (!result) return 0;
// second pass: convert to utf8
as_utf8_end(result, size, str, length);
return result;
}
FILE* open_file_wide(const wchar_t* path, const wchar_t* mode)
{
// there is no standard function to open wide paths, so our best bet is to try utf8 path
char* path_utf8 = convert_path_heap(path);
if (!path_utf8) return 0;
// convert mode to ASCII (we mirror _wfopen interface)
char mode_ascii[4] = {0};
for (size_t i = 0; mode[i]; ++i) mode_ascii[i] = static_cast<char>(mode[i]);
// try to open the utf8 path
FILE* result = fopen(path_utf8, mode_ascii);
// free dummy buffer
global_deallocate(path_utf8);
return result;
}
#endif
}
namespace pugi
{
xml_writer_file::xml_writer_file(void* file): file(file)
{
}
void xml_writer_file::write(const void* data, size_t size)
{
fwrite(data, size, 1, static_cast<FILE*>(file));
}
#ifndef PUGIXML_NO_STL
xml_writer_stream::xml_writer_stream(std::basic_ostream<char, std::char_traits<char> >& stream): narrow_stream(&stream), wide_stream(0)
{
}
xml_writer_stream::xml_writer_stream(std::basic_ostream<wchar_t, std::char_traits<wchar_t> >& stream): narrow_stream(0), wide_stream(&stream)
{
}
void xml_writer_stream::write(const void* data, size_t size)
{
if (narrow_stream)
{
assert(!wide_stream);
narrow_stream->write(reinterpret_cast<const char*>(data), static_cast<std::streamsize>(size));
}
else
{
assert(wide_stream);
assert(size % sizeof(wchar_t) == 0);
wide_stream->write(reinterpret_cast<const wchar_t*>(data), static_cast<std::streamsize>(size / sizeof(wchar_t)));
}
}
#endif
xml_tree_walker::xml_tree_walker(): _depth(0)
{
}
xml_tree_walker::~xml_tree_walker()
{
}
int xml_tree_walker::depth() const
{
return _depth;
}
bool xml_tree_walker::begin(xml_node&)
{
return true;
}
bool xml_tree_walker::end(xml_node&)
{
return true;
}
xml_attribute::xml_attribute(): _attr(0)
{
}
xml_attribute::xml_attribute(xml_attribute_struct* attr): _attr(attr)
{
}
xml_attribute::operator xml_attribute::unspecified_bool_type() const
{
return _attr ? &xml_attribute::_attr : 0;
}
bool xml_attribute::operator!() const
{
return !_attr;
}
bool xml_attribute::operator==(const xml_attribute& r) const
{
return (_attr == r._attr);
}
bool xml_attribute::operator!=(const xml_attribute& r) const
{
return (_attr != r._attr);
}
bool xml_attribute::operator<(const xml_attribute& r) const
{
return (_attr < r._attr);
}
bool xml_attribute::operator>(const xml_attribute& r) const
{
return (_attr > r._attr);
}
bool xml_attribute::operator<=(const xml_attribute& r) const
{
return (_attr <= r._attr);
}
bool xml_attribute::operator>=(const xml_attribute& r) const
{
return (_attr >= r._attr);
}
xml_attribute xml_attribute::next_attribute() const
{
return _attr ? xml_attribute(_attr->next_attribute) : xml_attribute();
}
xml_attribute xml_attribute::previous_attribute() const
{
return _attr && _attr->prev_attribute_c->next_attribute ? xml_attribute(_attr->prev_attribute_c) : xml_attribute();
}
int xml_attribute::as_int() const
{
if (!_attr || !_attr->value) return 0;
#ifdef PUGIXML_WCHAR_MODE
return (int)wcstol(_attr->value, 0, 10);
#else
return (int)strtol(_attr->value, 0, 10);
#endif
}
unsigned int xml_attribute::as_uint() const
{
if (!_attr || !_attr->value) return 0;
#ifdef PUGIXML_WCHAR_MODE
return (unsigned int)wcstoul(_attr->value, 0, 10);
#else
return (unsigned int)strtoul(_attr->value, 0, 10);
#endif
}
double xml_attribute::as_double() const
{
if (!_attr || !_attr->value) return 0;
#ifdef PUGIXML_WCHAR_MODE
return wcstod(_attr->value, 0);
#else
return strtod(_attr->value, 0);
#endif
}
float xml_attribute::as_float() const
{
if (!_attr || !_attr->value) return 0;
#ifdef PUGIXML_WCHAR_MODE
return (float)wcstod(_attr->value, 0);
#else
return (float)strtod(_attr->value, 0);
#endif
}
bool xml_attribute::as_bool() const
{
if (!_attr || !_attr->value) return false;
// only look at first char
char_t first = *_attr->value;
// 1*, t* (true), T* (True), y* (yes), Y* (YES)
return (first == '1' || first == 't' || first == 'T' || first == 'y' || first == 'Y');
}
bool xml_attribute::empty() const
{
return !_attr;
}
const char_t* xml_attribute::name() const
{
return (_attr && _attr->name) ? _attr->name : PUGIXML_TEXT("");
}
const char_t* xml_attribute::value() const
{
return (_attr && _attr->value) ? _attr->value : PUGIXML_TEXT("");
}
size_t xml_attribute::hash_value() const
{
return static_cast<size_t>(reinterpret_cast<uintptr_t>(_attr) / sizeof(xml_attribute_struct));
}
xml_attribute_struct* xml_attribute::internal_object() const
{
return _attr;
}
xml_attribute& xml_attribute::operator=(const char_t* rhs)
{
set_value(rhs);
return *this;
}
xml_attribute& xml_attribute::operator=(int rhs)
{
set_value(rhs);
return *this;
}
xml_attribute& xml_attribute::operator=(unsigned int rhs)
{
set_value(rhs);
return *this;
}
xml_attribute& xml_attribute::operator=(double rhs)
{
set_value(rhs);
return *this;
}
xml_attribute& xml_attribute::operator=(bool rhs)
{
set_value(rhs);
return *this;
}
bool xml_attribute::set_name(const char_t* rhs)
{
if (!_attr) return false;
return strcpy_insitu(_attr->name, _attr->header, xml_memory_page_name_allocated_mask, rhs);
}
bool xml_attribute::set_value(const char_t* rhs)
{
if (!_attr) return false;
return strcpy_insitu(_attr->value, _attr->header, xml_memory_page_value_allocated_mask, rhs);
}
bool xml_attribute::set_value(int rhs)
{
char buf[128];
sprintf(buf, "%d", rhs);
#ifdef PUGIXML_WCHAR_MODE
char_t wbuf[128];
widen_ascii(wbuf, buf);
return set_value(wbuf);
#else
return set_value(buf);
#endif
}
bool xml_attribute::set_value(unsigned int rhs)
{
char buf[128];
sprintf(buf, "%u", rhs);
#ifdef PUGIXML_WCHAR_MODE
char_t wbuf[128];
widen_ascii(wbuf, buf);
return set_value(wbuf);
#else
return set_value(buf);
#endif
}
bool xml_attribute::set_value(double rhs)
{
char buf[128];
sprintf(buf, "%g", rhs);
#ifdef PUGIXML_WCHAR_MODE
char_t wbuf[128];
widen_ascii(wbuf, buf);
return set_value(wbuf);
#else
return set_value(buf);
#endif
}
bool xml_attribute::set_value(bool rhs)
{
return set_value(rhs ? PUGIXML_TEXT("true") : PUGIXML_TEXT("false"));
}
#ifdef __BORLANDC__
bool operator&&(const xml_attribute& lhs, bool rhs)
{
return (bool)lhs && rhs;
}
bool operator||(const xml_attribute& lhs, bool rhs)
{
return (bool)lhs || rhs;
}
#endif
xml_node::xml_node(): _root(0)
{
}
xml_node::xml_node(xml_node_struct* p): _root(p)
{
}
xml_node::operator xml_node::unspecified_bool_type() const
{
return _root ? &xml_node::_root : 0;
}
bool xml_node::operator!() const
{
return !_root;
}
xml_node::iterator xml_node::begin() const
{
return iterator(_root ? _root->first_child : 0, _root);
}
xml_node::iterator xml_node::end() const
{
return iterator(0, _root);
}
xml_node::attribute_iterator xml_node::attributes_begin() const
{
return attribute_iterator(_root ? _root->first_attribute : 0, _root);
}
xml_node::attribute_iterator xml_node::attributes_end() const
{
return attribute_iterator(0, _root);
}
bool xml_node::operator==(const xml_node& r) const
{
return (_root == r._root);
}
bool xml_node::operator!=(const xml_node& r) const
{
return (_root != r._root);
}
bool xml_node::operator<(const xml_node& r) const
{
return (_root < r._root);
}
bool xml_node::operator>(const xml_node& r) const
{
return (_root > r._root);
}
bool xml_node::operator<=(const xml_node& r) const
{
return (_root <= r._root);
}
bool xml_node::operator>=(const xml_node& r) const
{
return (_root >= r._root);
}
bool xml_node::empty() const
{
return !_root;
}
const char_t* xml_node::name() const
{
return (_root && _root->name) ? _root->name : PUGIXML_TEXT("");
}
xml_node_type xml_node::type() const
{
return _root ? static_cast<xml_node_type>((_root->header & xml_memory_page_type_mask) + 1) : node_null;
}
const char_t* xml_node::value() const
{
return (_root && _root->value) ? _root->value : PUGIXML_TEXT("");
}
xml_node xml_node::child(const char_t* name) const
{
if (!_root) return xml_node();
for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling)
if (i->name && strequal(name, i->name)) return xml_node(i);
return xml_node();
}
xml_attribute xml_node::attribute(const char_t* name) const
{
if (!_root) return xml_attribute();
for (xml_attribute_struct* i = _root->first_attribute; i; i = i->next_attribute)
if (i->name && strequal(name, i->name))
return xml_attribute(i);
return xml_attribute();
}
xml_node xml_node::next_sibling(const char_t* name) const
{
if (!_root) return xml_node();
for (xml_node_struct* i = _root->next_sibling; i; i = i->next_sibling)
if (i->name && strequal(name, i->name)) return xml_node(i);
return xml_node();
}
xml_node xml_node::next_sibling() const
{
if (!_root) return xml_node();
if (_root->next_sibling) return xml_node(_root->next_sibling);
else return xml_node();
}
xml_node xml_node::previous_sibling(const char_t* name) const
{
if (!_root) return xml_node();
for (xml_node_struct* i = _root->prev_sibling_c; i->next_sibling; i = i->prev_sibling_c)
if (i->name && strequal(name, i->name)) return xml_node(i);
return xml_node();
}
xml_node xml_node::previous_sibling() const
{
if (!_root) return xml_node();
if (_root->prev_sibling_c->next_sibling) return xml_node(_root->prev_sibling_c);
else return xml_node();
}
xml_node xml_node::parent() const
{
return _root ? xml_node(_root->parent) : xml_node();
}
xml_node xml_node::root() const
{
if (!_root) return xml_node();
xml_memory_page* page = reinterpret_cast<xml_memory_page*>(_root->header & xml_memory_page_pointer_mask);
return xml_node(static_cast<xml_document_struct*>(page->allocator));
}
const char_t* xml_node::child_value() const
{
if (!_root) return PUGIXML_TEXT("");
for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling)
{
xml_node_type type = static_cast<xml_node_type>((i->header & xml_memory_page_type_mask) + 1);
if (i->value && (type == node_pcdata || type == node_cdata))
return i->value;
}
return PUGIXML_TEXT("");
}
const char_t* xml_node::child_value(const char_t* name) const
{
return child(name).child_value();
}
xml_attribute xml_node::first_attribute() const
{
return _root ? xml_attribute(_root->first_attribute) : xml_attribute();
}
xml_attribute xml_node::last_attribute() const
{
return _root && _root->first_attribute ? xml_attribute(_root->first_attribute->prev_attribute_c) : xml_attribute();
}
xml_node xml_node::first_child() const
{
return _root ? xml_node(_root->first_child) : xml_node();
}
xml_node xml_node::last_child() const
{
return _root && _root->first_child ? xml_node(_root->first_child->prev_sibling_c) : xml_node();
}
bool xml_node::set_name(const char_t* rhs)
{
switch (type())
{
case node_pi:
case node_declaration:
case node_element:
return strcpy_insitu(_root->name, _root->header, xml_memory_page_name_allocated_mask, rhs);
default:
return false;
}
}
bool xml_node::set_value(const char_t* rhs)
{
switch (type())
{
case node_pi:
case node_cdata:
case node_pcdata:
case node_comment:
case node_doctype:
return strcpy_insitu(_root->value, _root->header, xml_memory_page_value_allocated_mask, rhs);
default:
return false;
}
}
xml_attribute xml_node::append_attribute(const char_t* name)
{
if (type() != node_element && type() != node_declaration) return xml_attribute();
xml_attribute a(append_attribute_ll(_root, get_allocator(_root)));
a.set_name(name);
return a;
}
xml_attribute xml_node::prepend_attribute(const char_t* name)
{
if (type() != node_element && type() != node_declaration) return xml_attribute();
xml_attribute a(allocate_attribute(get_allocator(_root)));
if (!a) return xml_attribute();
a.set_name(name);
xml_attribute_struct* head = _root->first_attribute;
if (head)
{
a._attr->prev_attribute_c = head->prev_attribute_c;
head->prev_attribute_c = a._attr;
}
else
a._attr->prev_attribute_c = a._attr;
a._attr->next_attribute = head;
_root->first_attribute = a._attr;
return a;
}
xml_attribute xml_node::insert_attribute_before(const char_t* name, const xml_attribute& attr)
{
if ((type() != node_element && type() != node_declaration) || attr.empty()) return xml_attribute();
// check that attribute belongs to *this
xml_attribute_struct* cur = attr._attr;
while (cur->prev_attribute_c->next_attribute) cur = cur->prev_attribute_c;
if (cur != _root->first_attribute) return xml_attribute();
xml_attribute a(allocate_attribute(get_allocator(_root)));
if (!a) return xml_attribute();
a.set_name(name);
if (attr._attr->prev_attribute_c->next_attribute)
attr._attr->prev_attribute_c->next_attribute = a._attr;
else
_root->first_attribute = a._attr;
a._attr->prev_attribute_c = attr._attr->prev_attribute_c;
a._attr->next_attribute = attr._attr;
attr._attr->prev_attribute_c = a._attr;
return a;
}
xml_attribute xml_node::insert_attribute_after(const char_t* name, const xml_attribute& attr)
{
if ((type() != node_element && type() != node_declaration) || attr.empty()) return xml_attribute();
// check that attribute belongs to *this
xml_attribute_struct* cur = attr._attr;
while (cur->prev_attribute_c->next_attribute) cur = cur->prev_attribute_c;
if (cur != _root->first_attribute) return xml_attribute();
xml_attribute a(allocate_attribute(get_allocator(_root)));
if (!a) return xml_attribute();
a.set_name(name);
if (attr._attr->next_attribute)
attr._attr->next_attribute->prev_attribute_c = a._attr;
else
_root->first_attribute->prev_attribute_c = a._attr;
a._attr->next_attribute = attr._attr->next_attribute;
a._attr->prev_attribute_c = attr._attr;
attr._attr->next_attribute = a._attr;
return a;
}
xml_attribute xml_node::append_copy(const xml_attribute& proto)
{
if (!proto) return xml_attribute();
xml_attribute result = append_attribute(proto.name());
result.set_value(proto.value());
return result;
}
xml_attribute xml_node::prepend_copy(const xml_attribute& proto)
{
if (!proto) return xml_attribute();
xml_attribute result = prepend_attribute(proto.name());
result.set_value(proto.value());
return result;
}
xml_attribute xml_node::insert_copy_after(const xml_attribute& proto, const xml_attribute& attr)
{
if (!proto) return xml_attribute();
xml_attribute result = insert_attribute_after(proto.name(), attr);
result.set_value(proto.value());
return result;
}
xml_attribute xml_node::insert_copy_before(const xml_attribute& proto, const xml_attribute& attr)
{
if (!proto) return xml_attribute();
xml_attribute result = insert_attribute_before(proto.name(), attr);
result.set_value(proto.value());
return result;
}
xml_node xml_node::append_child(xml_node_type type)
{
if (!allow_insert_child(this->type(), type)) return xml_node();
xml_node n(append_node(_root, get_allocator(_root), type));
if (type == node_declaration) n.set_name(PUGIXML_TEXT("xml"));
return n;
}
xml_node xml_node::prepend_child(xml_node_type type)
{
if (!allow_insert_child(this->type(), type)) return xml_node();
xml_node n(allocate_node(get_allocator(_root), type));
if (!n) return xml_node();
n._root->parent = _root;
xml_node_struct* head = _root->first_child;
if (head)
{
n._root->prev_sibling_c = head->prev_sibling_c;
head->prev_sibling_c = n._root;
}
else
n._root->prev_sibling_c = n._root;
n._root->next_sibling = head;
_root->first_child = n._root;
if (type == node_declaration) n.set_name(PUGIXML_TEXT("xml"));
return n;
}
xml_node xml_node::insert_child_before(xml_node_type type, const xml_node& node)
{
if (!allow_insert_child(this->type(), type)) return xml_node();
if (!node._root || node._root->parent != _root) return xml_node();
xml_node n(allocate_node(get_allocator(_root), type));
if (!n) return xml_node();
n._root->parent = _root;
if (node._root->prev_sibling_c->next_sibling)
node._root->prev_sibling_c->next_sibling = n._root;
else
_root->first_child = n._root;
n._root->prev_sibling_c = node._root->prev_sibling_c;
n._root->next_sibling = node._root;
node._root->prev_sibling_c = n._root;
if (type == node_declaration) n.set_name(PUGIXML_TEXT("xml"));
return n;
}
xml_node xml_node::insert_child_after(xml_node_type type, const xml_node& node)
{
if (!allow_insert_child(this->type(), type)) return xml_node();
if (!node._root || node._root->parent != _root) return xml_node();
xml_node n(allocate_node(get_allocator(_root), type));
if (!n) return xml_node();
n._root->parent = _root;
if (node._root->next_sibling)
node._root->next_sibling->prev_sibling_c = n._root;
else
_root->first_child->prev_sibling_c = n._root;
n._root->next_sibling = node._root->next_sibling;
n._root->prev_sibling_c = node._root;
node._root->next_sibling = n._root;
if (type == node_declaration) n.set_name(PUGIXML_TEXT("xml"));
return n;
}
xml_node xml_node::append_child(const char_t* name)
{
xml_node result = append_child(node_element);
result.set_name(name);
return result;
}
xml_node xml_node::prepend_child(const char_t* name)
{
xml_node result = prepend_child(node_element);
result.set_name(name);
return result;
}
xml_node xml_node::insert_child_after(const char_t* name, const xml_node& node)
{
xml_node result = insert_child_after(node_element, node);
result.set_name(name);
return result;
}
xml_node xml_node::insert_child_before(const char_t* name, const xml_node& node)
{
xml_node result = insert_child_before(node_element, node);
result.set_name(name);
return result;
}
xml_node xml_node::append_copy(const xml_node& proto)
{
xml_node result = append_child(proto.type());
if (result) recursive_copy_skip(result, proto, result);
return result;
}
xml_node xml_node::prepend_copy(const xml_node& proto)
{
xml_node result = prepend_child(proto.type());
if (result) recursive_copy_skip(result, proto, result);
return result;
}
xml_node xml_node::insert_copy_after(const xml_node& proto, const xml_node& node)
{
xml_node result = insert_child_after(proto.type(), node);
if (result) recursive_copy_skip(result, proto, result);
return result;
}
xml_node xml_node::insert_copy_before(const xml_node& proto, const xml_node& node)
{
xml_node result = insert_child_before(proto.type(), node);
if (result) recursive_copy_skip(result, proto, result);
return result;
}
bool xml_node::remove_attribute(const char_t* name)
{
return remove_attribute(attribute(name));
}
bool xml_node::remove_attribute(const xml_attribute& a)
{
if (!_root || !a._attr) return false;
// check that attribute belongs to *this
xml_attribute_struct* attr = a._attr;
while (attr->prev_attribute_c->next_attribute) attr = attr->prev_attribute_c;
if (attr != _root->first_attribute) return false;
if (a._attr->next_attribute) a._attr->next_attribute->prev_attribute_c = a._attr->prev_attribute_c;
else if (_root->first_attribute) _root->first_attribute->prev_attribute_c = a._attr->prev_attribute_c;
if (a._attr->prev_attribute_c->next_attribute) a._attr->prev_attribute_c->next_attribute = a._attr->next_attribute;
else _root->first_attribute = a._attr->next_attribute;
destroy_attribute(a._attr, get_allocator(_root));
return true;
}
bool xml_node::remove_child(const char_t* name)
{
return remove_child(child(name));
}
bool xml_node::remove_child(const xml_node& n)
{
if (!_root || !n._root || n._root->parent != _root) return false;
if (n._root->next_sibling) n._root->next_sibling->prev_sibling_c = n._root->prev_sibling_c;
else if (_root->first_child) _root->first_child->prev_sibling_c = n._root->prev_sibling_c;
if (n._root->prev_sibling_c->next_sibling) n._root->prev_sibling_c->next_sibling = n._root->next_sibling;
else _root->first_child = n._root->next_sibling;
destroy_node(n._root, get_allocator(_root));
return true;
}
xml_node xml_node::find_child_by_attribute(const char_t* name, const char_t* attr_name, const char_t* attr_value) const
{
if (!_root) return xml_node();
for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling)
if (i->name && strequal(name, i->name))
{
for (xml_attribute_struct* a = i->first_attribute; a; a = a->next_attribute)
if (strequal(attr_name, a->name) && strequal(attr_value, a->value))
return xml_node(i);
}
return xml_node();
}
xml_node xml_node::find_child_by_attribute(const char_t* attr_name, const char_t* attr_value) const
{
if (!_root) return xml_node();
for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling)
for (xml_attribute_struct* a = i->first_attribute; a; a = a->next_attribute)
if (strequal(attr_name, a->name) && strequal(attr_value, a->value))
return xml_node(i);
return xml_node();
}
#ifndef PUGIXML_NO_STL
string_t xml_node::path(char_t delimiter) const
{
string_t path;
xml_node cursor = *this; // Make a copy.
path = cursor.name();
while (cursor.parent())
{
cursor = cursor.parent();
string_t temp = cursor.name();
temp += delimiter;
temp += path;
path.swap(temp);
}
return path;
}
#endif
xml_node xml_node::first_element_by_path(const char_t* path, char_t delimiter) const
{
xml_node found = *this; // Current search context.
if (!_root || !path || !path[0]) return found;
if (path[0] == delimiter)
{
// Absolute path; e.g. '/foo/bar'
found = found.root();
++path;
}
const char_t* path_segment = path;
while (*path_segment == delimiter) ++path_segment;
const char_t* path_segment_end = path_segment;
while (*path_segment_end && *path_segment_end != delimiter) ++path_segment_end;
if (path_segment == path_segment_end) return found;
const char_t* next_segment = path_segment_end;
while (*next_segment == delimiter) ++next_segment;
if (*path_segment == '.' && path_segment + 1 == path_segment_end)
return found.first_element_by_path(next_segment, delimiter);
else if (*path_segment == '.' && *(path_segment+1) == '.' && path_segment + 2 == path_segment_end)
return found.parent().first_element_by_path(next_segment, delimiter);
else
{
for (xml_node_struct* j = found._root->first_child; j; j = j->next_sibling)
{
if (j->name && strequalrange(j->name, path_segment, static_cast<size_t>(path_segment_end - path_segment)))
{
xml_node subsearch = xml_node(j).first_element_by_path(next_segment, delimiter);
if (subsearch) return subsearch;
}
}
return xml_node();
}
}
bool xml_node::traverse(xml_tree_walker& walker)
{
walker._depth = -1;
xml_node arg_begin = *this;
if (!walker.begin(arg_begin)) return false;
xml_node cur = first_child();
if (cur)
{
++walker._depth;
do
{
xml_node arg_for_each = cur;
if (!walker.for_each(arg_for_each))
return false;
if (cur.first_child())
{
++walker._depth;
cur = cur.first_child();
}
else if (cur.next_sibling())
cur = cur.next_sibling();
else
{
// Borland C++ workaround
while (!cur.next_sibling() && cur != *this && (bool)cur.parent())
{
--walker._depth;
cur = cur.parent();
}
if (cur != *this)
cur = cur.next_sibling();
}
}
while (cur && cur != *this);
}
assert(walker._depth == -1);
xml_node arg_end = *this;
return walker.end(arg_end);
}
size_t xml_node::hash_value() const
{
return static_cast<size_t>(reinterpret_cast<uintptr_t>(_root) / sizeof(xml_node_struct));
}
xml_node_struct* xml_node::internal_object() const
{
return _root;
}
void xml_node::print(xml_writer& writer, const char_t* indent, unsigned int flags, xml_encoding encoding, unsigned int depth) const
{
if (!_root) return;
xml_buffered_writer buffered_writer(writer, encoding);
node_output(buffered_writer, *this, indent, flags, depth);
}
#ifndef PUGIXML_NO_STL
void xml_node::print(std::basic_ostream<char, std::char_traits<char> >& stream, const char_t* indent, unsigned int flags, xml_encoding encoding, unsigned int depth) const
{
xml_writer_stream writer(stream);
print(writer, indent, flags, encoding, depth);
}
void xml_node::print(std::basic_ostream<wchar_t, std::char_traits<wchar_t> >& stream, const char_t* indent, unsigned int flags, unsigned int depth) const
{
xml_writer_stream writer(stream);
print(writer, indent, flags, encoding_wchar, depth);
}
#endif
ptrdiff_t xml_node::offset_debug() const
{
xml_node_struct* r = root()._root;
if (!r) return -1;
const char_t* buffer = static_cast<xml_document_struct*>(r)->buffer;
if (!buffer) return -1;
switch (type())
{
case node_document:
return 0;
case node_element:
case node_declaration:
case node_pi:
return (_root->header & xml_memory_page_name_allocated_mask) ? -1 : _root->name - buffer;
case node_pcdata:
case node_cdata:
case node_comment:
case node_doctype:
return (_root->header & xml_memory_page_value_allocated_mask) ? -1 : _root->value - buffer;
default:
return -1;
}
}
#ifdef __BORLANDC__
bool operator&&(const xml_node& lhs, bool rhs)
{
return (bool)lhs && rhs;
}
bool operator||(const xml_node& lhs, bool rhs)
{
return (bool)lhs || rhs;
}
#endif
xml_node_iterator::xml_node_iterator()
{
}
xml_node_iterator::xml_node_iterator(const xml_node& node): _wrap(node), _parent(node.parent())
{
}
xml_node_iterator::xml_node_iterator(xml_node_struct* ref, xml_node_struct* parent): _wrap(ref), _parent(parent)
{
}
bool xml_node_iterator::operator==(const xml_node_iterator& rhs) const
{
return _wrap._root == rhs._wrap._root && _parent._root == rhs._parent._root;
}
bool xml_node_iterator::operator!=(const xml_node_iterator& rhs) const
{
return _wrap._root != rhs._wrap._root || _parent._root != rhs._parent._root;
}
xml_node& xml_node_iterator::operator*()
{
assert(_wrap._root);
return _wrap;
}
xml_node* xml_node_iterator::operator->()
{
assert(_wrap._root);
return &_wrap;
}
const xml_node_iterator& xml_node_iterator::operator++()
{
assert(_wrap._root);
_wrap._root = _wrap._root->next_sibling;
return *this;
}
xml_node_iterator xml_node_iterator::operator++(int)
{
xml_node_iterator temp = *this;
++*this;
return temp;
}
const xml_node_iterator& xml_node_iterator::operator--()
{
_wrap = _wrap._root ? _wrap.previous_sibling() : _parent.last_child();
return *this;
}
xml_node_iterator xml_node_iterator::operator--(int)
{
xml_node_iterator temp = *this;
--*this;
return temp;
}
xml_attribute_iterator::xml_attribute_iterator()
{
}
xml_attribute_iterator::xml_attribute_iterator(const xml_attribute& attr, const xml_node& parent): _wrap(attr), _parent(parent)
{
}
xml_attribute_iterator::xml_attribute_iterator(xml_attribute_struct* ref, xml_node_struct* parent): _wrap(ref), _parent(parent)
{
}
bool xml_attribute_iterator::operator==(const xml_attribute_iterator& rhs) const
{
return _wrap._attr == rhs._wrap._attr && _parent._root == rhs._parent._root;
}
bool xml_attribute_iterator::operator!=(const xml_attribute_iterator& rhs) const
{
return _wrap._attr != rhs._wrap._attr || _parent._root != rhs._parent._root;
}
xml_attribute& xml_attribute_iterator::operator*()
{
assert(_wrap._attr);
return _wrap;
}
xml_attribute* xml_attribute_iterator::operator->()
{
assert(_wrap._attr);
return &_wrap;
}
const xml_attribute_iterator& xml_attribute_iterator::operator++()
{
assert(_wrap._attr);
_wrap._attr = _wrap._attr->next_attribute;
return *this;
}
xml_attribute_iterator xml_attribute_iterator::operator++(int)
{
xml_attribute_iterator temp = *this;
++*this;
return temp;
}
const xml_attribute_iterator& xml_attribute_iterator::operator--()
{
_wrap = _wrap._attr ? _wrap.previous_attribute() : _parent.last_attribute();
return *this;
}
xml_attribute_iterator xml_attribute_iterator::operator--(int)
{
xml_attribute_iterator temp = *this;
--*this;
return temp;
}
xml_parse_result::xml_parse_result(): status(status_internal_error), offset(0), encoding(encoding_auto)
{
}
xml_parse_result::operator bool() const
{
return status == status_ok;
}
const char* xml_parse_result::description() const
{
switch (status)
{
case status_ok: return "No error";
case status_file_not_found: return "File was not found";
case status_io_error: return "Error reading from file/stream";
case status_out_of_memory: return "Could not allocate memory";
case status_internal_error: return "Internal error occurred";
case status_unrecognized_tag: return "Could not determine tag type";
case status_bad_pi: return "Error parsing document declaration/processing instruction";
case status_bad_comment: return "Error parsing comment";
case status_bad_cdata: return "Error parsing CDATA section";
case status_bad_doctype: return "Error parsing document type declaration";
case status_bad_pcdata: return "Error parsing PCDATA section";
case status_bad_start_element: return "Error parsing start element tag";
case status_bad_attribute: return "Error parsing element attribute";
case status_bad_end_element: return "Error parsing end element tag";
case status_end_element_mismatch: return "Start-end tags mismatch";
default: return "Unknown error";
}
}
xml_document::xml_document(): _buffer(0)
{
create();
}
xml_document::~xml_document()
{
destroy();
}
void xml_document::reset()
{
destroy();
create();
}
void xml_document::reset(const xml_document& proto)
{
reset();
for (xml_node cur = proto.first_child(); cur; cur = cur.next_sibling())
append_copy(cur);
}
void xml_document::create()
{
// initialize sentinel page
STATIC_ASSERT(offsetof(xml_memory_page, data) + sizeof(xml_document_struct) + xml_memory_page_alignment <= sizeof(_memory));
// align upwards to page boundary
void* page_memory = reinterpret_cast<void*>((reinterpret_cast<uintptr_t>(_memory) + (xml_memory_page_alignment - 1)) & ~(xml_memory_page_alignment - 1));
// prepare page structure
xml_memory_page* page = xml_memory_page::construct(page_memory);
page->busy_size = xml_memory_page_size;
// allocate new root
_root = new (page->data) xml_document_struct(page);
_root->prev_sibling_c = _root;
// setup sentinel page
page->allocator = static_cast<xml_document_struct*>(_root);
}
void xml_document::destroy()
{
// destroy static storage
if (_buffer)
{
global_deallocate(_buffer);
_buffer = 0;
}
// destroy dynamic storage, leave sentinel page (it's in static memory)
if (_root)
{
xml_memory_page* root_page = reinterpret_cast<xml_memory_page*>(_root->header & xml_memory_page_pointer_mask);
assert(root_page && !root_page->prev && !root_page->memory);
// destroy all pages
for (xml_memory_page* page = root_page->next; page; )
{
xml_memory_page* next = page->next;
xml_allocator::deallocate_page(page);
page = next;
}
// cleanup root page
root_page->allocator = 0;
root_page->next = 0;
root_page->busy_size = root_page->freed_size = 0;
_root = 0;
}
}
#ifndef PUGIXML_NO_STL
xml_parse_result xml_document::load(std::basic_istream<char, std::char_traits<char> >& stream, unsigned int options, xml_encoding encoding)
{
reset();
return load_stream_impl(*this, stream, options, encoding);
}
xml_parse_result xml_document::load(std::basic_istream<wchar_t, std::char_traits<wchar_t> >& stream, unsigned int options)
{
reset();
return load_stream_impl(*this, stream, options, encoding_wchar);
}
#endif
xml_parse_result xml_document::load(const char_t* contents, unsigned int options)
{
// Force native encoding (skip autodetection)
#ifdef PUGIXML_WCHAR_MODE
xml_encoding encoding = encoding_wchar;
#else
xml_encoding encoding = encoding_utf8;
#endif
return load_buffer(contents, strlength(contents) * sizeof(char_t), options, encoding);
}
xml_parse_result xml_document::load_file(const char* path, unsigned int options, xml_encoding encoding)
{
reset();
FILE* file = fopen(path, "rb");
return load_file_impl(*this, file, options, encoding);
}
xml_parse_result xml_document::load_file(const wchar_t* path, unsigned int options, xml_encoding encoding)
{
reset();
FILE* file = open_file_wide(path, L"rb");
return load_file_impl(*this, file, options, encoding);
}
xml_parse_result xml_document::load_buffer_impl(void* contents, size_t size, unsigned int options, xml_encoding encoding, bool is_mutable, bool own)
{
reset();
// check input buffer
assert(contents || size == 0);
// get actual encoding
xml_encoding buffer_encoding = get_buffer_encoding(encoding, contents, size);
// get private buffer
char_t* buffer = 0;
size_t length = 0;
if (!convert_buffer(buffer, length, buffer_encoding, contents, size, is_mutable)) return make_parse_result(status_out_of_memory);
// delete original buffer if we performed a conversion
if (own && buffer != contents && contents) global_deallocate(contents);
// parse
xml_parse_result res = xml_parser::parse(buffer, length, _root, options);
// remember encoding
res.encoding = buffer_encoding;
// grab onto buffer if it's our buffer, user is responsible for deallocating contens himself
if (own || buffer != contents) _buffer = buffer;
return res;
}
xml_parse_result xml_document::load_buffer(const void* contents, size_t size, unsigned int options, xml_encoding encoding)
{
return load_buffer_impl(const_cast<void*>(contents), size, options, encoding, false, false);
}
xml_parse_result xml_document::load_buffer_inplace(void* contents, size_t size, unsigned int options, xml_encoding encoding)
{
return load_buffer_impl(contents, size, options, encoding, true, false);
}
xml_parse_result xml_document::load_buffer_inplace_own(void* contents, size_t size, unsigned int options, xml_encoding encoding)
{
return load_buffer_impl(contents, size, options, encoding, true, true);
}
void xml_document::save(xml_writer& writer, const char_t* indent, unsigned int flags, xml_encoding encoding) const
{
if (flags & format_write_bom) write_bom(writer, get_write_encoding(encoding));
xml_buffered_writer buffered_writer(writer, encoding);
if (!(flags & format_no_declaration) && !has_declaration(*this))
{
buffered_writer.write(PUGIXML_TEXT("<?xml version=\"1.0\"?>"));
if (!(flags & format_raw)) buffered_writer.write('\n');
}
node_output(buffered_writer, *this, indent, flags, 0);
}
#ifndef PUGIXML_NO_STL
void xml_document::save(std::basic_ostream<char, std::char_traits<char> >& stream, const char_t* indent, unsigned int flags, xml_encoding encoding) const
{
xml_writer_stream writer(stream);
save(writer, indent, flags, encoding);
}
void xml_document::save(std::basic_ostream<wchar_t, std::char_traits<wchar_t> >& stream, const char_t* indent, unsigned int flags) const
{
xml_writer_stream writer(stream);
save(writer, indent, flags, encoding_wchar);
}
#endif
bool xml_document::save_file(const char* path, const char_t* indent, unsigned int flags, xml_encoding encoding) const
{
FILE* file = fopen(path, "wb");
if (!file) return false;
xml_writer_file writer(file);
save(writer, indent, flags, encoding);
fclose(file);
return true;
}
bool xml_document::save_file(const wchar_t* path, const char_t* indent, unsigned int flags, xml_encoding encoding) const
{
FILE* file = open_file_wide(path, L"wb");
if (!file) return false;
xml_writer_file writer(file);
save(writer, indent, flags, encoding);
fclose(file);
return true;
}
xml_node xml_document::document_element() const
{
for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling)
if ((i->header & xml_memory_page_type_mask) + 1 == node_element)
return xml_node(i);
return xml_node();
}
#ifndef PUGIXML_NO_STL
std::string PUGIXML_FUNCTION as_utf8(const wchar_t* str)
{
assert(str);
return as_utf8_impl(str, wcslen(str));
}
std::string PUGIXML_FUNCTION as_utf8(const std::wstring& str)
{
return as_utf8_impl(str.c_str(), str.size());
}
std::wstring PUGIXML_FUNCTION as_wide(const char* str)
{
assert(str);
return as_wide_impl(str, strlen(str));
}
std::wstring PUGIXML_FUNCTION as_wide(const std::string& str)
{
return as_wide_impl(str.c_str(), str.size());
}
#endif
void PUGIXML_FUNCTION set_memory_management_functions(allocation_function allocate, deallocation_function deallocate)
{
global_allocate = allocate;
global_deallocate = deallocate;
}
allocation_function PUGIXML_FUNCTION get_memory_allocation_function()
{
return global_allocate;
}
deallocation_function PUGIXML_FUNCTION get_memory_deallocation_function()
{
return global_deallocate;
}
}
#if !defined(PUGIXML_NO_STL) && (defined(_MSC_VER) || defined(__ICC))
namespace std
{
// Workarounds for (non-standard) iterator category detection for older versions (MSVC7/IC8 and earlier)
std::bidirectional_iterator_tag _Iter_cat(const xml_node_iterator&)
{
return std::bidirectional_iterator_tag();
}
std::bidirectional_iterator_tag _Iter_cat(const xml_attribute_iterator&)
{
return std::bidirectional_iterator_tag();
}
}
#endif
#if !defined(PUGIXML_NO_STL) && defined(__SUNPRO_CC)
namespace std
{
// Workarounds for (non-standard) iterator category detection
std::bidirectional_iterator_tag __iterator_category(const xml_node_iterator&)
{
return std::bidirectional_iterator_tag();
}
std::bidirectional_iterator_tag __iterator_category(const xml_attribute_iterator&)
{
return std::bidirectional_iterator_tag();
}
}
#endif
#ifndef PUGIXML_NO_XPATH
// STL replacements
namespace
{
struct equal_to
{
template <typename T> bool operator()(const T& lhs, const T& rhs) const
{
return lhs == rhs;
}
};
struct not_equal_to
{
template <typename T> bool operator()(const T& lhs, const T& rhs) const
{
return lhs != rhs;
}
};
struct less
{
template <typename T> bool operator()(const T& lhs, const T& rhs) const
{
return lhs < rhs;
}
};
struct less_equal
{
template <typename T> bool operator()(const T& lhs, const T& rhs) const
{
return lhs <= rhs;
}
};
template <typename T> void swap(T& lhs, T& rhs)
{
T temp = lhs;
lhs = rhs;
rhs = temp;
}
template <typename I, typename Pred> I min_element(I begin, I end, const Pred& pred)
{
I result = begin;
for (I it = begin + 1; it != end; ++it)
if (pred(*it, *result))
result = it;
return result;
}
template <typename I> void reverse(I begin, I end)
{
while (begin + 1 < end) swap(*begin++, *--end);
}
template <typename I> I unique(I begin, I end)
{
// fast skip head
while (begin + 1 < end && *begin != *(begin + 1)) begin++;
if (begin == end) return begin;
// last written element
I write = begin++;
// merge unique elements
while (begin != end)
{
if (*begin != *write)
*++write = *begin++;
else
begin++;
}
// past-the-end (write points to live element)
return write + 1;
}
template <typename I> void copy_backwards(I begin, I end, I target)
{
while (begin != end) *--target = *--end;
}
template <typename I, typename Pred, typename T> void insertion_sort(I begin, I end, const Pred& pred, T*)
{
assert(begin != end);
for (I it = begin + 1; it != end; ++it)
{
T val = *it;
if (pred(val, *begin))
{
// move to front
copy_backwards(begin, it, it + 1);
*begin = val;
}
else
{
I hole = it;
// move hole backwards
while (pred(val, *(hole - 1)))
{
*hole = *(hole - 1);
hole--;
}
// fill hole with element
*hole = val;
}
}
}
// std variant for elements with ==
template <typename I, typename Pred> void partition(I begin, I middle, I end, const Pred& pred, I* out_eqbeg, I* out_eqend)
{
I eqbeg = middle, eqend = middle + 1;
// expand equal range
while (eqbeg != begin && *(eqbeg - 1) == *eqbeg) --eqbeg;
while (eqend != end && *eqend == *eqbeg) ++eqend;
// process outer elements
I ltend = eqbeg, gtbeg = eqend;
for (;;)
{
// find the element from the right side that belongs to the left one
for (; gtbeg != end; ++gtbeg)
if (!pred(*eqbeg, *gtbeg))
{
if (*gtbeg == *eqbeg) swap(*gtbeg, *eqend++);
else break;
}
// find the element from the left side that belongs to the right one
for (; ltend != begin; --ltend)
if (!pred(*(ltend - 1), *eqbeg))
{
if (*eqbeg == *(ltend - 1)) swap(*(ltend - 1), *--eqbeg);
else break;
}
// scanned all elements
if (gtbeg == end && ltend == begin)
{
*out_eqbeg = eqbeg;
*out_eqend = eqend;
return;
}
// make room for elements by moving equal area
if (gtbeg == end)
{
if (--ltend != --eqbeg) swap(*ltend, *eqbeg);
swap(*eqbeg, *--eqend);
}
else if (ltend == begin)
{
if (eqend != gtbeg) swap(*eqbeg, *eqend);
++eqend;
swap(*gtbeg++, *eqbeg++);
}
else swap(*gtbeg++, *--ltend);
}
}
template <typename I, typename Pred> void median3(I first, I middle, I last, const Pred& pred)
{
if (pred(*middle, *first)) swap(*middle, *first);
if (pred(*last, *middle)) swap(*last, *middle);
if (pred(*middle, *first)) swap(*middle, *first);
}
template <typename I, typename Pred> void median(I first, I middle, I last, const Pred& pred)
{
if (last - first <= 40)
{
// median of three for small chunks
median3(first, middle, last, pred);
}
else
{
// median of nine
size_t step = (last - first + 1) / 8;
median3(first, first + step, first + 2 * step, pred);
median3(middle - step, middle, middle + step, pred);
median3(last - 2 * step, last - step, last, pred);
median3(first + step, middle, last - step, pred);
}
}
template <typename I, typename Pred> void sort(I begin, I end, const Pred& pred)
{
// sort large chunks
while (end - begin > 32)
{
// find median element
I middle = begin + (end - begin) / 2;
median(begin, middle, end - 1, pred);
// partition in three chunks (< = >)
I eqbeg, eqend;
partition(begin, middle, end, pred, &eqbeg, &eqend);
// loop on larger half
if (eqbeg - begin > end - eqend)
{
sort(eqend, end, pred);
end = eqbeg;
}
else
{
sort(begin, eqbeg, pred);
begin = eqend;
}
}
// insertion sort small chunk
if (begin != end) insertion_sort(begin, end, pred, &*begin);
}
}
// Allocator used for AST and evaluation stacks
namespace
{
struct xpath_memory_block
{
xpath_memory_block* next;
char data[4096];
};
class xpath_allocator
{
xpath_memory_block* _root;
size_t _root_size;
public:
#ifdef PUGIXML_NO_EXCEPTIONS
jmp_buf* error_handler;
#endif
xpath_allocator(xpath_memory_block* root, size_t root_size = 0): _root(root), _root_size(root_size)
{
#ifdef PUGIXML_NO_EXCEPTIONS
error_handler = 0;
#endif
}
void* allocate_nothrow(size_t size)
{
const size_t block_capacity = sizeof(_root->data);
// align size so that we're able to store pointers in subsequent blocks
size = (size + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
if (_root_size + size <= block_capacity)
{
void* buf = _root->data + _root_size;
_root_size += size;
return buf;
}
else
{
size_t block_data_size = (size > block_capacity) ? size : block_capacity;
size_t block_size = block_data_size + offsetof(xpath_memory_block, data);
xpath_memory_block* block = static_cast<xpath_memory_block*>(global_allocate(block_size));
if (!block) return 0;
block->next = _root;
_root = block;
_root_size = size;
return block->data;
}
}
void* allocate(size_t size)
{
void* result = allocate_nothrow(size);
if (!result)
{
#ifdef PUGIXML_NO_EXCEPTIONS
assert(error_handler);
longjmp(*error_handler, 1);
#else
throw std::bad_alloc();
#endif
}
return result;
}
void* reallocate(void* ptr, size_t old_size, size_t new_size)
{
// align size so that we're able to store pointers in subsequent blocks
old_size = (old_size + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
new_size = (new_size + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
// we can only reallocate the last object
assert(ptr == 0 || static_cast<char*>(ptr) + old_size == _root->data + _root_size);
// adjust root size so that we have not allocated the object at all
bool only_object = (_root_size == old_size);
if (ptr) _root_size -= old_size;
// allocate a new version (this will obviously reuse the memory if possible)
void* result = allocate(new_size);
assert(result);
// we have a new block
if (result != ptr && ptr)
{
// copy old data
assert(new_size > old_size);
memcpy(result, ptr, old_size);
// free the previous page if it had no other objects
if (only_object)
{
assert(_root->data == result);
assert(_root->next);
xpath_memory_block* next = _root->next->next;
if (next)
{
// deallocate the whole page, unless it was the first one
global_deallocate(_root->next);
_root->next = next;
}
}
}
return result;
}
void revert(const xpath_allocator& state)
{
// free all new pages
xpath_memory_block* cur = _root;
while (cur != state._root)
{
xpath_memory_block* next = cur->next;
global_deallocate(cur);
cur = next;
}
// restore state
_root = state._root;
_root_size = state._root_size;
}
void release()
{
xpath_memory_block* cur = _root;
assert(cur);
while (cur->next)
{
xpath_memory_block* next = cur->next;
global_deallocate(cur);
cur = next;
}
}
};
struct xpath_allocator_capture
{
xpath_allocator_capture(xpath_allocator* alloc): _target(alloc), _state(*alloc)
{
}
~xpath_allocator_capture()
{
_target->revert(_state);
}
xpath_allocator* _target;
xpath_allocator _state;
};
struct xpath_stack
{
xpath_allocator* result;
xpath_allocator* temp;
};
struct xpath_stack_data
{
xpath_memory_block blocks[2];
xpath_allocator result;
xpath_allocator temp;
xpath_stack stack;
#ifdef PUGIXML_NO_EXCEPTIONS
jmp_buf error_handler;
#endif
xpath_stack_data(): result(blocks + 0), temp(blocks + 1)
{
blocks[0].next = blocks[1].next = 0;
stack.result = &result;
stack.temp = &temp;
#ifdef PUGIXML_NO_EXCEPTIONS
result.error_handler = temp.error_handler = &error_handler;
#endif
}
~xpath_stack_data()
{
result.release();
temp.release();
}
};
}
// String class
namespace
{
class xpath_string
{
const char_t* _buffer;
bool _uses_heap;
static char_t* duplicate_string(const char_t* string, size_t length, xpath_allocator* alloc)
{
char_t* result = static_cast<char_t*>(alloc->allocate((length + 1) * sizeof(char_t)));
assert(result);
memcpy(result, string, length * sizeof(char_t));
result[length] = 0;
return result;
}
static char_t* duplicate_string(const char_t* string, xpath_allocator* alloc)
{
return duplicate_string(string, strlength(string), alloc);
}
public:
xpath_string(): _buffer(PUGIXML_TEXT("")), _uses_heap(false)
{
}
explicit xpath_string(const char_t* str, xpath_allocator* alloc)
{
bool empty = (*str == 0);
_buffer = empty ? PUGIXML_TEXT("") : duplicate_string(str, alloc);
_uses_heap = !empty;
}
explicit xpath_string(const char_t* str, bool use_heap): _buffer(str), _uses_heap(use_heap)
{
}
xpath_string(const char_t* begin, const char_t* end, xpath_allocator* alloc)
{
assert(begin <= end);
bool empty = (begin == end);
_buffer = empty ? PUGIXML_TEXT("") : duplicate_string(begin, static_cast<size_t>(end - begin), alloc);
_uses_heap = !empty;
}
void append(const xpath_string& o, xpath_allocator* alloc)
{
// skip empty sources
if (!*o._buffer) return;
// fast append for constant empty target and constant source
if (!*_buffer && !_uses_heap && !o._uses_heap)
{
_buffer = o._buffer;
}
else
{
// need to make heap copy
size_t target_length = strlength(_buffer);
size_t source_length = strlength(o._buffer);
size_t length = target_length + source_length;
// allocate new buffer
char_t* result = static_cast<char_t*>(alloc->reallocate(_uses_heap ? const_cast<char_t*>(_buffer) : 0, (target_length + 1) * sizeof(char_t), (length + 1) * sizeof(char_t)));
assert(result);
// append first string to the new buffer in case there was no reallocation
if (!_uses_heap) memcpy(result, _buffer, target_length * sizeof(char_t));
// append second string to the new buffer
memcpy(result + target_length, o._buffer, source_length * sizeof(char_t));
result[length] = 0;
// finalize
_buffer = result;
_uses_heap = true;
}
}
const char_t* c_str() const
{
return _buffer;
}
size_t length() const
{
return strlength(_buffer);
}
char_t* data(xpath_allocator* alloc)
{
// make private heap copy
if (!_uses_heap)
{
_buffer = duplicate_string(_buffer, alloc);
_uses_heap = true;
}
return const_cast<char_t*>(_buffer);
}
bool empty() const
{
return *_buffer == 0;
}
bool operator==(const xpath_string& o) const
{
return strequal(_buffer, o._buffer);
}
bool operator!=(const xpath_string& o) const
{
return !strequal(_buffer, o._buffer);
}
bool uses_heap() const
{
return _uses_heap;
}
};
xpath_string xpath_string_const(const char_t* str)
{
return xpath_string(str, false);
}
}
namespace
{
bool starts_with(const char_t* string, const char_t* pattern)
{
while (*pattern && *string == *pattern)
{
string++;
pattern++;
}
return *pattern == 0;
}
const char_t* find_char(const char_t* s, char_t c)
{
#ifdef PUGIXML_WCHAR_MODE
return wcschr(s, c);
#else
return strchr(s, c);
#endif
}
const char_t* find_substring(const char_t* s, const char_t* p)
{
#ifdef PUGIXML_WCHAR_MODE
// MSVC6 wcsstr bug workaround (if s is empty it always returns 0)
return (*p == 0) ? s : wcsstr(s, p);
#else
return strstr(s, p);
#endif
}
// Converts symbol to lower case, if it is an ASCII one
char_t tolower_ascii(char_t ch)
{
return static_cast<unsigned int>(ch - 'A') < 26 ? static_cast<char_t>(ch | ' ') : ch;
}
xpath_string string_value(const xpath_node& na, xpath_allocator* alloc)
{
if (na.attribute())
return xpath_string_const(na.attribute().value());
else
{
const xml_node& n = na.node();
switch (n.type())
{
case node_pcdata:
case node_cdata:
case node_comment:
case node_pi:
return xpath_string_const(n.value());
case node_document:
case node_element:
{
xpath_string result;
xml_node cur = n.first_child();
while (cur && cur != n)
{
if (cur.type() == node_pcdata || cur.type() == node_cdata)
result.append(xpath_string_const(cur.value()), alloc);
if (cur.first_child())
cur = cur.first_child();
else if (cur.next_sibling())
cur = cur.next_sibling();
else
{
while (!cur.next_sibling() && cur != n)
cur = cur.parent();
if (cur != n) cur = cur.next_sibling();
}
}
return result;
}
default:
return xpath_string();
}
}
}
unsigned int node_height(xml_node n)
{
unsigned int result = 0;
while (n)
{
++result;
n = n.parent();
}
return result;
}
bool node_is_before(xml_node ln, unsigned int lh, xml_node rn, unsigned int rh)
{
// normalize heights
for (unsigned int i = rh; i < lh; i++) ln = ln.parent();
for (unsigned int j = lh; j < rh; j++) rn = rn.parent();
// one node is the ancestor of the other
if (ln == rn) return lh < rh;
// find common ancestor
while (ln.parent() != rn.parent())
{
ln = ln.parent();
rn = rn.parent();
}
// there is no common ancestor (the shared parent is null), nodes are from different documents
if (!ln.parent()) return ln < rn;
// determine sibling order
for (; ln; ln = ln.next_sibling())
if (ln == rn)
return true;
return false;
}
bool node_is_ancestor(xml_node parent, xml_node node)
{
while (node && node != parent) node = node.parent();
return parent && node == parent;
}
const void* document_order(const xpath_node& xnode)
{
xml_node_struct* node = xnode.node().internal_object();
if (node)
{
if (node->name && (node->header & xml_memory_page_name_allocated_mask) == 0) return node->name;
if (node->value && (node->header & xml_memory_page_value_allocated_mask) == 0) return node->value;
return 0;
}
xml_attribute_struct* attr = xnode.attribute().internal_object();
if (attr)
{
if ((attr->header & xml_memory_page_name_allocated_mask) == 0) return attr->name;
if ((attr->header & xml_memory_page_value_allocated_mask) == 0) return attr->value;
return 0;
}
return 0;
}
struct document_order_comparator
{
bool operator()(const xpath_node& lhs, const xpath_node& rhs) const
{
// optimized document order based check
const void* lo = document_order(lhs);
const void* ro = document_order(rhs);
if (lo && ro) return lo < ro;
// slow comparison
xml_node ln = lhs.node(), rn = rhs.node();
// compare attributes
if (lhs.attribute() && rhs.attribute())
{
// shared parent
if (lhs.parent() == rhs.parent())
{
// determine sibling order
for (xml_attribute a = lhs.attribute(); a; a = a.next_attribute())
if (a == rhs.attribute())
return true;
return false;
}
// compare attribute parents
ln = lhs.parent();
rn = rhs.parent();
}
else if (lhs.attribute())
{
// attributes go after the parent element
if (lhs.parent() == rhs.node()) return false;
ln = lhs.parent();
}
else if (rhs.attribute())
{
// attributes go after the parent element
if (rhs.parent() == lhs.node()) return true;
rn = rhs.parent();
}
if (ln == rn) return false;
unsigned int lh = node_height(ln);
unsigned int rh = node_height(rn);
return node_is_before(ln, lh, rn, rh);
}
};
struct duplicate_comparator
{
bool operator()(const xpath_node& lhs, const xpath_node& rhs) const
{
if (lhs.attribute()) return rhs.attribute() ? lhs.attribute() < rhs.attribute() : true;
else return rhs.attribute() ? false : lhs.node() < rhs.node();
}
};
double gen_nan()
{
#if defined(__STDC_IEC_559__) || ((FLT_RADIX - 0 == 2) && (FLT_MAX_EXP - 0 == 128) && (FLT_MANT_DIG - 0 == 24))
union { float f; int32_t i; } u[sizeof(float) == sizeof(int32_t) ? 1 : -1];
u[0].i = 0x7fc00000;
return u[0].f;
#else
// fallback
const volatile double zero = 0.0;
return zero / zero;
#endif
}
bool is_nan(double value)
{
#if defined(_MSC_VER) || defined(__BORLANDC__)
return !!_isnan(value);
#elif defined(fpclassify) && defined(FP_NAN)
return fpclassify(value) == FP_NAN;
#else
// fallback
const volatile double v = value;
return v != v;
#endif
}
const char_t* convert_number_to_string_special(double value)
{
#if defined(_MSC_VER) || defined(__BORLANDC__)
if (_finite(value)) return (value == 0) ? PUGIXML_TEXT("0") : 0;
if (_isnan(value)) return PUGIXML_TEXT("NaN");
return PUGIXML_TEXT("-Infinity") + (value > 0);
#elif defined(fpclassify) && defined(FP_NAN) && defined(FP_INFINITE) && defined(FP_ZERO)
switch (fpclassify(value))
{
case FP_NAN:
return PUGIXML_TEXT("NaN");
case FP_INFINITE:
return PUGIXML_TEXT("-Infinity") + (value > 0);
case FP_ZERO:
return PUGIXML_TEXT("0");
default:
return 0;
}
#else
// fallback
const volatile double v = value;
if (v == 0) return PUGIXML_TEXT("0");
if (v != v) return PUGIXML_TEXT("NaN");
if (v * 2 == v) return PUGIXML_TEXT("-Infinity") + (value > 0);
return 0;
#endif
}
bool convert_number_to_boolean(double value)
{
return (value != 0 && !is_nan(value));
}
void truncate_zeros(char* begin, char* end)
{
while (begin != end && end[-1] == '0') end--;
*end = 0;
}
// gets mantissa digits in the form of 0.xxxxx with 0. implied and the exponent
#if defined(_MSC_VER) && _MSC_VER >= 1400
void convert_number_to_mantissa_exponent(double value, char* buffer, size_t buffer_size, char** out_mantissa, int* out_exponent)
{
// get base values
int sign, exponent;
_ecvt_s(buffer, buffer_size, value, DBL_DIG + 1, &exponent, &sign);
// truncate redundant zeros
truncate_zeros(buffer, buffer + strlen(buffer));
// fill results
*out_mantissa = buffer;
*out_exponent = exponent;
}
#else
void convert_number_to_mantissa_exponent(double value, char* buffer, size_t buffer_size, char** out_mantissa, int* out_exponent)
{
// get a scientific notation value with IEEE DBL_DIG decimals
sprintf(buffer, "%.*e", DBL_DIG, value);
assert(strlen(buffer) < buffer_size);
(void)!buffer_size;
// get the exponent (possibly negative)
char* exponent_string = strchr(buffer, 'e');
assert(exponent_string);
int exponent = atoi(exponent_string + 1);
// extract mantissa string: skip sign
char* mantissa = buffer[0] == '-' ? buffer + 1 : buffer;
assert(mantissa[0] != '0' && mantissa[1] == '.');
// divide mantissa by 10 to eliminate integer part
mantissa[1] = mantissa[0];
mantissa++;
exponent++;
// remove extra mantissa digits and zero-terminate mantissa
truncate_zeros(mantissa, exponent_string);
// fill results
*out_mantissa = mantissa;
*out_exponent = exponent;
}
#endif
xpath_string convert_number_to_string(double value, xpath_allocator* alloc)
{
// try special number conversion
const char_t* special = convert_number_to_string_special(value);
if (special) return xpath_string_const(special);
// get mantissa + exponent form
char mantissa_buffer[64];
char* mantissa;
int exponent;
convert_number_to_mantissa_exponent(value, mantissa_buffer, sizeof(mantissa_buffer), &mantissa, &exponent);
// make the number!
char_t result[512];
char_t* s = result;
// sign
if (value < 0) *s++ = '-';
// integer part
if (exponent <= 0)
{
*s++ = '0';
}
else
{
while (exponent > 0)
{
assert(*mantissa == 0 || (unsigned)(*mantissa - '0') <= 9);
*s++ = *mantissa ? *mantissa++ : '0';
exponent--;
}
}
// fractional part
if (*mantissa)
{
// decimal point
*s++ = '.';
// extra zeroes from negative exponent
while (exponent < 0)
{
*s++ = '0';
exponent++;
}
// extra mantissa digits
while (*mantissa)
{
assert((unsigned)(*mantissa - '0') <= 9);
*s++ = *mantissa++;
}
}
// zero-terminate
assert(s < result + sizeof(result) / sizeof(result[0]));
*s = 0;
return xpath_string(result, alloc);
}
bool check_string_to_number_format(const char_t* string)
{
// parse leading whitespace
while (IS_CHARTYPE(*string, ct_space)) ++string;
// parse sign
if (*string == '-') ++string;
if (!*string) return false;
// if there is no integer part, there should be a decimal part with at least one digit
if (!IS_CHARTYPEX(string[0], ctx_digit) && (string[0] != '.' || !IS_CHARTYPEX(string[1], ctx_digit))) return false;
// parse integer part
while (IS_CHARTYPEX(*string, ctx_digit)) ++string;
// parse decimal part
if (*string == '.')
{
++string;
while (IS_CHARTYPEX(*string, ctx_digit)) ++string;
}
// parse trailing whitespace
while (IS_CHARTYPE(*string, ct_space)) ++string;
return *string == 0;
}
double convert_string_to_number(const char_t* string)
{
// check string format
if (!check_string_to_number_format(string)) return gen_nan();
// parse string
#ifdef PUGIXML_WCHAR_MODE
return wcstod(string, 0);
#else
return atof(string);
#endif
}
bool convert_string_to_number(const char_t* begin, const char_t* end, double* out_result)
{
char_t buffer[32];
size_t length = static_cast<size_t>(end - begin);
char_t* scratch = buffer;
if (length >= sizeof(buffer) / sizeof(buffer[0]))
{
// need to make dummy on-heap copy
scratch = static_cast<char_t*>(global_allocate((length + 1) * sizeof(char_t)));
if (!scratch) return false;
}
// copy string to zero-terminated buffer and perform conversion
memcpy(scratch, begin, length * sizeof(char_t));
scratch[length] = 0;
*out_result = convert_string_to_number(scratch);
// free dummy buffer
if (scratch != buffer) global_deallocate(scratch);
return true;
}
double round_nearest(double value)
{
return floor(value + 0.5);
}
double round_nearest_nzero(double value)
{
// same as round_nearest, but returns -0 for [-0.5, -0]
// ceil is used to differentiate between +0 and -0 (we return -0 for [-0.5, -0] and +0 for +0)
return (value >= -0.5 && value <= 0) ? ceil(value) : floor(value + 0.5);
}
const char_t* qualified_name(const xpath_node& node)
{
return node.attribute() ? node.attribute().name() : node.node().name();
}
const char_t* local_name(const xpath_node& node)
{
const char_t* name = qualified_name(node);
const char_t* p = find_char(name, ':');
return p ? p + 1 : name;
}
struct namespace_uri_predicate
{
const char_t* prefix;
size_t prefix_length;
namespace_uri_predicate(const char_t* name)
{
const char_t* pos = find_char(name, ':');
prefix = pos ? name : 0;
prefix_length = pos ? static_cast<size_t>(pos - name) : 0;
}
bool operator()(const xml_attribute& a) const
{
const char_t* name = a.name();
if (!starts_with(name, PUGIXML_TEXT("xmlns"))) return false;
return prefix ? name[5] == ':' && strequalrange(name + 6, prefix, prefix_length) : name[5] == 0;
}
};
const char_t* namespace_uri(const xml_node& node)
{
namespace_uri_predicate pred = node.name();
xml_node p = node;
while (p)
{
xml_attribute a = p.find_attribute(pred);
if (a) return a.value();
p = p.parent();
}
return PUGIXML_TEXT("");
}
const char_t* namespace_uri(const xml_attribute& attr, const xml_node& parent)
{
namespace_uri_predicate pred = attr.name();
// Default namespace does not apply to attributes
if (!pred.prefix) return PUGIXML_TEXT("");
xml_node p = parent;
while (p)
{
xml_attribute a = p.find_attribute(pred);
if (a) return a.value();
p = p.parent();
}
return PUGIXML_TEXT("");
}
const char_t* namespace_uri(const xpath_node& node)
{
return node.attribute() ? namespace_uri(node.attribute(), node.parent()) : namespace_uri(node.node());
}
void normalize_space(char_t* buffer)
{
char_t* write = buffer;
for (char_t* it = buffer; *it; )
{
char_t ch = *it++;
if (IS_CHARTYPE(ch, ct_space))
{
// replace whitespace sequence with single space
while (IS_CHARTYPE(*it, ct_space)) it++;
// avoid leading spaces
if (write != buffer) *write++ = ' ';
}
else *write++ = ch;
}
// remove trailing space
if (write != buffer && IS_CHARTYPE(write[-1], ct_space)) write--;
// zero-terminate
*write = 0;
}
void translate(char_t* buffer, const char_t* from, const char_t* to)
{
size_t to_length = strlength(to);
char_t* write = buffer;
while (*buffer)
{
DMC_VOLATILE char_t ch = *buffer++;
const char_t* pos = find_char(from, ch);
if (!pos)
*write++ = ch; // do not process
else if (static_cast<size_t>(pos - from) < to_length)
*write++ = to[pos - from]; // replace
}
// zero-terminate
*write = 0;
}
struct xpath_variable_boolean: xpath_variable
{
xpath_variable_boolean(): value(false)
{
}
bool value;
char_t name[1];
};
struct xpath_variable_number: xpath_variable
{
xpath_variable_number(): value(0)
{
}
double value;
char_t name[1];
};
struct xpath_variable_string: xpath_variable
{
xpath_variable_string(): value(0)
{
}
~xpath_variable_string()
{
if (value) global_deallocate(value);
}
char_t* value;
char_t name[1];
};
struct xpath_variable_node_set: xpath_variable
{
xpath_node_set value;
char_t name[1];
};
const xpath_node_set dummy_node_set;
unsigned int hash_string(const char_t* str)
{
// Jenkins one-at-a-time hash (http://en.wikipedia.org/wiki/Jenkins_hash_function#one-at-a-time)
unsigned int result = 0;
while (*str)
{
result += static_cast<unsigned int>(*str++);
result += result << 10;
result ^= result >> 6;
}
result += result << 3;
result ^= result >> 11;
result += result << 15;
return result;
}
template <typename T> T* new_xpath_variable(const char_t* name)
{
size_t length = strlength(name);
if (length == 0) return 0; // empty variable names are invalid
// $$ we can't use offsetof(T, name) because T is non-POD, so we just allocate additional length characters
void* memory = global_allocate(sizeof(T) + length * sizeof(char_t));
if (!memory) return 0;
T* result = new (memory) T();
memcpy(result->name, name, (length + 1) * sizeof(char_t));
return result;
}
xpath_variable* new_xpath_variable(xpath_value_type type, const char_t* name)
{
switch (type)
{
case xpath_type_node_set:
return new_xpath_variable<xpath_variable_node_set>(name);
case xpath_type_number:
return new_xpath_variable<xpath_variable_number>(name);
case xpath_type_string:
return new_xpath_variable<xpath_variable_string>(name);
case xpath_type_boolean:
return new_xpath_variable<xpath_variable_boolean>(name);
default:
return 0;
}
}
template <typename T> void delete_xpath_variable(T* var)
{
var->~T();
global_deallocate(var);
}
void delete_xpath_variable(xpath_value_type type, xpath_variable* var)
{
switch (type)
{
case xpath_type_node_set:
delete_xpath_variable(static_cast<xpath_variable_node_set*>(var));
break;
case xpath_type_number:
delete_xpath_variable(static_cast<xpath_variable_number*>(var));
break;
case xpath_type_string:
delete_xpath_variable(static_cast<xpath_variable_string*>(var));
break;
case xpath_type_boolean:
delete_xpath_variable(static_cast<xpath_variable_boolean*>(var));
break;
default:
assert(!"Invalid variable type");
}
}
xpath_variable* get_variable(xpath_variable_set* set, const char_t* begin, const char_t* end)
{
char_t buffer[32];
size_t length = static_cast<size_t>(end - begin);
char_t* scratch = buffer;
if (length >= sizeof(buffer) / sizeof(buffer[0]))
{
// need to make dummy on-heap copy
scratch = static_cast<char_t*>(global_allocate((length + 1) * sizeof(char_t)));
if (!scratch) return 0;
}
// copy string to zero-terminated buffer and perform lookup
memcpy(scratch, begin, length * sizeof(char_t));
scratch[length] = 0;
xpath_variable* result = set->get(scratch);
// free dummy buffer
if (scratch != buffer) global_deallocate(scratch);
return result;
}
}
// Internal node set class
namespace
{
xpath_node_set::type_t xpath_sort(xpath_node* begin, xpath_node* end, xpath_node_set::type_t type, bool rev)
{
xpath_node_set::type_t order = rev ? xpath_node_set::type_sorted_reverse : xpath_node_set::type_sorted;
if (type == xpath_node_set::type_unsorted)
{
sort(begin, end, document_order_comparator());
type = xpath_node_set::type_sorted;
}
if (type != order) reverse(begin, end);
return order;
}
xpath_node xpath_first(const xpath_node* begin, const xpath_node* end, xpath_node_set::type_t type)
{
if (begin == end) return xpath_node();
switch (type)
{
case xpath_node_set::type_sorted:
return *begin;
case xpath_node_set::type_sorted_reverse:
return *(end - 1);
case xpath_node_set::type_unsorted:
return *min_element(begin, end, document_order_comparator());
default:
assert(!"Invalid node set type");
return xpath_node();
}
}
class xpath_node_set_raw
{
xpath_node_set::type_t _type;
xpath_node* _begin;
xpath_node* _end;
xpath_node* _eos;
public:
xpath_node_set_raw(): _type(xpath_node_set::type_unsorted), _begin(0), _end(0), _eos(0)
{
}
xpath_node* begin() const
{
return _begin;
}
xpath_node* end() const
{
return _end;
}
bool empty() const
{
return _begin == _end;
}
size_t size() const
{
return static_cast<size_t>(_end - _begin);
}
xpath_node first() const
{
return xpath_first(_begin, _end, _type);
}
void push_back(const xpath_node& node, xpath_allocator* alloc)
{
if (_end == _eos)
{
size_t capacity = static_cast<size_t>(_eos - _begin);
// get new capacity (1.5x rule)
size_t new_capacity = capacity + capacity / 2 + 1;
// reallocate the old array or allocate a new one
xpath_node* data = static_cast<xpath_node*>(alloc->reallocate(_begin, capacity * sizeof(xpath_node), new_capacity * sizeof(xpath_node)));
assert(data);
// finalize
_begin = data;
_end = data + capacity;
_eos = data + new_capacity;
}
*_end++ = node;
}
void append(const xpath_node* begin, const xpath_node* end, xpath_allocator* alloc)
{
size_t size = static_cast<size_t>(_end - _begin);
size_t capacity = static_cast<size_t>(_eos - _begin);
size_t count = static_cast<size_t>(end - begin);
if (size + count > capacity)
{
// reallocate the old array or allocate a new one
xpath_node* data = static_cast<xpath_node*>(alloc->reallocate(_begin, capacity * sizeof(xpath_node), (size + count) * sizeof(xpath_node)));
assert(data);
// finalize
_begin = data;
_end = data + size;
_eos = data + size + count;
}
memcpy(_end, begin, count * sizeof(xpath_node));
_end += count;
}
void sort_do()
{
_type = xpath_sort(_begin, _end, _type, false);
}
void truncate(xpath_node* pos)
{
assert(_begin <= pos && pos <= _end);
_end = pos;
}
void remove_duplicates()
{
if (_type == xpath_node_set::type_unsorted)
sort(_begin, _end, duplicate_comparator());
_end = unique(_begin, _end);
}
xpath_node_set::type_t type() const
{
return _type;
}
void set_type(xpath_node_set::type_t type)
{
_type = type;
}
};
}
namespace
{
struct xpath_context
{
xpath_node n;
size_t position, size;
xpath_context(const xpath_node& n, size_t position, size_t size): n(n), position(position), size(size)
{
}
};
enum lexeme_t
{
lex_none = 0,
lex_equal,
lex_not_equal,
lex_less,
lex_greater,
lex_less_or_equal,
lex_greater_or_equal,
lex_plus,
lex_minus,
lex_multiply,
lex_union,
lex_var_ref,
lex_open_brace,
lex_close_brace,
lex_quoted_string,
lex_number,
lex_slash,
lex_double_slash,
lex_open_square_brace,
lex_close_square_brace,
lex_string,
lex_comma,
lex_axis_attribute,
lex_dot,
lex_double_dot,
lex_double_colon,
lex_eof
};
struct xpath_lexer_string
{
const char_t* begin;
const char_t* end;
xpath_lexer_string(): begin(0), end(0)
{
}
bool operator==(const char_t* other) const
{
size_t length = static_cast<size_t>(end - begin);
return strequalrange(other, begin, length);
}
};
class xpath_lexer
{
const char_t* _cur;
const char_t* _cur_lexeme_pos;
xpath_lexer_string _cur_lexeme_contents;
lexeme_t _cur_lexeme;
public:
explicit xpath_lexer(const char_t* query): _cur(query)
{
next();
}
const char_t* state() const
{
return _cur;
}
void next()
{
const char_t* cur = _cur;
while (IS_CHARTYPE(*cur, ct_space)) ++cur;
// save lexeme position for error reporting
_cur_lexeme_pos = cur;
switch (*cur)
{
case 0:
_cur_lexeme = lex_eof;
break;
case '>':
if (*(cur+1) == '=')
{
cur += 2;
_cur_lexeme = lex_greater_or_equal;
}
else
{
cur += 1;
_cur_lexeme = lex_greater;
}
break;
case '<':
if (*(cur+1) == '=')
{
cur += 2;
_cur_lexeme = lex_less_or_equal;
}
else
{
cur += 1;
_cur_lexeme = lex_less;
}
break;
case '!':
if (*(cur+1) == '=')
{
cur += 2;
_cur_lexeme = lex_not_equal;
}
else
{
_cur_lexeme = lex_none;
}
break;
case '=':
cur += 1;
_cur_lexeme = lex_equal;
break;
case '+':
cur += 1;
_cur_lexeme = lex_plus;
break;
case '-':
cur += 1;
_cur_lexeme = lex_minus;
break;
case '*':
cur += 1;
_cur_lexeme = lex_multiply;
break;
case '|':
cur += 1;
_cur_lexeme = lex_union;
break;
case '$':
cur += 1;
if (IS_CHARTYPEX(*cur, ctx_start_symbol))
{
_cur_lexeme_contents.begin = cur;
while (IS_CHARTYPEX(*cur, ctx_symbol)) cur++;
if (cur[0] == ':' && IS_CHARTYPEX(cur[1], ctx_symbol)) // qname
{
cur++; // :
while (IS_CHARTYPEX(*cur, ctx_symbol)) cur++;
}
_cur_lexeme_contents.end = cur;
_cur_lexeme = lex_var_ref;
}
else
{
_cur_lexeme = lex_none;
}
break;
case '(':
cur += 1;
_cur_lexeme = lex_open_brace;
break;
case ')':
cur += 1;
_cur_lexeme = lex_close_brace;
break;
case '[':
cur += 1;
_cur_lexeme = lex_open_square_brace;
break;
case ']':
cur += 1;
_cur_lexeme = lex_close_square_brace;
break;
case ',':
cur += 1;
_cur_lexeme = lex_comma;
break;
case '/':
if (*(cur+1) == '/')
{
cur += 2;
_cur_lexeme = lex_double_slash;
}
else
{
cur += 1;
_cur_lexeme = lex_slash;
}
break;
case '.':
if (*(cur+1) == '.')
{
cur += 2;
_cur_lexeme = lex_double_dot;
}
else if (IS_CHARTYPEX(*(cur+1), ctx_digit))
{
_cur_lexeme_contents.begin = cur; // .
++cur;
while (IS_CHARTYPEX(*cur, ctx_digit)) cur++;
_cur_lexeme_contents.end = cur;
_cur_lexeme = lex_number;
}
else
{
cur += 1;
_cur_lexeme = lex_dot;
}
break;
case '@':
cur += 1;
_cur_lexeme = lex_axis_attribute;
break;
case '"':
case '\'':
{
char_t terminator = *cur;
++cur;
_cur_lexeme_contents.begin = cur;
while (*cur && *cur != terminator) cur++;
_cur_lexeme_contents.end = cur;
if (!*cur)
_cur_lexeme = lex_none;
else
{
cur += 1;
_cur_lexeme = lex_quoted_string;
}
break;
}
case ':':
if (*(cur+1) == ':')
{
cur += 2;
_cur_lexeme = lex_double_colon;
}
else
{
_cur_lexeme = lex_none;
}
break;
default:
if (IS_CHARTYPEX(*cur, ctx_digit))
{
_cur_lexeme_contents.begin = cur;
while (IS_CHARTYPEX(*cur, ctx_digit)) cur++;
if (*cur == '.')
{
cur++;
while (IS_CHARTYPEX(*cur, ctx_digit)) cur++;
}
_cur_lexeme_contents.end = cur;
_cur_lexeme = lex_number;
}
else if (IS_CHARTYPEX(*cur, ctx_start_symbol))
{
_cur_lexeme_contents.begin = cur;
while (IS_CHARTYPEX(*cur, ctx_symbol)) cur++;
if (cur[0] == ':')
{
if (cur[1] == '*') // namespace test ncname:*
{
cur += 2; // :*
}
else if (IS_CHARTYPEX(cur[1], ctx_symbol)) // namespace test qname
{
cur++; // :
while (IS_CHARTYPEX(*cur, ctx_symbol)) cur++;
}
}
_cur_lexeme_contents.end = cur;
_cur_lexeme = lex_string;
}
else
{
_cur_lexeme = lex_none;
}
}
_cur = cur;
}
lexeme_t current() const
{
return _cur_lexeme;
}
const char_t* current_pos() const
{
return _cur_lexeme_pos;
}
const xpath_lexer_string& contents() const
{
assert(_cur_lexeme == lex_var_ref || _cur_lexeme == lex_number || _cur_lexeme == lex_string || _cur_lexeme == lex_quoted_string);
return _cur_lexeme_contents;
}
};
enum ast_type_t
{
ast_op_or, // left or right
ast_op_and, // left and right
ast_op_equal, // left = right
ast_op_not_equal, // left != right
ast_op_less, // left < right
ast_op_greater, // left > right
ast_op_less_or_equal, // left <= right
ast_op_greater_or_equal, // left >= right
ast_op_add, // left + right
ast_op_subtract, // left - right
ast_op_multiply, // left * right
ast_op_divide, // left / right
ast_op_mod, // left % right
ast_op_negate, // left - right
ast_op_union, // left | right
ast_predicate, // apply predicate to set; next points to next predicate
ast_filter, // select * from left where right
ast_filter_posinv, // select * from left where right; proximity position invariant
ast_string_constant, // string constant
ast_number_constant, // number constant
ast_variable, // variable
ast_func_last, // last()
ast_func_position, // position()
ast_func_count, // count(left)
ast_func_id, // id(left)
ast_func_local_name_0, // local-name()
ast_func_local_name_1, // local-name(left)
ast_func_namespace_uri_0, // namespace-uri()
ast_func_namespace_uri_1, // namespace-uri(left)
ast_func_name_0, // name()
ast_func_name_1, // name(left)
ast_func_string_0, // string()
ast_func_string_1, // string(left)
ast_func_concat, // concat(left, right, siblings)
ast_func_starts_with, // starts_with(left, right)
ast_func_contains, // contains(left, right)
ast_func_substring_before, // substring-before(left, right)
ast_func_substring_after, // substring-after(left, right)
ast_func_substring_2, // substring(left, right)
ast_func_substring_3, // substring(left, right, third)
ast_func_string_length_0, // string-length()
ast_func_string_length_1, // string-length(left)
ast_func_normalize_space_0, // normalize-space()
ast_func_normalize_space_1, // normalize-space(left)
ast_func_translate, // translate(left, right, third)
ast_func_boolean, // boolean(left)
ast_func_not, // not(left)
ast_func_true, // true()
ast_func_false, // false()
ast_func_lang, // lang(left)
ast_func_number_0, // number()
ast_func_number_1, // number(left)
ast_func_sum, // sum(left)
ast_func_floor, // floor(left)
ast_func_ceiling, // ceiling(left)
ast_func_round, // round(left)
ast_step, // process set left with step
ast_step_root // select root node
};
enum axis_t
{
axis_ancestor,
axis_ancestor_or_self,
axis_attribute,
axis_child,
axis_descendant,
axis_descendant_or_self,
axis_following,
axis_following_sibling,
axis_namespace,
axis_parent,
axis_preceding,
axis_preceding_sibling,
axis_self
};
enum nodetest_t
{
nodetest_none,
nodetest_name,
nodetest_type_node,
nodetest_type_comment,
nodetest_type_pi,
nodetest_type_text,
nodetest_pi,
nodetest_all,
nodetest_all_in_namespace
};
template <axis_t N> struct axis_to_type
{
static const axis_t axis;
};
template <axis_t N> const axis_t axis_to_type<N>::axis = N;
class xpath_ast_node
{
private:
// node type
char _type;
char _rettype;
// for ast_step / ast_predicate
char _axis;
char _test;
// tree node structure
xpath_ast_node* _left;
xpath_ast_node* _right;
xpath_ast_node* _next;
union
{
// value for ast_string_constant
const char_t* string;
// value for ast_number_constant
double number;
// variable for ast_variable
xpath_variable* variable;
// node test for ast_step (node name/namespace/node type/pi target)
const char_t* nodetest;
} _data;
xpath_ast_node(const xpath_ast_node&);
xpath_ast_node& operator=(const xpath_ast_node&);
template <class Comp> static bool compare_eq(xpath_ast_node* lhs, xpath_ast_node* rhs, const xpath_context& c, const xpath_stack& stack, const Comp& comp)
{
xpath_value_type lt = lhs->rettype(), rt = rhs->rettype();
if (lt != xpath_type_node_set && rt != xpath_type_node_set)
{
if (lt == xpath_type_boolean || rt == xpath_type_boolean)
return comp(lhs->eval_boolean(c, stack), rhs->eval_boolean(c, stack));
else if (lt == xpath_type_number || rt == xpath_type_number)
return comp(lhs->eval_number(c, stack), rhs->eval_number(c, stack));
else if (lt == xpath_type_string || rt == xpath_type_string)
{
xpath_allocator_capture cr(stack.result);
xpath_string ls = lhs->eval_string(c, stack);
xpath_string rs = rhs->eval_string(c, stack);
return comp(ls, rs);
}
}
else if (lt == xpath_type_node_set && rt == xpath_type_node_set)
{
xpath_allocator_capture cr(stack.result);
xpath_node_set_raw ls = lhs->eval_node_set(c, stack);
xpath_node_set_raw rs = rhs->eval_node_set(c, stack);
for (const xpath_node* li = ls.begin(); li != ls.end(); ++li)
for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri)
{
xpath_allocator_capture cri(stack.result);
if (comp(string_value(*li, stack.result), string_value(*ri, stack.result)))
return true;
}
return false;
}
else
{
if (lt == xpath_type_node_set)
{
swap(lhs, rhs);
swap(lt, rt);
}
if (lt == xpath_type_boolean)
return comp(lhs->eval_boolean(c, stack), rhs->eval_boolean(c, stack));
else if (lt == xpath_type_number)
{
xpath_allocator_capture cr(stack.result);
double l = lhs->eval_number(c, stack);
xpath_node_set_raw rs = rhs->eval_node_set(c, stack);
for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri)
{
xpath_allocator_capture cri(stack.result);
if (comp(l, convert_string_to_number(string_value(*ri, stack.result).c_str())))
return true;
}
return false;
}
else if (lt == xpath_type_string)
{
xpath_allocator_capture cr(stack.result);
xpath_string l = lhs->eval_string(c, stack);
xpath_node_set_raw rs = rhs->eval_node_set(c, stack);
for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri)
{
xpath_allocator_capture cri(stack.result);
if (comp(l, string_value(*ri, stack.result)))
return true;
}
return false;
}
}
assert(!"Wrong types");
return false;
}
template <class Comp> static bool compare_rel(xpath_ast_node* lhs, xpath_ast_node* rhs, const xpath_context& c, const xpath_stack& stack, const Comp& comp)
{
xpath_value_type lt = lhs->rettype(), rt = rhs->rettype();
if (lt != xpath_type_node_set && rt != xpath_type_node_set)
return comp(lhs->eval_number(c, stack), rhs->eval_number(c, stack));
else if (lt == xpath_type_node_set && rt == xpath_type_node_set)
{
xpath_allocator_capture cr(stack.result);
xpath_node_set_raw ls = lhs->eval_node_set(c, stack);
xpath_node_set_raw rs = rhs->eval_node_set(c, stack);
for (const xpath_node* li = ls.begin(); li != ls.end(); ++li)
{
xpath_allocator_capture cri(stack.result);
double l = convert_string_to_number(string_value(*li, stack.result).c_str());
for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri)
{
xpath_allocator_capture crii(stack.result);
if (comp(l, convert_string_to_number(string_value(*ri, stack.result).c_str())))
return true;
}
}
return false;
}
else if (lt != xpath_type_node_set && rt == xpath_type_node_set)
{
xpath_allocator_capture cr(stack.result);
double l = lhs->eval_number(c, stack);
xpath_node_set_raw rs = rhs->eval_node_set(c, stack);
for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri)
{
xpath_allocator_capture cri(stack.result);
if (comp(l, convert_string_to_number(string_value(*ri, stack.result).c_str())))
return true;
}
return false;
}
else if (lt == xpath_type_node_set && rt != xpath_type_node_set)
{
xpath_allocator_capture cr(stack.result);
xpath_node_set_raw ls = lhs->eval_node_set(c, stack);
double r = rhs->eval_number(c, stack);
for (const xpath_node* li = ls.begin(); li != ls.end(); ++li)
{
xpath_allocator_capture cri(stack.result);
if (comp(convert_string_to_number(string_value(*li, stack.result).c_str()), r))
return true;
}
return false;
}
else
{
assert(!"Wrong types");
return false;
}
}
void apply_predicate(xpath_node_set_raw& ns, size_t first, xpath_ast_node* expr, const xpath_stack& stack)
{
assert(ns.size() >= first);
size_t i = 1;
size_t size = ns.size() - first;
xpath_node* last = ns.begin() + first;
// remove_if... or well, sort of
for (xpath_node* it = last; it != ns.end(); ++it, ++i)
{
xpath_context c(*it, i, size);
if (expr->rettype() == xpath_type_number)
{
if (expr->eval_number(c, stack) == i)
*last++ = *it;
}
else if (expr->eval_boolean(c, stack))
*last++ = *it;
}
ns.truncate(last);
}
void apply_predicates(xpath_node_set_raw& ns, size_t first, const xpath_stack& stack)
{
if (ns.size() == first) return;
for (xpath_ast_node* pred = _right; pred; pred = pred->_next)
{
apply_predicate(ns, first, pred->_left, stack);
}
}
void step_push(xpath_node_set_raw& ns, const xml_attribute& a, const xml_node& parent, xpath_allocator* alloc)
{
if (!a) return;
const char_t* name = a.name();
// There are no attribute nodes corresponding to attributes that declare namespaces
// That is, "xmlns:..." or "xmlns"
if (starts_with(name, PUGIXML_TEXT("xmlns")) && (name[5] == 0 || name[5] == ':')) return;
switch (_test)
{
case nodetest_name:
if (strequal(name, _data.nodetest)) ns.push_back(xpath_node(a, parent), alloc);
break;
case nodetest_type_node:
case nodetest_all:
ns.push_back(xpath_node(a, parent), alloc);
break;
case nodetest_all_in_namespace:
if (starts_with(name, _data.nodetest))
ns.push_back(xpath_node(a, parent), alloc);
break;
default:
;
}
}
void step_push(xpath_node_set_raw& ns, const xml_node& n, xpath_allocator* alloc)
{
if (!n) return;
switch (_test)
{
case nodetest_name:
if (n.type() == node_element && strequal(n.name(), _data.nodetest)) ns.push_back(n, alloc);
break;
case nodetest_type_node:
ns.push_back(n, alloc);
break;
case nodetest_type_comment:
if (n.type() == node_comment)
ns.push_back(n, alloc);
break;
case nodetest_type_text:
if (n.type() == node_pcdata || n.type() == node_cdata)
ns.push_back(n, alloc);
break;
case nodetest_type_pi:
if (n.type() == node_pi)
ns.push_back(n, alloc);
break;
case nodetest_pi:
if (n.type() == node_pi && strequal(n.name(), _data.nodetest))
ns.push_back(n, alloc);
break;
case nodetest_all:
if (n.type() == node_element)
ns.push_back(n, alloc);
break;
case nodetest_all_in_namespace:
if (n.type() == node_element && starts_with(n.name(), _data.nodetest))
ns.push_back(n, alloc);
break;
default:
assert(!"Unknown axis");
}
}
template <class T> void step_fill(xpath_node_set_raw& ns, const xml_node& n, xpath_allocator* alloc, T)
{
const axis_t axis = T::axis;
switch (axis)
{
case axis_attribute:
{
for (xml_attribute a = n.first_attribute(); a; a = a.next_attribute())
step_push(ns, a, n, alloc);
break;
}
case axis_child:
{
for (xml_node c = n.first_child(); c; c = c.next_sibling())
step_push(ns, c, alloc);
break;
}
case axis_descendant:
case axis_descendant_or_self:
{
if (axis == axis_descendant_or_self)
step_push(ns, n, alloc);
xml_node cur = n.first_child();
while (cur && cur != n)
{
step_push(ns, cur, alloc);
if (cur.first_child())
cur = cur.first_child();
else if (cur.next_sibling())
cur = cur.next_sibling();
else
{
while (!cur.next_sibling() && cur != n)
cur = cur.parent();
if (cur != n) cur = cur.next_sibling();
}
}
break;
}
case axis_following_sibling:
{
for (xml_node c = n.next_sibling(); c; c = c.next_sibling())
step_push(ns, c, alloc);
break;
}
case axis_preceding_sibling:
{
for (xml_node c = n.previous_sibling(); c; c = c.previous_sibling())
step_push(ns, c, alloc);
break;
}
case axis_following:
{
xml_node cur = n;
// exit from this node so that we don't include descendants
while (cur && !cur.next_sibling()) cur = cur.parent();
cur = cur.next_sibling();
for (;;)
{
step_push(ns, cur, alloc);
if (cur.first_child())
cur = cur.first_child();
else if (cur.next_sibling())
cur = cur.next_sibling();
else
{
while (cur && !cur.next_sibling()) cur = cur.parent();
cur = cur.next_sibling();
if (!cur) break;
}
}
break;
}
case axis_preceding:
{
xml_node cur = n;
while (cur && !cur.previous_sibling()) cur = cur.parent();
cur = cur.previous_sibling();
for (;;)
{
if (cur.last_child())
cur = cur.last_child();
else
{
// leaf node, can't be ancestor
step_push(ns, cur, alloc);
if (cur.previous_sibling())
cur = cur.previous_sibling();
else
{
do
{
cur = cur.parent();
if (!cur) break;
if (!node_is_ancestor(cur, n)) step_push(ns, cur, alloc);
}
while (!cur.previous_sibling());
cur = cur.previous_sibling();
if (!cur) break;
}
}
}
break;
}
case axis_ancestor:
case axis_ancestor_or_self:
{
if (axis == axis_ancestor_or_self)
step_push(ns, n, alloc);
xml_node cur = n.parent();
while (cur)
{
step_push(ns, cur, alloc);
cur = cur.parent();
}
break;
}
case axis_self:
{
step_push(ns, n, alloc);
break;
}
case axis_parent:
{
if (n.parent()) step_push(ns, n.parent(), alloc);
break;
}
default:
assert(!"Unimplemented axis");
}
}
template <class T> void step_fill(xpath_node_set_raw& ns, const xml_attribute& a, const xml_node& p, xpath_allocator* alloc, T v)
{
const axis_t axis = T::axis;
switch (axis)
{
case axis_ancestor:
case axis_ancestor_or_self:
{
if (axis == axis_ancestor_or_self && _test == nodetest_type_node) // reject attributes based on principal node type test
step_push(ns, a, p, alloc);
xml_node cur = p;
while (cur)
{
step_push(ns, cur, alloc);
cur = cur.parent();
}
break;
}
case axis_descendant_or_self:
case axis_self:
{
if (_test == nodetest_type_node) // reject attributes based on principal node type test
step_push(ns, a, p, alloc);
break;
}
case axis_following:
{
xml_node cur = p;
for (;;)
{
if (cur.first_child())
cur = cur.first_child();
else if (cur.next_sibling())
cur = cur.next_sibling();
else
{
while (cur && !cur.next_sibling()) cur = cur.parent();
cur = cur.next_sibling();
if (!cur) break;
}
step_push(ns, cur, alloc);
}
break;
}
case axis_parent:
{
step_push(ns, p, alloc);
break;
}
case axis_preceding:
{
// preceding:: axis does not include attribute nodes and attribute ancestors (they are the same as parent's ancestors), so we can reuse node preceding
step_fill(ns, p, alloc, v);
break;
}
default:
assert(!"Unimplemented axis");
}
}
template <class T> xpath_node_set_raw step_do(const xpath_context& c, const xpath_stack& stack, T v)
{
const axis_t axis = T::axis;
bool attributes = (axis == axis_ancestor || axis == axis_ancestor_or_self || axis == axis_descendant_or_self || axis == axis_following || axis == axis_parent || axis == axis_preceding || axis == axis_self);
xpath_node_set_raw ns;
ns.set_type((axis == axis_ancestor || axis == axis_ancestor_or_self || axis == axis_preceding || axis == axis_preceding_sibling) ? xpath_node_set::type_sorted_reverse : xpath_node_set::type_sorted);
if (_left)
{
xpath_node_set_raw s = _left->eval_node_set(c, stack);
// self axis preserves the original order
if (axis == axis_self) ns.set_type(s.type());
for (const xpath_node* it = s.begin(); it != s.end(); ++it)
{
size_t size = ns.size();
// in general, all axes generate elements in a particular order, but there is no order guarantee if axis is applied to two nodes
if (axis != axis_self && size != 0) ns.set_type(xpath_node_set::type_unsorted);
if (it->node())
step_fill(ns, it->node(), stack.result, v);
else if (attributes)
step_fill(ns, it->attribute(), it->parent(), stack.result, v);
apply_predicates(ns, size, stack);
}
}
else
{
if (c.n.node())
step_fill(ns, c.n.node(), stack.result, v);
else if (attributes)
step_fill(ns, c.n.attribute(), c.n.parent(), stack.result, v);
apply_predicates(ns, 0, stack);
}
// child, attribute and self axes always generate unique set of nodes
// for other axis, if the set stayed sorted, it stayed unique because the traversal algorithms do not visit the same node twice
if (axis != axis_child && axis != axis_attribute && axis != axis_self && ns.type() == xpath_node_set::type_unsorted)
ns.remove_duplicates();
return ns;
}
public:
xpath_ast_node(ast_type_t type, xpath_value_type rettype, const char_t* value):
_type((char)type), _rettype((char)rettype), _axis(0), _test(0), _left(0), _right(0), _next(0)
{
assert(type == ast_string_constant);
_data.string = value;
}
xpath_ast_node(ast_type_t type, xpath_value_type rettype, double value):
_type((char)type), _rettype((char)rettype), _axis(0), _test(0), _left(0), _right(0), _next(0)
{
assert(type == ast_number_constant);
_data.number = value;
}
xpath_ast_node(ast_type_t type, xpath_value_type rettype, xpath_variable* value):
_type((char)type), _rettype((char)rettype), _axis(0), _test(0), _left(0), _right(0), _next(0)
{
assert(type == ast_variable);
_data.variable = value;
}
xpath_ast_node(ast_type_t type, xpath_value_type rettype, xpath_ast_node* left = 0, xpath_ast_node* right = 0):
_type((char)type), _rettype((char)rettype), _axis(0), _test(0), _left(left), _right(right), _next(0)
{
}
xpath_ast_node(ast_type_t type, xpath_ast_node* left, axis_t axis, nodetest_t test, const char_t* contents):
_type((char)type), _rettype(xpath_type_node_set), _axis((char)axis), _test((char)test), _left(left), _right(0), _next(0)
{
_data.nodetest = contents;
}
void set_next(xpath_ast_node* value)
{
_next = value;
}
void set_right(xpath_ast_node* value)
{
_right = value;
}
bool eval_boolean(const xpath_context& c, const xpath_stack& stack)
{
switch (_type)
{
case ast_op_or:
return _left->eval_boolean(c, stack) || _right->eval_boolean(c, stack);
case ast_op_and:
return _left->eval_boolean(c, stack) && _right->eval_boolean(c, stack);
case ast_op_equal:
return compare_eq(_left, _right, c, stack, equal_to());
case ast_op_not_equal:
return compare_eq(_left, _right, c, stack, not_equal_to());
case ast_op_less:
return compare_rel(_left, _right, c, stack, less());
case ast_op_greater:
return compare_rel(_right, _left, c, stack, less());
case ast_op_less_or_equal:
return compare_rel(_left, _right, c, stack, less_equal());
case ast_op_greater_or_equal:
return compare_rel(_right, _left, c, stack, less_equal());
case ast_func_starts_with:
{
xpath_allocator_capture cr(stack.result);
xpath_string lr = _left->eval_string(c, stack);
xpath_string rr = _right->eval_string(c, stack);
return starts_with(lr.c_str(), rr.c_str());
}
case ast_func_contains:
{
xpath_allocator_capture cr(stack.result);
xpath_string lr = _left->eval_string(c, stack);
xpath_string rr = _right->eval_string(c, stack);
return find_substring(lr.c_str(), rr.c_str()) != 0;
}
case ast_func_boolean:
return _left->eval_boolean(c, stack);
case ast_func_not:
return !_left->eval_boolean(c, stack);
case ast_func_true:
return true;
case ast_func_false:
return false;
case ast_func_lang:
{
if (c.n.attribute()) return false;
xpath_allocator_capture cr(stack.result);
xpath_string lang = _left->eval_string(c, stack);
for (xml_node n = c.n.node(); n; n = n.parent())
{
xml_attribute a = n.attribute(PUGIXML_TEXT("xml:lang"));
if (a)
{
const char_t* value = a.value();
// strnicmp / strncasecmp is not portable
for (const char_t* lit = lang.c_str(); *lit; ++lit)
{
if (tolower_ascii(*lit) != tolower_ascii(*value)) return false;
++value;
}
return *value == 0 || *value == '-';
}
}
return false;
}
case ast_variable:
{
assert(_rettype == _data.variable->type());
if (_rettype == xpath_type_boolean)
return _data.variable->get_boolean();
// fallthrough to type conversion
}
default:
{
switch (_rettype)
{
case xpath_type_number:
return convert_number_to_boolean(eval_number(c, stack));
case xpath_type_string:
{
xpath_allocator_capture cr(stack.result);
return !eval_string(c, stack).empty();
}
case xpath_type_node_set:
{
xpath_allocator_capture cr(stack.result);
return !eval_node_set(c, stack).empty();
}
default:
assert(!"Wrong expression for return type boolean");
return false;
}
}
}
}
double eval_number(const xpath_context& c, const xpath_stack& stack)
{
switch (_type)
{
case ast_op_add:
return _left->eval_number(c, stack) + _right->eval_number(c, stack);
case ast_op_subtract:
return _left->eval_number(c, stack) - _right->eval_number(c, stack);
case ast_op_multiply:
return _left->eval_number(c, stack) * _right->eval_number(c, stack);
case ast_op_divide:
return _left->eval_number(c, stack) / _right->eval_number(c, stack);
case ast_op_mod:
return fmod(_left->eval_number(c, stack), _right->eval_number(c, stack));
case ast_op_negate:
return -_left->eval_number(c, stack);
case ast_number_constant:
return _data.number;
case ast_func_last:
return (double)c.size;
case ast_func_position:
return (double)c.position;
case ast_func_count:
{
xpath_allocator_capture cr(stack.result);
return (double)_left->eval_node_set(c, stack).size();
}
case ast_func_string_length_0:
{
xpath_allocator_capture cr(stack.result);
return (double)string_value(c.n, stack.result).length();
}
case ast_func_string_length_1:
{
xpath_allocator_capture cr(stack.result);
return (double)_left->eval_string(c, stack).length();
}
case ast_func_number_0:
{
xpath_allocator_capture cr(stack.result);
return convert_string_to_number(string_value(c.n, stack.result).c_str());
}
case ast_func_number_1:
return _left->eval_number(c, stack);
case ast_func_sum:
{
xpath_allocator_capture cr(stack.result);
double r = 0;
xpath_node_set_raw ns = _left->eval_node_set(c, stack);
for (const xpath_node* it = ns.begin(); it != ns.end(); ++it)
{
xpath_allocator_capture cri(stack.result);
r += convert_string_to_number(string_value(*it, stack.result).c_str());
}
return r;
}
case ast_func_floor:
{
double r = _left->eval_number(c, stack);
return r == r ? floor(r) : r;
}
case ast_func_ceiling:
{
double r = _left->eval_number(c, stack);
return r == r ? ceil(r) : r;
}
case ast_func_round:
return round_nearest_nzero(_left->eval_number(c, stack));
case ast_variable:
{
assert(_rettype == _data.variable->type());
if (_rettype == xpath_type_number)
return _data.variable->get_number();
// fallthrough to type conversion
}
default:
{
switch (_rettype)
{
case xpath_type_boolean:
return eval_boolean(c, stack) ? 1 : 0;
case xpath_type_string:
{
xpath_allocator_capture cr(stack.result);
return convert_string_to_number(eval_string(c, stack).c_str());
}
case xpath_type_node_set:
{
xpath_allocator_capture cr(stack.result);
return convert_string_to_number(eval_string(c, stack).c_str());
}
default:
assert(!"Wrong expression for return type number");
return 0;
}
}
}
}
xpath_string eval_string_concat(const xpath_context& c, const xpath_stack& stack)
{
assert(_type == ast_func_concat);
xpath_allocator_capture ct(stack.temp);
// count the string number
size_t count = 1;
for (xpath_ast_node* nc = _right; nc; nc = nc->_next) count++;
// gather all strings
xpath_string static_buffer[4];
xpath_string* buffer = static_buffer;
// allocate on-heap for large concats
if (count > sizeof(static_buffer) / sizeof(static_buffer[0]))
{
buffer = static_cast<xpath_string*>(stack.temp->allocate(count * sizeof(xpath_string)));
assert(buffer);
}
// evaluate all strings to temporary stack
xpath_stack swapped_stack = {stack.temp, stack.result};
buffer[0] = _left->eval_string(c, swapped_stack);
size_t pos = 1;
for (xpath_ast_node* n = _right; n; n = n->_next, ++pos) buffer[pos] = n->eval_string(c, swapped_stack);
assert(pos == count);
// get total length
size_t length = 0;
for (size_t i = 0; i < count; ++i) length += buffer[i].length();
// create final string
char_t* result = static_cast<char_t*>(stack.result->allocate((length + 1) * sizeof(char_t)));
assert(result);
char_t* ri = result;
for (size_t j = 0; j < count; ++j)
for (const char_t* bi = buffer[j].c_str(); *bi; ++bi)
*ri++ = *bi;
*ri = 0;
return xpath_string(result, true);
}
xpath_string eval_string(const xpath_context& c, const xpath_stack& stack)
{
switch (_type)
{
case ast_string_constant:
return xpath_string_const(_data.string);
case ast_func_local_name_0:
{
xpath_node na = c.n;
return xpath_string_const(local_name(na));
}
case ast_func_local_name_1:
{
xpath_allocator_capture cr(stack.result);
xpath_node_set_raw ns = _left->eval_node_set(c, stack);
xpath_node na = ns.first();
return xpath_string_const(local_name(na));
}
case ast_func_name_0:
{
xpath_node na = c.n;
return xpath_string_const(qualified_name(na));
}
case ast_func_name_1:
{
xpath_allocator_capture cr(stack.result);
xpath_node_set_raw ns = _left->eval_node_set(c, stack);
xpath_node na = ns.first();
return xpath_string_const(qualified_name(na));
}
case ast_func_namespace_uri_0:
{
xpath_node na = c.n;
return xpath_string_const(namespace_uri(na));
}
case ast_func_namespace_uri_1:
{
xpath_allocator_capture cr(stack.result);
xpath_node_set_raw ns = _left->eval_node_set(c, stack);
xpath_node na = ns.first();
return xpath_string_const(namespace_uri(na));
}
case ast_func_string_0:
return string_value(c.n, stack.result);
case ast_func_string_1:
return _left->eval_string(c, stack);
case ast_func_concat:
return eval_string_concat(c, stack);
case ast_func_substring_before:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_string s = _left->eval_string(c, swapped_stack);
xpath_string p = _right->eval_string(c, swapped_stack);
const char_t* pos = find_substring(s.c_str(), p.c_str());
return pos ? xpath_string(s.c_str(), pos, stack.result) : xpath_string();
}
case ast_func_substring_after:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_string s = _left->eval_string(c, swapped_stack);
xpath_string p = _right->eval_string(c, swapped_stack);
const char_t* pos = find_substring(s.c_str(), p.c_str());
if (!pos) return xpath_string();
const char_t* result = pos + p.length();
return s.uses_heap() ? xpath_string(result, stack.result) : xpath_string_const(result);
}
case ast_func_substring_2:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_string s = _left->eval_string(c, swapped_stack);
size_t s_length = s.length();
double first = round_nearest(_right->eval_number(c, stack));
if (is_nan(first)) return xpath_string(); // NaN
else if (first >= s_length + 1) return xpath_string();
size_t pos = first < 1 ? 1 : (size_t)first;
assert(1 <= pos && pos <= s_length + 1);
const char_t* rbegin = s.c_str() + (pos - 1);
return s.uses_heap() ? xpath_string(rbegin, stack.result) : xpath_string_const(rbegin);
}
case ast_func_substring_3:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_string s = _left->eval_string(c, swapped_stack);
size_t s_length = s.length();
double first = round_nearest(_right->eval_number(c, stack));
double last = first + round_nearest(_right->_next->eval_number(c, stack));
if (is_nan(first) || is_nan(last)) return xpath_string();
else if (first >= s_length + 1) return xpath_string();
else if (first >= last) return xpath_string();
else if (last < 1) return xpath_string();
size_t pos = first < 1 ? 1 : (size_t)first;
size_t end = last >= s_length + 1 ? s_length + 1 : (size_t)last;
assert(1 <= pos && pos <= end && end <= s_length + 1);
const char_t* rbegin = s.c_str() + (pos - 1);
const char_t* rend = s.c_str() + (end - 1);
return (end == s_length + 1 && !s.uses_heap()) ? xpath_string_const(rbegin) : xpath_string(rbegin, rend, stack.result);
}
case ast_func_normalize_space_0:
{
xpath_string s = string_value(c.n, stack.result);
normalize_space(s.data(stack.result));
return s;
}
case ast_func_normalize_space_1:
{
xpath_string s = _left->eval_string(c, stack);
normalize_space(s.data(stack.result));
return s;
}
case ast_func_translate:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_string s = _left->eval_string(c, stack);
xpath_string from = _right->eval_string(c, swapped_stack);
xpath_string to = _right->_next->eval_string(c, swapped_stack);
translate(s.data(stack.result), from.c_str(), to.c_str());
return s;
}
case ast_variable:
{
assert(_rettype == _data.variable->type());
if (_rettype == xpath_type_string)
return xpath_string_const(_data.variable->get_string());
// fallthrough to type conversion
}
default:
{
switch (_rettype)
{
case xpath_type_boolean:
return xpath_string_const(eval_boolean(c, stack) ? PUGIXML_TEXT("true") : PUGIXML_TEXT("false"));
case xpath_type_number:
return convert_number_to_string(eval_number(c, stack), stack.result);
case xpath_type_node_set:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_node_set_raw ns = eval_node_set(c, swapped_stack);
return ns.empty() ? xpath_string() : string_value(ns.first(), stack.result);
}
default:
assert(!"Wrong expression for return type string");
return xpath_string();
}
}
}
}
xpath_node_set_raw eval_node_set(const xpath_context& c, const xpath_stack& stack)
{
switch (_type)
{
case ast_op_union:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_node_set_raw ls = _left->eval_node_set(c, swapped_stack);
xpath_node_set_raw rs = _right->eval_node_set(c, stack);
// we can optimize merging two sorted sets, but this is a very rare operation, so don't bother
rs.set_type(xpath_node_set::type_unsorted);
rs.append(ls.begin(), ls.end(), stack.result);
rs.remove_duplicates();
return rs;
}
case ast_filter:
case ast_filter_posinv:
{
xpath_node_set_raw set = _left->eval_node_set(c, stack);
// either expression is a number or it contains position() call; sort by document order
if (_type == ast_filter) set.sort_do();
apply_predicate(set, 0, _right, stack);
return set;
}
case ast_func_id:
return xpath_node_set_raw();
case ast_step:
{
switch (_axis)
{
case axis_ancestor:
return step_do(c, stack, axis_to_type<axis_ancestor>());
case axis_ancestor_or_self:
return step_do(c, stack, axis_to_type<axis_ancestor_or_self>());
case axis_attribute:
return step_do(c, stack, axis_to_type<axis_attribute>());
case axis_child:
return step_do(c, stack, axis_to_type<axis_child>());
case axis_descendant:
return step_do(c, stack, axis_to_type<axis_descendant>());
case axis_descendant_or_self:
return step_do(c, stack, axis_to_type<axis_descendant_or_self>());
case axis_following:
return step_do(c, stack, axis_to_type<axis_following>());
case axis_following_sibling:
return step_do(c, stack, axis_to_type<axis_following_sibling>());
case axis_namespace:
// namespaced axis is not supported
return xpath_node_set_raw();
case axis_parent:
return step_do(c, stack, axis_to_type<axis_parent>());
case axis_preceding:
return step_do(c, stack, axis_to_type<axis_preceding>());
case axis_preceding_sibling:
return step_do(c, stack, axis_to_type<axis_preceding_sibling>());
case axis_self:
return step_do(c, stack, axis_to_type<axis_self>());
}
}
case ast_step_root:
{
assert(!_right); // root step can't have any predicates
xpath_node_set_raw ns;
ns.set_type(xpath_node_set::type_sorted);
if (c.n.node()) ns.push_back(c.n.node().root(), stack.result);
else if (c.n.attribute()) ns.push_back(c.n.parent().root(), stack.result);
return ns;
}
case ast_variable:
{
assert(_rettype == _data.variable->type());
if (_rettype == xpath_type_node_set)
{
const xpath_node_set& s = _data.variable->get_node_set();
xpath_node_set_raw ns;
ns.set_type(s.type());
ns.append(s.begin(), s.end(), stack.result);
return ns;
}
// fallthrough to type conversion
}
default:
assert(!"Wrong expression for return type node set");
return xpath_node_set_raw();
}
}
bool is_posinv()
{
switch (_type)
{
case ast_func_position:
return false;
case ast_string_constant:
case ast_number_constant:
case ast_variable:
return true;
case ast_step:
case ast_step_root:
return true;
case ast_predicate:
case ast_filter:
case ast_filter_posinv:
return true;
default:
if (_left && !_left->is_posinv()) return false;
for (xpath_ast_node* n = _right; n; n = n->_next)
if (!n->is_posinv()) return false;
return true;
}
}
xpath_value_type rettype() const
{
return static_cast<xpath_value_type>(_rettype);
}
};
struct xpath_parser
{
xpath_allocator* _alloc;
xpath_lexer _lexer;
const char_t* _query;
xpath_variable_set* _variables;
xpath_parse_result* _result;
#ifdef PUGIXML_NO_EXCEPTIONS
jmp_buf _error_handler;
#endif
void throw_error(const char* message)
{
_result->error = message;
_result->offset = _lexer.current_pos() - _query;
#ifdef PUGIXML_NO_EXCEPTIONS
longjmp(_error_handler, 1);
#else
throw xpath_exception(*_result);
#endif
}
void throw_error_oom()
{
#ifdef PUGIXML_NO_EXCEPTIONS
throw_error("Out of memory");
#else
throw std::bad_alloc();
#endif
}
void* alloc_node()
{
void* result = _alloc->allocate_nothrow(sizeof(xpath_ast_node));
if (!result) throw_error_oom();
return result;
}
const char_t* alloc_string(const xpath_lexer_string& value)
{
if (value.begin)
{
size_t length = static_cast<size_t>(value.end - value.begin);
char_t* c = static_cast<char_t*>(_alloc->allocate_nothrow((length + 1) * sizeof(char_t)));
if (!c) throw_error_oom();
memcpy(c, value.begin, length * sizeof(char_t));
c[length] = 0;
return c;
}
else return 0;
}
xpath_ast_node* parse_function_helper(ast_type_t type0, ast_type_t type1, size_t argc, xpath_ast_node* args[2])
{
assert(argc <= 1);
if (argc == 1 && args[0]->rettype() != xpath_type_node_set) throw_error("Function has to be applied to node set");
return new (alloc_node()) xpath_ast_node(argc == 0 ? type0 : type1, xpath_type_string, args[0]);
}
xpath_ast_node* parse_function(const xpath_lexer_string& name, size_t argc, xpath_ast_node* args[2])
{
switch (name.begin[0])
{
case 'b':
if (name == PUGIXML_TEXT("boolean") && argc == 1)
return new (alloc_node()) xpath_ast_node(ast_func_boolean, xpath_type_boolean, args[0]);
break;
case 'c':
if (name == PUGIXML_TEXT("count") && argc == 1)
{
if (args[0]->rettype() != xpath_type_node_set) throw_error("Function has to be applied to node set");
return new (alloc_node()) xpath_ast_node(ast_func_count, xpath_type_number, args[0]);
}
else if (name == PUGIXML_TEXT("contains") && argc == 2)
return new (alloc_node()) xpath_ast_node(ast_func_contains, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("concat") && argc >= 2)
return new (alloc_node()) xpath_ast_node(ast_func_concat, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("ceiling") && argc == 1)
return new (alloc_node()) xpath_ast_node(ast_func_ceiling, xpath_type_number, args[0]);
break;
case 'f':
if (name == PUGIXML_TEXT("false") && argc == 0)
return new (alloc_node()) xpath_ast_node(ast_func_false, xpath_type_boolean);
else if (name == PUGIXML_TEXT("floor") && argc == 1)
return new (alloc_node()) xpath_ast_node(ast_func_floor, xpath_type_number, args[0]);
break;
case 'i':
if (name == PUGIXML_TEXT("id") && argc == 1)
return new (alloc_node()) xpath_ast_node(ast_func_id, xpath_type_node_set, args[0]);
break;
case 'l':
if (name == PUGIXML_TEXT("last") && argc == 0)
return new (alloc_node()) xpath_ast_node(ast_func_last, xpath_type_number);
else if (name == PUGIXML_TEXT("lang") && argc == 1)
return new (alloc_node()) xpath_ast_node(ast_func_lang, xpath_type_boolean, args[0]);
else if (name == PUGIXML_TEXT("local-name") && argc <= 1)
return parse_function_helper(ast_func_local_name_0, ast_func_local_name_1, argc, args);
break;
case 'n':
if (name == PUGIXML_TEXT("name") && argc <= 1)
return parse_function_helper(ast_func_name_0, ast_func_name_1, argc, args);
else if (name == PUGIXML_TEXT("namespace-uri") && argc <= 1)
return parse_function_helper(ast_func_namespace_uri_0, ast_func_namespace_uri_1, argc, args);
else if (name == PUGIXML_TEXT("normalize-space") && argc <= 1)
return new (alloc_node()) xpath_ast_node(argc == 0 ? ast_func_normalize_space_0 : ast_func_normalize_space_1, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("not") && argc == 1)
return new (alloc_node()) xpath_ast_node(ast_func_not, xpath_type_boolean, args[0]);
else if (name == PUGIXML_TEXT("number") && argc <= 1)
return new (alloc_node()) xpath_ast_node(argc == 0 ? ast_func_number_0 : ast_func_number_1, xpath_type_number, args[0]);
break;
case 'p':
if (name == PUGIXML_TEXT("position") && argc == 0)
return new (alloc_node()) xpath_ast_node(ast_func_position, xpath_type_number);
break;
case 'r':
if (name == PUGIXML_TEXT("round") && argc == 1)
return new (alloc_node()) xpath_ast_node(ast_func_round, xpath_type_number, args[0]);
break;
case 's':
if (name == PUGIXML_TEXT("string") && argc <= 1)
return new (alloc_node()) xpath_ast_node(argc == 0 ? ast_func_string_0 : ast_func_string_1, xpath_type_string, args[0]);
else if (name == PUGIXML_TEXT("string-length") && argc <= 1)
return new (alloc_node()) xpath_ast_node(argc == 0 ? ast_func_string_length_0 : ast_func_string_length_1, xpath_type_string, args[0]);
else if (name == PUGIXML_TEXT("starts-with") && argc == 2)
return new (alloc_node()) xpath_ast_node(ast_func_starts_with, xpath_type_boolean, args[0], args[1]);
else if (name == PUGIXML_TEXT("substring-before") && argc == 2)
return new (alloc_node()) xpath_ast_node(ast_func_substring_before, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("substring-after") && argc == 2)
return new (alloc_node()) xpath_ast_node(ast_func_substring_after, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("substring") && (argc == 2 || argc == 3))
return new (alloc_node()) xpath_ast_node(argc == 2 ? ast_func_substring_2 : ast_func_substring_3, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("sum") && argc == 1)
{
if (args[0]->rettype() != xpath_type_node_set) throw_error("Function has to be applied to node set");
return new (alloc_node()) xpath_ast_node(ast_func_sum, xpath_type_number, args[0]);
}
break;
case 't':
if (name == PUGIXML_TEXT("translate") && argc == 3)
return new (alloc_node()) xpath_ast_node(ast_func_translate, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("true") && argc == 0)
return new (alloc_node()) xpath_ast_node(ast_func_true, xpath_type_boolean);
break;
}
throw_error("Unrecognized function or wrong parameter count");
return 0;
}
axis_t parse_axis_name(const xpath_lexer_string& name, bool& specified)
{
specified = true;
switch (name.begin[0])
{
case 'a':
if (name == PUGIXML_TEXT("ancestor"))
return axis_ancestor;
else if (name == PUGIXML_TEXT("ancestor-or-self"))
return axis_ancestor_or_self;
else if (name == PUGIXML_TEXT("attribute"))
return axis_attribute;
break;
case 'c':
if (name == PUGIXML_TEXT("child"))
return axis_child;
break;
case 'd':
if (name == PUGIXML_TEXT("descendant"))
return axis_descendant;
else if (name == PUGIXML_TEXT("descendant-or-self"))
return axis_descendant_or_self;
break;
case 'f':
if (name == PUGIXML_TEXT("following"))
return axis_following;
else if (name == PUGIXML_TEXT("following-sibling"))
return axis_following_sibling;
break;
case 'n':
if (name == PUGIXML_TEXT("namespace"))
return axis_namespace;
break;
case 'p':
if (name == PUGIXML_TEXT("parent"))
return axis_parent;
else if (name == PUGIXML_TEXT("preceding"))
return axis_preceding;
else if (name == PUGIXML_TEXT("preceding-sibling"))
return axis_preceding_sibling;
break;
case 's':
if (name == PUGIXML_TEXT("self"))
return axis_self;
break;
}
specified = false;
return axis_child;
}
nodetest_t parse_node_test_type(const xpath_lexer_string& name)
{
switch (name.begin[0])
{
case 'c':
if (name == PUGIXML_TEXT("comment"))
return nodetest_type_comment;
break;
case 'n':
if (name == PUGIXML_TEXT("node"))
return nodetest_type_node;
break;
case 'p':
if (name == PUGIXML_TEXT("processing-instruction"))
return nodetest_type_pi;
break;
case 't':
if (name == PUGIXML_TEXT("text"))
return nodetest_type_text;
break;
}
return nodetest_none;
}
// PrimaryExpr ::= VariableReference | '(' Expr ')' | Literal | Number | FunctionCall
xpath_ast_node* parse_primary_expression()
{
switch (_lexer.current())
{
case lex_var_ref:
{
xpath_lexer_string name = _lexer.contents();
if (!_variables)
throw_error("Unknown variable: variable set is not provided");
xpath_variable* var = get_variable(_variables, name.begin, name.end);
if (!var)
throw_error("Unknown variable: variable set does not contain the given name");
_lexer.next();
return new (alloc_node()) xpath_ast_node(ast_variable, var->type(), var);
}
case lex_open_brace:
{
_lexer.next();
xpath_ast_node* n = parse_expression();
if (_lexer.current() != lex_close_brace)
throw_error("Unmatched braces");
_lexer.next();
return n;
}
case lex_quoted_string:
{
const char_t* value = alloc_string(_lexer.contents());
xpath_ast_node* n = new (alloc_node()) xpath_ast_node(ast_string_constant, xpath_type_string, value);
_lexer.next();
return n;
}
case lex_number:
{
double value = 0;
if (!convert_string_to_number(_lexer.contents().begin, _lexer.contents().end, &value))
throw_error_oom();
xpath_ast_node* n = new (alloc_node()) xpath_ast_node(ast_number_constant, xpath_type_number, value);
_lexer.next();
return n;
}
case lex_string:
{
xpath_ast_node* args[2] = {0};
size_t argc = 0;
xpath_lexer_string function = _lexer.contents();
_lexer.next();
xpath_ast_node* last_arg = 0;
if (_lexer.current() != lex_open_brace)
throw_error("Unrecognized function call");
_lexer.next();
if (_lexer.current() != lex_close_brace)
args[argc++] = parse_expression();
while (_lexer.current() != lex_close_brace)
{
if (_lexer.current() != lex_comma)
throw_error("No comma between function arguments");
_lexer.next();
xpath_ast_node* n = parse_expression();
if (argc < 2) args[argc] = n;
else last_arg->set_next(n);
argc++;
last_arg = n;
}
_lexer.next();
return parse_function(function, argc, args);
}
default:
throw_error("Unrecognizable primary expression");
return 0;
}
}
// FilterExpr ::= PrimaryExpr | FilterExpr Predicate
// Predicate ::= '[' PredicateExpr ']'
// PredicateExpr ::= Expr
xpath_ast_node* parse_filter_expression()
{
xpath_ast_node* n = parse_primary_expression();
while (_lexer.current() == lex_open_square_brace)
{
_lexer.next();
xpath_ast_node* expr = parse_expression();
if (n->rettype() != xpath_type_node_set) throw_error("Predicate has to be applied to node set");
bool posinv = expr->rettype() != xpath_type_number && expr->is_posinv();
n = new (alloc_node()) xpath_ast_node(posinv ? ast_filter_posinv : ast_filter, xpath_type_node_set, n, expr);
if (_lexer.current() != lex_close_square_brace)
throw_error("Unmatched square brace");
_lexer.next();
}
return n;
}
// Step ::= AxisSpecifier NodeTest Predicate* | AbbreviatedStep
// AxisSpecifier ::= AxisName '::' | '@'?
// NodeTest ::= NameTest | NodeType '(' ')' | 'processing-instruction' '(' Literal ')'
// NameTest ::= '*' | NCName ':' '*' | QName
// AbbreviatedStep ::= '.' | '..'
xpath_ast_node* parse_step(xpath_ast_node* set)
{
if (set && set->rettype() != xpath_type_node_set)
throw_error("Step has to be applied to node set");
bool axis_specified = false;
axis_t axis = axis_child; // implied child axis
if (_lexer.current() == lex_axis_attribute)
{
axis = axis_attribute;
axis_specified = true;
_lexer.next();
}
else if (_lexer.current() == lex_dot)
{
_lexer.next();
return new (alloc_node()) xpath_ast_node(ast_step, set, axis_self, nodetest_type_node, 0);
}
else if (_lexer.current() == lex_double_dot)
{
_lexer.next();
return new (alloc_node()) xpath_ast_node(ast_step, set, axis_parent, nodetest_type_node, 0);
}
nodetest_t nt_type = nodetest_none;
xpath_lexer_string nt_name;
if (_lexer.current() == lex_string)
{
// node name test
nt_name = _lexer.contents();
_lexer.next();
// was it an axis name?
if (_lexer.current() == lex_double_colon)
{
// parse axis name
if (axis_specified) throw_error("Two axis specifiers in one step");
axis = parse_axis_name(nt_name, axis_specified);
if (!axis_specified) throw_error("Unknown axis");
// read actual node test
_lexer.next();
if (_lexer.current() == lex_multiply)
{
nt_type = nodetest_all;
nt_name = xpath_lexer_string();
_lexer.next();
}
else if (_lexer.current() == lex_string)
{
nt_name = _lexer.contents();
_lexer.next();
}
else throw_error("Unrecognized node test");
}
if (nt_type == nodetest_none)
{
// node type test or processing-instruction
if (_lexer.current() == lex_open_brace)
{
_lexer.next();
if (_lexer.current() == lex_close_brace)
{
_lexer.next();
nt_type = parse_node_test_type(nt_name);
if (nt_type == nodetest_none) throw_error("Unrecognized node type");
nt_name = xpath_lexer_string();
}
else if (nt_name == PUGIXML_TEXT("processing-instruction"))
{
if (_lexer.current() != lex_quoted_string)
throw_error("Only literals are allowed as arguments to processing-instruction()");
nt_type = nodetest_pi;
nt_name = _lexer.contents();
_lexer.next();
if (_lexer.current() != lex_close_brace)
throw_error("Unmatched brace near processing-instruction()");
_lexer.next();
}
else
throw_error("Unmatched brace near node type test");
}
// QName or NCName:*
else
{
if (nt_name.end - nt_name.begin > 2 && nt_name.end[-2] == ':' && nt_name.end[-1] == '*') // NCName:*
{
nt_name.end--; // erase *
nt_type = nodetest_all_in_namespace;
}
else nt_type = nodetest_name;
}
}
}
else if (_lexer.current() == lex_multiply)
{
nt_type = nodetest_all;
_lexer.next();
}
else throw_error("Unrecognized node test");
xpath_ast_node* n = new (alloc_node()) xpath_ast_node(ast_step, set, axis, nt_type, alloc_string(nt_name));
xpath_ast_node* last = 0;
while (_lexer.current() == lex_open_square_brace)
{
_lexer.next();
xpath_ast_node* expr = parse_expression();
xpath_ast_node* pred = new (alloc_node()) xpath_ast_node(ast_predicate, xpath_type_node_set, expr);
if (_lexer.current() != lex_close_square_brace)
throw_error("Unmatched square brace");
_lexer.next();
if (last) last->set_next(pred);
else n->set_right(pred);
last = pred;
}
return n;
}
// RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | RelativeLocationPath '//' Step
xpath_ast_node* parse_relative_location_path(xpath_ast_node* set)
{
xpath_ast_node* n = parse_step(set);
while (_lexer.current() == lex_slash || _lexer.current() == lex_double_slash)
{
lexeme_t l = _lexer.current();
_lexer.next();
if (l == lex_double_slash)
n = new (alloc_node()) xpath_ast_node(ast_step, n, axis_descendant_or_self, nodetest_type_node, 0);
n = parse_step(n);
}
return n;
}
// LocationPath ::= RelativeLocationPath | AbsoluteLocationPath
// AbsoluteLocationPath ::= '/' RelativeLocationPath? | '//' RelativeLocationPath
xpath_ast_node* parse_location_path()
{
if (_lexer.current() == lex_slash)
{
_lexer.next();
xpath_ast_node* n = new (alloc_node()) xpath_ast_node(ast_step_root, xpath_type_node_set);
// relative location path can start from axis_attribute, dot, double_dot, multiply and string lexemes; any other lexeme means standalone root path
lexeme_t l = _lexer.current();
if (l == lex_string || l == lex_axis_attribute || l == lex_dot || l == lex_double_dot || l == lex_multiply)
return parse_relative_location_path(n);
else
return n;
}
else if (_lexer.current() == lex_double_slash)
{
_lexer.next();
xpath_ast_node* n = new (alloc_node()) xpath_ast_node(ast_step_root, xpath_type_node_set);
n = new (alloc_node()) xpath_ast_node(ast_step, n, axis_descendant_or_self, nodetest_type_node, 0);
return parse_relative_location_path(n);
}
// else clause moved outside of if because of bogus warning 'control may reach end of non-void function being inlined' in gcc 4.0.1
return parse_relative_location_path(0);
}
// PathExpr ::= LocationPath
// | FilterExpr
// | FilterExpr '/' RelativeLocationPath
// | FilterExpr '//' RelativeLocationPath
xpath_ast_node* parse_path_expression()
{
// Clarification.
// PathExpr begins with either LocationPath or FilterExpr.
// FilterExpr begins with PrimaryExpr
// PrimaryExpr begins with '$' in case of it being a variable reference,
// '(' in case of it being an expression, string literal, number constant or
// function call.
if (_lexer.current() == lex_var_ref || _lexer.current() == lex_open_brace ||
_lexer.current() == lex_quoted_string || _lexer.current() == lex_number ||
_lexer.current() == lex_string)
{
if (_lexer.current() == lex_string)
{
// This is either a function call, or not - if not, we shall proceed with location path
const char_t* state = _lexer.state();
while (IS_CHARTYPE(*state, ct_space)) ++state;
if (*state != '(') return parse_location_path();
// This looks like a function call; however this still can be a node-test. Check it.
if (parse_node_test_type(_lexer.contents()) != nodetest_none) return parse_location_path();
}
xpath_ast_node* n = parse_filter_expression();
if (_lexer.current() == lex_slash || _lexer.current() == lex_double_slash)
{
lexeme_t l = _lexer.current();
_lexer.next();
if (l == lex_double_slash)
{
if (n->rettype() != xpath_type_node_set) throw_error("Step has to be applied to node set");
n = new (alloc_node()) xpath_ast_node(ast_step, n, axis_descendant_or_self, nodetest_type_node, 0);
}
// select from location path
return parse_relative_location_path(n);
}
return n;
}
else return parse_location_path();
}
// UnionExpr ::= PathExpr | UnionExpr '|' PathExpr
xpath_ast_node* parse_union_expression()
{
xpath_ast_node* n = parse_path_expression();
while (_lexer.current() == lex_union)
{
_lexer.next();
xpath_ast_node* expr = parse_union_expression();
if (n->rettype() != xpath_type_node_set || expr->rettype() != xpath_type_node_set)
throw_error("Union operator has to be applied to node sets");
n = new (alloc_node()) xpath_ast_node(ast_op_union, xpath_type_node_set, n, expr);
}
return n;
}
// UnaryExpr ::= UnionExpr | '-' UnaryExpr
xpath_ast_node* parse_unary_expression()
{
if (_lexer.current() == lex_minus)
{
_lexer.next();
xpath_ast_node* expr = parse_unary_expression();
return new (alloc_node()) xpath_ast_node(ast_op_negate, xpath_type_number, expr);
}
else return parse_union_expression();
}
// MultiplicativeExpr ::= UnaryExpr
// | MultiplicativeExpr '*' UnaryExpr
// | MultiplicativeExpr 'div' UnaryExpr
// | MultiplicativeExpr 'mod' UnaryExpr
xpath_ast_node* parse_multiplicative_expression()
{
xpath_ast_node* n = parse_unary_expression();
while (_lexer.current() == lex_multiply || (_lexer.current() == lex_string &&
(_lexer.contents() == PUGIXML_TEXT("mod") || _lexer.contents() == PUGIXML_TEXT("div"))))
{
ast_type_t op = _lexer.current() == lex_multiply ? ast_op_multiply :
_lexer.contents().begin[0] == 'd' ? ast_op_divide : ast_op_mod;
_lexer.next();
xpath_ast_node* expr = parse_unary_expression();
n = new (alloc_node()) xpath_ast_node(op, xpath_type_number, n, expr);
}
return n;
}
// AdditiveExpr ::= MultiplicativeExpr
// | AdditiveExpr '+' MultiplicativeExpr
// | AdditiveExpr '-' MultiplicativeExpr
xpath_ast_node* parse_additive_expression()
{
xpath_ast_node* n = parse_multiplicative_expression();
while (_lexer.current() == lex_plus || _lexer.current() == lex_minus)
{
lexeme_t l = _lexer.current();
_lexer.next();
xpath_ast_node* expr = parse_multiplicative_expression();
n = new (alloc_node()) xpath_ast_node(l == lex_plus ? ast_op_add : ast_op_subtract, xpath_type_number, n, expr);
}
return n;
}
// RelationalExpr ::= AdditiveExpr
// | RelationalExpr '<' AdditiveExpr
// | RelationalExpr '>' AdditiveExpr
// | RelationalExpr '<=' AdditiveExpr
// | RelationalExpr '>=' AdditiveExpr
xpath_ast_node* parse_relational_expression()
{
xpath_ast_node* n = parse_additive_expression();
while (_lexer.current() == lex_less || _lexer.current() == lex_less_or_equal ||
_lexer.current() == lex_greater || _lexer.current() == lex_greater_or_equal)
{
lexeme_t l = _lexer.current();
_lexer.next();
xpath_ast_node* expr = parse_additive_expression();
n = new (alloc_node()) xpath_ast_node(l == lex_less ? ast_op_less : l == lex_greater ? ast_op_greater :
l == lex_less_or_equal ? ast_op_less_or_equal : ast_op_greater_or_equal, xpath_type_boolean, n, expr);
}
return n;
}
// EqualityExpr ::= RelationalExpr
// | EqualityExpr '=' RelationalExpr
// | EqualityExpr '!=' RelationalExpr
xpath_ast_node* parse_equality_expression()
{
xpath_ast_node* n = parse_relational_expression();
while (_lexer.current() == lex_equal || _lexer.current() == lex_not_equal)
{
lexeme_t l = _lexer.current();
_lexer.next();
xpath_ast_node* expr = parse_relational_expression();
n = new (alloc_node()) xpath_ast_node(l == lex_equal ? ast_op_equal : ast_op_not_equal, xpath_type_boolean, n, expr);
}
return n;
}
// AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr
xpath_ast_node* parse_and_expression()
{
xpath_ast_node* n = parse_equality_expression();
while (_lexer.current() == lex_string && _lexer.contents() == PUGIXML_TEXT("and"))
{
_lexer.next();
xpath_ast_node* expr = parse_equality_expression();
n = new (alloc_node()) xpath_ast_node(ast_op_and, xpath_type_boolean, n, expr);
}
return n;
}
// OrExpr ::= AndExpr | OrExpr 'or' AndExpr
xpath_ast_node* parse_or_expression()
{
xpath_ast_node* n = parse_and_expression();
while (_lexer.current() == lex_string && _lexer.contents() == PUGIXML_TEXT("or"))
{
_lexer.next();
xpath_ast_node* expr = parse_and_expression();
n = new (alloc_node()) xpath_ast_node(ast_op_or, xpath_type_boolean, n, expr);
}
return n;
}
// Expr ::= OrExpr
xpath_ast_node* parse_expression()
{
return parse_or_expression();
}
xpath_parser(const char_t* query, xpath_variable_set* variables, xpath_allocator* alloc, xpath_parse_result* result): _alloc(alloc), _lexer(query), _query(query), _variables(variables), _result(result)
{
}
xpath_ast_node* parse()
{
xpath_ast_node* result = parse_expression();
if (_lexer.current() != lex_eof)
{
// there are still unparsed tokens left, error
throw_error("Incorrect query");
}
return result;
}
static xpath_ast_node* parse(const char_t* query, xpath_variable_set* variables, xpath_allocator* alloc, xpath_parse_result* result)
{
xpath_parser parser(query, variables, alloc, result);
#ifdef PUGIXML_NO_EXCEPTIONS
int error = setjmp(parser._error_handler);
return (error == 0) ? parser.parse() : 0;
#else
return parser.parse();
#endif
}
};
struct xpath_query_impl
{
static xpath_query_impl* create()
{
void* memory = global_allocate(sizeof(xpath_query_impl));
return new (memory) xpath_query_impl();
}
static void destroy(void* ptr)
{
if (!ptr) return;
// free all allocated pages
static_cast<xpath_query_impl*>(ptr)->alloc.release();
// free allocator memory (with the first page)
global_deallocate(ptr);
}
xpath_query_impl(): root(0), alloc(&block)
{
block.next = 0;
}
xpath_ast_node* root;
xpath_allocator alloc;
xpath_memory_block block;
};
xpath_string evaluate_string_impl(xpath_query_impl* impl, const xpath_node& n, xpath_stack_data& sd)
{
if (!impl) return xpath_string();
#ifdef PUGIXML_NO_EXCEPTIONS
if (setjmp(sd.error_handler)) return xpath_string();
#endif
xpath_context c(n, 1, 1);
return impl->root->eval_string(c, sd.stack);
}
}
namespace pugi
{
#ifndef PUGIXML_NO_EXCEPTIONS
xpath_exception::xpath_exception(const xpath_parse_result& result): _result(result)
{
assert(result.error);
}
const char* xpath_exception::what() const throw()
{
return _result.error;
}
const xpath_parse_result& xpath_exception::result() const
{
return _result;
}
#endif
xpath_node::xpath_node()
{
}
xpath_node::xpath_node(const xml_node& node): _node(node)
{
}
xpath_node::xpath_node(const xml_attribute& attribute, const xml_node& parent): _node(attribute ? parent : xml_node()), _attribute(attribute)
{
}
xml_node xpath_node::node() const
{
return _attribute ? xml_node() : _node;
}
xml_attribute xpath_node::attribute() const
{
return _attribute;
}
xml_node xpath_node::parent() const
{
return _attribute ? _node : _node.parent();
}
xpath_node::operator xpath_node::unspecified_bool_type() const
{
return (_node || _attribute) ? &xpath_node::_node : 0;
}
bool xpath_node::operator!() const
{
return !(_node || _attribute);
}
bool xpath_node::operator==(const xpath_node& n) const
{
return _node == n._node && _attribute == n._attribute;
}
bool xpath_node::operator!=(const xpath_node& n) const
{
return _node != n._node || _attribute != n._attribute;
}
#ifdef __BORLANDC__
bool operator&&(const xpath_node& lhs, bool rhs)
{
return (bool)lhs && rhs;
}
bool operator||(const xpath_node& lhs, bool rhs)
{
return (bool)lhs || rhs;
}
#endif
void xpath_node_set::_assign(const_iterator begin, const_iterator end)
{
assert(begin <= end);
size_t size = static_cast<size_t>(end - begin);
if (size <= 1)
{
// deallocate old buffer
if (_begin != &_storage) global_deallocate(_begin);
// use internal buffer
if (begin != end) _storage = *begin;
_begin = &_storage;
_end = &_storage + size;
}
else
{
// make heap copy
xpath_node* storage = static_cast<xpath_node*>(global_allocate(size * sizeof(xpath_node)));
if (!storage)
{
#ifdef PUGIXML_NO_EXCEPTIONS
return;
#else
throw std::bad_alloc();
#endif
}
memcpy(storage, begin, size * sizeof(xpath_node));
// deallocate old buffer
if (_begin != &_storage) global_deallocate(_begin);
// finalize
_begin = storage;
_end = storage + size;
}
}
xpath_node_set::xpath_node_set(): _type(type_unsorted), _begin(&_storage), _end(&_storage)
{
}
xpath_node_set::xpath_node_set(const_iterator begin, const_iterator end, type_t type): _type(type), _begin(&_storage), _end(&_storage)
{
_assign(begin, end);
}
xpath_node_set::~xpath_node_set()
{
if (_begin != &_storage) global_deallocate(_begin);
}
xpath_node_set::xpath_node_set(const xpath_node_set& ns): _type(ns._type), _begin(&_storage), _end(&_storage)
{
_assign(ns._begin, ns._end);
}
xpath_node_set& xpath_node_set::operator=(const xpath_node_set& ns)
{
if (this == &ns) return *this;
_type = ns._type;
_assign(ns._begin, ns._end);
return *this;
}
xpath_node_set::type_t xpath_node_set::type() const
{
return _type;
}
size_t xpath_node_set::size() const
{
return _end - _begin;
}
bool xpath_node_set::empty() const
{
return _begin == _end;
}
const xpath_node& xpath_node_set::operator[](size_t index) const
{
assert(index < size());
return _begin[index];
}
xpath_node_set::const_iterator xpath_node_set::begin() const
{
return _begin;
}
xpath_node_set::const_iterator xpath_node_set::end() const
{
return _end;
}
void xpath_node_set::sort(bool reverse)
{
_type = xpath_sort(_begin, _end, _type, reverse);
}
xpath_node xpath_node_set::first() const
{
return xpath_first(_begin, _end, _type);
}
xpath_parse_result::xpath_parse_result(): error("Internal error"), offset(0)
{
}
xpath_parse_result::operator bool() const
{
return error == 0;
}
const char* xpath_parse_result::description() const
{
return error ? error : "No error";
}
xpath_variable::xpath_variable()
{
}
const char_t* xpath_variable::name() const
{
switch (_type)
{
case xpath_type_node_set:
return static_cast<const xpath_variable_node_set*>(this)->name;
case xpath_type_number:
return static_cast<const xpath_variable_number*>(this)->name;
case xpath_type_string:
return static_cast<const xpath_variable_string*>(this)->name;
case xpath_type_boolean:
return static_cast<const xpath_variable_boolean*>(this)->name;
default:
assert(!"Invalid variable type");
return 0;
}
}
xpath_value_type xpath_variable::type() const
{
return _type;
}
bool xpath_variable::get_boolean() const
{
return (_type == xpath_type_boolean) ? static_cast<const xpath_variable_boolean*>(this)->value : false;
}
double xpath_variable::get_number() const
{
return (_type == xpath_type_number) ? static_cast<const xpath_variable_number*>(this)->value : gen_nan();
}
const char_t* xpath_variable::get_string() const
{
const char_t* value = (_type == xpath_type_string) ? static_cast<const xpath_variable_string*>(this)->value : 0;
return value ? value : PUGIXML_TEXT("");
}
const xpath_node_set& xpath_variable::get_node_set() const
{
return (_type == xpath_type_node_set) ? static_cast<const xpath_variable_node_set*>(this)->value : dummy_node_set;
}
bool xpath_variable::set(bool value)
{
if (_type != xpath_type_boolean) return false;
static_cast<xpath_variable_boolean*>(this)->value = value;
return true;
}
bool xpath_variable::set(double value)
{
if (_type != xpath_type_number) return false;
static_cast<xpath_variable_number*>(this)->value = value;
return true;
}
bool xpath_variable::set(const char_t* value)
{
if (_type != xpath_type_string) return false;
xpath_variable_string* var = static_cast<xpath_variable_string*>(this);
// duplicate string
size_t size = (strlength(value) + 1) * sizeof(char_t);
char_t* copy = static_cast<char_t*>(global_allocate(size));
if (!copy) return false;
memcpy(copy, value, size);
// replace old string
if (var->value) global_deallocate(var->value);
var->value = copy;
return true;
}
bool xpath_variable::set(const xpath_node_set& value)
{
if (_type != xpath_type_node_set) return false;
static_cast<xpath_variable_node_set*>(this)->value = value;
return true;
}
xpath_variable_set::xpath_variable_set()
{
for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i) _data[i] = 0;
}
xpath_variable_set::~xpath_variable_set()
{
for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i)
{
xpath_variable* var = _data[i];
while (var)
{
xpath_variable* next = var->_next;
delete_xpath_variable(var->_type, var);
var = next;
}
}
}
xpath_variable* xpath_variable_set::find(const char_t* name) const
{
const size_t hash_size = sizeof(_data) / sizeof(_data[0]);
size_t hash = hash_string(name) % hash_size;
// look for existing variable
for (xpath_variable* var = _data[hash]; var; var = var->_next)
if (strequal(var->name(), name))
return var;
return 0;
}
xpath_variable* xpath_variable_set::add(const char_t* name, xpath_value_type type)
{
const size_t hash_size = sizeof(_data) / sizeof(_data[0]);
size_t hash = hash_string(name) % hash_size;
// look for existing variable
for (xpath_variable* var = _data[hash]; var; var = var->_next)
if (strequal(var->name(), name))
return var->type() == type ? var : 0;
// add new variable
xpath_variable* result = new_xpath_variable(type, name);
if (result)
{
result->_type = type;
result->_next = _data[hash];
_data[hash] = result;
}
return result;
}
bool xpath_variable_set::set(const char_t* name, bool value)
{
xpath_variable* var = add(name, xpath_type_boolean);
return var ? var->set(value) : false;
}
bool xpath_variable_set::set(const char_t* name, double value)
{
xpath_variable* var = add(name, xpath_type_number);
return var ? var->set(value) : false;
}
bool xpath_variable_set::set(const char_t* name, const char_t* value)
{
xpath_variable* var = add(name, xpath_type_string);
return var ? var->set(value) : false;
}
bool xpath_variable_set::set(const char_t* name, const xpath_node_set& value)
{
xpath_variable* var = add(name, xpath_type_node_set);
return var ? var->set(value) : false;
}
xpath_variable* xpath_variable_set::get(const char_t* name)
{
return find(name);
}
const xpath_variable* xpath_variable_set::get(const char_t* name) const
{
return find(name);
}
xpath_query::xpath_query(const char_t* query, xpath_variable_set* variables): _impl(0)
{
xpath_query_impl* impl = xpath_query_impl::create();
if (!impl)
{
#ifdef PUGIXML_NO_EXCEPTIONS
_result.error = "Out of memory";
#else
throw std::bad_alloc();
#endif
}
else
{
buffer_holder impl_holder(impl, xpath_query_impl::destroy);
impl->root = xpath_parser::parse(query, variables, &impl->alloc, &_result);
if (impl->root)
{
_impl = static_cast<xpath_query_impl*>(impl_holder.release());
_result.error = 0;
}
}
}
xpath_query::~xpath_query()
{
xpath_query_impl::destroy(_impl);
}
xpath_value_type xpath_query::return_type() const
{
if (!_impl) return xpath_type_none;
return static_cast<xpath_query_impl*>(_impl)->root->rettype();
}
bool xpath_query::evaluate_boolean(const xpath_node& n) const
{
if (!_impl) return false;
xpath_context c(n, 1, 1);
xpath_stack_data sd;
#ifdef PUGIXML_NO_EXCEPTIONS
if (setjmp(sd.error_handler)) return false;
#endif
return static_cast<xpath_query_impl*>(_impl)->root->eval_boolean(c, sd.stack);
}
double xpath_query::evaluate_number(const xpath_node& n) const
{
if (!_impl) return gen_nan();
xpath_context c(n, 1, 1);
xpath_stack_data sd;
#ifdef PUGIXML_NO_EXCEPTIONS
if (setjmp(sd.error_handler)) return gen_nan();
#endif
return static_cast<xpath_query_impl*>(_impl)->root->eval_number(c, sd.stack);
}
#ifndef PUGIXML_NO_STL
string_t xpath_query::evaluate_string(const xpath_node& n) const
{
xpath_stack_data sd;
return evaluate_string_impl(static_cast<xpath_query_impl*>(_impl), n, sd).c_str();
}
#endif
size_t xpath_query::evaluate_string(char_t* buffer, size_t capacity, const xpath_node& n) const
{
xpath_stack_data sd;
xpath_string r = evaluate_string_impl(static_cast<xpath_query_impl*>(_impl), n, sd);
size_t full_size = r.length() + 1;
if (capacity > 0)
{
size_t size = (full_size < capacity) ? full_size : capacity;
assert(size > 0);
memcpy(buffer, r.c_str(), (size - 1) * sizeof(char_t));
buffer[size - 1] = 0;
}
return full_size;
}
xpath_node_set xpath_query::evaluate_node_set(const xpath_node& n) const
{
if (!_impl) return xpath_node_set();
xpath_ast_node* root = static_cast<xpath_query_impl*>(_impl)->root;
if (root->rettype() != xpath_type_node_set)
{
#ifdef PUGIXML_NO_EXCEPTIONS
return xpath_node_set();
#else
xpath_parse_result result;
result.error = "Expression does not evaluate to node set";
throw xpath_exception(result);
#endif
}
xpath_context c(n, 1, 1);
xpath_stack_data sd;
#ifdef PUGIXML_NO_EXCEPTIONS
if (setjmp(sd.error_handler)) return xpath_node_set();
#endif
xpath_node_set_raw r = root->eval_node_set(c, sd.stack);
return xpath_node_set(r.begin(), r.end(), r.type());
}
const xpath_parse_result& xpath_query::result() const
{
return _result;
}
xpath_query::operator xpath_query::unspecified_bool_type() const
{
return _impl ? &xpath_query::_impl : 0;
}
bool xpath_query::operator!() const
{
return !_impl;
}
xpath_node xml_node::select_single_node(const char_t* query, xpath_variable_set* variables) const
{
xpath_query q(query, variables);
return select_single_node(q);
}
xpath_node xml_node::select_single_node(const xpath_query& query) const
{
xpath_node_set s = query.evaluate_node_set(*this);
return s.empty() ? xpath_node() : s.first();
}
xpath_node_set xml_node::select_nodes(const char_t* query, xpath_variable_set* variables) const
{
xpath_query q(query, variables);
return select_nodes(q);
}
xpath_node_set xml_node::select_nodes(const xpath_query& query) const
{
return query.evaluate_node_set(*this);
}
}
#endif
/**
* Copyright (c) 2006-2010 Arseny Kapoulkine
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/