RetroShare/libretroshare/src/upnp/upnphandler_linux.cc

449 lines
10 KiB
C++

//Linux only
/* This stuff is actually C */
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __cplusplus
} /* extern C */
#endif
/* This stuff is actually C */
#include "upnp/upnphandler_linux.h"
#include "util/rsnet.h"
bool upnphandler::initUPnPState()
{
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::initUPnPState" << std::endl;
#endif
cUPnPControlPoint = new CUPnPControlPoint(2000);
bool IGWDetected = cUPnPControlPoint->GetIGWDeviceDetected();
if (IGWDetected) {
/* MODIFY STATE */
dataMtx.lock(); /* LOCK MUTEX */
upnpState = RS_UPNP_S_READY;
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::initUPnPState cUPnPControlPoint internal ip adress : ";
std::cerr << cUPnPControlPoint->getInternalIpAddress() << std::endl;
#endif
//const char ipaddr = cUPnPControlPoint->getInternalIpAddress().c_str();
inet_aton(cUPnPControlPoint->getInternalIpAddress(), &(upnp_iaddr.sin_addr));
upnp_iaddr.sin_port = htons(iport);
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::initUPnPState READY" << std::endl;
#endif
dataMtx.unlock(); /* UNLOCK MUTEX */
} else {
upnpState = RS_UPNP_S_UNAVAILABLE;
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::initUPnPState UNAVAILABLE" << std::endl;
#endif
}
return 0;
}
class upnpThreadData
{
public:
upnphandler *handler;
bool start;
bool stop;
};
/* Thread routines */
extern "C" void* doSetupUPnP(void* p)
{
#ifdef UPNP_DEBUG
std::cerr << "doSetupUPnP Creating upnp thread." << std::endl;
#endif
upnpThreadData *data = (upnpThreadData *) p;
if ((!data) || (!data->handler))
{
pthread_exit(NULL);
}
/* publish it! */
if (data -> stop)
{
data->handler->shutdown_upnp();
}
if (data -> start)
{
data->handler->initUPnPState();
data->handler->start_upnp();
}
delete data;
pthread_exit(NULL);
return NULL;
}
bool upnphandler::background_setup_upnp(bool start, bool stop)
{
pthread_t tid;
/* launch thread */
#ifdef UPNP_DEBUG
std::cerr << "background_setup_upnp Creating upnp thread." << std::endl;
#endif
upnpThreadData *data = new upnpThreadData();
data->handler = this;
data->start = start;
data->stop = stop;
if(! pthread_create(&tid, 0, &doSetupUPnP, (void *) data))
{
pthread_detach(tid); /* so memory is reclaimed in linux */
return true;
}
else
{
delete data ;
std::cerr << "(EE) Could not start background upnp thread!" << std::endl;
return false ;
}
}
bool upnphandler::start_upnp()
{
if (!(upnpState >= RS_UPNP_S_READY))
{
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::start_upnp() Not Ready" << std::endl;
#endif
return false;
}
struct sockaddr_in localAddr;
{
RsStackMutex stack(dataMtx); /* LOCK STACK MUTEX */
/* if we're to load -> load */
/* select external ports */
eport_curr = eport;
if (!eport_curr)
{
/* use local port if eport is zero */
eport_curr = iport;
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::start_upnp() Using LocalPort for extPort." << std::endl;
#endif
}
if (!eport_curr)
{
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::start_upnp() Invalid eport ... " << std::endl;
#endif
return false;
}
/* our port */
char in_addr[256];
char in_port1[256];
upnp_iaddr.sin_port = htons(iport);
localAddr = upnp_iaddr;
uint32_t linaddr = ntohl(localAddr.sin_addr.s_addr);
snprintf(in_port1, 256, "%d", ntohs(localAddr.sin_port));
snprintf(in_addr, 256, "%d.%d.%d.%d",
((linaddr >> 24) & 0xff),
((linaddr >> 16) & 0xff),
((linaddr >> 8) & 0xff),
((linaddr >> 0) & 0xff));
#ifdef UPNP_DEBUG
std::cerr << "Attempting Redirection: InAddr: " << in_addr;
std::cerr << " InPort: " << in_port1;
std::cerr << " ePort: " << eport_curr;
std::cerr << " eProt: " << "TCP and UDP";
std::cerr << std::endl;
#endif
}
//first of all, build the mappings
std::vector<CUPnPPortMapping> upnpPortMapping1;
CUPnPPortMapping cUPnPPortMapping1 = CUPnPPortMapping(eport_curr, ntohs(localAddr.sin_port), "TCP", true, "tcp retroshare redirection");
upnpPortMapping1.push_back(cUPnPPortMapping1);
std::vector<CUPnPPortMapping> upnpPortMapping2;
CUPnPPortMapping cUPnPPortMapping2 = CUPnPPortMapping(eport_curr, ntohs(localAddr.sin_port), "UDP", true, "udp retroshare redirection");
upnpPortMapping2.push_back(cUPnPPortMapping2);
//attempt to remove formal port redirection rules
cUPnPControlPoint->DeletePortMappings(upnpPortMapping1);
cUPnPControlPoint->DeletePortMappings(upnpPortMapping2);
//add new rules
bool res = cUPnPControlPoint->AddPortMappings(upnpPortMapping1);
bool res2 = cUPnPControlPoint->AddPortMappings(upnpPortMapping2);
struct sockaddr_storage extAddr;
bool extAddrResult = getExternalAddress(extAddr);
{
RsStackMutex stack(dataMtx); /* LOCK STACK MUTEX */
if (extAddrResult && (res || res2)) {
upnpState = RS_UPNP_S_ACTIVE;
} else {
upnpState = RS_UPNP_S_TCP_AND_FAILED;
}
toStart = false;
}
return (upnpState == RS_UPNP_S_ACTIVE);
}
bool upnphandler::shutdown_upnp()
{
RsStackMutex stack(dataMtx); /* LOCK STACK MUTEX */
/* always attempt this (unless no port number) */
if (eport_curr > 0 && eport > 0 && (upnpState >= RS_UPNP_S_ACTIVE))
{
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::shutdown_upnp() : Attempting To Remove Redirection: port: " << eport_curr;
std::cerr << " Prot: TCP";
std::cerr << std::endl;
#endif
std::vector<CUPnPPortMapping> upnpPortMapping1;
CUPnPPortMapping cUPnPPortMapping1 = CUPnPPortMapping(eport_curr, 0, "TCP", true, "tcp redirection");
upnpPortMapping1.push_back(cUPnPPortMapping1);
cUPnPControlPoint->DeletePortMappings(upnpPortMapping1);
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::shutdown_upnp() : Attempting To Remove Redirection: port: " << eport_curr;
std::cerr << " Prot: UDP";
std::cerr << std::endl;
#endif
std::vector<CUPnPPortMapping> upnpPortMapping2;
CUPnPPortMapping cUPnPPortMapping2 = CUPnPPortMapping(eport_curr, 0, "UDP", true, "udp redirection");
upnpPortMapping2.push_back(cUPnPPortMapping2);
cUPnPControlPoint->DeletePortMappings(upnpPortMapping2);
//destroy the upnp object
cUPnPControlPoint->~CUPnPControlPoint();
cUPnPControlPoint=NULL ;
} else {
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::shutdown_upnp() : avoid upnp connection for shutdonws because probably a net flag went down." << std::endl;
#endif
}
//stopping os ok, set starting to true for next net reset
toStop = false;
toStart = true;
upnpState = RS_UPNP_S_UNINITIALISED;
return true;
}
/************************ External Interface *****************************
*
*
*
*/
upnphandler::upnphandler()
:
upnpState(RS_UPNP_S_UNINITIALISED), dataMtx("upupState"),
cUPnPControlPoint(NULL),
toEnable(false), toStart(false), toStop(false),
iport(0),eport(0), eport_curr(0)
{
}
upnphandler::~upnphandler()
{
return;
}
/* RsIface */
void upnphandler::enable(bool active)
{
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::enable called with argument active : " << active << std::endl;
std::cerr << "toEnable : " << toEnable << std::endl;
std::cerr << "toStart : " << toStart << std::endl;
#endif
dataMtx.lock(); /*** LOCK MUTEX ***/
if (active != toEnable)
{
if (active)
{
toStart = true;
}
else
{
toStop = true;
}
}
toEnable = active;
bool start = toStart;
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
if (start)
{
/* make background thread to startup UPnP */
background_setup_upnp(true, false);
}
}
void upnphandler::shutdown()
{
/* blocking call to shutdown upnp */
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::shutdown() called." << std::endl;
#endif
shutdown_upnp();
}
void upnphandler::restart()
{
/* non-blocking call to shutdown upnp, and startup again. */
#ifdef UPNP_DEBUG
std::cerr << "upnphandler::restart() called." << std::endl;
#endif
background_setup_upnp(true, true);
}
bool upnphandler::getEnabled()
{
dataMtx.lock(); /*** LOCK MUTEX ***/
bool on = toEnable;
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
return on;
}
bool upnphandler::getActive()
{
dataMtx.lock(); /*** LOCK MUTEX ***/
#ifdef UPNP_DEBUG
std::cerr <<"upnphandler::getActive() result : " << (upnpState == RS_UPNP_S_ACTIVE) << std::endl;
#endif
bool on = (upnpState == RS_UPNP_S_ACTIVE);
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
return on;
}
/* the address that the listening port is on */
void upnphandler::setInternalPort(unsigned short iport_in)
{
dataMtx.lock(); /*** LOCK MUTEX ***/
if (iport != iport_in)
{
iport = iport_in;
if ((toEnable) &&
(upnpState == RS_UPNP_S_ACTIVE))
{
toStop = true;
toStart = true;
}
}
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
}
void upnphandler::setExternalPort(unsigned short eport_in)
{
dataMtx.lock(); /*** LOCK MUTEX ***/
/* flag both shutdown/start -> for restart */
if (eport != eport_in)
{
eport = eport_in;
if ((toEnable) &&
(upnpState == RS_UPNP_S_ACTIVE))
{
toStop = true;
toStart = true;
}
}
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
}
/* as determined by uPnP */
bool upnphandler::getInternalAddress(struct sockaddr_storage &addr)
{
dataMtx.lock(); /*** LOCK MUTEX ***/
bool valid = (upnpState >= RS_UPNP_S_ACTIVE);
// copy to universal addr.
sockaddr_storage_clear(addr);
sockaddr_storage_setipv4(addr, &upnp_iaddr);
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
return valid;
}
bool upnphandler::getExternalAddress(struct sockaddr_storage &addr)
{
std::string externalAdress = cUPnPControlPoint->getExternalAddress();
if(!externalAdress.empty() && externalAdress != "")
{
const char* externalIPAddress = externalAdress.c_str();
#ifdef UPNP_DEBUG
std::cerr << " upnphandler::getExternalAddress() : " << externalIPAddress;
std::cerr << ":" << eport_curr;
std::cerr << std::endl;
#endif
dataMtx.lock(); /*** LOCK MUTEX ***/
sockaddr_clear(&upnp_eaddr);
inet_aton(externalIPAddress, &(upnp_eaddr.sin_addr));
upnp_eaddr.sin_family = AF_INET;
upnp_eaddr.sin_port = htons(eport_curr);
// copy to universal addr.
sockaddr_storage_clear(addr);
sockaddr_storage_setipv4(addr, &upnp_eaddr);
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
return true;
}
else
{
return false;
}
}