RetroShare/libretroshare/src/retroshare/rsids.h
2018-07-19 23:22:24 +02:00

279 lines
11 KiB
C++

/*******************************************************************************
* libretroshare/src/retroshare: rsids.h *
* *
* libretroshare: retroshare core library *
* *
* Copyright 2013 by Cyril Soler <csoler@users.sourceforge.net> *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License as *
* published by the Free Software Foundation, either version 3 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
*******************************************************************************/
// This class aims at defining a generic ID type that is a list of bytes. It
// can be converted into a hexadecial string for printing, mainly) or for
// compatibility with old methods.
//
// To use this class, derive your own ID type from it. Examples include:
//
// class RsPgpId: public t_RsGenericIdType<8>
// {
// [..]
// };
//
// class PGPFingerprintType: public t_RsGenericIdType<20>
// {
// [..]
// };
//
// With this, there is no implicit conversion between subtypes, and therefore ID mixup
// is impossible.
//
// A simpler way to make ID types is to
// typedef t_RsGenericIdType<MySize> MyType ;
//
// ID Types with different lengths will be incompatible on compilation.
//
// Warning: never store references to a t_RsGenericIdType accross threads, since the
// cached string convertion is not thread safe.
//
#pragma once
#include <stdexcept>
#include <string>
#include <iostream>
#include <ostream>
#include <string.h>
#include <stdint.h>
#include <util/rsrandom.h>
#include <vector>
#include <list>
#include <set>
template<uint32_t ID_SIZE_IN_BYTES,bool UPPER_CASE,uint32_t UNIQUE_IDENTIFIER> class t_RsGenericIdType
{
public:
typedef std::list<t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER> > std_list;
typedef std::vector<t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER> > std_vector;
typedef std::set<t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER> > std_set;
t_RsGenericIdType()
{
memset(bytes,0,ID_SIZE_IN_BYTES) ; // by default, ids are set to null()
}
virtual ~t_RsGenericIdType() {}
// Explicit constructor from a hexadecimal string
//
explicit t_RsGenericIdType(const std::string& hex_string) ;
// Explicit constructor from a byte array. The array should have size at least ID_SIZE_IN_BYTES
//
explicit t_RsGenericIdType(const unsigned char bytes[]) ;
// Explicit constructor from a different type, checking that the sizes are compatible.
// This is used for conversions such as
//
// GroupId -> CircleId
// GroupId -> GxsId
//
template<bool UPPER_CASE2,uint32_t UNIQUE_IDENTIFIER2>
explicit t_RsGenericIdType(const t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE2,UNIQUE_IDENTIFIER2>& id)
{
memcpy(bytes,id.toByteArray(),ID_SIZE_IN_BYTES) ;
}
// Random initialization. Can be useful for testing and to generate new ids.
//
static t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER> random()
{
t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER> id ;
RSRandom::random_bytes(id.bytes,ID_SIZE_IN_BYTES) ;
return id ;
}
inline void clear() { memset(bytes,0,SIZE_IN_BYTES) ; }
// Converts to a std::string using cached value.
//
const unsigned char *toByteArray() const { return &bytes[0] ; }
static const uint32_t SIZE_IN_BYTES = ID_SIZE_IN_BYTES ;
inline bool operator==(const t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER>& fp) const { return !memcmp(bytes,fp.bytes,ID_SIZE_IN_BYTES) ; }
inline bool operator!=(const t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER>& fp) const { return !!memcmp(bytes,fp.bytes,ID_SIZE_IN_BYTES); }
inline bool operator< (const t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER>& fp) const { return (memcmp(bytes,fp.bytes,ID_SIZE_IN_BYTES) < 0) ; }
inline t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER>
operator~ () const
{
t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER> ret;
for(uint32_t i=0; i < ID_SIZE_IN_BYTES; ++i)
ret.bytes[i] = ~bytes[i];
return ret;
}
inline t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER>
operator| (const t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER>& fp) const
{
t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER> ret;
for(uint32_t i=0; i < ID_SIZE_IN_BYTES; ++i)
ret.bytes[i] = bytes[i] | fp.bytes[i];
return ret;
}
inline bool isNull() const
{
for(uint32_t i=0;i<SIZE_IN_BYTES;++i)
if(bytes[i] != 0)
return false ;
return true ;
}
friend std::ostream& operator<<(std::ostream& out,const t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER>& id)
{
return out << id.toStdString(UPPER_CASE) ;
}
inline std::string toStdString() const { return toStdString(UPPER_CASE) ; }
inline static uint32_t serial_size() { return SIZE_IN_BYTES ; }
bool serialise(void *data,uint32_t pktsize,uint32_t& offset) const
{
if(offset + SIZE_IN_BYTES > pktsize)
return false ;
memcpy(&((uint8_t*)data)[offset],bytes,SIZE_IN_BYTES) ;
offset += SIZE_IN_BYTES ;
return true ;
}
bool deserialise(const void *data,uint32_t pktsize,uint32_t& offset)
{
if(offset + SIZE_IN_BYTES > pktsize)
return false ;
memcpy(bytes,&((uint8_t*)data)[offset],SIZE_IN_BYTES) ;
offset += SIZE_IN_BYTES ;
return true ;
}
private:
std::string toStdString(bool upper_case) const ;
unsigned char bytes[ID_SIZE_IN_BYTES] ;
};
template<uint32_t ID_SIZE_IN_BYTES,bool UPPER_CASE,uint32_t UNIQUE_IDENTIFIER> std::string t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER>::toStdString(bool upper_case) const
{
static const char outh[16] = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F' } ;
static const char outl[16] = { '0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f' } ;
std::string res(ID_SIZE_IN_BYTES*2,' ') ;
for(uint32_t j = 0; j < ID_SIZE_IN_BYTES; j++)
if(upper_case)
{
res[2*j ] = outh[ (bytes[j]>>4) ] ;
res[2*j+1] = outh[ bytes[j] & 0xf ] ;
}
else
{
res[2*j ] = outl[ (bytes[j]>>4) ] ;
res[2*j+1] = outl[ bytes[j] & 0xf ] ;
}
return res ;
}
template<uint32_t ID_SIZE_IN_BYTES,bool UPPER_CASE,uint32_t UNIQUE_IDENTIFIER> t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER>::t_RsGenericIdType(const std::string& s)
{
int n=0;
if(s.length() != ID_SIZE_IN_BYTES*2)
{
if(!s.empty())
std::cerr << "t_RsGenericIdType<>::t_RsGenericIdType(std::string&): supplied string in constructor has wrong size. Expected ID size=" << ID_SIZE_IN_BYTES*2 << " String=\"" << s << "\" = " << s.length() << std::endl;
clear();
return;
}
for(uint32_t i = 0; i < ID_SIZE_IN_BYTES; ++i)
{
bytes[i] = 0 ;
for(int k=0;k<2;++k)
{
char b = s[n++] ;
if(b >= 'A' && b <= 'F')
bytes[i] += (b-'A'+10) << 4*(1-k) ;
else if(b >= 'a' && b <= 'f')
bytes[i] += (b-'a'+10) << 4*(1-k) ;
else if(b >= '0' && b <= '9')
bytes[i] += (b-'0') << 4*(1-k) ;
else {
std::cerr << "t_RsGenericIdType<>::t_RsGenericIdType(std::string&): supplied string is not purely hexadecimal: s=\"" << s << "\"" << std::endl;
clear();
return;
}
}
}
}
template<uint32_t ID_SIZE_IN_BYTES,bool UPPER_CASE,uint32_t UNIQUE_IDENTIFIER> t_RsGenericIdType<ID_SIZE_IN_BYTES,UPPER_CASE,UNIQUE_IDENTIFIER>::t_RsGenericIdType(const unsigned char *mem)
{
if(mem == NULL)
memset(bytes,0,ID_SIZE_IN_BYTES) ;
else
memcpy(bytes,mem,ID_SIZE_IN_BYTES) ;
}
static const int SSL_ID_SIZE = 16 ; // = CERTSIGNLEN
static const int CERT_SIGN_LEN = 16 ; // = CERTSIGNLEN
static const int PGP_KEY_ID_SIZE = 8 ;
static const int PGP_KEY_FINGERPRINT_SIZE = 20 ;
static const int SHA1_SIZE = 20 ;
static const int SHA256_SIZE = 32 ;
// These constants are random, but should be different, in order to make the various IDs incompatible with each other.
//
static const uint32_t RS_GENERIC_ID_SSL_ID_TYPE = 0x0001 ;
static const uint32_t RS_GENERIC_ID_PGP_ID_TYPE = 0x0002 ;
static const uint32_t RS_GENERIC_ID_SHA1_ID_TYPE = 0x0003 ;
static const uint32_t RS_GENERIC_ID_PGP_FINGERPRINT_TYPE = 0x0004 ;
static const uint32_t RS_GENERIC_ID_GXS_GROUP_ID_TYPE = 0x0005 ;
static const uint32_t RS_GENERIC_ID_GXS_ID_TYPE = 0x0006 ;
static const uint32_t RS_GENERIC_ID_GXS_MSG_ID_TYPE = 0x0007 ;
static const uint32_t RS_GENERIC_ID_GXS_CIRCLE_ID_TYPE = 0x0008 ;
static const uint32_t RS_GENERIC_ID_GROUTER_ID_TYPE = 0x0009 ;
static const uint32_t RS_GENERIC_ID_GXS_TUNNEL_ID_TYPE = 0x0010 ;
static const uint32_t RS_GENERIC_ID_GXS_DISTANT_CHAT_ID_TYPE = 0x0011 ;
static const uint32_t RS_GENERIC_ID_NODE_GROUP_ID_TYPE = 0x0012 ;
static const uint32_t RS_GENERIC_ID_SHA256_ID_TYPE = 0x0013 ;
static const uint32_t RS_GENERIC_ID_20_BYTES_UNTYPED = 0x0014 ;
typedef t_RsGenericIdType< SSL_ID_SIZE , false, RS_GENERIC_ID_SSL_ID_TYPE> SSLIdType ;
typedef t_RsGenericIdType< PGP_KEY_ID_SIZE , true, RS_GENERIC_ID_PGP_ID_TYPE> PGPIdType ;
typedef t_RsGenericIdType< SHA1_SIZE , false, RS_GENERIC_ID_SHA1_ID_TYPE> Sha1CheckSum ;
typedef t_RsGenericIdType< SHA256_SIZE , false, RS_GENERIC_ID_SHA256_ID_TYPE> Sha256CheckSum ;
typedef t_RsGenericIdType< PGP_KEY_FINGERPRINT_SIZE, true, RS_GENERIC_ID_PGP_FINGERPRINT_TYPE> PGPFingerprintType ;
typedef t_RsGenericIdType< SHA1_SIZE , true, RS_GENERIC_ID_20_BYTES_UNTYPED> Bias20Bytes ;
typedef t_RsGenericIdType< CERT_SIGN_LEN , false, RS_GENERIC_ID_GXS_GROUP_ID_TYPE > GXSGroupId ;
typedef t_RsGenericIdType< CERT_SIGN_LEN , false, RS_GENERIC_ID_GXS_ID_TYPE > GXSId ;
typedef t_RsGenericIdType< CERT_SIGN_LEN , false, RS_GENERIC_ID_GXS_CIRCLE_ID_TYPE > GXSCircleId ;
typedef t_RsGenericIdType< SSL_ID_SIZE , false, RS_GENERIC_ID_GXS_TUNNEL_ID_TYPE > GXSTunnelId ;
typedef t_RsGenericIdType< SSL_ID_SIZE , false, RS_GENERIC_ID_GXS_DISTANT_CHAT_ID_TYPE > DistantChatPeerId ;
typedef t_RsGenericIdType< CERT_SIGN_LEN , false, RS_GENERIC_ID_NODE_GROUP_ID_TYPE > RsNodeGroupId ;