RetroShare/libretroshare/src/serialiser/rsbaseserial.cc
2018-10-16 16:19:23 +02:00

312 lines
8.6 KiB
C++

/*******************************************************************************
* libretroshare/src/serialiser: rsbaseserial.cc *
* *
* libretroshare: retroshare core library *
* *
* Copyright 2007-2008 by Robert Fernie <retroshare@lunamutt.com> *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License as *
* published by the Free Software Foundation, either version 3 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
*******************************************************************************/
#include <stdlib.h> /* Included because GCC4.4 wants it */
#include <string.h> /* Included because GCC4.4 wants it */
#include "retroshare/rstypes.h"
#include "serialiser/rsbaseserial.h"
#include "util/rsnet.h"
#include "util/rstime.h"
#include <iostream>
#include <cstdint>
/* UInt8 get/set */
bool getRawUInt8(const void *data, uint32_t size, uint32_t *offset, uint8_t *out)
{
/* first check there is space */
if (size < *offset + 1)
{
std::cerr << "(EE) Cannot deserialise uint8_t: not enough size." << std::endl;
return false;
}
void *buf = (void *) &(((uint8_t *) data)[*offset]);
/* extract the data */
memcpy(out, buf, sizeof(uint8_t));
(*offset) += 1;
return true;
}
bool setRawUInt8(void *data, uint32_t size, uint32_t *offset, uint8_t in)
{
/* first check there is space */
if (size < *offset + 1)
{
std::cerr << "(EE) Cannot serialise uint8_t: not enough size." << std::endl;
return false;
}
void *buf = (void *) &(((uint8_t *) data)[*offset]);
/* pack it in */
memcpy(buf, &in, sizeof(uint8_t));
(*offset) += 1;
return true;
}
/* UInt16 get/set */
bool getRawUInt16(const void *data, uint32_t size, uint32_t *offset, uint16_t *out)
{
/* first check there is space */
if (size < *offset + 2)
{
std::cerr << "(EE) Cannot deserialise uint16_t: not enough size." << std::endl;
return false;
}
void *buf = (void *) &(((uint8_t *) data)[*offset]);
/* extract the data */
uint16_t netorder_num;
memcpy(&netorder_num, buf, sizeof(uint16_t));
(*out) = ntohs(netorder_num);
(*offset) += 2;
return true;
}
bool setRawUInt16(void *data, uint32_t size, uint32_t *offset, uint16_t in)
{
/* first check there is space */
if (size < *offset + 2)
{
std::cerr << "(EE) Cannot serialise uint16_t: not enough size." << std::endl;
return false;
}
void *buf = (void *) &(((uint8_t *) data)[*offset]);
/* convert the data to the right format */
uint16_t netorder_num = htons(in);
/* pack it in */
memcpy(buf, &netorder_num, sizeof(uint16_t));
(*offset) += 2;
return true;
}
/* UInt32 get/set */
bool getRawUInt32(const void *data, uint32_t size, uint32_t *offset, uint32_t *out)
{
/* first check there is space */
if (size < *offset + 4)
{
std::cerr << "(EE) Cannot deserialise uint32_t: not enough size." << std::endl;
return false;
}
void *buf = (void *) &(((uint8_t *) data)[*offset]);
/* extract the data */
uint32_t netorder_num;
memcpy(&netorder_num, buf, sizeof(uint32_t));
(*out) = ntohl(netorder_num);
(*offset) += 4;
return true;
}
bool setRawUInt32(void *data, uint32_t size, uint32_t *offset, uint32_t in)
{
/* first check there is space */
if (size < *offset + 4)
{
std::cerr << "(EE) Cannot serialise uint32_t: not enough size." << std::endl;
return false;
}
void *buf = (void *) &(((uint8_t *) data)[*offset]);
/* convert the data to the right format */
uint32_t netorder_num = htonl(in);
/* pack it in */
memcpy(buf, &netorder_num, sizeof(uint32_t));
(*offset) += 4;
return true;
}
/* UInt64 get/set */
bool getRawUInt64(const void *data, uint32_t size, uint32_t *offset, uint64_t *out)
{
/* first check there is space */
if (size < *offset + 8)
{
std::cerr << "(EE) Cannot deserialise uint64_t: not enough size." << std::endl;
return false;
}
void *buf = (void *) &(((uint8_t *) data)[*offset]);
/* extract the data */
uint64_t netorder_num;
memcpy(&netorder_num, buf, sizeof(uint64_t));
(*out) = ntohll(netorder_num);
(*offset) += 8;
return true;
}
bool setRawUInt64(void *data, uint32_t size, uint32_t *offset, uint64_t in)
{
/* first check there is space */
if (size < *offset + 8)
{
std::cerr << "(EE) Cannot serialise uint64_t: not enough size." << std::endl;
return false;
}
void *buf = (void *) &(((uint8_t *) data)[*offset]);
/* convert the data to the right format */
uint64_t netorder_num = htonll(in);
/* pack it in */
memcpy(buf, &netorder_num, sizeof(uint64_t));
(*offset) += 8;
return true;
}
bool getRawUFloat32(const void *data, uint32_t size, uint32_t *offset, float& f)
{
uint32_t n ;
if(!getRawUInt32(data, size, offset, &n) )
return false ;
f = 1.0f/ ( n/(float)(~(uint32_t)0)) - 1.0f ;
return true ;
}
bool setRawUFloat32(void *data,uint32_t size,uint32_t *offset,float f)
{
uint32_t sz = 4;
if ( !data || size <= *offset || size < sz + *offset )
{
std::cerr << "(EE) not enough room. SIZE+offset=" << sz+*offset << " and size is only " << size << std::endl;
return false;
}
if(f < 0.0f)
{
std::cerr << "(EE) Cannot serialise invalid negative float value " << f << " in " << __PRETTY_FUNCTION__ << std::endl;
return false ;
}
// This serialisation is quite accurate. The max relative error is approx.
// 0.01% and most of the time less than 1e-05% The error is well distributed
// over numbers also.
//
uint32_t n = (f < 1e-7)?(~(uint32_t)0): ((uint32_t)( (1.0f/(1.0f+f) * (~(uint32_t)0)))) ;
return setRawUInt32(data, size, offset, n);
}
uint32_t getRawStringSize(const std::string &outStr)
{
return outStr.length() + 4;
}
bool getRawString(const void *data, uint32_t size, uint32_t *offset, std::string &outStr)
{
outStr.clear();
uint32_t len = 0;
if (!getRawUInt32(data, size, offset, &len))
{
std::cerr << "getRawString() get size failed" << std::endl;
return false;
}
/* check there is space for string */
if(len > size || size-len < *offset) // better than if(size < *offset + len) because it avoids integer overflow
{
std::cerr << "getRawString() not enough size" << std::endl;
print_stacktrace();
return false;
}
uint8_t *buf = &(((uint8_t *) data)[*offset]);
for (uint32_t i = 0; i < len; i++)
{
outStr += buf[i];
}
(*offset) += len;
return true;
}
bool setRawString(void *data, uint32_t size, uint32_t *offset, const std::string &inStr)
{
uint32_t len = inStr.length();
/* first check there is space */
if(size < 4 || len > size-4 || size-len-4 < *offset) // better than if(size < *offset + len + 4) because it avoids integer overflow
{
std::cerr << "setRawString() Not enough size" << std::endl;
return false;
}
if (!setRawUInt32(data, size, offset, len))
{
std::cerr << "setRawString() set size failed" << std::endl;
return false;
}
void *buf = (void *) &(((uint8_t *) data)[*offset]);
/* pack it in */
memcpy(buf, inStr.c_str(), len);
(*offset) += len;
return true;
}
bool getRawTimeT(const void *data,uint32_t size,uint32_t *offset,rstime_t& t)
{
uint64_t T;
bool res = getRawUInt64(data,size,offset,&T);
t = T;
if(t < 0) // [[unlikely]]
std::cerr << __PRETTY_FUNCTION__ << " got a negative time: " << t
<< " this seems fishy, report to the developers!" << std::endl;
return res;
}
bool setRawTimeT(void *data, uint32_t size, uint32_t *offset, const rstime_t& t)
{
if(t < 0) // [[unlikely]]
std::cerr << __PRETTY_FUNCTION__ << " got a negative time: " << t
<< " this seems fishy, report to the developers!" << std::endl;
return setRawUInt64(data,size,offset,t) ;
}