#include #include #include #include "rsrandom.h" #include uint32_t RSRandom::index = RSRandom::N ; std::vector RSRandom::MT(RSRandom::N,0u) ; RsMutex RSRandom::rndMtx("RSRandom") ; // According to our tests (cyril+thunder), on both Windows and Linux does // RAND_bytes init itself automatically at first call, from system-based // unpredictable values, so that seeding is not even needed. // This call still adds some randomness (not much actually, but it's always good to // have anyway) // #ifdef WINDOWS_SYS #include #ifdef WIN_PTHREADS_H static bool auto_seed = RSRandom::seed( (time(NULL) + ((uint32_t) pthread_self())*0x1293fe)^0x18e34a12 ) ; #else static bool auto_seed = RSRandom::seed( (time(NULL) + ((uint32_t) pthread_self().p)*0x1293fe)^0x18e34a12 ) ; #endif #endif bool RSRandom::seed(uint32_t s) { RsStackMutex mtx(rndMtx) ; MT.resize(N,0) ; // because MT might not be already resized uint32_t j ; MT[0]= s & 0xffffffffUL; for (j=1; j> 30)) + j) & 0xffffffffUL ; RAND_seed((unsigned char *)&MT[0],N*sizeof(uint32_t)) ; locked_next_state() ; return true ; } void RSRandom::random_bytes(unsigned char *data,uint32_t size) { RAND_bytes(data,size) ; } void RSRandom::locked_next_state() { RAND_bytes((unsigned char *)&MT[0],N*sizeof(uint32_t)) ; index = 0 ; } uint32_t RSRandom::random_u32() { uint32_t y; { RsStackMutex mtx(rndMtx) ; index++ ; if(index >= N) locked_next_state(); y = MT[index] ; } // Tempering y ^= (y >> 11); y ^= (y << 7 ) & 0x9d2c5680UL; y ^= (y << 15) & 0xefc60000UL; y ^= (y >> 18); return y; } uint64_t RSRandom::random_u64() { return ((uint64_t)random_u32() << 32ul) + random_u32() ; } float RSRandom::random_f32() { return random_u32() / (float)(~(uint32_t)0) ; } double RSRandom::random_f64() { return random_u64() / (double)(~(uint64_t)0) ; } std::string RSRandom::random_alphaNumericString(uint32_t len) { std::string s = "" ; for(uint32_t i=0;i