#include #include #include #include #include #include extern "C" { #include #include #include #include #include #include } #include "pgphandler.h" std::string PGPIdType::toStdString() const { static const char out[16] = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F' } ; std::string res ; for(int j = 0; j < KEY_ID_SIZE; j++) { res += out[ (bytes[j]>>4) ] ; res += out[ bytes[j] & 0xf ] ; } return res ; } std::string PGPFingerprintType::toStdString() const { static const char out[16] = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F' } ; std::string res ; for(int j = 0; j < KEY_FINGERPRINT_SIZE; j++) { res += out[ (bytes[j]>>4) ] ; res += out[ bytes[j] & 0xf ] ; } return res ; } PGPIdType PGPIdType::fromUserId_hex(const std::string& s) { int n=0; if(s.length() != KEY_ID_SIZE*2) throw std::runtime_error("PGPIdType::PGPIdType: can only init from 16 chars hexadecimal string") ; PGPIdType res ; for(int i = 0; i < KEY_ID_SIZE; ++i) { res.bytes[i] = 0 ; for(int k=0;k<2;++k) { char b = s[n++] ; if(b >= 'A' && b <= 'F') res.bytes[i] += (b-'A'+10) << 4*(1-k) ; else if(b >= 'a' && b <= 'f') res.bytes[i] += (b-'a'+10) << 4*(1-k) ; else if(b >= '0' && b <= '9') res.bytes[i] += (b-'0') << 4*(1-k) ; else throw std::runtime_error("PGPIdType::Sha1CheckSum: can't init from non pure hexadecimal string") ; } } return res ; } PGPIdType PGPIdType::fromFingerprint_hex(const std::string& s) { if(s.length() != PGPFingerprintType::KEY_FINGERPRINT_SIZE*2) throw std::runtime_error("PGPIdType::PGPIdType: can only init from 40 chars hexadecimal string") ; PGPIdType res ; int n=2*PGPFingerprintType::KEY_FINGERPRINT_SIZE - 2*PGPIdType::KEY_ID_SIZE ; for(int i = 0; i < PGPIdType::KEY_ID_SIZE; ++i) { res.bytes[i] = 0 ; for(int k=0;k<2;++k) { char b = s[n++] ; if(b >= 'A' && b <= 'F') res.bytes[i] += (b-'A'+10) << 4*(1-k) ; else if(b >= 'a' && b <= 'f') res.bytes[i] += (b-'a'+10) << 4*(1-k) ; else if(b >= '0' && b <= '9') res.bytes[i] += (b-'0') << 4*(1-k) ; else throw std::runtime_error("PGPIdType::Sha1CheckSum: can't init from non pure hexadecimal string") ; } } return res ; } PGPFingerprintType PGPFingerprintType::fromFingerprint_hex(const std::string& s) { int n=0; if(s.length() != PGPFingerprintType::KEY_FINGERPRINT_SIZE*2) throw std::runtime_error("PGPIdType::PGPIdType: can only init from 40 chars hexadecimal string") ; PGPFingerprintType res ; for(int i = 0; i < PGPFingerprintType::KEY_FINGERPRINT_SIZE; ++i) { res.bytes[i] = 0 ; for(int k=0;k<2;++k) { char b = s[n++] ; if(b >= 'A' && b <= 'F') res.bytes[i] += (b-'A'+10) << 4*(1-k) ; else if(b >= 'a' && b <= 'f') res.bytes[i] += (b-'a'+10) << 4*(1-k) ; else if(b >= '0' && b <= '9') res.bytes[i] += (b-'0') << 4*(1-k) ; else throw std::runtime_error("PGPIdType::Sha1CheckSum: can't init from non pure hexadecimal string") ; } } return res ; } PGPIdType::PGPIdType(const unsigned char b[]) { memcpy(bytes,b,KEY_ID_SIZE) ; } PGPFingerprintType::PGPFingerprintType(const unsigned char b[]) { memcpy(bytes,b,KEY_FINGERPRINT_SIZE) ; } uint64_t PGPIdType::toUInt64() const { uint64_t res = 0 ; for(int i=0;inkeys = 0 ; kr->nkeys_allocated = 0 ; kr->keys = 0 ; return kr ; } PGPHandler::PGPHandler(const std::string& pubring, const std::string& secring,PassphraseCallback cb) : pgphandlerMtx(std::string("PGPHandler")), _pubring_path(pubring),_secring_path(secring),_passphrase_callback(cb) { // Allocate public and secret keyrings. // _pubring = allocateOPSKeyring() ; _secring = allocateOPSKeyring() ; // Read public and secret keyrings from supplied files. // if(ops_false == ops_keyring_read_from_file(_pubring, false, pubring.c_str())) throw std::runtime_error("PGPHandler::readKeyRing(): cannot read pubring.") ; const ops_keydata_t *keydata ; int i=0 ; while( (keydata = ops_keyring_get_key_by_index(_pubring,i)) != NULL ) { initCertificateInfo(_public_keyring_map[ PGPIdType(keydata->key_id).toStdString() ],keydata,i) ; ++i ; } std::cerr << "Pubring read successfully." << std::endl; if(ops_false == ops_keyring_read_from_file(_secring, false, secring.c_str())) throw std::runtime_error("PGPHandler::readKeyRing(): cannot read secring.") ; i=0 ; while( (keydata = ops_keyring_get_key_by_index(_secring,i)) != NULL ) { initCertificateInfo(_secret_keyring_map[ PGPIdType(keydata->key_id).toStdString() ],keydata,i) ; ++i ; } std::cerr << "Secring read successfully." << std::endl; } void PGPHandler::initCertificateInfo(PGPCertificateInfo& cert,const ops_keydata_t *keydata,uint32_t index) { // Parse certificate name // if(keydata->uids != NULL) { std::string namestring( (char *)keydata->uids[0].user_id ) ; cert._name = "" ; int i=0; while(i < namestring.length() && namestring[i] != '(' && namestring[i] != '<') { cert._name += namestring[i] ; ++i ;} std::string& next = (namestring[i] == '(')?cert._comment:cert._email ; ++i ; next = "" ; while(i < namestring.length() && namestring[i] != ')' && namestring[i] != '>') { next += namestring[i] ; ++i ;} while(i < namestring.length() && namestring[i] != '(' && namestring[i] != '<') { next += namestring[i] ; ++i ;} if(i< namestring.length()) { std::string& next2 = (namestring[i] == '(')?cert._comment:cert._email ; ++i ; next2 = "" ; while(i < namestring.length() && namestring[i] != ')' && namestring[i] != '>') { next2 += namestring[i] ; ++i ;} } } cert._trustLvl = 1 ; // to be setup accordingly cert._key_index = index ; cert._flags = 0 ; ops_fingerprint_t f ; ops_fingerprint(&f,&keydata->key.pkey) ; cert._fpr = PGPFingerprintType(f.fingerprint) ; } PGPHandler::~PGPHandler() { std::cerr << "Freeing PGPHandler. Deleting keyrings." << std::endl; // no need to free the the _map_ elements. They will be freed by the following calls: // ops_keyring_free(_pubring) ; ops_keyring_free(_secring) ; free(_pubring) ; free(_secring) ; } bool PGPHandler::printKeys() const { std::cerr << "Printing details of all " << std::dec << _public_keyring_map.size() << " keys: " << std::endl; for(std::map::const_iterator it(_public_keyring_map.begin()); it != _public_keyring_map.end(); it++) { std::cerr << "PGP Key: " << it->first << std::endl; std::cerr << "\tName : " << it->second._name << std::endl; std::cerr << "\tEmail : " << it->second._email << std::endl; std::cerr << "\tOwnSign : " << (it->second._flags & PGPCertificateInfo::PGP_CERTIFICATE_FLAG_HAS_OWN_SIGNATURE) << std::endl; std::cerr << "\tAccept Connect: " << (it->second._flags & PGPCertificateInfo::PGP_CERTIFICATE_FLAG_HAS_OWN_SIGNATURE) << std::endl; std::cerr << "\ttrustLvl : " << it->second._trustLvl << std::endl; std::cerr << "\tvalidLvl : " << it->second._validLvl << std::endl; std::cerr << "\tfingerprint : " << it->second._fpr.toStdString() << std::endl; std::set::const_iterator sit; for(sit = it->second.signers.begin(); sit != it->second.signers.end(); sit++) { std::cerr << "\t\tSigner ID:" << *sit << ", Name: " ; const PGPCertificateInfo *info = PGPHandler::getCertificateInfo(PGPIdType::fromUserId_hex(*sit)) ; if(info != NULL) std::cerr << info->_name ; std::cerr << std::endl ; } } return true ; } const PGPCertificateInfo *PGPHandler::getCertificateInfo(const PGPIdType& id) const { std::map::const_iterator it( _public_keyring_map.find(id.toStdString()) ) ; if(it != _public_keyring_map.end()) return &it->second; else return NULL ; } bool PGPHandler::availableGPGCertificatesWithPrivateKeys(std::list& ids) { // go through secret keyring, and check that we have the pubkey as well. // const ops_keydata_t *keydata = NULL ; int i=0 ; while( (keydata = ops_keyring_get_key_by_index(_secring,i++)) != NULL ) { // check that the key is in the pubring as well if(ops_keyring_find_key_by_id(_pubring,keydata->key_id) != NULL) ids.push_back(PGPIdType(keydata->key_id)) ; } return true ; } static ops_parse_cb_return_t cb_get_passphrase(const ops_parser_content_t *content_,ops_parse_cb_info_t *cbinfo __attribute__((unused))) { const ops_parser_content_union_t *content=&content_->content; // validate_key_cb_arg_t *arg=ops_parse_cb_get_arg(cbinfo); // ops_error_t **errors=ops_parse_cb_get_errors(cbinfo); switch(content_->tag) { case OPS_PARSER_CMD_GET_SK_PASSPHRASE: { std::string passwd = getpass("Please enter passwd:") ; *(content->secret_key_passphrase.passphrase)= (char *)ops_mallocz(passwd.length()+1) ; memcpy(*(content->secret_key_passphrase.passphrase),passwd.c_str(),passwd.length()) ; return OPS_KEEP_MEMORY; } break; default: break; } return OPS_RELEASE_MEMORY; } bool PGPHandler::GeneratePGPCertificate(const std::string& name, const std::string& email, const std::string& passwd, PGPIdType& pgpId, std::string& errString) { static const int KEY_NUMBITS = 2048 ; ops_user_id_t uid ; char *s = strdup((name + " " + email + " (Generated by RetroShare)").c_str()) ; uid.user_id = (unsigned char *)s ; unsigned long int e = 17 ; // some prime number ops_keydata_t *key = ops_rsa_create_selfsigned_keypair(KEY_NUMBITS,e,&uid) ; free(s) ; if(!key) return false ; // 1 - get a passphrase for encrypting. std::string passphrase = _passphrase_callback(NULL,PGPIdType(key->key_id).toStdString().c_str(),"Please enter passwd for encrypting your key : ",false) ; // 2 - save the private key encrypted to a temporary memory buffer ops_create_info_t *cinfo = NULL ; ops_memory_t *buf = NULL ; ops_setup_memory_write(&cinfo, &buf, 0); ops_write_transferable_secret_key(key,(unsigned char *)passphrase.c_str(),passphrase.length(),ops_false,cinfo); ops_keydata_free(key) ; // 3 - read the file into a keyring ops_keyring_t *tmp_keyring = allocateOPSKeyring() ; if(! ops_keyring_read_from_mem(tmp_keyring, ops_false, buf)) { std::cerr << "Cannot re-read key from memory!!" << std::endl; return false ; } ops_teardown_memory_write(cinfo,buf); // cleanup memory // 4 - copy the private key to the private keyring pgpId = PGPIdType(tmp_keyring->keys[0].key_id) ; addNewKeyToOPSKeyring(_secring,tmp_keyring->keys[0]) ; initCertificateInfo(_secret_keyring_map[ pgpId.toStdString() ],&tmp_keyring->keys[0],_secring->nkeys-1) ; std::cerr << "Added new secret key with id " << pgpId.toStdString() << " to secret keyring." << std::endl; // 5 - copy the private key to the public keyring addNewKeyToOPSKeyring(_pubring,tmp_keyring->keys[0]) ; initCertificateInfo(_public_keyring_map[ pgpId.toStdString() ],&tmp_keyring->keys[0],_pubring->nkeys-1) ; std::cerr << "Added new public key with id " << pgpId.toStdString() << " to public keyring." << std::endl; // 6 - clean ops_keyring_free(tmp_keyring) ; free(tmp_keyring) ; return true ; } std::string PGPHandler::makeRadixEncodedPGPKey(const ops_keydata_t *key) { ops_boolean_t armoured=ops_true; ops_create_info_t* cinfo; ops_memory_t *buf = NULL ; ops_setup_memory_write(&cinfo, &buf, 0); ops_write_transferable_public_key(key,armoured,cinfo); ops_writer_close(cinfo) ; std::string akey((char *)ops_memory_get_data(buf),ops_memory_get_length(buf)) ; ops_teardown_memory_write(cinfo,buf); return akey ; } const ops_keydata_t *PGPHandler::getSecretKey(const PGPIdType& id) const { std::map::const_iterator res = _secret_keyring_map.find(id.toStdString()) ; if(res == _secret_keyring_map.end()) return NULL ; else return ops_keyring_get_key_by_index(_secring,res->second._key_index) ; } const ops_keydata_t *PGPHandler::getPublicKey(const PGPIdType& id) const { std::map::const_iterator res = _public_keyring_map.find(id.toStdString()) ; if(res == _public_keyring_map.end()) return NULL ; else return ops_keyring_get_key_by_index(_pubring,res->second._key_index) ; } std::string PGPHandler::SaveCertificateToString(const PGPIdType& id,bool include_signatures) { const ops_keydata_t *key = getPublicKey(id) ; if(key == NULL) { std::cerr << "Cannot output key " << id.toStdString() << ": not found in keyring." << std::endl; return "" ; } return makeRadixEncodedPGPKey(key) ; } void PGPHandler::addNewKeyToOPSKeyring(ops_keyring_t *kr,const ops_keydata_t& key) { kr->keys = (ops_keydata_t*)realloc(kr->keys,(kr->nkeys+1)*sizeof(ops_keydata_t)) ; memset(&kr->keys[kr->nkeys],0,sizeof(ops_keydata_t)) ; ops_keydata_copy(&kr->keys[kr->nkeys],&key) ; kr->nkeys++ ; } bool PGPHandler::LoadCertificateFromString(const std::string& pgp_cert,PGPIdType& id,std::string& error_string) { ops_keyring_t *tmp_keyring = allocateOPSKeyring(); ops_memory_t *mem = ops_memory_new() ; ops_memory_add(mem,(unsigned char *)pgp_cert.c_str(),pgp_cert.length()) ; if(!ops_keyring_read_from_mem(tmp_keyring,ops_true,mem)) { ops_keyring_free(tmp_keyring) ; free(tmp_keyring) ; ops_memory_release(mem) ; free(mem) ; std::cerr << "Could not read key. Format error?" << std::endl; error_string = std::string("Could not read key. Format error?") ; return false ; } ops_memory_release(mem) ; free(mem) ; error_string.clear() ; std::cerr << "Key read correctly: " << std::endl; ops_keyring_list(tmp_keyring) ; const ops_keydata_t *keydata = NULL ; int i=0 ; while( (keydata = ops_keyring_get_key_by_index(tmp_keyring,i++)) != NULL ) { id = PGPIdType(keydata->key_id) ; addNewKeyToOPSKeyring(_pubring,*keydata) ; initCertificateInfo(_public_keyring_map[id.toStdString()],keydata,_pubring->nkeys-1) ; } std::cerr << "Added the key in the main public keyring." << std::endl; ops_keyring_free(tmp_keyring) ; free(tmp_keyring) ; return true ; } bool PGPHandler::encryptTextToFile(const PGPIdType& key_id,const std::string& text,const std::string& outfile) { const char* filename = "armour_nocompress_sign.asc"; ops_create_info_t *info; int fd = ops_setup_file_write(&info, outfile.c_str(), ops_true); const ops_keydata_t *public_key = getPublicKey(key_id) ; if(public_key == NULL) { std::cerr << "Cannot get public key of id " << key_id.toStdString() << std::endl; return false ; } if (fd < 0) { fprintf(stderr, "Cannot write to %s\n", filename); return false ; } ops_encrypt_stream(info, public_key, NULL, ops_false, ops_true); ops_write(text.c_str(), text.length(), info); ops_writer_close(info); ops_create_info_delete(info); return true ; } // ops_parse_cb_return_t pgphandler_callback_write_parsed(const ops_parser_content_t *content_, ops_parse_cb_info_t *cbinfo) // { // ops_parser_content_union_t* content =(ops_parser_content_union_t *)&content_->content; // static ops_boolean_t skipping; // // if(content_->tag != OPS_PTAG_CT_UNARMOURED_TEXT && skipping) // { // puts("...end of skip"); // skipping=ops_false; // } // // switch(content_->tag) // { // case OPS_PTAG_CT_UNARMOURED_TEXT: // printf("OPS_PTAG_CT_UNARMOURED_TEXT\n"); // if(!skipping) // { // puts("Skipping..."); // skipping=ops_true; // } // fwrite(content->unarmoured_text.data, 1, content->unarmoured_text.length, stdout); // break; // // case OPS_PTAG_CT_PK_SESSION_KEY: // return callback_pk_session_key(content_, cbinfo); // break; // // case OPS_PARSER_CMD_GET_SECRET_KEY: // return callback_cmd_get_secret_key(content_, cbinfo); // break; // // case OPS_PARSER_CMD_GET_SK_PASSPHRASE: // // return callback_cmd_get_secret_key_passphrase(content_,cbinfo); // return cbinfo->cryptinfo.cb_get_passphrase(content_, cbinfo); // break; // // case OPS_PTAG_CT_LITERAL_DATA_BODY: // return callback_literal_data(content_, cbinfo); // break; // // case OPS_PTAG_CT_ARMOUR_HEADER: // case OPS_PTAG_CT_ARMOUR_TRAILER: // case OPS_PTAG_CT_ENCRYPTED_PK_SESSION_KEY: // case OPS_PTAG_CT_COMPRESSED: // case OPS_PTAG_CT_LITERAL_DATA_HEADER: // case OPS_PTAG_CT_SE_IP_DATA_BODY: // case OPS_PTAG_CT_SE_IP_DATA_HEADER: // case OPS_PTAG_CT_SE_DATA_BODY: // case OPS_PTAG_CT_SE_DATA_HEADER: // // // Ignore these packets // // They're handled in ops_parse_one_packet() // // and nothing else needs to be done // break; // // default: // // return callback_general(content_,cbinfo); // break; // // fprintf(stderr,"Unexpected packet tag=%d (0x%x)\n",content_->tag, // // content_->tag); // // assert(0); // } // // return OPS_RELEASE_MEMORY; // } bool PGPHandler::decryptTextFromFile(const PGPIdType& key_id,std::string& text,const std::string& inputfile) { unsigned char *out_buf = NULL ; std::string buf ; FILE *f = fopen(inputfile.c_str(),"rb") ; char c ; while( (c = getc(f))!= EOF) buf += c; fclose(f) ; std::cerr << "PGPHandler::decryptTextFromFile: read a file of length " << std::dec << buf.length() << std::endl; std::cerr << "buf=\"" << buf << "\"" << std::endl; int out_length ; ops_boolean_t res = ops_decrypt_memory((const unsigned char *)buf.c_str(),buf.length(),&out_buf,&out_length,_secring,ops_true,cb_get_passphrase) ; text = std::string((char *)out_buf,out_length) ; return (bool)res ; } bool PGPHandler::SignDataBin(const PGPIdType& id,const void *data, const uint32_t len, unsigned char *sign, unsigned int *signlen) { // need to find the key and to decrypt it. const ops_keydata_t *key = getSecretKey(id) ; if(!key) { std::cerr << "Cannot sign: no secret key with id " << id.toStdString() << std::endl; return false ; } std::string passphrase = _passphrase_callback(NULL,PGPIdType(key->key_id).toStdString().c_str(),"Please enter passwd for encrypting your key : ",false) ; ops_secret_key_t *secret_key = ops_decrypt_secret_key_from_data(key,passphrase.c_str()) ; if(!secret_key) { std::cerr << "Key decryption went wrong. Wrong passwd?" << std::endl; return false ; } // then do the signature. ops_memory_t *memres = ops_sign_buf(data,len,(ops_sig_type_t)0x10,secret_key,ops_false) ; if(!memres) return false ; uint32_t tlen = std::min(*signlen,(uint32_t)ops_memory_get_length(memres)) ; memcpy(sign,ops_memory_get_data(memres),tlen) ; *signlen = tlen ; ops_memory_release(memres) ; free(memres) ; ops_secret_key_free(secret_key) ; free(secret_key) ; return true ; } bool PGPHandler::getKeyFingerprint(const PGPIdType& id,PGPFingerprintType& fp) const { const ops_keydata_t *key = getPublicKey(id) ; if(key == NULL) return false ; ops_fingerprint_t f ; ops_fingerprint(&f,&key->key.pkey) ; fp = PGPFingerprintType(f.fingerprint) ; return true ; } bool PGPHandler::VerifySignBin(const void *literal_data, uint32_t literal_data_length, unsigned char *sign, unsigned int sign_len, const PGPFingerprintType& key_fingerprint) { PGPIdType id = PGPIdType::fromFingerprint_hex(key_fingerprint.toStdString()) ; const ops_keydata_t *key = getPublicKey(id) ; if(key == NULL) { std::cerr << "No key returned by fingerprint " << key_fingerprint.toStdString() << ", and ID " << id.toStdString() << ", signature verification failed!" << std::endl; return false ; } // Check that fingerprint is the same. const ops_public_key_t *pkey = &key->key.pkey ; ops_fingerprint_t fp ; ops_fingerprint(&fp,pkey) ; if(key_fingerprint != PGPFingerprintType(fp.fingerprint)) { std::cerr << "Key fingerprint does not match " << key_fingerprint.toStdString() << ", for ID " << id.toStdString() << ", signature verification failed!" << std::endl; return false ; } std::cerr << "Verifying signature from fingerprint " << key_fingerprint.toStdString() << ", length " << std::dec << sign_len << ", literal data length = " << literal_data_length << std::endl; return ops_validate_detached_signature(literal_data,literal_data_length,sign,sign_len,key) ; } void PGPHandler::setAcceptConnexion(const PGPIdType& id,bool b) { std::map::iterator res = _public_keyring_map.find(id.toStdString()) ; if(res != _public_keyring_map.end()) if(b) res->second._flags |= PGPCertificateInfo::PGP_CERTIFICATE_FLAG_ACCEPT_CONNEXION ; else res->second._flags &= ~PGPCertificateInfo::PGP_CERTIFICATE_FLAG_ACCEPT_CONNEXION ; } bool PGPHandler::getGPGFilteredList(std::list& list,bool (*filter)(const PGPCertificateInfo&)) const { list.clear() ; for(std::map::const_iterator it(_public_keyring_map.begin());it!=_public_keyring_map.end();++it) if( filter == NULL || (*filter)(it->second) ) list.push_back(PGPIdType::fromUserId_hex(it->first)) ; return true ; } bool PGPHandler::isGPGId(const std::string &id) { return _public_keyring_map.find(id) != _public_keyring_map.end() ; } bool PGPHandler::isGPGSigned(const std::string &id) { std::map::const_iterator res = _public_keyring_map.find(id) ; return res != _public_keyring_map.end() && (res->second._flags & PGPCertificateInfo::PGP_CERTIFICATE_FLAG_HAS_OWN_SIGNATURE) ; } bool PGPHandler::isGPGAccepted(const std::string &id) { std::map::const_iterator res = _public_keyring_map.find(id) ; return (res != _public_keyring_map.end()) && (res->second._flags & PGPCertificateInfo::PGP_CERTIFICATE_FLAG_ACCEPT_CONNEXION) ; }