//Linux only #if !defined(WINDOWS_SYS) && !defined(__APPLE__) /* This stuff is actually C */ #ifdef __cplusplus extern "C" { #endif #ifdef __cplusplus } /* extern C */ #endif /* This stuff is actually C */ #include "upnp/upnphandler.h" #include "util/rsnet.h" bool upnphandler::initUPnPState() { #ifdef UPNP_DEBUG std::cerr << "upnphandler::initUPnPState" << std::endl; #endif cUPnPControlPoint = new CUPnPControlPoint(2000); bool IGWDetected = cUPnPControlPoint->GetIGWDeviceDetected(); if (IGWDetected) { /* MODIFY STATE */ dataMtx.lock(); /* LOCK MUTEX */ upnpState = RS_UPNP_S_READY; #ifdef UPNP_DEBUG std::cerr << "upnphandler::initUPnPState cUPnPControlPoint internal ip adress : "; std::cerr << cUPnPControlPoint->getInternalIpAddress() << std::endl; #endif //const char ipaddr = cUPnPControlPoint->getInternalIpAddress().c_str(); inet_aton(cUPnPControlPoint->getInternalIpAddress(), &(upnp_iaddr.sin_addr)); upnp_iaddr.sin_port = htons(iport); #ifdef UPNP_DEBUG std::cerr << "upnphandler::initUPnPState READY" << std::endl; #endif dataMtx.unlock(); /* UNLOCK MUTEX */ } else { upnpState = RS_UPNP_S_UNAVAILABLE; #ifdef UPNP_DEBUG std::cerr << "upnphandler::initUPnPState UNAVAILABLE" << std::endl; #endif } return 0; } class upnpThreadData { public: upnphandler *handler; bool start; bool stop; }; /* Thread routines */ extern "C" void* doSetupUPnP(void* p) { #ifdef UPNP_DEBUG std::cerr << "doSetupUPnP Creating upnp thread." << std::endl; #endif upnpThreadData *data = (upnpThreadData *) p; if ((!data) || (!data->handler)) { pthread_exit(NULL); } /* publish it! */ if (data -> stop) { data->handler->shutdown_upnp(); } if (data -> start) { data->handler->initUPnPState(); data->handler->start_upnp(); } delete data; pthread_exit(NULL); return NULL; } bool upnphandler::background_setup_upnp(bool start, bool stop) { pthread_t tid; /* launch thread */ #ifdef UPNP_DEBUG std::cerr << "background_setup_upnp Creating upnp thread." << std::endl; #endif upnpThreadData *data = new upnpThreadData(); data->handler = this; data->start = start; data->stop = stop; pthread_create(&tid, 0, &doSetupUPnP, (void *) data); pthread_detach(tid); /* so memory is reclaimed in linux */ return true; } bool upnphandler::start_upnp() { if (!(upnpState >= RS_UPNP_S_READY)) { #ifdef UPNP_DEBUG std::cerr << "upnphandler::start_upnp() Not Ready" << std::endl; #endif return false; } struct sockaddr_in localAddr; { RsStackMutex stack(dataMtx); /* LOCK STACK MUTEX */ /* if we're to load -> load */ /* select external ports */ eport_curr = eport; if (!eport_curr) { /* use local port if eport is zero */ eport_curr = iport; #ifdef UPNP_DEBUG std::cerr << "upnphandler::start_upnp() Using LocalPort for extPort." << std::endl; #endif } if (!eport_curr) { #ifdef UPNP_DEBUG std::cerr << "upnphandler::start_upnp() Invalid eport ... " << std::endl; #endif return false; } /* our port */ char in_addr[256]; char in_port1[256]; upnp_iaddr.sin_port = htons(iport); localAddr = upnp_iaddr; uint32_t linaddr = ntohl(localAddr.sin_addr.s_addr); snprintf(in_port1, 256, "%d", ntohs(localAddr.sin_port)); snprintf(in_addr, 256, "%d.%d.%d.%d", ((linaddr >> 24) & 0xff), ((linaddr >> 16) & 0xff), ((linaddr >> 8) & 0xff), ((linaddr >> 0) & 0xff)); #ifdef UPNP_DEBUG std::cerr << "Attempting Redirection: InAddr: " << in_addr; std::cerr << " InPort: " << in_port1; std::cerr << " ePort: " << eport_curr; std::cerr << " eProt: " << "TCP and UDP"; std::cerr << std::endl; #endif } //first of all, build the mappings std::vector upnpPortMapping1; CUPnPPortMapping cUPnPPortMapping1 = CUPnPPortMapping(eport_curr, ntohs(localAddr.sin_port), "TCP", true, "tcp retroshare redirection"); upnpPortMapping1.push_back(cUPnPPortMapping1); std::vector upnpPortMapping2; CUPnPPortMapping cUPnPPortMapping2 = CUPnPPortMapping(eport_curr, ntohs(localAddr.sin_port), "UDP", true, "udp retroshare redirection"); upnpPortMapping2.push_back(cUPnPPortMapping2); //attempt to remove formal port redirection rules cUPnPControlPoint->DeletePortMappings(upnpPortMapping1); cUPnPControlPoint->DeletePortMappings(upnpPortMapping2); //add new rules bool res = cUPnPControlPoint->AddPortMappings(upnpPortMapping1); bool res2 = cUPnPControlPoint->AddPortMappings(upnpPortMapping2); struct sockaddr_in extAddr; bool extAddrResult = getExternalAddress(extAddr); { RsStackMutex stack(dataMtx); /* LOCK STACK MUTEX */ if (extAddrResult && (res || res2)) { upnpState = RS_UPNP_S_ACTIVE; } else { upnpState = RS_UPNP_S_TCP_AND_FAILED; } toStart = false; } return (upnpState == RS_UPNP_S_ACTIVE); } bool upnphandler::shutdown_upnp() { RsStackMutex stack(dataMtx); /* LOCK STACK MUTEX */ /* always attempt this (unless no port number) */ if (eport_curr > 0 && eport > 0 && (upnpState >= RS_UPNP_S_ACTIVE)) { #ifdef UPNP_DEBUG std::cerr << "upnphandler::shutdown_upnp() : Attempting To Remove Redirection: port: " << eport_curr; std::cerr << " Prot: TCP"; std::cerr << std::endl; #endif std::vector upnpPortMapping1; CUPnPPortMapping cUPnPPortMapping1 = CUPnPPortMapping(eport_curr, 0, "TCP", true, "tcp redirection"); upnpPortMapping1.push_back(cUPnPPortMapping1); cUPnPControlPoint->DeletePortMappings(upnpPortMapping1); #ifdef UPNP_DEBUG std::cerr << "upnphandler::shutdown_upnp() : Attempting To Remove Redirection: port: " << eport_curr; std::cerr << " Prot: UDP"; std::cerr << std::endl; #endif std::vector upnpPortMapping2; CUPnPPortMapping cUPnPPortMapping2 = CUPnPPortMapping(eport_curr, 0, "UDP", true, "udp redirection"); upnpPortMapping2.push_back(cUPnPPortMapping2); cUPnPControlPoint->DeletePortMappings(upnpPortMapping2); //destroy the upnp object cUPnPControlPoint->~CUPnPControlPoint(); } else { #ifdef UPNP_DEBUG std::cerr << "upnphandler::shutdown_upnp() : avoid upnp connection for shutdonws because probably a net flag went down." << std::endl; #endif } //stopping os ok, set starting to true for next net reset toStop = false; toStart = true; upnpState = RS_UPNP_S_UNINITIALISED; return true; } /************************ External Interface ***************************** * * * */ upnphandler::upnphandler() : upnpState(RS_UPNP_S_UNINITIALISED), cUPnPControlPoint(NULL), toEnable(false), toStart(false), toStop(false), iport(0),eport(0), eport_curr(0) { } upnphandler::~upnphandler() { return; } /* RsIface */ void upnphandler::enable(bool active) { #ifdef UPNP_DEBUG std::cerr << "upnphandler::enable called with argument active : " << active << std::endl; std::cerr << "toEnable : " << toEnable << std::endl; std::cerr << "toStart : " << toStart << std::endl; #endif dataMtx.lock(); /*** LOCK MUTEX ***/ if (active != toEnable) { if (active) { toStart = true; } else { toStop = true; } } toEnable = active; bool start = toStart; dataMtx.unlock(); /*** UNLOCK MUTEX ***/ if (start) { /* make background thread to startup UPnP */ background_setup_upnp(true, false); } } void upnphandler::shutdown() { /* blocking call to shutdown upnp */ #ifdef UPNP_DEBUG std::cerr << "upnphandler::shutdown() called." << std::endl; #endif shutdown_upnp(); } void upnphandler::restart() { /* non-blocking call to shutdown upnp, and startup again. */ #ifdef UPNP_DEBUG std::cerr << "upnphandler::restart() called." << std::endl; #endif background_setup_upnp(true, true); } bool upnphandler::getEnabled() { dataMtx.lock(); /*** LOCK MUTEX ***/ bool on = toEnable; dataMtx.unlock(); /*** UNLOCK MUTEX ***/ return on; } bool upnphandler::getActive() { dataMtx.lock(); /*** LOCK MUTEX ***/ #ifdef UPNP_DEBUG std::cerr <<"upnphandler::getActive() result : " << (upnpState == RS_UPNP_S_ACTIVE) << std::endl; #endif bool on = (upnpState == RS_UPNP_S_ACTIVE); dataMtx.unlock(); /*** UNLOCK MUTEX ***/ return on; } /* the address that the listening port is on */ void upnphandler::setInternalPort(unsigned short iport_in) { dataMtx.lock(); /*** LOCK MUTEX ***/ if (iport != iport_in) { iport = iport_in; if ((toEnable) && (upnpState == RS_UPNP_S_ACTIVE)) { toStop = true; toStart = true; } } dataMtx.unlock(); /*** UNLOCK MUTEX ***/ } void upnphandler::setExternalPort(unsigned short eport_in) { dataMtx.lock(); /*** LOCK MUTEX ***/ /* flag both shutdown/start -> for restart */ if (eport != eport_in) { eport = eport_in; if ((toEnable) && (upnpState == RS_UPNP_S_ACTIVE)) { toStop = true; toStart = true; } } dataMtx.unlock(); /*** UNLOCK MUTEX ***/ } /* as determined by uPnP */ bool upnphandler::getInternalAddress(struct sockaddr_in &addr) { dataMtx.lock(); /*** LOCK MUTEX ***/ addr = upnp_iaddr; bool valid = (upnpState >= RS_UPNP_S_ACTIVE); dataMtx.unlock(); /*** UNLOCK MUTEX ***/ return valid; } bool upnphandler::getExternalAddress(struct sockaddr_in &addr) { std::string externalAdress = cUPnPControlPoint->getExternalAddress(); if(!externalAdress.empty() && externalAdress != "") { const char* externalIPAddress = externalAdress.c_str(); #ifdef UPNP_DEBUG std::cerr << " upnphandler::getExternalAddress() : " << externalIPAddress; std::cerr << ":" << eport_curr; std::cerr << std::endl; #endif dataMtx.lock(); /*** LOCK MUTEX ***/ sockaddr_clear(&upnp_eaddr); inet_aton(externalIPAddress, &(upnp_eaddr.sin_addr)); upnp_eaddr.sin_family = AF_INET; upnp_eaddr.sin_port = htons(eport_curr); dataMtx.unlock(); /*** UNLOCK MUTEX ***/ addr = upnp_eaddr; return true; } else { return false; } } #endif // Windows / Mac version. #if defined(WINDOWS_SYS) || defined(__APPLE__) /* This stuff is actually C */ #ifdef __cplusplus extern "C" { #endif #ifdef __cplusplus } /* extern C */ #endif /* This stuff is actually C */ #include "upnp/upnphandler.h" #include "upnp/upnputil.h" class uPnPConfigData { public: struct UPNPDev * devlist; struct UPNPUrls urls; struct IGDdatas data; char lanaddr[16]; /* my ip address on the LAN */ }; #include #include #include "util/rsnet.h" bool upnphandler::initUPnPState() { /* allocate memory */ uPnPConfigData *upcd = new uPnPConfigData; #if MINIUPNPC_VERSION >= 11 /* Starting from version 1.1, miniupnpc api has a new parameter (int sameport) */ upcd->devlist = upnpDiscover(2000, NULL, NULL, 0); #else upcd->devlist = upnpDiscover(2000, NULL, NULL); #endif if(upcd->devlist) { struct UPNPDev * device; printf("List of UPNP devices found on the network :\n"); for(device=upcd->devlist;device;device=device->pNext) { printf("\n desc: %s\n st: %s\n", device->descURL, device->st); } putchar('\n'); if(UPNP_GetValidIGD(upcd->devlist, &(upcd->urls), &(upcd->data), upcd->lanaddr, sizeof(upcd->lanaddr))) { printf("Found valid IGD : %s\n", upcd->urls.controlURL); printf("Local LAN ip address : %s\n", upcd->lanaddr); /* MODIFY STATE */ dataMtx.lock(); /* LOCK MUTEX */ /* convert to ipaddress. */ inet_aton(upcd->lanaddr, &(upnp_iaddr.sin_addr)); upnp_iaddr.sin_port = htons(iport); upnpState = RS_UPNP_S_READY; if (upnpConfig) { delete upnpConfig; } upnpConfig = upcd; /* */ dataMtx.unlock(); /* UNLOCK MUTEX */ /* done -> READY */ return 1; } else { fprintf(stderr, "No valid UPNP Internet Gateway Device found.\n"); } freeUPNPDevlist(upcd->devlist); upcd->devlist = 0; } else { fprintf(stderr, "No IGD UPnP Device found on the network !\n"); } /* MODIFY STATE */ dataMtx.lock(); /* LOCK MUTEX */ upnpState = RS_UPNP_S_UNAVAILABLE; delete upcd; upnpConfig = NULL; dataMtx.unlock(); /* UNLOCK MUTEX */ /* done, FAILED -> NOT AVAILABLE */ return 0; } bool upnphandler::printUPnPState() { std::cerr << "upnphandler::printUPnPState() ... locking"; std::cerr << std::endl; RsStackMutex stack(dataMtx); /* LOCK STACK MUTEX */ std::cerr << "upnphandler::printUPnPState() ... locked"; std::cerr << std::endl; uPnPConfigData *config = upnpConfig; if ((upnpState >= RS_UPNP_S_READY) && (config)) { DisplayInfos(&(config -> urls), &(config->data)); GetConnectionStatus(&(config -> urls), &(config->data)); ListRedirections(&(config -> urls), &(config->data)); } else { std::cerr << "UPNP not Ready" << std::endl; } return 1; } bool upnphandler::checkUPnPActive() { RsStackMutex stack(dataMtx); /* LOCK STACK MUTEX */ uPnPConfigData *config = upnpConfig; if ((upnpState > RS_UPNP_S_READY) && (config)) { char eprot1[] = "TCP"; char eprot2[] = "UDP"; char in_addr[256]; char in_port1[256]; char in_port2[256]; char eport1[256]; char eport2[256]; struct sockaddr_in localAddr = upnp_iaddr; uint32_t linaddr = ntohl(localAddr.sin_addr.s_addr); snprintf(in_port1, 256, "%d", ntohs(localAddr.sin_port)); snprintf(in_port2, 256, "%d", ntohs(localAddr.sin_port)); snprintf(in_addr, 256, "%d.%d.%d.%d", ((linaddr >> 24) & 0xff), ((linaddr >> 16) & 0xff), ((linaddr >> 8) & 0xff), ((linaddr >> 0) & 0xff)); snprintf(eport1, 256, "%d", eport_curr); snprintf(eport2, 256, "%d", eport_curr); std::cerr << "upnphandler::checkUPnPState()"; std::cerr << " Checking Redirection: InAddr: " << in_addr; std::cerr << " InPort: " << in_port1; std::cerr << " ePort: " << eport1; std::cerr << " eProt: " << eprot1; std::cerr << std::endl; bool tcpOk = TestRedirect(&(config -> urls), &(config->data), in_addr, in_port1, eport1, eprot1); bool udpOk = TestRedirect(&(config -> urls), &(config->data), in_addr, in_port2, eport2, eprot2); if ((!tcpOk) || (!udpOk)) { std::cerr << "upnphandler::checkUPnPState() ... Redirect Expired, restarting"; std::cerr << std::endl; toStop = true; toStart = true; } } return true; } class upnpThreadData { public: upnphandler *handler; bool start; bool stop; }; /* Thread routines */ extern "C" void* doSetupUPnP(void* p) { upnpThreadData *data = (upnpThreadData *) p; if ((!data) || (!data->handler)) { pthread_exit(NULL); } /* publish it! */ if (data -> stop) { data->handler->shutdown_upnp(); } if (data -> start) { data->handler->initUPnPState(); data->handler->start_upnp(); } data->handler->printUPnPState(); delete data; pthread_exit(NULL); return NULL; } bool upnphandler::background_setup_upnp(bool start, bool stop) { pthread_t tid; /* launch thread */ upnpThreadData *data = new upnpThreadData(); data->handler = this; data->start = start; data->stop = stop; pthread_create(&tid, 0, &doSetupUPnP, (void *) data); pthread_detach(tid); /* so memory is reclaimed in linux */ return true; } bool upnphandler::start_upnp() { RsStackMutex stack(dataMtx); /* LOCK STACK MUTEX */ uPnPConfigData *config = upnpConfig; if (!((upnpState >= RS_UPNP_S_READY) && (config))) { std::cerr << "upnphandler::start_upnp() Not Ready"; std::cerr << std::endl; return false; } char eprot1[] = "TCP"; char eprot2[] = "UDP"; /* if we're to load -> load */ /* select external ports */ eport_curr = eport; if (!eport_curr) { /* use local port if eport is zero */ eport_curr = iport; std::cerr << "Using LocalPort for extPort!"; std::cerr << std::endl; } if (!eport_curr) { std::cerr << "Invalid eport ... "; std::cerr << std::endl; return false; } /* our port */ char in_addr[256]; char in_port1[256]; char in_port2[256]; char eport1[256]; char eport2[256]; upnp_iaddr.sin_port = htons(iport); struct sockaddr_in localAddr = upnp_iaddr; uint32_t linaddr = ntohl(localAddr.sin_addr.s_addr); snprintf(in_port1, 256, "%d", ntohs(localAddr.sin_port)); snprintf(in_port2, 256, "%d", ntohs(localAddr.sin_port)); snprintf(in_addr, 256, "%d.%d.%d.%d", ((linaddr >> 24) & 0xff), ((linaddr >> 16) & 0xff), ((linaddr >> 8) & 0xff), ((linaddr >> 0) & 0xff)); snprintf(eport1, 256, "%d", eport_curr); snprintf(eport2, 256, "%d", eport_curr); std::cerr << "Attempting Redirection: InAddr: " << in_addr; std::cerr << " InPort: " << in_port1; std::cerr << " ePort: " << eport1; std::cerr << " eProt: " << eprot1; std::cerr << std::endl; if (!SetRedirectAndTest(&(config -> urls), &(config->data), in_addr, in_port1, eport1, eprot1)) { upnpState = RS_UPNP_S_TCP_FAILED; } else if (!SetRedirectAndTest(&(config -> urls), &(config->data), in_addr, in_port2, eport2, eprot2)) { upnpState = RS_UPNP_S_UDP_FAILED; } else { upnpState = RS_UPNP_S_ACTIVE; } /* now store the external address */ char externalIPAddress[32]; UPNP_GetExternalIPAddress(config -> urls.controlURL, config->data.servicetype, externalIPAddress); sockaddr_clear(&upnp_eaddr); if(externalIPAddress[0]) { std::cerr << "Stored External address: " << externalIPAddress; std::cerr << ":" << eport_curr; std::cerr << std::endl; inet_aton(externalIPAddress, &(upnp_eaddr.sin_addr)); upnp_eaddr.sin_family = AF_INET; upnp_eaddr.sin_port = htons(eport_curr); } else { std::cerr << "FAILED To get external Address"; std::cerr << std::endl; } toStart = false; return true; } bool upnphandler::shutdown_upnp() { RsStackMutex stack(dataMtx); /* LOCK STACK MUTEX */ uPnPConfigData *config = upnpConfig; if (!((upnpState >= RS_UPNP_S_READY) && (config))) { return false; } char eprot1[] = "TCP"; char eprot2[] = "UDP"; /* always attempt this (unless no port number) */ if (eport_curr > 0) { char eport1[256]; char eport2[256]; snprintf(eport1, 256, "%d", eport_curr); snprintf(eport2, 256, "%d", eport_curr); std::cerr << "Attempting To Remove Redirection: port: " << eport1; std::cerr << " Prot: " << eprot1; std::cerr << std::endl; RemoveRedirect(&(config -> urls), &(config->data), eport1, eprot1); std::cerr << "Attempting To Remove Redirection: port: " << eport2; std::cerr << " Prot: " << eprot2; std::cerr << std::endl; RemoveRedirect(&(config -> urls), &(config->data), eport2, eprot2); upnpState = RS_UPNP_S_READY; toStop = false; } return true; } /************************ External Interface ***************************** * * * */ upnphandler::upnphandler() :toEnable(false), toStart(false), toStop(false), eport(0), eport_curr(0), upnpState(RS_UPNP_S_UNINITIALISED), upnpConfig(NULL) { return; } upnphandler::~upnphandler() { return; } /* RsIface */ void upnphandler::enable(bool active) { dataMtx.lock(); /*** LOCK MUTEX ***/ if (active != toEnable) { if (active) { toStart = true; } else { toStop = true; } } toEnable = active; bool start = toStart; dataMtx.unlock(); /*** UNLOCK MUTEX ***/ if (start) { /* make background thread to startup UPnP */ background_setup_upnp(true, false); } } void upnphandler::shutdown() { /* blocking call to shutdown upnp */ shutdown_upnp(); } void upnphandler::restart() { /* non-blocking call to shutdown upnp, and startup again. */ background_setup_upnp(true, true); } bool upnphandler::getEnabled() { dataMtx.lock(); /*** LOCK MUTEX ***/ bool on = toEnable; dataMtx.unlock(); /*** UNLOCK MUTEX ***/ return on; } bool upnphandler::getActive() { dataMtx.lock(); /*** LOCK MUTEX ***/ bool on = (upnpState == RS_UPNP_S_ACTIVE); dataMtx.unlock(); /*** UNLOCK MUTEX ***/ return on; } /* the address that the listening port is on */ void upnphandler::setInternalPort(unsigned short iport_in) { // std::cerr << "UPnPHandler::setInternalAddress() pre Lock!" << std::endl; dataMtx.lock(); /*** LOCK MUTEX ***/ // std::cerr << "UPnPHandler::setInternalAddress() postLock!" << std::endl; std::cerr << "UPnPHandler::setInternalPort(" << iport_in << ") current port: "; std::cerr << iport << std::endl; if (iport != iport_in) { iport = iport_in; if ((toEnable) && (upnpState == RS_UPNP_S_ACTIVE)) { toStop = true; toStart = true; } } dataMtx.unlock(); /*** UNLOCK MUTEX ***/ } void upnphandler::setExternalPort(unsigned short eport_in) { // std::cerr << "UPnPHandler::getExternalPort() pre Lock!" << std::endl; dataMtx.lock(); /*** LOCK MUTEX ***/ // std::cerr << "UPnPHandler::getExternalPort() postLock!" << std::endl; std::cerr << "UPnPHandler::setExternalPort(" << eport_in << ") current port: "; std::cerr << eport << std::endl; /* flag both shutdown/start -> for restart */ if (eport != eport_in) { eport = eport_in; if ((toEnable) && (upnpState == RS_UPNP_S_ACTIVE)) { toStop = true; toStart = true; } } dataMtx.unlock(); /*** UNLOCK MUTEX ***/ } /* as determined by uPnP */ bool upnphandler::getInternalAddress(struct sockaddr_in &addr) { // std::cerr << "UPnPHandler::getInternalAddress() pre Lock!" << std::endl; dataMtx.lock(); /*** LOCK MUTEX ***/ // std::cerr << "UPnPHandler::getInternalAddress() postLock!" << std::endl; std::cerr << "UPnPHandler::getInternalAddress()" << std::endl; addr = upnp_iaddr; bool valid = (upnpState >= RS_UPNP_S_ACTIVE); dataMtx.unlock(); /*** UNLOCK MUTEX ***/ return valid; } bool upnphandler::getExternalAddress(struct sockaddr_in &addr) { // std::cerr << "UPnPHandler::getExternalAddress() pre Lock!" << std::endl; dataMtx.lock(); /*** LOCK MUTEX ***/ // std::cerr << "UPnPHandler::getExternalAddress() postLock!" << std::endl; std::cerr << "UPnPHandler::getExternalAddress()" << std::endl; addr = upnp_eaddr; bool valid = (upnpState == RS_UPNP_S_ACTIVE); dataMtx.unlock(); /*** UNLOCK MUTEX ***/ return valid; } #endif