Merge branch 'master' into qmlapp_pex_alpha

This commit is contained in:
Gioacchino Mazzurco 2017-05-31 12:11:15 +02:00
commit 59b77da6a2
113 changed files with 6880 additions and 1675 deletions

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,250 @@
#ifndef P3I2PBOB_H
#define P3I2PBOB_H
#include <map>
#include <queue>
#include <sys/types.h>
#include <time.h>
#ifndef WINDOWS_SYS
#include <sys/socket.h>
#endif
#include "services/autoproxy/rsautoproxymonitor.h"
#include "util/rsthreads.h"
#include "pqi/p3cfgmgr.h"
/*
* This class implements I2P BOB (BASIC OPEN BRIDGE) communication to allow RS
* to automatically remote control I2P to setup the needed tunnel.
* BOB is a simple text-based interface: https://geti2p.net/en/docs/api/bob
*
* Note 1:
* One tunnel is enough even for hidden locations since it can be used
* bidirectional. (In contrast to what RS I2P users had to set up manually.)
*
* Note 2:
* BOB tunnels are no SOCKS tunnel. Therefore pqissli2pbob implements a simplified
* proxy specially for BOB tunnels.
*
* Note 3:
* BOB needs a unique name as an ID for each tunnel.
* We use 'RetroShare-' + 8 base32 characters.
*
* Design:
* The service uses three state machines to manage its task:
* int stateMachineBOB();
* mBOBState
* int stateMachineController();
* mState
* mTask
*
* stateMachineBOB:
* This state machine manages the low level communication with BOB. It basically has a linked
* list (currently a implemented as a std::map) that contains a command and the next
* state.
* Each high level operation (start up / shut down / get keys) is represented by a
* chain of states. E.g. the chain to retrieve new keys:
* mCommands[bobState::setnickN] = {setnick, bobState::newkeysN};
* mCommands[bobState::newkeysN] = {newkeys, bobState::getkeys};
* mCommands[bobState::getkeys] = {getkeys, bobState::clear};
* mCommands[bobState::clear] = {clear, bobState::quit};
* mCommands[bobState::quit] = {quit, bobState::cleared};
*
* stateMachineController:
* This state machone manages the high level tasks.
* It is controlled by mState and mTask.
*
* mTast:
* Tracks the high level operation (like start up).
* It will keep its value even when a task is done to track
* the requested BOB state.
* When other operations are performed like a conection check
* the last task gets backed up and is later restored again
*
* mState:
* This state lives only for one operation an manages the communication
* with the BOB instance. This is basically connecting, starting BOB
* protocol and disconnecting
*
* How a task looks like:
* 1) RS sets task using the ticket system
* 2) stateMachineController connects to BOBs control port, sets mBobState to a lists head
* 3) stateMachineBOB processes command chain
* 4) stateMachineBOB is done and sets mBobState to cleared signaling that the connection
* is cleared and can be closed
* 5) stateMachineController disconnects from BOBs control port and updates mState
*/
///
/// \brief The controllerState enum
/// States for the controller to keep track of what he is currently doing
enum controllerState {
csIdel,
csDoConnect,
csConnected,
csWaitForBob,
csDoDisconnect,
csDisconnected,
csError
};
///
/// \brief The controllerTask enum
/// This state tracks the controllers tast (e.g. setup a BOB tunnel or shut down
/// an existing one).
enum controllerTask {
ctIdle,
ctRunSetUp,
ctRunShutDown,
ctRunGetKeys,
ctRunCheck
};
///
/// \brief The bobState enum
/// One state for each message
///
enum bobState {
bsCleared,
bsSetnickC, // chain head for only client tunnel
bsSetnickN, // chain head for getting new (server) keys
bsSetnickS, // chain head for client and server tunnel
bsGetnick,
bsNewkeysC, // part of chain for only client tunnel
bsNewkeysN, // part of chain for getting new (server) keys
bsGetkeys,
bsSetkeys,
bsInhost,
bsOuthost,
bsInport,
bsOutport,
bsInlength,
bsOutlength,
bsInvariance,
bsOutvariance,
bsInquantity,
bsOutquantity,
bsQuiet,
bsStart,
bsStop,
bsClear,
bsList, // chain head for 'list' command
bsQuit
};
///
/// \brief The bobStateInfo struct
/// State machine with commands
/// \todo This could be replaced by a linked list instead of a map
struct bobStateInfo {
std::string command;
bobState nextState;
};
struct bobSettings {
bool enableBob; ///< This field is used by the pqi subsystem to determinine whether SOCKS proxy or BOB is used for I2P connections
std::string keys; ///< (optional) server keys
std::string addr; ///< (optional) hidden service addr. in base32 form
int8_t inLength;
int8_t inQuantity;
int8_t inVariance;
int8_t outLength;
int8_t outQuantity;
int8_t outVariance;
};
///
/// \brief The bobStates struct
/// This container struct is used to pass all states.
/// Additionally, the tunnel name is included to to show it in the GUI.
/// The advantage of a struct is that it can be forward declared.
struct bobStates {
bobState bs;
controllerState cs;
controllerTask ct;
std::string tunnelName;
};
class p3PeerMgr;
class p3I2pBob : public RsTickingThread, public p3Config, public autoProxyService
{
public:
p3I2pBob(p3PeerMgr *peerMgr);
// autoProxyService interface
public:
bool isEnabled();
bool initialSetup(std::string &addr, uint16_t &);
void processTaskAsync(taskTicket *ticket);
void processTaskSync(taskTicket *ticket);
static std::string keyToBase32Addr(const std::string &key);
// RsTickingThread interface
public:
void data_tick();
private:
int stateMachineBOB();
int stateMachineBOB_locked_failure(const std::string &answer, const bobStateInfo &currentState);
int stateMachineController();
int stateMachineController_locked_idle();
int stateMachineController_locked_connected();
int stateMachineController_locked_disconnected();
int stateMachineController_locked_error();
// p3Config interface
protected:
RsSerialiser *setupSerialiser();
bool saveList(bool &cleanup, std::list<RsItem *> &lst);
bool loadList(std::list<RsItem *> &load);
private:
// helpers
void getBOBSettings(bobSettings *settings);
void setBOBSettings(const bobSettings *settings);
void getStates(bobStates *bs);
std::string executeCommand(const std::string &command);
bool connectI2P();
bool disconnectI2P();
void finalizeSettings_locked();
void updateSettings_locked();
std::string recv();
// states for state machines
controllerState mState;
controllerTask mTask;
// used to store old state when in error state
// mStateOld is also used as a flag when an error occured in BOB protocol
controllerState mStateOld;
// mTaskOld is used to keep the previous task (start up / shut down) when requesting keys or checking the connection
controllerTask mTaskOld;
bobSettings mSetting;
bobState mBOBState;
// used variables
p3PeerMgr *mPeerMgr;
bool mConfigLoaded;
int mSocket;
time_t mLastProxyCheck;
sockaddr_storage mI2PProxyAddr;
std::map<bobState, bobStateInfo> mCommands;
std::string mErrorMsg;
std::string mTunnelName;
std::queue<taskTicket *> mPending;
taskTicket *mProcessing;
// mutex
RsMutex mLock;
};
#endif // P3I2PBOB_H

View file

@ -0,0 +1,303 @@
#include "rsautoproxymonitor.h"
#include <unistd.h> /* for usleep() */
rsAutoProxyMonitor *rsAutoProxyMonitor::mInstance = NULL;
rsAutoProxyMonitor::rsAutoProxyMonitor()
: mRSShutDown(false), mLock("rs auto proxy monitor")
{
mProxies.clear();
}
rsAutoProxyMonitor *rsAutoProxyMonitor::instance()
{
if (mInstance == NULL)
mInstance = new rsAutoProxyMonitor();
return mInstance;
}
void rsAutoProxyMonitor::addProxy(autoProxyType::autoProxyType_enum type, autoProxyService *service)
{
RS_STACK_MUTEX(mLock);
if (mProxies.find(type) != mProxies.end())
std::cerr << "sAutoProxyMonitor::addProxy type " << type << " already added - OVERWRITING" << std::endl;
mProxies[type] = service;
}
void rsAutoProxyMonitor::startAll()
{
// create ticket
taskTicket *tt = getTicket();
tt->cb = this;
tt->task = autoProxyTask::start;
{
std::map<autoProxyType::autoProxyType_enum, autoProxyService*>::const_iterator it;
// fill types
RS_STACK_MUTEX(mLock);
for (it = mProxies.begin(); it != mProxies.end(); ++it)
if (it->second->isEnabled())
tt->types.push_back(it->first);
}
task(tt);
}
void rsAutoProxyMonitor::stopAll()
{
// create ticket
taskTicket *tt = getTicket();
tt->cb = this;
tt->task = autoProxyTask::stop;
{
std::map<autoProxyType::autoProxyType_enum, autoProxyService*>::const_iterator it;
// fill types
RS_STACK_MUTEX(mLock);
for (it = mProxies.begin(); it != mProxies.end(); ++it)
if (it->second->isEnabled())
tt->types.push_back(it->first);
}
task(tt);
}
void rsAutoProxyMonitor::stopAllRSShutdown()
{
{
RS_STACK_MUTEX(mLock);
mRSShutDown = true;
// remove disabled services
std::vector<autoProxyType::autoProxyType_enum> toRemove;
std::map<autoProxyType::autoProxyType_enum, autoProxyService*>::const_iterator it;
for (it = mProxies.begin(); it != mProxies.end(); ++it) {
if (!it->second->isEnabled()) {
toRemove.push_back(it->first);
}
}
std::vector<autoProxyType::autoProxyType_enum>::const_iterator it2;
for (it2 = toRemove.begin(); it2 != toRemove.end(); ++it2) {
mProxies.erase(*it2);
}
}
// stop all remaining
stopAll();
// wait for shutdown of all services
uint32_t t = 0, timeout = 15;
do {
usleep(1000 * 1000);
RS_STACK_MUTEX(mLock);
std::cout << "(II) waiting for auto proxy service(s) to shut down " << t << "/" << timeout << " (remaining: " << mProxies.size() << ")" << std::endl;
if (mProxies.empty())
break;
t++;
} while (t < timeout );
}
bool rsAutoProxyMonitor::isEnabled(autoProxyType::autoProxyType_enum t)
{
autoProxyService *s = lookUpService(t);
if (s == NULL)
return false;
return s->isEnabled();
}
bool rsAutoProxyMonitor::initialSetup(autoProxyType::autoProxyType_enum t, std::string &addr, uint16_t &port)
{
autoProxyService *s = lookUpService(t);
if (s == NULL)
return false;
return s->initialSetup(addr, port);
}
void rsAutoProxyMonitor::task(taskTicket *ticket)
{
// sanity checks
if (!ticket->async && ticket->types.size() > 1) {
std::cerr << "(WW) rsAutoProxyMonitor::task synchronous call to multiple services. This can cause problems!" << std::endl;
}
if (ticket->async && !ticket->cb && ticket->data) {
std::cerr << "(WW) rsAutoProxyMonitor::task asynchronous call with data but no callback. This will likely causes memory leak!" << std::endl;
}
if (ticket->types.size() > 1 && ticket->data) {
std::cerr << "(WW) rsAutoProxyMonitor::task call with data to multiple services. This will likely causes memory leak!" << std::endl;
}
std::vector<autoProxyType::autoProxyType_enum>::const_iterator it;
for (it = ticket->types.begin(); it != ticket->types.end(); ++it) {
autoProxyService* s = lookUpService(*it);
if (s == NULL)
continue;
if (ticket->async) {
// copy ticket
taskTicket *tt = new taskTicket();
*tt = *ticket;
tt->types.clear();
tt->types.push_back(*it);
s->processTaskAsync(tt);
} else {
s->processTaskSync(ticket);
}
}
}
void rsAutoProxyMonitor::taskAsync(autoProxyType::autoProxyType_enum type, autoProxyTask::autoProxyTask_enum task, autoProxyCallback *cb, void *data)
{
std::vector<autoProxyType::autoProxyType_enum> types;
types.push_back(type);
taskAsync(types, task, cb, data);
}
void rsAutoProxyMonitor::taskAsync(std::vector<autoProxyType::autoProxyType_enum> types, autoProxyTask::autoProxyTask_enum task, autoProxyCallback *cb, void *data)
{
if (!isAsyncTask(task)) {
// Usually the services will reject this ticket.
// Just print a warning - maybe there is some special case where this is a good idea.
std::cerr << "(WW) rsAutoProxyMonitor::taskAsync called with a synchronous task!" << std::endl;
}
taskTicket *tt = getTicket();
tt->task = task;
tt->types = types;
if (cb)
tt->cb = cb;
if (data)
tt->data = data;
instance()->task(tt);
// tickets were copied, clean up
delete tt;
}
void rsAutoProxyMonitor::taskSync(autoProxyType::autoProxyType_enum type, autoProxyTask::autoProxyTask_enum task, void *data)
{
std::vector<autoProxyType::autoProxyType_enum> types;
types.push_back(type);
taskSync(types, task, data);
}
void rsAutoProxyMonitor::taskSync(std::vector<autoProxyType::autoProxyType_enum> types, autoProxyTask::autoProxyTask_enum task, void *data)
{
if (isAsyncTask(task)) {
// Usually the services will reject this ticket.
// Just print a warning - maybe there is some special case where this is a good idea.
std::cerr << "(WW) rsAutoProxyMonitor::taskSync called with an asynchronous task!" << std::endl;
}
taskTicket *tt = getTicket();
tt->async = false;
tt->task = task;
tt->types = types;
if (data)
tt->data = data;
instance()->task(tt);
// call done, clean up
delete tt;
}
void rsAutoProxyMonitor::taskError(taskTicket *t)
{
taskDone(t, autoProxyStatus::error);
}
void rsAutoProxyMonitor::taskDone(taskTicket *t, autoProxyStatus::autoProxyStatus_enum status)
{
bool cleanUp = false;
t->result = status;
if (t->cb) {
t->cb->taskFinished(t);
if (t != NULL) {
// callack did not clean up properly
std::cerr << "(WW) rsAutoProxyMonitor::taskFinish callback did not clean up!" << std::endl;
cleanUp = true;
}
} else if (t->async){
// async and no callback
// we must take care of deleting
cleanUp = true;
if(t->data)
std::cerr << "(WW) rsAutoProxyMonitor::taskFinish async call with data attached but no callback set!" << std::endl;
}
if (cleanUp) {
if (t->data) {
std::cerr << "(WW) rsAutoProxyMonitor::taskFinish will try to delete void pointer!" << std::endl;
#pragma GCC diagnostic ignored "-Wdelete-incomplete"
delete t->data;
#pragma GCC diagnostic pop
t->data = NULL;
}
delete t;
t = NULL;
}
}
taskTicket *rsAutoProxyMonitor::getTicket()
{
taskTicket *tt = new taskTicket();
tt->cb = NULL;
tt->data = NULL;
tt->async = true;
tt->result = autoProxyStatus::undefined;
return tt;
}
void rsAutoProxyMonitor::taskFinished(taskTicket *&ticket)
{
{
RS_STACK_MUTEX(mLock);
if (mRSShutDown && ticket->task == autoProxyTask::stop) {
mProxies.erase(ticket->types.front());
}
}
// clean up
if (ticket->data) {
std::cerr << "rsAutoProxyMonitor::taskFinished data set. Will try to delete void pointer" << std::endl;
#pragma GCC diagnostic ignored "-Wdelete-incomplete"
delete ticket->data;
#pragma GCC diagnostic pop
ticket->data = NULL;
}
delete ticket;
ticket = NULL;
}
autoProxyService *rsAutoProxyMonitor::lookUpService(autoProxyType::autoProxyType_enum t)
{
RS_STACK_MUTEX(mLock);
std::map<autoProxyType::autoProxyType_enum, autoProxyService*>::const_iterator itService;
if ((itService = mProxies.find(t)) != mProxies.end()) {
return itService->second;
}
std::cerr << "sAutoProxyMonitor::lookUpService no service for type " << t << " found!" << std::endl;
return NULL;
}
bool rsAutoProxyMonitor::isAsyncTask(autoProxyTask::autoProxyTask_enum t)
{
switch (t) {
case autoProxyTask::start:
case autoProxyTask::stop:
case autoProxyTask::receiveKey:
return true;
break;
default:
break;
}
return false;
}

View file

@ -0,0 +1,216 @@
#ifndef RSAUTOPROXYMONITOR_H
#define RSAUTOPROXYMONITOR_H
#include <vector>
#include <map>
#include <util/rsthreads.h>
class autoProxyCallback;
namespace autoProxyType {
enum autoProxyType_enum {
I2PBOB
};
}
namespace autoProxyTask {
enum autoProxyTask_enum {
/* async tasks */
start, ///< start up proxy
stop, ///< shut down proxy
receiveKey, ///< renew proxy key (if any)
proxyStatusCheck, ///< use to check if the proxy is still running
/* sync tasks */
status, ///< get status from auto proxy
getSettings, ///< get setting from auto proxy
setSettings, ///< set setting of auto proxy
reloadConfig, ///< signal config reload/rebuild
getErrorInfo ///< get error information from auto proxy
};
}
namespace autoProxyStatus {
enum autoProxyStatus_enum {
undefined, ///< undefined - usually not yet set
disabled, ///< used when a task cannot be done (e.g. a disabled service cannot be startet or stopped)
offline, ///< proxy is not set up
online, ///< proxy is set up
ok, ///< generic ok
error ///< generic error
};
}
struct taskTicket {
///
/// \brief types auto proxy service types that should get the ticket
///
std::vector<autoProxyType::autoProxyType_enum> types;
///
/// \brief task the task to satisfy
///
autoProxyTask::autoProxyTask_enum task;
///
/// \brief cb (optional) callback that gets called once the task is done
///
autoProxyCallback *cb;
///
/// \brief result (optional) result
///
autoProxyStatus::autoProxyStatus_enum result;
///
/// \brief data (optional) service dependent data
///
/// Needs to be allocated and freed by caller!
///
void *data;
///
/// \brief async is the call Asynchronous
///
/// Will create a copy of the ticket for each
/// service and delete the original ticket.
///
bool async;
};
class autoProxyCallback {
public:
///
/// \brief taskFinished called when a task is finished
/// \param ticket
///
/// Remove everything: ticket and attached data if any!
///
virtual void taskFinished(taskTicket *&ticket) = 0;
};
class autoProxyService {
public:
///
/// \brief isEnabled must be provided to directly get a result without going through the ticket system
/// \return whether the auto proxy service is enabled or not
///
virtual bool isEnabled() = 0;
///
/// \brief initialSetup used when creating a node
/// \param addr new address for the hidden service
/// \param port new port for the hidden service
/// \return true on success
///
/// This function is used to do an initial setup when creating a new hidden node.
/// Nothing has been set up at this point to the auto proxy service must take care
/// of everything (e.g. starting (and stoping) of needed threads)
///
virtual bool initialSetup(std::string &addr, uint16_t &port) = 0;
///
/// \brief processTaskAsync adds a ticket to the auto proxies task list
/// \param ticket
///
/// Don't call the callback in this function as this can cause dead locks!
///
virtual void processTaskAsync(taskTicket *ticket) = 0;
///
/// \brief processTaskSync taskTicket must be satisfied immediately
/// \param ticket
///
virtual void processTaskSync(taskTicket *ticket) = 0;
};
class rsAutoProxyMonitor : autoProxyCallback
{
public:
static rsAutoProxyMonitor *instance();
///
/// \brief addProxy adds a new auto proxy service to the monitor
/// \param type type of the new auto proxy service
/// \param service pointer to the service
///
void addProxy(autoProxyType::autoProxyType_enum type, autoProxyService *service);
// global functions
void startAll();
void stopAll();
void stopAllRSShutdown();
bool isEnabled(autoProxyType::autoProxyType_enum t);
// use this when creating a new node
bool initialSetup(autoProxyType::autoProxyType_enum t, std::string &addr, uint16_t &port);
///
/// \brief task Sends a task to all requested services
/// \param ticket Ticket containing required information
///
/// There are two kind of tasks: asyn and sync.
/// All tasks that involve communication with the target program (e.g. I2P or Tor) are asynchronous.
/// All other task are synchronous (e.g. getting settings)
///
///
/// Synchronous:
/// When you want to get the settings from a service you can call task() with a ticket only listing
/// one service and data pointing to the service's settings class/struct. Set async to false so
/// that the service gets your original ticket. Ther service will process the request (get settings)
/// immediately and when the call to task() is done you can access the settings from your ticket.
///
/// When additionally a call back is set the service will also call it. This can cause deadlocks!
///
///
/// Asynchronous:
/// When you want to start up all services or request new keys for all services you can call task() with a list
/// of services and set async to true. When each service has fullfilled the resquest he will
/// use the callback. The original caller ticket will be copied and each call to the callback
/// will use its copy of the original ticket. The attached data is not copied so each service gets
/// the same pointer!
///
///
/// Note:
/// Services should not delet or allocate anything unless no call back is provided and it is an
/// async call. In that case the service should delete the ticket and the attacked data.
/// Otherwise the caller must take care of cleaning up.
/// This class provides two wrappers to take care of this that should be used: taskError and taskDone
///
/// Note2:
/// This function is private so that each user must use the wrappers taskAsync and taskSync that include
/// more sanity checks
///
private:
void task(taskTicket *ticket);
public:
static void taskAsync(autoProxyType::autoProxyType_enum type, autoProxyTask::autoProxyTask_enum task, autoProxyCallback *cb = NULL, void *data = NULL);
static void taskAsync(std::vector<autoProxyType::autoProxyType_enum> types, autoProxyTask::autoProxyTask_enum task, autoProxyCallback *cb = NULL, void *data = NULL);
static void taskSync (autoProxyType::autoProxyType_enum type, autoProxyTask::autoProxyTask_enum task, void *data = NULL);
static void taskSync (std::vector<autoProxyType::autoProxyType_enum> types, autoProxyTask::autoProxyTask_enum task, void *data = NULL);
// usefull helpers
static void taskError(taskTicket *t);
static void taskDone(taskTicket *t, autoProxyStatus::autoProxyStatus_enum status);
static taskTicket *getTicket();
// autoProxyCallback interface
public:
void taskFinished(taskTicket *&ticket);
private:
rsAutoProxyMonitor();
autoProxyService *lookUpService(autoProxyType::autoProxyType_enum t);
static bool isAsyncTask(autoProxyTask::autoProxyTask_enum t);
std::map<autoProxyType::autoProxyType_enum, autoProxyService*> mProxies;
bool mRSShutDown;
RsMutex mLock;
static rsAutoProxyMonitor *mInstance;
};
#endif // RSAUTOPROXYMONITOR_H

View file

@ -2259,7 +2259,7 @@ void p3MsgService::sendDistantMsgItem(RsMsgItem *msgitem)
msg_serialized_data, msg_serialized_rssize,
signing_key_id, grouter_message_id );
RsGxsTransId gxsMailId;
mGxsTransServ.sendMail( gxsMailId, GxsTransSubServices::P3_MSG_SERVICE,
mGxsTransServ.sendData( gxsMailId, GxsTransSubServices::P3_MSG_SERVICE,
signing_key_id, destination_key_id,
msg_serialized_data, msg_serialized_rssize );