reimplemented encrypt/decrypt using openinit and sealinit envelope encryption of openssl

- to aid with portability into the future

git-svn-id: http://svn.code.sf.net/p/retroshare/code/trunk@3291 b45a01b8-16f6-495d-af2f-9b41ad6348cc
This commit is contained in:
chrisparker126 2010-07-14 21:27:26 +00:00
parent b39302092e
commit 3291e61291
2 changed files with 126 additions and 248 deletions

View file

@ -954,80 +954,64 @@ bool AuthSSLimpl::encrypt(void *&out, int &outlen, const void *in, int inlen,
} }
} }
EVP_CIPHER_CTX ctx;
int eklen, net_ekl;
unsigned char *ek;
unsigned char iv[EVP_MAX_IV_LENGTH];
EVP_CIPHER_CTX_init(&ctx);
int out_currOffset = 0;
int out_offset = 0; int out_offset = 0;
out = malloc(inlen + 2048);
/// ** from demos/maurice/example1.c of openssl V1.0 *** /// int max_evp_key_size = EVP_PKEY_size(public_key);
unsigned char * iv = new unsigned char [16]; ek = (unsigned char*)malloc(max_evp_key_size);
memset(iv, '\0', 16); const EVP_CIPHER *cipher = EVP_aes_128_cbc();
unsigned char * ek = new unsigned char [EVP_PKEY_size(public_key) + 1024]; int cipher_block_size = EVP_CIPHER_block_size(cipher);
uint32_t ekl, net_ekl; int size_net_ekl = sizeof(net_ekl);
unsigned char * cryptBuff = new unsigned char [inlen + 16];
memset(cryptBuff, '\0', sizeof(cryptBuff));
int cryptBuffL = 0;
unsigned char key[256];
/// ** copied implementation of EVP_SealInit of openssl V1.0 *** ///; int max_outlen = inlen + cipher_block_size + EVP_MAX_IV_LENGTH + max_evp_key_size + size_net_ekl;
EVP_CIPHER_CTX cipher_ctx;
EVP_CIPHER_CTX_init(&cipher_ctx);
if(!EVP_EncryptInit_ex(&cipher_ctx,EVP_aes_256_cbc(),NULL,NULL,NULL)) { // intialize context and send store encrypted cipher in ek
return false; if(!EVP_SealInit(&ctx, EVP_aes_128_cbc(), &ek, &eklen, iv, &public_key, 1)) return false;
}
if (EVP_CIPHER_CTX_rand_key(&cipher_ctx, key) <= 0) { // now assign memory to out accounting for data, and cipher block size, key length, and key length val
return false; out = new unsigned char[inlen + cipher_block_size + size_net_ekl + eklen + EVP_MAX_IV_LENGTH];
}
if (EVP_CIPHER_CTX_iv_length(&cipher_ctx)) { net_ekl = htonl(eklen);
RAND_pseudo_bytes(iv,EVP_CIPHER_CTX_iv_length(&cipher_ctx)); memcpy((unsigned char*)out + out_offset, &net_ekl, size_net_ekl);
} out_offset += size_net_ekl;
if(!EVP_EncryptInit_ex(&cipher_ctx,NULL,NULL,key,iv)) { memcpy((unsigned char*)out + out_offset, ek, eklen);
return false; out_offset += eklen;
}
#if OPENSSL_VERSION_NUMBER >= 0x10000000L memcpy((unsigned char*)out + out_offset, iv, EVP_MAX_IV_LENGTH);
ekl=EVP_PKEY_encrypt_old(ek,key,EVP_CIPHER_CTX_key_length(&cipher_ctx), public_key); out_offset += EVP_MAX_IV_LENGTH;
#else
ekl=EVP_PKEY_encrypt(ek,key,EVP_CIPHER_CTX_key_length(&cipher_ctx), public_key);
#endif
/// ** copied implementation of EVP_SealInit of openssl V *** /// // now encrypt actual data
if(!EVP_SealUpdate(&ctx, (unsigned char*) out + out_offset, &out_currOffset, (unsigned char*) in, inlen)) return false;
net_ekl = htonl(ekl); // move along to partial block space
memcpy((void*)((unsigned long int)out + (unsigned long int)out_offset), (char*)&net_ekl, sizeof(net_ekl)); out_offset += out_currOffset;
out_offset += sizeof(net_ekl);
memcpy((void*)((unsigned long int)out + (unsigned long int)out_offset), ek, ekl); // add padding
out_offset += ekl; if(!EVP_SealFinal(&ctx, (unsigned char*) out + out_offset, &out_currOffset)) return false;
memcpy((void*)((unsigned long int)out + (unsigned long int)out_offset), iv, 16); // move to end
out_offset += 16; out_offset += out_currOffset;
EVP_EncryptUpdate(&cipher_ctx, cryptBuff, &cryptBuffL, (unsigned char*)in, inlen); // make sure offset has not gone passed valid memory bounds
memcpy((void*)((unsigned long int)out + (unsigned long int)out_offset), cryptBuff, cryptBuffL); if(out_offset > max_outlen) return false;
out_offset += cryptBuffL;
EVP_EncryptFinal_ex(&cipher_ctx, cryptBuff, &cryptBuffL); // free encrypted key data
memcpy((void*)((unsigned long int)out + (unsigned long int)out_offset), cryptBuff, cryptBuffL); free(ek);
out_offset += cryptBuffL;
outlen = out_offset;
EVP_EncryptInit_ex(&cipher_ctx,NULL,NULL,NULL,NULL);
EVP_CIPHER_CTX_cleanup(&cipher_ctx);
outlen = out_offset;
return true;
delete[] ek; delete[] ek;
#ifdef AUTHSSL_DEBUG #ifdef DISTRIB_DEBUG
std::cerr << "AuthSSLimpl::encrypt() finished with outlen : " << outlen << std::endl; std::cerr << "Authssl::encrypt() finished with outlen : " << outlen << std::endl;
#endif #endif
//free(ek);
//free(cryptBuff);
//free(iv);
return true; return true;
} }
@ -1045,93 +1029,42 @@ bool AuthSSLimpl::decrypt(void *&out, int &outlen, const void *in, int inlen)
// out = malloc(inlen); // out = malloc(inlen);
// memcpy(out, in, inlen); // memcpy(out, in, inlen);
// outlen = inlen; // outlen = inlen;
out = malloc(inlen + 16); EVP_CIPHER_CTX ctx;
int in_offset = 0; int eklen = 0, net_ekl = 0;
unsigned char * buf = new unsigned char [inlen + 16]; unsigned char *ek = NULL;
memset(buf, '\0', sizeof(buf)); unsigned char iv[EVP_MAX_IV_LENGTH];
int buflen = 0; ek = (unsigned char*)malloc(EVP_PKEY_size(mOwnPrivateKey));
EVP_CIPHER_CTX ectx; EVP_CIPHER_CTX_init(&ctx);
unsigned char * iv = new unsigned char [16];
memset(iv, '\0', 16);
unsigned char *encryptKey;
unsigned int ekeylen;
int in_offset = 0, out_currOffset = 0;
int size_net_ekl = sizeof(net_ekl);
memcpy(&ekeylen, (void*)((unsigned long int)in + (unsigned long int)in_offset), sizeof(ekeylen)); memcpy(&net_ekl, (unsigned char*)in, size_net_ekl);
in_offset += sizeof(ekeylen); eklen = ntohl(net_ekl);
in_offset += size_net_ekl;
ekeylen = ntohl(ekeylen); memcpy(ek, (unsigned char*)in + in_offset, eklen);
in_offset += eklen;
if (ekeylen != (unsigned) EVP_PKEY_size(mOwnPrivateKey)) memcpy(iv, (unsigned char*)in + in_offset, EVP_MAX_IV_LENGTH);
{ in_offset += EVP_MAX_IV_LENGTH;
fprintf(stderr, "keylength mismatch");
return false;
}
encryptKey = new unsigned char [sizeof(char) * ekeylen]; const EVP_CIPHER* cipher = EVP_aes_128_cbc();
memcpy(encryptKey, (void*)((unsigned long int)in + (unsigned long int)in_offset), ekeylen); if(!EVP_OpenInit(&ctx, cipher, ek, eklen, iv, mOwnPrivateKey)) return false;
in_offset += ekeylen;
memcpy(iv, (void*)((unsigned long int)in + (unsigned long int)in_offset), 16); out = new unsigned char[inlen - in_offset];
in_offset += 16;
// EVP_OpenInit(&ectx, if(!EVP_OpenUpdate(&ctx, (unsigned char*) out, &out_currOffset, (unsigned char*)in + in_offset, inlen - in_offset)) return false;
// EVP_des_ede3_cbc(),
// encryptKey,
// ekeylen,
// iv,
// privateKey);
/// ** copied implementation of EVP_SealInit of openssl V1.0 *** ///;
unsigned char *key=NULL; in_offset += out_currOffset;
int i=0; outlen += out_currOffset;
EVP_CIPHER_CTX_init(&ectx); if(!EVP_OpenFinal(&ctx, (unsigned char*)out + out_currOffset, &out_currOffset)) return false;
if(!EVP_DecryptInit_ex(&ectx,EVP_aes_256_cbc(),NULL, NULL,NULL)) return false;
if (mOwnPrivateKey->type != EVP_PKEY_RSA) outlen += out_currOffset;
{
return false;
}
key=(unsigned char *)OPENSSL_malloc(256); free(ek);
if (key == NULL)
{
return false;
}
#if OPENSSL_VERSION_NUMBER >= 0x10000000L
i=EVP_PKEY_decrypt_old(key,encryptKey,ekeylen,mOwnPrivateKey);
#else
i=EVP_PKEY_decrypt(key,encryptKey,ekeylen,mOwnPrivateKey);
#endif
if ((i <= 0) || !EVP_CIPHER_CTX_set_key_length(&ectx, i))
{
return false;
}
if(!EVP_DecryptInit_ex(&ectx,NULL,NULL,key,iv)) return false;
/// ** copied implementation of EVP_SealInit of openssl V1.0 *** ///;
if (!EVP_DecryptUpdate(&ectx, buf, &buflen, (unsigned char*)((unsigned long int)in + (unsigned long int)in_offset), inlen - in_offset)) {
return false;
}
memcpy(out, buf, buflen);
int out_offset = buflen;
if (!EVP_DecryptFinal(&ectx, buf, &buflen)) {
return false;
}
memcpy((void*)((unsigned long int)out + (unsigned long int)out_offset), buf, buflen);
out_offset += buflen;
outlen = out_offset;
EVP_DecryptInit_ex(&ectx,NULL,NULL, NULL,NULL);
EVP_CIPHER_CTX_cleanup(&ectx);
delete[] encryptKey;
#ifdef AUTHSSL_DEBUG #ifdef AUTHSSL_DEBUG
std::cerr << "AuthSSLimpl::decrypt() finished with outlen : " << outlen << std::endl; std::cerr << "AuthSSLimpl::decrypt() finished with outlen : " << outlen << std::endl;

View file

@ -3187,6 +3187,7 @@ void p3GroupDistrib::printGroups(std::ostream &out)
bool p3GroupDistrib::encrypt(void *& out, int& outlen, const void *in, int inlen, std::string grpId) bool p3GroupDistrib::encrypt(void *& out, int& outlen, const void *in, int inlen, std::string grpId)
{ {
#ifdef DISTRIB_DEBUG #ifdef DISTRIB_DEBUG
std::cerr << "p3GroupDistrib::decrypt() " << std::endl; std::cerr << "p3GroupDistrib::decrypt() " << std::endl;
#endif #endif
@ -3243,70 +3244,58 @@ bool p3GroupDistrib::encrypt(void *& out, int& outlen, const void *in, int inlen
return false; return false;
} }
EVP_CIPHER_CTX ctx;
int eklen, net_ekl;
unsigned char *ek;
unsigned char iv[EVP_MAX_IV_LENGTH];
EVP_CIPHER_CTX_init(&ctx);
int out_currOffset = 0;
int out_offset = 0; int out_offset = 0;
out = malloc(inlen + 2048);
/// ** from demos/maurice/example1.c of openssl V1.0 *** /// int max_evp_key_size = EVP_PKEY_size(public_key);
unsigned char * iv = new unsigned char [16]; ek = (unsigned char*)malloc(max_evp_key_size);
memset(iv, '\0', 16); const EVP_CIPHER *cipher = EVP_aes_128_cbc();
unsigned char * ek = new unsigned char [EVP_PKEY_size(public_key) + 1024]; int cipher_block_size = EVP_CIPHER_block_size(cipher);
uint32_t ekl, net_ekl; int size_net_ekl = sizeof(net_ekl);
unsigned char * cryptBuff = new unsigned char [inlen + 16];
memset(cryptBuff, '\0', sizeof(cryptBuff));
int cryptBuffL = 0;
unsigned char key[256];
/// ** copied implementation of EVP_SealInit of openssl V1.0 *** ///; int max_outlen = inlen + cipher_block_size + EVP_MAX_IV_LENGTH + max_evp_key_size + size_net_ekl;
EVP_CIPHER_CTX cipher_ctx;
EVP_CIPHER_CTX_init(&cipher_ctx);
if(!EVP_EncryptInit_ex(&cipher_ctx,EVP_aes_256_cbc(),NULL,NULL,NULL)) { // intialize context and send store encrypted cipher in ek
return false; if(!EVP_SealInit(&ctx, EVP_aes_128_cbc(), &ek, &eklen, iv, &public_key, 1)) return false;
}
if (EVP_CIPHER_CTX_rand_key(&cipher_ctx, key) <= 0) { // now assign memory to out accounting for data, and cipher block size, key length, and key length val
return false; out = new unsigned char[inlen + cipher_block_size + size_net_ekl + eklen + EVP_MAX_IV_LENGTH];
}
if (EVP_CIPHER_CTX_iv_length(&cipher_ctx)) { net_ekl = htonl(eklen);
RAND_pseudo_bytes(iv,EVP_CIPHER_CTX_iv_length(&cipher_ctx)); memcpy((unsigned char*)out + out_offset, &net_ekl, size_net_ekl);
} out_offset += size_net_ekl;
if(!EVP_EncryptInit_ex(&cipher_ctx,NULL,NULL,key,iv)) { memcpy((unsigned char*)out + out_offset, ek, eklen);
return false; out_offset += eklen;
}
#if OPENSSL_VERSION_NUMBER >= 0x10000000L memcpy((unsigned char*)out + out_offset, iv, EVP_MAX_IV_LENGTH);
ekl=EVP_PKEY_encrypt_old(ek,key,EVP_CIPHER_CTX_key_length(&cipher_ctx), public_key); out_offset += EVP_MAX_IV_LENGTH;
#else
ekl=EVP_PKEY_encrypt(ek,key,EVP_CIPHER_CTX_key_length(&cipher_ctx), public_key);
#endif
/// ** copied implementation of EVP_SealInit of openssl V *** /// // now encrypt actual data
if(!EVP_SealUpdate(&ctx, (unsigned char*) out + out_offset, &out_currOffset, (unsigned char*) in, inlen)) return false;
net_ekl = htonl(ekl); // move along to partial block space
memcpy((void*)((unsigned long int)out + (unsigned long int)out_offset), (char*)&net_ekl, sizeof(net_ekl)); out_offset += out_currOffset;
out_offset += sizeof(net_ekl);
memcpy((void*)((unsigned long int)out + (unsigned long int)out_offset), ek, ekl); // add padding
out_offset += ekl; if(!EVP_SealFinal(&ctx, (unsigned char*) out + out_offset, &out_currOffset)) return false;
memcpy((void*)((unsigned long int)out + (unsigned long int)out_offset), iv, 16); // move to end
out_offset += 16; out_offset += out_currOffset;
EVP_EncryptUpdate(&cipher_ctx, cryptBuff, &cryptBuffL, (unsigned char*)in, inlen); // make sure offset has not gone passed valid memory bounds
memcpy((void*)((unsigned long int)out + (unsigned long int)out_offset), cryptBuff, cryptBuffL); if(out_offset > max_outlen) return false;
out_offset += cryptBuffL;
EVP_EncryptFinal_ex(&cipher_ctx, cryptBuff, &cryptBuffL); // free encrypted key data
memcpy((void*)((unsigned long int)out + (unsigned long int)out_offset), cryptBuff, cryptBuffL); free(ek);
out_offset += cryptBuffL;
outlen = out_offset;
EVP_EncryptInit_ex(&cipher_ctx,NULL,NULL,NULL,NULL);
EVP_CIPHER_CTX_cleanup(&cipher_ctx);
outlen = out_offset;
return true;
delete[] ek; delete[] ek;
@ -3354,86 +3343,42 @@ bool p3GroupDistrib::decrypt(void *& out, int& outlen, const void *in, int inlen
return false; return false;
} }
out = malloc(inlen + 16); EVP_CIPHER_CTX ctx;
int in_offset = 0; int eklen = 0, net_ekl = 0;
unsigned char * buf = new unsigned char [inlen + 16]; unsigned char *ek = NULL;
memset(buf, '\0', sizeof(buf)); unsigned char iv[EVP_MAX_IV_LENGTH];
int buflen = 0; ek = (unsigned char*)malloc(EVP_PKEY_size(private_key));
EVP_CIPHER_CTX ectx; EVP_CIPHER_CTX_init(&ctx);
unsigned char * iv = new unsigned char [16];
memset(iv, '\0', 16);
unsigned char *encryptKey;
unsigned int ekeylen;
int in_offset = 0, out_currOffset = 0;
int size_net_ekl = sizeof(net_ekl);
memcpy(&ekeylen, (void*)((unsigned long int)in + (unsigned long int)in_offset), sizeof(ekeylen)); memcpy(&net_ekl, (unsigned char*)in, size_net_ekl);
in_offset += sizeof(ekeylen); eklen = ntohl(net_ekl);
in_offset += size_net_ekl;
ekeylen = ntohl(ekeylen); memcpy(ek, (unsigned char*)in + in_offset, eklen);
in_offset += eklen;
if (ekeylen != EVP_PKEY_size(private_key)) memcpy(iv, (unsigned char*)in + in_offset, EVP_MAX_IV_LENGTH);
{ in_offset += EVP_MAX_IV_LENGTH;
fprintf(stderr, "keylength mismatch");
return false;
}
encryptKey = new unsigned char [sizeof(char) * ekeylen]; const EVP_CIPHER* cipher = EVP_aes_128_cbc();
memcpy(encryptKey, (void*)((unsigned long int)in + (unsigned long int)in_offset), ekeylen); if(!EVP_OpenInit(&ctx, cipher, ek, eklen, iv, private_key)) return false;
in_offset += ekeylen;
memcpy(iv, (void*)((unsigned long int)in + (unsigned long int)in_offset), 16); out = new unsigned char[inlen - in_offset];
in_offset += 16;
/// ** copied implementation of EVP_SealInit of openssl V1.0 *** ///; if(!EVP_OpenUpdate(&ctx, (unsigned char*) out, &out_currOffset, (unsigned char*)in + in_offset, inlen - in_offset)) return false;
unsigned char *key=NULL; in_offset += out_currOffset;
int i=0; outlen += out_currOffset;
EVP_CIPHER_CTX_init(&ectx); if(!EVP_OpenFinal(&ctx, (unsigned char*)out + out_currOffset, &out_currOffset)) return false;
if(!EVP_DecryptInit_ex(&ectx,EVP_aes_256_cbc(),NULL, NULL,NULL)) return false;
key=(unsigned char *)OPENSSL_malloc(256); outlen += out_currOffset;
if (key == NULL)
{
return false;
}
#if OPENSSL_VERSION_NUMBER >= 0x10000000L free(ek);
i=EVP_PKEY_decrypt_old(key,encryptKey,ekeylen,private_key);
#else
i=EVP_PKEY_decrypt(key,encryptKey,ekeylen,private_key);
#endif
if ((i <= 0) || !EVP_CIPHER_CTX_set_key_length(&ectx, i))
{
return false;
}
if(!EVP_DecryptInit_ex(&ectx,NULL,NULL,key,iv)) return false;
/// ** copied implementation of EVP_SealInit of openssl V1.0 *** ///;
if (!EVP_DecryptUpdate(&ectx, buf, &buflen, (unsigned char*)((unsigned long int)in + (unsigned long int)in_offset), inlen - in_offset)) {
return false;
}
memcpy(out, buf, buflen);
int out_offset = buflen;
if (!EVP_DecryptFinal(&ectx, buf, &buflen)) {
return false;
}
memcpy((void*)((unsigned long int)out + (unsigned long int)out_offset), buf, buflen);
out_offset += buflen;
outlen = out_offset;
EVP_DecryptInit_ex(&ectx,NULL,NULL, NULL,NULL);
EVP_CIPHER_CTX_cleanup(&ectx);
delete[] encryptKey;
#ifdef DISTRIB_DEBUG
std::cerr << "p3GroupDistrib::decrypt() finished with outlen : " << outlen << std::endl;
#endif
return true; return true;
} }