mirror of
https://github.com/RetroShare/RetroShare.git
synced 2024-12-26 16:09:35 -05:00
changed FFT code in graph widget into a more efficient one, with free licence
This commit is contained in:
parent
e95ddb91af
commit
1da89dd70d
827
retroshare-gui/src/gui/elastic/fft.h
Normal file
827
retroshare-gui/src/gui/elastic/fft.h
Normal file
@ -0,0 +1,827 @@
|
||||
/******************************************************************
|
||||
|
||||
Original FFT code Credits:
|
||||
Copyright Takuya OOURA, 1996-2001
|
||||
http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html
|
||||
|
||||
******************************************************************/
|
||||
|
||||
/*
|
||||
Fast Fourier/Cosine/Sine Transform
|
||||
dimension :two
|
||||
data length :power of 2
|
||||
decimation :frequency
|
||||
radix :4, 2, row-column
|
||||
data :inplace
|
||||
table :use
|
||||
functions
|
||||
cdft2d: Complex Discrete Fourier Transform
|
||||
rdft2d: Real Discrete Fourier Transform
|
||||
ddct2d: Discrete Cosine Transform
|
||||
ddst2d: Discrete Sine Transform
|
||||
function prototypes
|
||||
void cdft2d(int, int, int, double **, int *, double *);
|
||||
void rdft2d(int, int, int, double **, int *, double *);
|
||||
void ddct2d(int, int, int, double **, double **, int *, double *);
|
||||
void ddst2d(int, int, int, double **, double **, int *, double *);
|
||||
|
||||
|
||||
-------- Complex DFT (Discrete Fourier Transform) --------
|
||||
[definition]
|
||||
<case1>
|
||||
X[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 x[j1][j2] *
|
||||
exp(2*pi*i*j1*k1/n1) *
|
||||
exp(2*pi*i*j2*k2/n2), 0<=k1<n1, 0<=k2<n2
|
||||
<case2>
|
||||
X[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 x[j1][j2] *
|
||||
exp(-2*pi*i*j1*k1/n1) *
|
||||
exp(-2*pi*i*j2*k2/n2), 0<=k1<n1, 0<=k2<n2
|
||||
(notes: sum_j=0^n-1 is a summation from j=0 to n-1)
|
||||
[usage]
|
||||
<case1>
|
||||
ip[0] = 0; // first time only
|
||||
cdft2d(n1, 2*n2, 1, a, ip, w);
|
||||
<case2>
|
||||
ip[0] = 0; // first time only
|
||||
cdft2d(n1, 2*n2, -1, a, ip, w);
|
||||
[parameters]
|
||||
n1 :data length (int)
|
||||
n1 >= 1, n1 = power of 2
|
||||
2*n2 :data length (int)
|
||||
n2 >= 1, n2 = power of 2
|
||||
a[0...n1-1][0...2*n2-1]
|
||||
:input/output data (double **)
|
||||
input data
|
||||
a[j1][2*j2] = Re(x[j1][j2]),
|
||||
a[j1][2*j2+1] = Im(x[j1][j2]),
|
||||
0<=j1<n1, 0<=j2<n2
|
||||
output data
|
||||
a[k1][2*k2] = Re(X[k1][k2]),
|
||||
a[k1][2*k2+1] = Im(X[k1][k2]),
|
||||
0<=k1<n1, 0<=k2<n2
|
||||
ip[0...*]
|
||||
:work area for bit reversal (int *)
|
||||
length of ip >= 2+sqrt(n)
|
||||
(n = max(n1, n2))
|
||||
ip[0],ip[1] are pointers of the cos/sin table.
|
||||
w[0...*]
|
||||
:cos/sin table (double *)
|
||||
length of w >= max(n1/2, n2/2)
|
||||
w[],ip[] are initialized if ip[0] == 0.
|
||||
[remark]
|
||||
Inverse of
|
||||
cdft2d(n1, 2*n2, -1, a, ip, w);
|
||||
is
|
||||
cdft2d(n1, 2*n2, 1, a, ip, w);
|
||||
for (j1 = 0; j1 <= n1 - 1; j1++) {
|
||||
for (j2 = 0; j2 <= 2 * n2 - 1; j2++) {
|
||||
a[j1][j2] *= 1.0 / (n1 * n2);
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
/* -------- initializing routines -------- */
|
||||
|
||||
#pragma once
|
||||
#include <math.h>
|
||||
|
||||
class fft
|
||||
{
|
||||
public:
|
||||
static void makewt(int nw, int *ip, double *w)
|
||||
{
|
||||
int nwh, j;
|
||||
double delta, x, y;
|
||||
|
||||
ip[0] = nw;
|
||||
ip[1] = 1;
|
||||
if (nw > 2) {
|
||||
nwh = nw >> 1;
|
||||
delta = atan(1.0) / nwh;
|
||||
w[0] = 1;
|
||||
w[1] = 0;
|
||||
w[nwh] = cos(delta * nwh);
|
||||
w[nwh + 1] = w[nwh];
|
||||
for (j = 2; j <= nwh - 2; j += 2) {
|
||||
sincos(delta*j,&y,&x) ;
|
||||
//x = cos(delta * j);
|
||||
//y = sin(delta * j);
|
||||
w[j] = x;
|
||||
w[j + 1] = y;
|
||||
w[nw - j] = y;
|
||||
w[nw - j + 1] = x;
|
||||
}
|
||||
bitrv2(nw, ip + 2, w);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* -------- child routines -------- */
|
||||
|
||||
|
||||
static void bitrv2(int n, int *ip, double *a)
|
||||
{
|
||||
int j, j1, k, k1, l, m, m2;
|
||||
double xr, xi;
|
||||
|
||||
ip[0] = 0;
|
||||
l = n;
|
||||
m = 1;
|
||||
while ((m << 2) < l) {
|
||||
l >>= 1;
|
||||
for (j = 0; j <= m - 1; j++) {
|
||||
ip[m + j] = ip[j] + l;
|
||||
}
|
||||
m <<= 1;
|
||||
}
|
||||
if ((m << 2) > l) {
|
||||
for (k = 1; k <= m - 1; k++) {
|
||||
for (j = 0; j <= k - 1; j++) {
|
||||
j1 = (j << 1) + ip[k];
|
||||
k1 = (k << 1) + ip[j];
|
||||
xr = a[j1];
|
||||
xi = a[j1 + 1];
|
||||
a[j1] = a[k1];
|
||||
a[j1 + 1] = a[k1 + 1];
|
||||
a[k1] = xr;
|
||||
a[k1 + 1] = xi;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
m2 = m << 1;
|
||||
for (k = 1; k <= m - 1; k++) {
|
||||
for (j = 0; j <= k - 1; j++) {
|
||||
j1 = (j << 1) + ip[k];
|
||||
k1 = (k << 1) + ip[j];
|
||||
xr = a[j1];
|
||||
xi = a[j1 + 1];
|
||||
a[j1] = a[k1];
|
||||
a[j1 + 1] = a[k1 + 1];
|
||||
a[k1] = xr;
|
||||
a[k1 + 1] = xi;
|
||||
j1 += m2;
|
||||
k1 += m2;
|
||||
xr = a[j1];
|
||||
xi = a[j1 + 1];
|
||||
a[j1] = a[k1];
|
||||
a[j1 + 1] = a[k1 + 1];
|
||||
a[k1] = xr;
|
||||
a[k1 + 1] = xi;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void bitrv2col(int n1, int n, int *ip, double **a)
|
||||
{
|
||||
int i, j, j1, k, k1, l, m, m2;
|
||||
double xr, xi;
|
||||
|
||||
ip[0] = 0;
|
||||
l = n;
|
||||
m = 1;
|
||||
while ((m << 2) < l) {
|
||||
l >>= 1;
|
||||
for (j = 0; j <= m - 1; j++) {
|
||||
ip[m + j] = ip[j] + l;
|
||||
}
|
||||
m <<= 1;
|
||||
}
|
||||
if ((m << 2) > l) {
|
||||
for (i = 0; i <= n1 - 1; i++) {
|
||||
for (k = 1; k <= m - 1; k++) {
|
||||
for (j = 0; j <= k - 1; j++) {
|
||||
j1 = (j << 1) + ip[k];
|
||||
k1 = (k << 1) + ip[j];
|
||||
xr = a[i][j1];
|
||||
xi = a[i][j1 + 1];
|
||||
a[i][j1] = a[i][k1];
|
||||
a[i][j1 + 1] = a[i][k1 + 1];
|
||||
a[i][k1] = xr;
|
||||
a[i][k1 + 1] = xi;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
m2 = m << 1;
|
||||
for (i = 0; i <= n1 - 1; i++) {
|
||||
for (k = 1; k <= m - 1; k++) {
|
||||
for (j = 0; j <= k - 1; j++) {
|
||||
j1 = (j << 1) + ip[k];
|
||||
k1 = (k << 1) + ip[j];
|
||||
xr = a[i][j1];
|
||||
xi = a[i][j1 + 1];
|
||||
a[i][j1] = a[i][k1];
|
||||
a[i][j1 + 1] = a[i][k1 + 1];
|
||||
a[i][k1] = xr;
|
||||
a[i][k1 + 1] = xi;
|
||||
j1 += m2;
|
||||
k1 += m2;
|
||||
xr = a[i][j1];
|
||||
xi = a[i][j1 + 1];
|
||||
a[i][j1] = a[i][k1];
|
||||
a[i][j1 + 1] = a[i][k1 + 1];
|
||||
a[i][k1] = xr;
|
||||
a[i][k1 + 1] = xi;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void bitrv2row(int n, int n2, int *ip, double **a)
|
||||
{
|
||||
int i, j, j1, k, k1, l, m;
|
||||
double xr, xi;
|
||||
|
||||
ip[0] = 0;
|
||||
l = n;
|
||||
m = 1;
|
||||
while ((m << 1) < l) {
|
||||
l >>= 1;
|
||||
for (j = 0; j <= m - 1; j++) {
|
||||
ip[m + j] = ip[j] + l;
|
||||
}
|
||||
m <<= 1;
|
||||
}
|
||||
if ((m << 1) > l) {
|
||||
for (k = 1; k <= m - 1; k++) {
|
||||
for (j = 0; j <= k - 1; j++) {
|
||||
j1 = j + ip[k];
|
||||
k1 = k + ip[j];
|
||||
for (i = 0; i <= n2 - 2; i += 2) {
|
||||
xr = a[j1][i];
|
||||
xi = a[j1][i + 1];
|
||||
a[j1][i] = a[k1][i];
|
||||
a[j1][i + 1] = a[k1][i + 1];
|
||||
a[k1][i] = xr;
|
||||
a[k1][i + 1] = xi;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (k = 1; k <= m - 1; k++) {
|
||||
for (j = 0; j <= k - 1; j++) {
|
||||
j1 = j + ip[k];
|
||||
k1 = k + ip[j];
|
||||
for (i = 0; i <= n2 - 2; i += 2) {
|
||||
xr = a[j1][i];
|
||||
xi = a[j1][i + 1];
|
||||
a[j1][i] = a[k1][i];
|
||||
a[j1][i + 1] = a[k1][i + 1];
|
||||
a[k1][i] = xr;
|
||||
a[k1][i + 1] = xi;
|
||||
}
|
||||
j1 += m;
|
||||
k1 += m;
|
||||
for (i = 0; i <= n2 - 2; i += 2) {
|
||||
xr = a[j1][i];
|
||||
xi = a[j1][i + 1];
|
||||
a[j1][i] = a[k1][i];
|
||||
a[j1][i + 1] = a[k1][i + 1];
|
||||
a[k1][i] = xr;
|
||||
a[k1][i + 1] = xi;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void cftbcol(int n1, int n, double **a, double *w)
|
||||
{
|
||||
int i, j, j1, j2, j3, k, k1, ks, l, m;
|
||||
double wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
|
||||
double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
|
||||
|
||||
for (i = 0; i <= n1 - 1; i++) {
|
||||
l = 2;
|
||||
while ((l << 1) < n) {
|
||||
m = l << 2;
|
||||
for (j = 0; j <= l - 2; j += 2) {
|
||||
j1 = j + l;
|
||||
j2 = j1 + l;
|
||||
j3 = j2 + l;
|
||||
x0r = a[i][j] + a[i][j1];
|
||||
x0i = a[i][j + 1] + a[i][j1 + 1];
|
||||
x1r = a[i][j] - a[i][j1];
|
||||
x1i = a[i][j + 1] - a[i][j1 + 1];
|
||||
x2r = a[i][j2] + a[i][j3];
|
||||
x2i = a[i][j2 + 1] + a[i][j3 + 1];
|
||||
x3r = a[i][j2] - a[i][j3];
|
||||
x3i = a[i][j2 + 1] - a[i][j3 + 1];
|
||||
a[i][j] = x0r + x2r;
|
||||
a[i][j + 1] = x0i + x2i;
|
||||
a[i][j2] = x0r - x2r;
|
||||
a[i][j2 + 1] = x0i - x2i;
|
||||
a[i][j1] = x1r - x3i;
|
||||
a[i][j1 + 1] = x1i + x3r;
|
||||
a[i][j3] = x1r + x3i;
|
||||
a[i][j3 + 1] = x1i - x3r;
|
||||
}
|
||||
if (m < n) {
|
||||
wk1r = w[2];
|
||||
for (j = m; j <= l + m - 2; j += 2) {
|
||||
j1 = j + l;
|
||||
j2 = j1 + l;
|
||||
j3 = j2 + l;
|
||||
x0r = a[i][j] + a[i][j1];
|
||||
x0i = a[i][j + 1] + a[i][j1 + 1];
|
||||
x1r = a[i][j] - a[i][j1];
|
||||
x1i = a[i][j + 1] - a[i][j1 + 1];
|
||||
x2r = a[i][j2] + a[i][j3];
|
||||
x2i = a[i][j2 + 1] + a[i][j3 + 1];
|
||||
x3r = a[i][j2] - a[i][j3];
|
||||
x3i = a[i][j2 + 1] - a[i][j3 + 1];
|
||||
a[i][j] = x0r + x2r;
|
||||
a[i][j + 1] = x0i + x2i;
|
||||
a[i][j2] = x2i - x0i;
|
||||
a[i][j2 + 1] = x0r - x2r;
|
||||
x0r = x1r - x3i;
|
||||
x0i = x1i + x3r;
|
||||
a[i][j1] = wk1r * (x0r - x0i);
|
||||
a[i][j1 + 1] = wk1r * (x0r + x0i);
|
||||
x0r = x3i + x1r;
|
||||
x0i = x3r - x1i;
|
||||
a[i][j3] = wk1r * (x0i - x0r);
|
||||
a[i][j3 + 1] = wk1r * (x0i + x0r);
|
||||
}
|
||||
k1 = 1;
|
||||
ks = -1;
|
||||
for (k = (m << 1); k <= n - m; k += m) {
|
||||
k1++;
|
||||
ks = -ks;
|
||||
wk1r = w[k1 << 1];
|
||||
wk1i = w[(k1 << 1) + 1];
|
||||
wk2r = ks * w[k1];
|
||||
wk2i = w[k1 + ks];
|
||||
wk3r = wk1r - 2 * wk2i * wk1i;
|
||||
wk3i = 2 * wk2i * wk1r - wk1i;
|
||||
for (j = k; j <= l + k - 2; j += 2) {
|
||||
j1 = j + l;
|
||||
j2 = j1 + l;
|
||||
j3 = j2 + l;
|
||||
x0r = a[i][j] + a[i][j1];
|
||||
x0i = a[i][j + 1] + a[i][j1 + 1];
|
||||
x1r = a[i][j] - a[i][j1];
|
||||
x1i = a[i][j + 1] - a[i][j1 + 1];
|
||||
x2r = a[i][j2] + a[i][j3];
|
||||
x2i = a[i][j2 + 1] + a[i][j3 + 1];
|
||||
x3r = a[i][j2] - a[i][j3];
|
||||
x3i = a[i][j2 + 1] - a[i][j3 + 1];
|
||||
a[i][j] = x0r + x2r;
|
||||
a[i][j + 1] = x0i + x2i;
|
||||
x0r -= x2r;
|
||||
x0i -= x2i;
|
||||
a[i][j2] = wk2r * x0r - wk2i * x0i;
|
||||
a[i][j2 + 1] = wk2r * x0i + wk2i * x0r;
|
||||
x0r = x1r - x3i;
|
||||
x0i = x1i + x3r;
|
||||
a[i][j1] = wk1r * x0r - wk1i * x0i;
|
||||
a[i][j1 + 1] = wk1r * x0i + wk1i * x0r;
|
||||
x0r = x1r + x3i;
|
||||
x0i = x1i - x3r;
|
||||
a[i][j3] = wk3r * x0r - wk3i * x0i;
|
||||
a[i][j3 + 1] = wk3r * x0i + wk3i * x0r;
|
||||
}
|
||||
}
|
||||
}
|
||||
l = m;
|
||||
}
|
||||
if (l < n) {
|
||||
for (j = 0; j <= l - 2; j += 2) {
|
||||
j1 = j + l;
|
||||
x0r = a[i][j] - a[i][j1];
|
||||
x0i = a[i][j + 1] - a[i][j1 + 1];
|
||||
a[i][j] += a[i][j1];
|
||||
a[i][j + 1] += a[i][j1 + 1];
|
||||
a[i][j1] = x0r;
|
||||
a[i][j1 + 1] = x0i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void cftbrow(int n, int n2, double **a, double *w)
|
||||
{
|
||||
int i, j, j1, j2, j3, k, k1, ks, l, m;
|
||||
double wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
|
||||
double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
|
||||
|
||||
l = 1;
|
||||
while ((l << 1) < n) {
|
||||
m = l << 2;
|
||||
for (j = 0; j <= l - 1; j++) {
|
||||
j1 = j + l;
|
||||
j2 = j1 + l;
|
||||
j3 = j2 + l;
|
||||
for (i = 0; i <= n2 - 2; i += 2) {
|
||||
x0r = a[j][i] + a[j1][i];
|
||||
x0i = a[j][i + 1] + a[j1][i + 1];
|
||||
x1r = a[j][i] - a[j1][i];
|
||||
x1i = a[j][i + 1] - a[j1][i + 1];
|
||||
x2r = a[j2][i] + a[j3][i];
|
||||
x2i = a[j2][i + 1] + a[j3][i + 1];
|
||||
x3r = a[j2][i] - a[j3][i];
|
||||
x3i = a[j2][i + 1] - a[j3][i + 1];
|
||||
a[j][i] = x0r + x2r;
|
||||
a[j][i + 1] = x0i + x2i;
|
||||
a[j2][i] = x0r - x2r;
|
||||
a[j2][i + 1] = x0i - x2i;
|
||||
a[j1][i] = x1r - x3i;
|
||||
a[j1][i + 1] = x1i + x3r;
|
||||
a[j3][i] = x1r + x3i;
|
||||
a[j3][i + 1] = x1i - x3r;
|
||||
}
|
||||
}
|
||||
if (m < n) {
|
||||
wk1r = w[2];
|
||||
for (j = m; j <= l + m - 1; j++) {
|
||||
j1 = j + l;
|
||||
j2 = j1 + l;
|
||||
j3 = j2 + l;
|
||||
for (i = 0; i <= n2 - 2; i += 2) {
|
||||
x0r = a[j][i] + a[j1][i];
|
||||
x0i = a[j][i + 1] + a[j1][i + 1];
|
||||
x1r = a[j][i] - a[j1][i];
|
||||
x1i = a[j][i + 1] - a[j1][i + 1];
|
||||
x2r = a[j2][i] + a[j3][i];
|
||||
x2i = a[j2][i + 1] + a[j3][i + 1];
|
||||
x3r = a[j2][i] - a[j3][i];
|
||||
x3i = a[j2][i + 1] - a[j3][i + 1];
|
||||
a[j][i] = x0r + x2r;
|
||||
a[j][i + 1] = x0i + x2i;
|
||||
a[j2][i] = x2i - x0i;
|
||||
a[j2][i + 1] = x0r - x2r;
|
||||
x0r = x1r - x3i;
|
||||
x0i = x1i + x3r;
|
||||
a[j1][i] = wk1r * (x0r - x0i);
|
||||
a[j1][i + 1] = wk1r * (x0r + x0i);
|
||||
x0r = x3i + x1r;
|
||||
x0i = x3r - x1i;
|
||||
a[j3][i] = wk1r * (x0i - x0r);
|
||||
a[j3][i + 1] = wk1r * (x0i + x0r);
|
||||
}
|
||||
}
|
||||
k1 = 1;
|
||||
ks = -1;
|
||||
for (k = (m << 1); k <= n - m; k += m) {
|
||||
k1++;
|
||||
ks = -ks;
|
||||
wk1r = w[k1 << 1];
|
||||
wk1i = w[(k1 << 1) + 1];
|
||||
wk2r = ks * w[k1];
|
||||
wk2i = w[k1 + ks];
|
||||
wk3r = wk1r - 2 * wk2i * wk1i;
|
||||
wk3i = 2 * wk2i * wk1r - wk1i;
|
||||
for (j = k; j <= l + k - 1; j++) {
|
||||
j1 = j + l;
|
||||
j2 = j1 + l;
|
||||
j3 = j2 + l;
|
||||
for (i = 0; i <= n2 - 2; i += 2) {
|
||||
x0r = a[j][i] + a[j1][i];
|
||||
x0i = a[j][i + 1] + a[j1][i + 1];
|
||||
x1r = a[j][i] - a[j1][i];
|
||||
x1i = a[j][i + 1] - a[j1][i + 1];
|
||||
x2r = a[j2][i] + a[j3][i];
|
||||
x2i = a[j2][i + 1] + a[j3][i + 1];
|
||||
x3r = a[j2][i] - a[j3][i];
|
||||
x3i = a[j2][i + 1] - a[j3][i + 1];
|
||||
a[j][i] = x0r + x2r;
|
||||
a[j][i + 1] = x0i + x2i;
|
||||
x0r -= x2r;
|
||||
x0i -= x2i;
|
||||
a[j2][i] = wk2r * x0r - wk2i * x0i;
|
||||
a[j2][i + 1] = wk2r * x0i + wk2i * x0r;
|
||||
x0r = x1r - x3i;
|
||||
x0i = x1i + x3r;
|
||||
a[j1][i] = wk1r * x0r - wk1i * x0i;
|
||||
a[j1][i + 1] = wk1r * x0i + wk1i * x0r;
|
||||
x0r = x1r + x3i;
|
||||
x0i = x1i - x3r;
|
||||
a[j3][i] = wk3r * x0r - wk3i * x0i;
|
||||
a[j3][i + 1] = wk3r * x0i + wk3i * x0r;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
l = m;
|
||||
}
|
||||
if (l < n) {
|
||||
for (j = 0; j <= l - 1; j++) {
|
||||
j1 = j + l;
|
||||
for (i = 0; i <= n2 - 2; i += 2) {
|
||||
x0r = a[j][i] - a[j1][i];
|
||||
x0i = a[j][i + 1] - a[j1][i + 1];
|
||||
a[j][i] += a[j1][i];
|
||||
a[j][i + 1] += a[j1][i + 1];
|
||||
a[j1][i] = x0r;
|
||||
a[j1][i + 1] = x0i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void cftfcol(int n1, int n, double **a, double *w)
|
||||
{
|
||||
int i, j, j1, j2, j3, k, k1, ks, l, m;
|
||||
double wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
|
||||
double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
|
||||
|
||||
for (i = 0; i <= n1 - 1; i++) {
|
||||
l = 2;
|
||||
while ((l << 1) < n) {
|
||||
m = l << 2;
|
||||
for (j = 0; j <= l - 2; j += 2) {
|
||||
j1 = j + l;
|
||||
j2 = j1 + l;
|
||||
j3 = j2 + l;
|
||||
x0r = a[i][j] + a[i][j1];
|
||||
x0i = a[i][j + 1] + a[i][j1 + 1];
|
||||
x1r = a[i][j] - a[i][j1];
|
||||
x1i = a[i][j + 1] - a[i][j1 + 1];
|
||||
x2r = a[i][j2] + a[i][j3];
|
||||
x2i = a[i][j2 + 1] + a[i][j3 + 1];
|
||||
x3r = a[i][j2] - a[i][j3];
|
||||
x3i = a[i][j2 + 1] - a[i][j3 + 1];
|
||||
a[i][j] = x0r + x2r;
|
||||
a[i][j + 1] = x0i + x2i;
|
||||
a[i][j2] = x0r - x2r;
|
||||
a[i][j2 + 1] = x0i - x2i;
|
||||
a[i][j1] = x1r + x3i;
|
||||
a[i][j1 + 1] = x1i - x3r;
|
||||
a[i][j3] = x1r - x3i;
|
||||
a[i][j3 + 1] = x1i + x3r;
|
||||
}
|
||||
if (m < n) {
|
||||
wk1r = w[2];
|
||||
for (j = m; j <= l + m - 2; j += 2) {
|
||||
j1 = j + l;
|
||||
j2 = j1 + l;
|
||||
j3 = j2 + l;
|
||||
x0r = a[i][j] + a[i][j1];
|
||||
x0i = a[i][j + 1] + a[i][j1 + 1];
|
||||
x1r = a[i][j] - a[i][j1];
|
||||
x1i = a[i][j + 1] - a[i][j1 + 1];
|
||||
x2r = a[i][j2] + a[i][j3];
|
||||
x2i = a[i][j2 + 1] + a[i][j3 + 1];
|
||||
x3r = a[i][j2] - a[i][j3];
|
||||
x3i = a[i][j2 + 1] - a[i][j3 + 1];
|
||||
a[i][j] = x0r + x2r;
|
||||
a[i][j + 1] = x0i + x2i;
|
||||
a[i][j2] = x0i - x2i;
|
||||
a[i][j2 + 1] = x2r - x0r;
|
||||
x0r = x1r + x3i;
|
||||
x0i = x1i - x3r;
|
||||
a[i][j1] = wk1r * (x0i + x0r);
|
||||
a[i][j1 + 1] = wk1r * (x0i - x0r);
|
||||
x0r = x3i - x1r;
|
||||
x0i = x3r + x1i;
|
||||
a[i][j3] = wk1r * (x0r + x0i);
|
||||
a[i][j3 + 1] = wk1r * (x0r - x0i);
|
||||
}
|
||||
k1 = 1;
|
||||
ks = -1;
|
||||
for (k = (m << 1); k <= n - m; k += m) {
|
||||
k1++;
|
||||
ks = -ks;
|
||||
wk1r = w[k1 << 1];
|
||||
wk1i = w[(k1 << 1) + 1];
|
||||
wk2r = ks * w[k1];
|
||||
wk2i = w[k1 + ks];
|
||||
wk3r = wk1r - 2 * wk2i * wk1i;
|
||||
wk3i = 2 * wk2i * wk1r - wk1i;
|
||||
for (j = k; j <= l + k - 2; j += 2) {
|
||||
j1 = j + l;
|
||||
j2 = j1 + l;
|
||||
j3 = j2 + l;
|
||||
x0r = a[i][j] + a[i][j1];
|
||||
x0i = a[i][j + 1] + a[i][j1 + 1];
|
||||
x1r = a[i][j] - a[i][j1];
|
||||
x1i = a[i][j + 1] - a[i][j1 + 1];
|
||||
x2r = a[i][j2] + a[i][j3];
|
||||
x2i = a[i][j2 + 1] + a[i][j3 + 1];
|
||||
x3r = a[i][j2] - a[i][j3];
|
||||
x3i = a[i][j2 + 1] - a[i][j3 + 1];
|
||||
a[i][j] = x0r + x2r;
|
||||
a[i][j + 1] = x0i + x2i;
|
||||
x0r -= x2r;
|
||||
x0i -= x2i;
|
||||
a[i][j2] = wk2r * x0r + wk2i * x0i;
|
||||
a[i][j2 + 1] = wk2r * x0i - wk2i * x0r;
|
||||
x0r = x1r + x3i;
|
||||
x0i = x1i - x3r;
|
||||
a[i][j1] = wk1r * x0r + wk1i * x0i;
|
||||
a[i][j1 + 1] = wk1r * x0i - wk1i * x0r;
|
||||
x0r = x1r - x3i;
|
||||
x0i = x1i + x3r;
|
||||
a[i][j3] = wk3r * x0r + wk3i * x0i;
|
||||
a[i][j3 + 1] = wk3r * x0i - wk3i * x0r;
|
||||
}
|
||||
}
|
||||
}
|
||||
l = m;
|
||||
}
|
||||
if (l < n) {
|
||||
for (j = 0; j <= l - 2; j += 2) {
|
||||
j1 = j + l;
|
||||
x0r = a[i][j] - a[i][j1];
|
||||
x0i = a[i][j + 1] - a[i][j1 + 1];
|
||||
a[i][j] += a[i][j1];
|
||||
a[i][j + 1] += a[i][j1 + 1];
|
||||
a[i][j1] = x0r;
|
||||
a[i][j1 + 1] = x0i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void cftfrow(int n, int n2, double **a, double *w)
|
||||
{
|
||||
int i, j, j1, j2, j3, k, k1, ks, l, m;
|
||||
double wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
|
||||
double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
|
||||
|
||||
l = 1;
|
||||
while ((l << 1) < n) {
|
||||
m = l << 2;
|
||||
for (j = 0; j <= l - 1; j++) {
|
||||
j1 = j + l;
|
||||
j2 = j1 + l;
|
||||
j3 = j2 + l;
|
||||
for (i = 0; i <= n2 - 2; i += 2) {
|
||||
x0r = a[j][i] + a[j1][i];
|
||||
x0i = a[j][i + 1] + a[j1][i + 1];
|
||||
x1r = a[j][i] - a[j1][i];
|
||||
x1i = a[j][i + 1] - a[j1][i + 1];
|
||||
x2r = a[j2][i] + a[j3][i];
|
||||
x2i = a[j2][i + 1] + a[j3][i + 1];
|
||||
x3r = a[j2][i] - a[j3][i];
|
||||
x3i = a[j2][i + 1] - a[j3][i + 1];
|
||||
a[j][i] = x0r + x2r;
|
||||
a[j][i + 1] = x0i + x2i;
|
||||
a[j2][i] = x0r - x2r;
|
||||
a[j2][i + 1] = x0i - x2i;
|
||||
a[j1][i] = x1r + x3i;
|
||||
a[j1][i + 1] = x1i - x3r;
|
||||
a[j3][i] = x1r - x3i;
|
||||
a[j3][i + 1] = x1i + x3r;
|
||||
}
|
||||
}
|
||||
if (m < n) {
|
||||
wk1r = w[2];
|
||||
for (j = m; j <= l + m - 1; j++) {
|
||||
j1 = j + l;
|
||||
j2 = j1 + l;
|
||||
j3 = j2 + l;
|
||||
for (i = 0; i <= n2 - 2; i += 2) {
|
||||
x0r = a[j][i] + a[j1][i];
|
||||
x0i = a[j][i + 1] + a[j1][i + 1];
|
||||
x1r = a[j][i] - a[j1][i];
|
||||
x1i = a[j][i + 1] - a[j1][i + 1];
|
||||
x2r = a[j2][i] + a[j3][i];
|
||||
x2i = a[j2][i + 1] + a[j3][i + 1];
|
||||
x3r = a[j2][i] - a[j3][i];
|
||||
x3i = a[j2][i + 1] - a[j3][i + 1];
|
||||
a[j][i] = x0r + x2r;
|
||||
a[j][i + 1] = x0i + x2i;
|
||||
a[j2][i] = x0i - x2i;
|
||||
a[j2][i + 1] = x2r - x0r;
|
||||
x0r = x1r + x3i;
|
||||
x0i = x1i - x3r;
|
||||
a[j1][i] = wk1r * (x0i + x0r);
|
||||
a[j1][i + 1] = wk1r * (x0i - x0r);
|
||||
x0r = x3i - x1r;
|
||||
x0i = x3r + x1i;
|
||||
a[j3][i] = wk1r * (x0r + x0i);
|
||||
a[j3][i + 1] = wk1r * (x0r - x0i);
|
||||
}
|
||||
}
|
||||
k1 = 1;
|
||||
ks = -1;
|
||||
for (k = (m << 1); k <= n - m; k += m) {
|
||||
k1++;
|
||||
ks = -ks;
|
||||
wk1r = w[k1 << 1];
|
||||
wk1i = w[(k1 << 1) + 1];
|
||||
wk2r = ks * w[k1];
|
||||
wk2i = w[k1 + ks];
|
||||
wk3r = wk1r - 2 * wk2i * wk1i;
|
||||
wk3i = 2 * wk2i * wk1r - wk1i;
|
||||
for (j = k; j <= l + k - 1; j++) {
|
||||
j1 = j + l;
|
||||
j2 = j1 + l;
|
||||
j3 = j2 + l;
|
||||
for (i = 0; i <= n2 - 2; i += 2) {
|
||||
x0r = a[j][i] + a[j1][i];
|
||||
x0i = a[j][i + 1] + a[j1][i + 1];
|
||||
x1r = a[j][i] - a[j1][i];
|
||||
x1i = a[j][i + 1] - a[j1][i + 1];
|
||||
x2r = a[j2][i] + a[j3][i];
|
||||
x2i = a[j2][i + 1] + a[j3][i + 1];
|
||||
x3r = a[j2][i] - a[j3][i];
|
||||
x3i = a[j2][i + 1] - a[j3][i + 1];
|
||||
a[j][i] = x0r + x2r;
|
||||
a[j][i + 1] = x0i + x2i;
|
||||
x0r -= x2r;
|
||||
x0i -= x2i;
|
||||
a[j2][i] = wk2r * x0r + wk2i * x0i;
|
||||
a[j2][i + 1] = wk2r * x0i - wk2i * x0r;
|
||||
x0r = x1r + x3i;
|
||||
x0i = x1i - x3r;
|
||||
a[j1][i] = wk1r * x0r + wk1i * x0i;
|
||||
a[j1][i + 1] = wk1r * x0i - wk1i * x0r;
|
||||
x0r = x1r - x3i;
|
||||
x0i = x1i + x3r;
|
||||
a[j3][i] = wk3r * x0r + wk3i * x0i;
|
||||
a[j3][i + 1] = wk3r * x0i - wk3i * x0r;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
l = m;
|
||||
}
|
||||
if (l < n) {
|
||||
for (j = 0; j <= l - 1; j++) {
|
||||
j1 = j + l;
|
||||
for (i = 0; i <= n2 - 2; i += 2) {
|
||||
x0r = a[j][i] - a[j1][i];
|
||||
x0i = a[j][i + 1] - a[j1][i + 1];
|
||||
a[j][i] += a[j1][i];
|
||||
a[j][i + 1] += a[j1][i + 1];
|
||||
a[j1][i] = x0r;
|
||||
a[j1][i + 1] = x0i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
static int *alloc_1d_int(int n1)
|
||||
{
|
||||
int *i;
|
||||
|
||||
i = (int *) malloc(sizeof(int) * n1);
|
||||
return i;
|
||||
}
|
||||
|
||||
static void free_1d_int(int *i) { free(i); }
|
||||
|
||||
static double *alloc_1d_double(int n1)
|
||||
{
|
||||
double *d;
|
||||
|
||||
d = (double *) malloc(sizeof(double) * n1);
|
||||
return d;
|
||||
}
|
||||
|
||||
|
||||
static void free_1d_double(double *d) { free(d); }
|
||||
static double **alloc_2d_double(int n1, int n2)
|
||||
{
|
||||
double **dd, *d;
|
||||
int j;
|
||||
|
||||
dd = (double **) malloc(sizeof(double *) * n1);
|
||||
d = (double *) malloc(sizeof(double) * n1 * n2);
|
||||
|
||||
dd[0] = d;
|
||||
for (j = 1; j < n1; j++) {
|
||||
dd[j] = dd[j - 1] + n2;
|
||||
}
|
||||
return dd;
|
||||
}
|
||||
|
||||
static void free_2d_double(double **dd) { free(dd[0]); free(dd); }
|
||||
|
||||
|
||||
static void cdft2d(int n1, int n2, int isgn, double **a, int *ip, double *w)
|
||||
{
|
||||
int n;
|
||||
|
||||
n = n1 << 1;
|
||||
if (n < n2) {
|
||||
n = n2;
|
||||
}
|
||||
if (n > (ip[0] << 2)) {
|
||||
makewt(n >> 2, ip, w);
|
||||
}
|
||||
if (n2 > 4) {
|
||||
bitrv2col(n1, n2, ip + 2, a);
|
||||
}
|
||||
if (n1 > 2) {
|
||||
bitrv2row(n1, n2, ip + 2, a);
|
||||
}
|
||||
if (isgn < 0) {
|
||||
cftfcol(n1, n2, a, w);
|
||||
cftfrow(n1, n2, a, w);
|
||||
} else {
|
||||
cftbcol(n1, n2, a, w);
|
||||
cftbrow(n1, n2, a, w);
|
||||
}
|
||||
}
|
||||
};
|
@ -42,6 +42,7 @@
|
||||
#include "graphwidget.h"
|
||||
#include "edge.h"
|
||||
#include "node.h"
|
||||
#include "fft.h"
|
||||
|
||||
#include <iostream>
|
||||
#include <QDebug>
|
||||
@ -259,45 +260,70 @@ void GraphWidget::keyPressEvent(QKeyEvent *event)
|
||||
}
|
||||
}
|
||||
|
||||
static void convolveWithGaussian(double *forceMap,unsigned int S,int /*s*/)
|
||||
static void convolveWithForce(double *forceMap,unsigned int S,int /*s*/)
|
||||
{
|
||||
static double *bf = NULL ;
|
||||
static double **bf = NULL ;
|
||||
static double **tmp = NULL ;
|
||||
static int *ip = NULL ;
|
||||
static double *w = NULL ;
|
||||
static uint32_t last_S = 0 ;
|
||||
|
||||
if(bf == NULL)
|
||||
{
|
||||
bf = new double[S*S*2] ;
|
||||
bf = fft::alloc_2d_double(S, 2*S);
|
||||
|
||||
for(unsigned int i=0;i<S;++i)
|
||||
for(unsigned int j=0;j<S;++j)
|
||||
{
|
||||
int x = (i<S/2)?i:(S-i) ;
|
||||
int y = (j<S/2)?j:(S-j) ;
|
||||
// int l=2*(x*x+y*y);
|
||||
bf[2*(i+S*j)] = log(sqrtf(0.1 + x*x+y*y)); // linear -> derivative is constant
|
||||
bf[2*(i+S*j)+1] = 0 ;
|
||||
|
||||
bf[i][j*2+0] = log(sqrtf(0.1 + x*x+y*y)); // linear -> derivative is constant
|
||||
bf[i][j*2+1] = 0 ;
|
||||
}
|
||||
|
||||
unsigned long nn[2] = {S,S};
|
||||
fourn(&bf[-1],&nn[-1],2,1) ;
|
||||
//unsigned long nn[2] = {S,S};
|
||||
//fourn(&bf[-1],&nn[-1],2,1) ;
|
||||
|
||||
ip = fft::alloc_1d_int(2 + (int) sqrt(S + 0.5));
|
||||
w = fft::alloc_1d_double(S/2+S);
|
||||
ip[0] = 0;
|
||||
|
||||
fft::cdft2d(S, 2*S, 1, bf, ip, w);
|
||||
}
|
||||
|
||||
unsigned long nn[2] = {S,S};
|
||||
fourn(&forceMap[-1],&nn[-1],2,1) ;
|
||||
if(last_S != S)
|
||||
{
|
||||
if(tmp)
|
||||
fft::free_2d_double(tmp) ;
|
||||
|
||||
tmp = fft::alloc_2d_double(S, 2*S);
|
||||
last_S = S ;
|
||||
}
|
||||
memcpy(tmp[0],forceMap,S*S*2*sizeof(double)) ;
|
||||
|
||||
fft::cdft2d(S, 2*S, 1, tmp, ip, w);
|
||||
|
||||
//fourn(&forceMap[-1],&nn[-1],2,1) ;
|
||||
|
||||
for (unsigned int i=0;i<S;++i)
|
||||
for (unsigned int j=0;j<S;++j)
|
||||
{
|
||||
float a = forceMap[2*(i+S*j)]*bf[2*(i+S*j)] - forceMap[2*(i+S*j)+1]*bf[2*(i+S*j)+1] ;
|
||||
float b = forceMap[2*(i+S*j)]*bf[2*(i+S*j)+1] + forceMap[2*(i+S*j)+1]*bf[2*(i+S*j)] ;
|
||||
float a = tmp[i][2*j+0]*bf[i][2*j+0] - tmp[i][2*j+1]*bf[i][2*j+1] ;
|
||||
float b = tmp[i][2*j+0]*bf[i][2*j+1] + tmp[i][2*j+1]*bf[i][2*j+0] ;
|
||||
|
||||
forceMap[2*(i+S*j)] = a ;
|
||||
forceMap[2*(i+S*j)+1] = b ;
|
||||
tmp[i][2*j+0] = a ;
|
||||
tmp[i][2*j+1] = b ;
|
||||
}
|
||||
|
||||
fourn(&forceMap[-1],&nn[-1],2,-1) ;
|
||||
fft::cdft2d(S, 2*S,-1, tmp, ip, w);
|
||||
|
||||
for(unsigned int i=0;i<S*S*2;++i)
|
||||
forceMap[i] /= S*S;
|
||||
//fourn(&forceMap[-1],&nn[-1],2,-1) ;
|
||||
|
||||
memcpy(forceMap,tmp[0],S*S*2*sizeof(double)) ;
|
||||
|
||||
for(uint32_t i=0;i<2*S*S;++i)
|
||||
forceMap[i] /= S*S;
|
||||
}
|
||||
|
||||
void GraphWidget::timerEvent(QTimerEvent *event)
|
||||
@ -322,7 +348,7 @@ void GraphWidget::timerEvent(QTimerEvent *event)
|
||||
|
||||
QRectF R(scene()->sceneRect()) ;
|
||||
|
||||
if( (hit++ & 7) == 0)
|
||||
if( (hit++ & 3) == 0)
|
||||
{
|
||||
memset(forceMap,0,2*S*S*sizeof(double)) ;
|
||||
|
||||
@ -348,7 +374,7 @@ void GraphWidget::timerEvent(QTimerEvent *event)
|
||||
}
|
||||
|
||||
// compute convolution with 1/omega kernel.
|
||||
convolveWithGaussian(forceMap,S,20) ;
|
||||
convolveWithForce(forceMap,S,20) ;
|
||||
}
|
||||
|
||||
foreach (Node *node, _nodes)
|
||||
|
Loading…
Reference in New Issue
Block a user