RetroShare/libretroshare/src/gxs/gxssecurity.cc

724 lines
22 KiB
C++
Raw Normal View History

/*
* libretroshare/src/gxs: gxssecurity.cc
*
*
* Copyright 2008-2010 by Robert Fernie
* 2011-2012 Christopher Evi-Parker
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License Version 2 as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*
* Please report all bugs and problems to "retroshare@lunamutt.com".
*
*/
#include "gxssecurity.h"
#include "pqi/authgpg.h"
#include "util/rsdir.h"
//#include "retroshare/rspeers.h"
/****
* #define GXS_SECURITY_DEBUG 1
***/
static RsGxsId getRsaKeyFingerprint(RSA *pubkey)
{
int lenn = BN_num_bytes(pubkey -> n);
int lene = BN_num_bytes(pubkey -> e);
unsigned char *tmp = new unsigned char[lenn+lene];
BN_bn2bin(pubkey -> n, tmp);
BN_bn2bin(pubkey -> e, &tmp[lenn]);
Sha1CheckSum s = RsDirUtil::sha1sum(tmp,lenn+lene) ;
delete[] tmp ;
// Copy first CERTSIGNLEN bytes from the hash of the public modulus and exponent
// We should not be using strings here, but a real ID. To be done later.
assert(Sha1CheckSum::SIZE_IN_BYTES >= CERTSIGNLEN) ;
return RsGxsId(s.toStdString().substr(0,2*CERTSIGNLEN));
}
static RSA *extractPrivateKey(const RsTlvSecurityKey & key)
{
assert(key.keyFlags & RSTLV_KEY_TYPE_FULL) ;
const unsigned char *keyptr = (const unsigned char *) key.keyData.bin_data;
long keylen = key.keyData.bin_len;
/* extract admin key */
RSA *rsakey = d2i_RSAPrivateKey(NULL, &(keyptr), keylen);
return rsakey;
}
static RSA *extractPublicKey(const RsTlvSecurityKey& key)
{
assert(!(key.keyFlags & RSTLV_KEY_TYPE_FULL)) ;
const unsigned char *keyptr = (const unsigned char *) key.keyData.bin_data;
long keylen = key.keyData.bin_len;
/* extract admin key */
RSA *rsakey = d2i_RSAPublicKey(NULL, &(keyptr), keylen);
return rsakey;
}
static void setRSAPublicKeyData(RsTlvSecurityKey & key, RSA *rsa_pub)
{
unsigned char *data = NULL ; // this works for OpenSSL > 0.9.7
int reqspace = i2d_RSAPublicKey(rsa_pub, &data);
key.keyData.setBinData(data, reqspace);
key.keyId = getRsaKeyFingerprint(rsa_pub);
free(data) ;
}
bool GxsSecurity::checkPrivateKey(const RsTlvSecurityKey& key)
{
std::cerr << "Checking private key " << key.keyId << " ..." << std::endl;
if( (key.keyFlags & RSTLV_KEY_TYPE_MASK) != RSTLV_KEY_TYPE_FULL)
{
std::cerr << "(WW) GxsSecurity::checkPrivateKey(): private key has wrong flags " << std::hex << (key.keyFlags & RSTLV_KEY_TYPE_MASK) << std::dec << ". This is unexpected." << std::endl;
return false ;
}
RSA *rsa_prv = ::extractPrivateKey(key) ;
if(rsa_prv == NULL)
{
std::cerr << "(WW) GxsSecurity::checkPrivateKey(): no private key can be extracted from key ID " << key.keyId << ". Key is corrupted?" << std::endl;
return false ;
}
RSA *rsa_pub = RSAPublicKey_dup(rsa_prv);
RSA_free(rsa_prv) ;
if(rsa_pub == NULL)
{
std::cerr << "(WW) GxsSecurity::checkPrivateKey(): no public key can be extracted from key ID " << key.keyId << ". Key is corrupted?" << std::endl;
return false ;
}
RsGxsId recomputed_key_id = getRsaKeyFingerprint(rsa_pub) ;
RSA_free(rsa_pub) ;
if(recomputed_key_id != key.keyId)
{
std::cerr << "(WW) GxsSecurity::checkPrivateKey(): key " << key.keyId << " has wrong fingerprint " << recomputed_key_id << "! This is unexpected." << std::endl;
return false ;
}
return true ;
}
bool GxsSecurity::checkPublicKey(const RsTlvSecurityKey& key)
{
std::cerr << "Checking public key " << key.keyId << " ..." << std::endl;
if( (key.keyFlags & RSTLV_KEY_TYPE_MASK) != RSTLV_KEY_TYPE_PUBLIC_ONLY)
{
std::cerr << "(WW) GxsSecurity::checkPublicKey(): public key has wrong flags " << std::hex << (key.keyFlags & RSTLV_KEY_TYPE_MASK) << std::dec << ". This is unexpected." << std::endl;
return false ;
}
RSA *rsa_pub = ::extractPublicKey(key) ;
if(rsa_pub == NULL)
{
std::cerr << "(WW) GxsSecurity::checkPublicKey(): no public key can be extracted from key ID " << key.keyId << ". Key is corrupted?" << std::endl;
return false ;
}
RsGxsId recomputed_key_id = getRsaKeyFingerprint(rsa_pub) ;
RSA_free(rsa_pub) ;
if(recomputed_key_id != key.keyId)
{
std::cerr << "(WW) GxsSecurity::checkPublicKey(): key " << key.keyId << " has wrong fingerprint " << recomputed_key_id << "! This is unexpected." << std::endl;
return false ;
}
return true ;
}
static void setRSAPrivateKeyData(RsTlvSecurityKey & key, RSA *rsa_priv)
{
unsigned char *data = NULL ;
int reqspace = i2d_RSAPrivateKey(rsa_priv, &data);
key.keyData.setBinData(data, reqspace);
key.keyId = getRsaKeyFingerprint(rsa_priv);
free(data) ;
}
bool GxsSecurity::generateKeyPair(RsTlvSecurityKey& public_key,RsTlvSecurityKey& private_key)
{
// admin keys
RSA *rsa = RSA_generate_key(2048, 65537, NULL, NULL);
RSA *rsa_pub = RSAPublicKey_dup(rsa);
setRSAPublicKeyData(public_key, rsa_pub);
setRSAPrivateKeyData(private_key, rsa);
public_key.startTS = time(NULL);
public_key.endTS = public_key.startTS + 60 * 60 * 24 * 365 * 5; /* approx 5 years */
public_key.keyFlags = RSTLV_KEY_TYPE_PUBLIC_ONLY ;
private_key.startTS = public_key.startTS;
private_key.endTS = 0; /* no end */
private_key.keyFlags = RSTLV_KEY_TYPE_FULL ;
// clean up
RSA_free(rsa);
RSA_free(rsa_pub);
return true ;
}
bool GxsSecurity::extractPublicKey(const RsTlvSecurityKey& private_key,RsTlvSecurityKey& public_key)
{
public_key.TlvClear() ;
if(!(private_key.keyFlags & RSTLV_KEY_TYPE_FULL))
return false ;
RSA *rsaPrivKey = extractPrivateKey(private_key);
if(!rsaPrivKey)
return false ;
RSA *rsaPubKey = RSAPublicKey_dup(rsaPrivKey);
RSA_free(rsaPrivKey);
if(!rsaPubKey)
return false ;
setRSAPublicKeyData(public_key, rsaPubKey);
RSA_free(rsaPubKey);
public_key.keyFlags = private_key.keyFlags & (RSTLV_KEY_DISTRIB_MASK) ; // keep the distrib flags
public_key.keyFlags |= RSTLV_KEY_TYPE_PUBLIC_ONLY;
public_key.startTS = private_key.startTS ;
public_key.endTS = public_key.startTS + 60 * 60 * 24 * 365 * 5; /* approx 5 years */
// This code fixes a problem of old RSA keys where the fingerprint wasn't computed using SHA1(n,e) but
// using the first bytes of n (ouuuuch!). Still, these keys are valid and should produce a correct
// fingerprint. So we replace the public key fingerprint (that is normally recomputed) with the FP of
// the private key.
if(public_key.keyId != private_key.keyId)
{
std::cerr << std::endl;
std::cerr << "WARNING: GXS ID key pair " << private_key.keyId << " has inconsistent fingerprint. This is an old key " << std::endl;
std::cerr << " that is unsecured (can be faked easily) should not be used anymore. Please delete it." << std::endl;
std::cerr << std::endl;
public_key.keyId = private_key.keyId ;
}
return true ;
}
bool GxsSecurity::getSignature(const char *data, uint32_t data_len, const RsTlvSecurityKey& privKey, RsTlvKeySignature& sign)
{
RSA* rsa_pub = extractPrivateKey(privKey);
if(!rsa_pub)
{
std::cerr << "GxsSecurity::getSignature(): Cannot create signature. Keydata is incomplete." << std::endl;
return false ;
}
EVP_PKEY *key_pub = EVP_PKEY_new();
EVP_PKEY_assign_RSA(key_pub, rsa_pub);
/* calc and check signature */
EVP_MD_CTX *mdctx = EVP_MD_CTX_create();
bool ok = EVP_SignInit(mdctx, EVP_sha1()) == 1;
ok &= EVP_SignUpdate(mdctx, data, data_len) == 1;
unsigned int siglen = EVP_PKEY_size(key_pub);
unsigned char sigbuf[siglen];
ok &= EVP_SignFinal(mdctx, sigbuf, &siglen, key_pub) == 1;
// clean up
EVP_MD_CTX_destroy(mdctx);
EVP_PKEY_free(key_pub);
sign.signData.setBinData(sigbuf, siglen);
sign.keyId = RsGxsId(privKey.keyId);
return ok;
}
bool GxsSecurity::validateSignature(const char *data, uint32_t data_len, const RsTlvSecurityKey& key, const RsTlvKeySignature& signature)
{
RSA *tmpkey = (key.keyFlags & RSTLV_KEY_TYPE_FULL)?(::extractPrivateKey(key)):(::extractPublicKey(key)) ;
RSA *rsakey = RSAPublicKey_dup(tmpkey) ; // always extract public key
RSA_free(tmpkey) ;
if(!rsakey)
{
std::cerr << "GxsSecurity::validateSignature(): Cannot validate signature. Keydata is incomplete." << std::endl;
key.print(std::cerr,0) ;
return false ;
}
EVP_PKEY *signKey = EVP_PKEY_new();
EVP_PKEY_assign_RSA(signKey, rsakey);
/* calc and check signature */
EVP_MD_CTX *mdctx = EVP_MD_CTX_create();
EVP_VerifyInit(mdctx, EVP_sha1());
EVP_VerifyUpdate(mdctx, data, data_len);
int signOk = EVP_VerifyFinal(mdctx, (unsigned char*)signature.signData.bin_data, signature.signData.bin_len, signKey);
/* clean up */
EVP_PKEY_free(signKey);
EVP_MD_CTX_destroy(mdctx);
return signOk;
}
bool GxsSecurity::validateNxsMsg(const RsNxsMsg& msg, const RsTlvKeySignature& sign, const RsTlvSecurityKey& key)
{
#ifdef GXS_SECURITY_DEBUG
std::cerr << "GxsSecurity::validateNxsMsg()";
std::cerr << std::endl;
std::cerr << "RsNxsMsg :";
std::cerr << std::endl;
msg.print(std::cerr, 10);
std::cerr << std::endl;
#endif
RsGxsMsgMetaData& msgMeta = *(msg.metaData);
// /********************* check signature *******************/
/* check signature timeperiod */
if ((msgMeta.mPublishTs < key.startTS) || (key.endTS != 0 && msgMeta.mPublishTs > key.endTS))
{
#ifdef GXS_SECURITY_DEBUG
std::cerr << " GxsSecurity::validateNxsMsg() TS out of range";
std::cerr << std::endl;
#endif
return false;
}
/* decode key */
const unsigned char *keyptr = (const unsigned char *) key.keyData.bin_data;
long keylen = key.keyData.bin_len;
unsigned int siglen = sign.signData.bin_len;
unsigned char *sigbuf = (unsigned char *) sign.signData.bin_data;
#ifdef DISTRIB_DEBUG
std::cerr << "GxsSecurity::validateNxsMsg() Decode Key";
std::cerr << " keylen: " << keylen << " siglen: " << siglen;
std::cerr << std::endl;
#endif
/* extract admin key */
RSA *rsakey = (key.keyFlags & RSTLV_KEY_TYPE_FULL)? (d2i_RSAPrivateKey(NULL, &(keyptr), keylen)) : (d2i_RSAPublicKey(NULL, &(keyptr), keylen));
if (!rsakey)
{
#ifdef GXS_SECURITY_DEBUG
std::cerr << "GxsSecurity::validateNxsMsg()";
std::cerr << " Invalid RSA Key";
std::cerr << std::endl;
key.print(std::cerr, 10);
#endif
}
RsTlvKeySignatureSet signSet = msgMeta.signSet;
msgMeta.signSet.TlvClear();
RsGxsMessageId msgId = msgMeta.mMsgId, origMsgId = msgMeta.mOrigMsgId;
msgMeta.mOrigMsgId.clear();
msgMeta.mMsgId.clear();
uint32_t metaDataLen = msgMeta.serial_size();
uint32_t allMsgDataLen = metaDataLen + msg.msg.bin_len;
char* metaData = new char[metaDataLen];
char* allMsgData = new char[allMsgDataLen]; // msgData + metaData
msgMeta.serialise(metaData, &metaDataLen);
// copy msg data and meta in allmsgData buffer
memcpy(allMsgData, msg.msg.bin_data, msg.msg.bin_len);
memcpy(allMsgData+(msg.msg.bin_len), metaData, metaDataLen);
delete[] metaData ;
EVP_PKEY *signKey = EVP_PKEY_new();
EVP_PKEY_assign_RSA(signKey, rsakey);
/* calc and check signature */
EVP_MD_CTX *mdctx = EVP_MD_CTX_create();
EVP_VerifyInit(mdctx, EVP_sha1());
EVP_VerifyUpdate(mdctx, allMsgData, allMsgDataLen);
int signOk = EVP_VerifyFinal(mdctx, sigbuf, siglen, signKey);
delete[] allMsgData ;
/* clean up */
EVP_PKEY_free(signKey);
EVP_MD_CTX_destroy(mdctx);
msgMeta.mOrigMsgId = origMsgId;
msgMeta.mMsgId = msgId;
msgMeta.signSet = signSet;
if (signOk == 1)
{
#ifdef GXS_SECURITY_DEBUG
std::cerr << "GxsSecurity::validateNxsMsg() Signature OK";
std::cerr << std::endl;
#endif
return true;
}
#ifdef GXS_SECURITY_DEBUG
std::cerr << "GxsSecurity::validateNxsMsg() Signature invalid";
std::cerr << std::endl;
#endif
return false;
}
bool GxsSecurity::encrypt(uint8_t *& out, uint32_t &outlen, const uint8_t *in, uint32_t inlen, const RsTlvSecurityKey& key)
{
#ifdef DISTRIB_DEBUG
std::cerr << "GxsSecurity::encrypt() " << std::endl;
#endif
RSA *tmpkey = ::extractPublicKey(key) ;
RSA *rsa_publish_pub = RSAPublicKey_dup(tmpkey) ;
RSA_free(tmpkey) ;
EVP_PKEY *public_key = NULL;
//RSA* rsa_publish = EVP_PKEY_get1_RSA(privateKey);
//rsa_publish_pub = RSAPublicKey_dup(rsa_publish);
if(rsa_publish_pub != NULL)
{
public_key = EVP_PKEY_new();
EVP_PKEY_assign_RSA(public_key, rsa_publish_pub);
}
else
{
#ifdef DISTRIB_DEBUG
std::cerr << "GxsSecurity(): Could not generate publish key " << grpId
<< std::endl;
#endif
return false;
}
EVP_CIPHER_CTX ctx;
int eklen, net_ekl;
unsigned char *ek;
unsigned char iv[EVP_MAX_IV_LENGTH];
EVP_CIPHER_CTX_init(&ctx);
int out_currOffset = 0;
int out_offset = 0;
int max_evp_key_size = EVP_PKEY_size(public_key);
ek = (unsigned char*)malloc(max_evp_key_size);
const EVP_CIPHER *cipher = EVP_aes_128_cbc();
int cipher_block_size = EVP_CIPHER_block_size(cipher);
int size_net_ekl = sizeof(net_ekl);
int max_outlen = inlen + cipher_block_size + EVP_MAX_IV_LENGTH + max_evp_key_size + size_net_ekl;
// intialize context and send store encrypted cipher in ek
if(!EVP_SealInit(&ctx, EVP_aes_128_cbc(), &ek, &eklen, iv, &public_key, 1)) return false;
// now assign memory to out accounting for data, and cipher block size, key length, and key length val
out = (uint8_t*)malloc(inlen + cipher_block_size + size_net_ekl + eklen + EVP_MAX_IV_LENGTH);
if(out == NULL)
{
std::cerr << "gxssecurity::encrypt(): cnnot allocate memory of size " << inlen + cipher_block_size + size_net_ekl + eklen + EVP_MAX_IV_LENGTH << " to encrypt data." << std::endl;
return false ;
}
net_ekl = htonl(eklen);
memcpy((unsigned char*)out + out_offset, &net_ekl, size_net_ekl);
out_offset += size_net_ekl;
memcpy((unsigned char*)out + out_offset, ek, eklen);
out_offset += eklen;
memcpy((unsigned char*)out + out_offset, iv, EVP_MAX_IV_LENGTH);
out_offset += EVP_MAX_IV_LENGTH;
// now encrypt actual data
if(!EVP_SealUpdate(&ctx, (unsigned char*) out + out_offset, &out_currOffset, (unsigned char*) in, inlen))
{
free(out) ;
out = NULL ;
return false;
}
// move along to partial block space
out_offset += out_currOffset;
// add padding
if(!EVP_SealFinal(&ctx, (unsigned char*) out + out_offset, &out_currOffset))
{
free(out) ;
out = NULL ;
return false;
}
// move to end
out_offset += out_currOffset;
// make sure offset has not gone passed valid memory bounds
if(out_offset > max_outlen)
{
free(out) ;
out = NULL ;
return false;
}
// free encrypted key data
free(ek);
outlen = out_offset;
return true;
}
bool GxsSecurity::decrypt(uint8_t *& out, uint32_t & outlen, const uint8_t *in, uint32_t inlen, const RsTlvSecurityKey& key)
{
#ifdef DISTRIB_DEBUG
std::cerr << "GxsSecurity::decrypt() " << std::endl;
#endif
RSA *rsa_publish = extractPrivateKey(key) ;
EVP_PKEY *privateKey = NULL;
//RSA* rsa_publish = EVP_PKEY_get1_RSA(privateKey);
//rsa_publish_pub = RSAPublicKey_dup(rsa_publish);
if(rsa_publish != NULL)
{
privateKey = EVP_PKEY_new();
EVP_PKEY_assign_RSA(privateKey, rsa_publish);
}
else
{
#ifdef DISTRIB_DEBUG
std::cerr << "GxsSecurity(): Could not generate publish key " << grpId
<< std::endl;
#endif
return false;
}
EVP_CIPHER_CTX ctx;
int eklen = 0, net_ekl = 0;
unsigned char *ek = (unsigned char*)malloc(EVP_PKEY_size(privateKey));
unsigned char iv[EVP_MAX_IV_LENGTH];
EVP_CIPHER_CTX_init(&ctx);
int in_offset = 0, out_currOffset = 0;
int size_net_ekl = sizeof(net_ekl);
memcpy(&net_ekl, (unsigned char*)in, size_net_ekl);
eklen = ntohl(net_ekl);
in_offset += size_net_ekl;
// Conservative limits to detect weird errors due to corrupted encoding.
if(eklen < 0 || eklen > 512 || eklen+in_offset > (int)inlen)
{
std::cerr << "Error while deserialising encryption key length: eklen = " << std::dec << eklen << ". Giving up decryption." << std::endl;
free(ek);
return false;
}
memcpy(ek, (unsigned char*)in + in_offset, eklen);
in_offset += eklen;
memcpy(iv, (unsigned char*)in + in_offset, EVP_MAX_IV_LENGTH);
in_offset += EVP_MAX_IV_LENGTH;
const EVP_CIPHER* cipher = EVP_aes_128_cbc();
if(!EVP_OpenInit(&ctx, cipher, ek, eklen, iv, privateKey)) return false;
if(inlen < in_offset)
{
std::cerr << "Severe error in " << __PRETTY_FUNCTION__ << ": cannot encrypt. " << std::endl;
return false ;
}
out = (uint8_t*)malloc(inlen - in_offset);
if(out == NULL)
{
std::cerr << "gxssecurity::decrypt(): cannot allocate memory of size " << inlen - in_offset << " to decrypt data." << std::endl;
return false;
}
if(!EVP_OpenUpdate(&ctx, (unsigned char*) out, &out_currOffset, (unsigned char*)in + in_offset, inlen - in_offset))
{
free(out) ;
out = NULL ;
return false;
}
outlen = out_currOffset;
if(!EVP_OpenFinal(&ctx, (unsigned char*)out + out_currOffset, &out_currOffset))
{
free(out) ;
out = NULL ;
return false;
}
outlen += out_currOffset;
free(ek);
return true;
}
bool GxsSecurity::validateNxsGrp(const RsNxsGrp& grp, const RsTlvKeySignature& sign, const RsTlvSecurityKey& key)
{
#ifdef GXS_SECURITY_DEBUG
std::cerr << "GxsSecurity::validateNxsGrp()";
std::cerr << std::endl;
std::cerr << "RsNxsGrp :";
std::cerr << std::endl;
grp.print(std::cerr, 10);
std::cerr << std::endl;
#endif
RsGxsGrpMetaData& grpMeta = *(grp.metaData);
/********************* check signature *******************/
/* check signature timeperiod */
if ((grpMeta.mPublishTs < key.startTS) || (key.endTS != 0 && grpMeta.mPublishTs > key.endTS))
{
#ifdef GXS_SECURITY_DEBUG
std::cerr << " GxsSecurity::validateNxsMsg() TS out of range";
std::cerr << std::endl;
#endif
return false;
}
/* decode key */
const unsigned char *keyptr = (const unsigned char *) key.keyData.bin_data;
long keylen = key.keyData.bin_len;
unsigned int siglen = sign.signData.bin_len;
unsigned char *sigbuf = (unsigned char *) sign.signData.bin_data;
#ifdef DISTRIB_DEBUG
std::cerr << "GxsSecurity::validateNxsMsg() Decode Key";
std::cerr << " keylen: " << keylen << " siglen: " << siglen;
std::cerr << std::endl;
#endif
/* extract admin key */
RSA *rsakey = (key.keyFlags & RSTLV_KEY_TYPE_FULL)? d2i_RSAPrivateKey(NULL, &(keyptr), keylen): d2i_RSAPublicKey(NULL, &(keyptr), keylen);
if (!rsakey)
{
#ifdef GXS_SECURITY_DEBUG
std::cerr << "GxsSecurity::validateNxsGrp()";
std::cerr << " Invalid RSA Key";
std::cerr << std::endl;
key.print(std::cerr, 10);
#endif
}
RsTlvKeySignatureSet signSet = grpMeta.signSet;
grpMeta.signSet.TlvClear();
uint32_t metaDataLen = grpMeta.serial_size();
uint32_t allGrpDataLen = metaDataLen + grp.grp.bin_len;
char* metaData = new char[metaDataLen];
char* allGrpData = new char[allGrpDataLen]; // msgData + metaData
grpMeta.serialise(metaData, metaDataLen);
// copy msg data and meta in allmsgData buffer
memcpy(allGrpData, grp.grp.bin_data, grp.grp.bin_len);
memcpy(allGrpData+(grp.grp.bin_len), metaData, metaDataLen);
delete[] metaData ;
EVP_PKEY *signKey = EVP_PKEY_new();
EVP_PKEY_assign_RSA(signKey, rsakey);
/* calc and check signature */
EVP_MD_CTX *mdctx = EVP_MD_CTX_create();
EVP_VerifyInit(mdctx, EVP_sha1());
EVP_VerifyUpdate(mdctx, allGrpData, allGrpDataLen);
int signOk = EVP_VerifyFinal(mdctx, sigbuf, siglen, signKey);
EVP_MD_CTX_destroy(mdctx);
if(signOk != 1) // try previous API. This is a hack to accept groups previously signed with old APIs.
{
EVP_MD_CTX *mdctx = EVP_MD_CTX_create();
EVP_VerifyInit(mdctx, EVP_sha1());
EVP_VerifyUpdate(mdctx, allGrpData, allGrpDataLen-4); // that means ommit the last
signOk = EVP_VerifyFinal(mdctx, sigbuf, siglen, signKey);
EVP_MD_CTX_destroy(mdctx);
if(signOk)
std::cerr << "(WW) GXS group with old API found. Signature still checks!" << std::endl;
}
delete[] allGrpData ;
/* clean up */
EVP_PKEY_free(signKey);
grpMeta.signSet = signSet;
if (signOk == 1)
{
#ifdef GXS_SECURITY_DEBUG
std::cerr << "GxsSecurity::validateNxsGrp() Signature OK";
std::cerr << std::endl;
#endif
return true;
}
#ifdef GXS_SECURITY_DEBUG
std::cerr << "GxsSecurity::validateNxsGrp() Signature invalid";
std::cerr << std::endl;
#endif
return false;
}