RetroShare/libretroshare/src/upnp/upnphandler.cc

437 lines
9.7 KiB
C++
Raw Normal View History

/* This stuff is actually C */
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __cplusplus
} /* extern C */
#endif
/* This stuff is actually C */
#include "upnp/upnphandler.h"
struct WanDevice {
char UDN[250];
char DescDocURL[250];
char FriendlyName[250];
char PresURL[250];
int AdvrTimeOut;
};
class uPnPConfigData
{
public:
struct WanDevice * WanDevice;
char lanaddr[16]; /* my ip address on the LAN */
};
#include "util/rsnet.h"
UpnpClient_Handle ctrlpt_handle = -1;
bool upnphandler::initUPnPState()
{
std::cerr << "upnphandler::initUPnPState" << std::endl;
cUPnPControlPoint = new CUPnPControlPoint(2000);
bool IGWDetected = cUPnPControlPoint->GetIGWDeviceDetected();
/* MODIFY STATE */
dataMtx.lock(); /* LOCK MUTEX */
std::cerr << "upnphandler::initUPnPState cUPnPControlPoint internal ip adress : ";
std::cerr << cUPnPControlPoint->getInternalIpAddress() << std::endl;
//const char ipaddr = cUPnPControlPoint->getInternalIpAddress().c_str();
inet_aton(cUPnPControlPoint->getInternalIpAddress(), &(upnp_iaddr.sin_addr));
upnp_iaddr.sin_port = htons(iport);
if (IGWDetected) {
upnpState = RS_UPNP_S_READY;
} else {
upnpState = RS_UPNP_S_UNAVAILABLE;
}
dataMtx.unlock(); /* UNLOCK MUTEX */
/* done, NOT AVAILABLE YET */
if (upnpState == RS_UPNP_S_READY) {
std::cerr << "upnphandler::initUPnPState READY" << std::endl;
} else {
std::cerr << "upnphandler::initUPnPState UNAVAILABLE" << std::endl;
}
return 0;
}
class upnpThreadData
{
public:
upnphandler *handler;
bool start;
bool stop;
};
/* Thread routines */
extern "C" void* doSetupUPnP(void* p)
{
upnpThreadData *data = (upnpThreadData *) p;
if ((!data) || (!data->handler))
{
pthread_exit(NULL);
}
/* publish it! */
if (data -> stop)
{
data->handler->shutdown_upnp();
}
if (data -> start)
{
data->handler->initUPnPState();
data->handler->start_upnp();
}
delete data;
pthread_exit(NULL);
return NULL;
}
bool upnphandler::background_setup_upnp(bool start, bool stop)
{
pthread_t tid;
/* launch thread */
upnpThreadData *data = new upnpThreadData();
data->handler = this;
data->start = start;
data->stop = stop;
pthread_create(&tid, 0, &doSetupUPnP, (void *) data);
pthread_detach(tid); /* so memory is reclaimed in linux */
return true;
}
bool upnphandler::start_upnp()
{
RsStackMutex stack(dataMtx); /* LOCK STACK MUTEX */
if (!(upnpState >= RS_UPNP_S_READY))
{
std::cerr << "upnphandler::start_upnp() Not Ready" << std::endl;
return false;
}
char eprot1[] = "TCP";
char eprot2[] = "UDP";
/* if we're to load -> load */
/* select external ports */
eport_curr = eport;
if (!eport_curr)
{
/* use local port if eport is zero */
eport_curr = iport;
std::cerr << "Using LocalPort for extPort!";
std::cerr << std::endl;
}
if (!eport_curr)
{
std::cerr << "Invalid eport ... ";
std::cerr << std::endl;
return false;
}
/* our port */
char in_addr[256];
char in_port1[256];
char eport1[256];
upnp_iaddr.sin_port = htons(iport);
struct sockaddr_in localAddr = upnp_iaddr;
uint32_t linaddr = ntohl(localAddr.sin_addr.s_addr);
snprintf(in_port1, 256, "%d", ntohs(localAddr.sin_port));
snprintf(in_addr, 256, "%d.%d.%d.%d",
((linaddr >> 24) & 0xff),
((linaddr >> 16) & 0xff),
((linaddr >> 8) & 0xff),
((linaddr >> 0) & 0xff));
snprintf(eport1, 256, "%d", eport_curr);
std::cerr << "Attempting Redirection: InAddr: " << in_addr;
std::cerr << " InPort: " << in_port1;
std::cerr << " ePort: " << eport1;
std::cerr << " eProt: " << eprot1;
std::cerr << std::endl;
//build port mapping config
std::vector<CUPnPPortMapping> upnpPortMapping1;
CUPnPPortMapping cUPnPPortMapping1 = CUPnPPortMapping(eport_curr, ntohs(localAddr.sin_port), "TCP", true, "tcp retroshare redirection");
upnpPortMapping1.push_back(cUPnPPortMapping1);
bool res = cUPnPControlPoint->AddPortMappings(upnpPortMapping1);
if (res) {
upnpState = RS_UPNP_S_ACTIVE;
} else {
upnpState = RS_UPNP_S_TCP_FAILED;
std::vector<CUPnPPortMapping> upnpPortMapping2;
CUPnPPortMapping cUPnPPortMapping2 = CUPnPPortMapping(eport_curr, ntohs(localAddr.sin_port), "UDP", true, "udp retroshare redirection");
upnpPortMapping2.push_back(cUPnPPortMapping2);
bool res2 = cUPnPControlPoint->AddPortMappings(upnpPortMapping2);
if (res) {
upnpState = RS_UPNP_S_ACTIVE;
} else {
upnpState = RS_UPNP_S_UDP_FAILED;
}
}
/* now store the external address */
std::string externalAdress = cUPnPControlPoint->getExternalAddress();
sockaddr_clear(&upnp_eaddr);
if(!externalAdress.empty())
{
const char* externalIPAddress = externalAdress.c_str();
std::cerr << "Stored External address: " << externalIPAddress;
std::cerr << ":" << eport_curr;
std::cerr << std::endl;
inet_aton(externalIPAddress, &(upnp_eaddr.sin_addr));
upnp_eaddr.sin_family = AF_INET;
upnp_eaddr.sin_port = htons(eport_curr);
}
else
{
std::cerr << "FAILED To get external Address";
std::cerr << std::endl;
}
toStart = false;
return true;
}
bool upnphandler::shutdown_upnp()
{
RsStackMutex stack(dataMtx); /* LOCK STACK MUTEX */
if (!(upnpState >= RS_UPNP_S_READY))
{
return false;
}
char eprot1[] = "TCP";
char eprot2[] = "UDP";
/* always attempt this (unless no port number) */
if (eport_curr > 0)
{
char eport1[256];
char eport2[256];
snprintf(eport1, 256, "%d", eport_curr);
snprintf(eport2, 256, "%d", eport_curr);
std::cerr << "Attempting To Remove Redirection: port: " << eport1;
std::cerr << " Prot: " << eprot1;
std::cerr << std::endl;
std::vector<CUPnPPortMapping> upnpPortMapping1;
CUPnPPortMapping *cUPnPPortMapping1 = &CUPnPPortMapping(eport_curr, 0, eprot1, true, "tcp redirection");
upnpPortMapping1.push_back(*cUPnPPortMapping1);
cUPnPControlPoint->DeletePortMappings(upnpPortMapping1);
std::cerr << "Attempting To Remove Redirection: port: " << eport2;
std::cerr << " Prot: " << eprot2;
std::cerr << std::endl;
std::vector<CUPnPPortMapping> upnpPortMapping2;
CUPnPPortMapping *cUPnPPortMapping2 = &CUPnPPortMapping(eport_curr, 0, eprot2, true, "tcp redirection");
upnpPortMapping2.push_back(*cUPnPPortMapping2);
cUPnPControlPoint->DeletePortMappings(upnpPortMapping2);
//destroy the upnp object
cUPnPControlPoint->~CUPnPControlPoint();
upnpState = RS_UPNP_S_UNINITIALISED;
toStop = false;
}
return true;
}
/************************ External Interface *****************************
*
*
*
*/
upnphandler::upnphandler()
:toEnable(false), toStart(false), toStop(false),
eport(0), eport_curr(0)
{
}
upnphandler::~upnphandler()
{
return;
}
/* RsIface */
void upnphandler::enable(bool active)
{
dataMtx.lock(); /*** LOCK MUTEX ***/
if (active != toEnable)
{
if (active)
{
toStart = true;
}
else
{
toStop = true;
}
}
toEnable = active;
bool start = toStart;
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
if (start)
{
/* make background thread to startup UPnP */
background_setup_upnp(true, false);
}
}
void upnphandler::shutdown()
{
/* blocking call to shutdown upnp */
shutdown_upnp();
}
void upnphandler::restart()
{
/* non-blocking call to shutdown upnp, and startup again. */
background_setup_upnp(true, true);
}
bool upnphandler::getEnabled()
{
dataMtx.lock(); /*** LOCK MUTEX ***/
bool on = toEnable;
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
return on;
}
bool upnphandler::getActive()
{
dataMtx.lock(); /*** LOCK MUTEX ***/
bool on = (upnpState == RS_UPNP_S_ACTIVE);
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
return on;
}
/* the address that the listening port is on */
void upnphandler::setInternalPort(unsigned short iport_in)
{
std::cerr << "UPnPHandler::setInternalAddress() pre Lock!" << std::endl;
dataMtx.lock(); /*** LOCK MUTEX ***/
std::cerr << "UPnPHandler::setInternalAddress() postLock!" << std::endl;
std::cerr << "UPnPHandler::setInternalPort(" << iport_in << ") current port: ";
std::cerr << iport << std::endl;
if (iport != iport_in)
{
iport = iport_in;
if ((toEnable) &&
(upnpState == RS_UPNP_S_ACTIVE))
{
toStop = true;
toStart = true;
}
}
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
}
void upnphandler::setExternalPort(unsigned short eport_in)
{
std::cerr << "UPnPHandler::setExternalPort() pre Lock!" << std::endl;
dataMtx.lock(); /*** LOCK MUTEX ***/
std::cerr << "UPnPHandler::setExternalPort() postLock!" << std::endl;
std::cerr << "UPnPHandler::setExternalPort(" << eport_in << ") current port: ";
std::cerr << eport << std::endl;
/* flag both shutdown/start -> for restart */
if (eport != eport_in)
{
eport = eport_in;
if ((toEnable) &&
(upnpState == RS_UPNP_S_ACTIVE))
{
toStop = true;
toStart = true;
}
}
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
}
/* as determined by uPnP */
bool upnphandler::getInternalAddress(struct sockaddr_in &addr)
{
// std::cerr << "UPnPHandler::getInternalAddress() pre Lock!" << std::endl;
dataMtx.lock(); /*** LOCK MUTEX ***/
// std::cerr << "UPnPHandler::getInternalAddress() postLock!" << std::endl;
std::cerr << "UPnPHandler::getInternalAddress()" << std::endl;
addr = upnp_iaddr;
bool valid = (upnpState >= RS_UPNP_S_ACTIVE);
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
return valid;
}
bool upnphandler::getExternalAddress(struct sockaddr_in &addr)
{
// std::cerr << "UPnPHandler::getExternalAddress() pre Lock!" << std::endl;
dataMtx.lock(); /*** LOCK MUTEX ***/
// std::cerr << "UPnPHandler::getExternalAddress() postLock!" << std::endl;
std::cerr << "UPnPHandler::getExternalAddress()" << std::endl;
addr = upnp_eaddr;
bool valid = (upnpState == RS_UPNP_S_ACTIVE);
dataMtx.unlock(); /*** UNLOCK MUTEX ***/
return valid;
}