RetroShare/libbitdht/src/udp/udplayer.cc

780 lines
17 KiB
C++
Raw Normal View History

/*
* udp/udplayer.cc
*
* BitDHT: An Flexible DHT library.
*
* Copyright 2004-2010 by Robert Fernie
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License Version 3 as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*
* Please report all bugs and problems to "bitdht@lunamutt.com".
*
*/
#include "udp/udplayer.h"
#include "util/bdrandom.h"
#include <iostream>
#include <sstream>
#include <iomanip>
#include <string.h>
#include <stdlib.h>
/***
* #define UDP_ENABLE_BROADCAST 1
* #define UDP_LOOPBACK_TESTING 1
* #define DEBUG_UDP_LAYER 1
***/
//#define DEBUG_UDP_LAYER 1
static const int UDP_DEF_TTL = 64;
/* NB: This #define makes the listener open 0.0.0.0:X port instead
* of a specific port - this helps library communicate on systems
* with multiple interfaces or unique network setups.
*
* - It should always be used!
*
* #define OPEN_UNIVERSAL_PORT 1
*
*/
#define OPEN_UNIVERSAL_PORT 1
class udpPacket
{
public:
udpPacket(struct sockaddr_in *addr, void *dta, int dlen)
:raddr(*addr), len(dlen)
{
data = malloc(len);
memcpy(data, dta, len);
}
~udpPacket()
{
if (data)
{
free(data);
data = NULL;
len = 0;
}
}
struct sockaddr_in raddr;
void *data;
int len;
};
//std::ostream &operator<<(std::ostream &out, const struct sockaddr_in &addr)
std::ostream &operator<<(std::ostream &out, struct sockaddr_in &addr)
{
out << "[" << inet_ntoa(addr.sin_addr) << ":";
out << htons(addr.sin_port) << "]";
return out;
}
bool operator==(const struct sockaddr_in &addr, const struct sockaddr_in &addr2)
{
if (addr.sin_family != addr2.sin_family)
return false;
if (addr.sin_addr.s_addr != addr2.sin_addr.s_addr)
return false;
if (addr.sin_port != addr2.sin_port)
return false;
return true;
}
bool operator<(const struct sockaddr_in &addr, const struct sockaddr_in &addr2)
{
if (addr.sin_family != addr2.sin_family)
return (addr.sin_family < addr2.sin_family);
if (addr.sin_addr.s_addr != addr2.sin_addr.s_addr)
return (addr.sin_addr.s_addr < addr2.sin_addr.s_addr);
if (addr.sin_port != addr2.sin_port)
return (addr.sin_port < addr2.sin_port);
return false;
}
std::string printPkt(void *d, int size)
{
std::ostringstream out;
out << "Packet:" << "**********************";
for(int i = 0; i < size; i++)
{
if (i % 16 == 0)
out << std::endl;
out << std::hex << std::setw(2) << (unsigned int) ((unsigned char *) d)[i] << " ";
}
out << std::endl << "**********************";
out << std::endl;
return out.str();
}
std::string printPktOffset(unsigned int offset, void *d, unsigned int size)
{
std::ostringstream out;
out << "Packet:" << "**********************";
out << std::endl;
out << "Offset: " << std::hex << offset << " -> " << offset + size;
out << std::endl;
out << "Packet:" << "**********************";
unsigned int j = offset % 16;
if (j != 0)
{
out << std::endl;
out << std::hex << std::setw(6) << (unsigned int) offset - j;
out << ": ";
for(unsigned int i = 0; i < j; i++)
{
out << "xx ";
}
}
for(unsigned int i = offset; i < offset + size; i++)
{
if (i % 16 == 0)
{
out << std::endl;
out << std::hex << std::setw(6) << (unsigned int) i;
out << ": ";
}
out << std::hex << std::setw(2) << (unsigned int) ((unsigned char *) d)[i-offset] << " ";
}
out << std::endl << "**********************";
out << std::endl;
return out.str();
}
UdpLayer::UdpLayer(UdpReceiver *udpr, struct sockaddr_in &local)
:recv(udpr), laddr(local), errorState(0), ttl(UDP_DEF_TTL)
{
openSocket();
return;
}
int UdpLayer::status(std::ostream &out)
{
out << "UdpLayer::status()" << std::endl;
out << "localaddr: " << laddr << std::endl;
out << "sockfd: " << sockfd << std::endl;
out << std::endl;
return 1;
}
int UdpLayer::reset(struct sockaddr_in &local)
{
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::reset()" << std::endl;
#endif
/* stop the old thread */
{
bdStackMutex stack(sockMtx); /********** LOCK MUTEX *********/
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::reset() setting stopThread flag" << std::endl;
#endif
stopThread = true;
}
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::reset() joining" << std::endl;
#endif
join();
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::reset() closing socket" << std::endl;
#endif
closeSocket();
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::reset() resetting variables" << std::endl;
#endif
laddr = local;
errorState = 0;
ttl = UDP_DEF_TTL;
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::reset() opening socket" << std::endl;
#endif
openSocket();
return 1 ;
}
int UdpLayer::closeSocket()
{
/* close socket if open */
sockMtx.lock(); /********** LOCK MUTEX *********/
if (sockfd > 0)
{
bdnet_close(sockfd);
}
sockMtx.unlock(); /******** UNLOCK MUTEX *********/
return 1;
}
void UdpLayer::run()
{
return recv_loop();
}
/* higher level interface */
void UdpLayer::recv_loop()
{
int maxsize = 16000;
void *inbuf = malloc(maxsize);
int status;
struct timeval timeout;
while(1)
{
fd_set rset;
for(;;)
{
/* check if we need to stop */
bool toStop = false;
{
bdStackMutex stack(sockMtx); /********** LOCK MUTEX *********/
toStop = stopThread;
}
if (toStop)
{
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::recv_loop() stopping thread" << std::endl;
#endif
stop();
}
FD_ZERO(&rset);
FD_SET(sockfd, &rset);
timeout.tv_sec = 0;
timeout.tv_usec = 500000; /* 500 ms timeout */
status = select(sockfd+1, &rset, NULL, NULL, &timeout);
if (status > 0)
{
break; /* data available, go read it */
}
else if (status < 0)
{
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::recv_loop() Error: " << bdnet_errno() << std::endl;
#endif
}
};
int nsize = maxsize;
struct sockaddr_in from;
if (0 < receiveUdpPacket(inbuf, &nsize, from))
{
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::readPkt() from : " << from << std::endl;
std::cerr << printPkt(inbuf, nsize);
#endif
// send to reciever.
recv -> recvPkt(inbuf, nsize, from);
}
else
{
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::readPkt() not ready" << from;
std::cerr << std::endl;
#endif
}
}
free(inbuf) ;
return;
}
int UdpLayer::sendPkt(const void *data, int size, const sockaddr_in &to, int ttl)
{
/* if ttl is different -> set it */
if (ttl != getTTL())
{
setTTL(ttl);
}
/* and send! */
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::sendPkt() to: " << to << std::endl;
std::cerr << printPkt((void *) data, size);
#endif
sendUdpPacket(data, size, to);
return size;
}
/* setup connections */
int UdpLayer::openSocket()
{
sockMtx.lock(); /********** LOCK MUTEX *********/
/* make a socket */
sockfd = bdnet_socket(PF_INET, SOCK_DGRAM, 0);
#ifdef DEBUG_UDP_LAYER
std::cerr << "UpdStreamer::openSocket()" << std::endl;
#endif
/* bind to address */
#ifdef UDP_LOOPBACK_TESTING
bdnet_inet_aton("127.0.0.1", &(laddr.sin_addr));
#endif
#ifdef OPEN_UNIVERSAL_PORT
struct sockaddr_in tmpaddr = laddr;
tmpaddr.sin_addr.s_addr = 0;
if (0 != bdnet_bind(sockfd, (struct sockaddr *) (&tmpaddr), sizeof(tmpaddr)))
#else
if (0 != bdnet_bind(sockfd, (struct sockaddr *) (&laddr), sizeof(laddr)))
#endif
{
#ifdef DEBUG_UDP_LAYER
std::cerr << "Socket Failed to Bind to : " << laddr << std::endl;
std::cerr << "Error: " << bdnet_errno() << std::endl;
#endif
errorState = EADDRINUSE;
//exit(1);
sockMtx.unlock(); /******** UNLOCK MUTEX *********/
return -1;
}
if (-1 == bdnet_fcntl(sockfd, F_SETFL, O_NONBLOCK))
{
#ifdef DEBUG_UDP_LAYER
std::cerr << "Failed to Make Non-Blocking" << std::endl;
#endif
}
#ifdef UDP_ENABLE_BROADCAST
/* Setup socket for broadcast. */
int val = 1;
if (-1 == setsockopt(sockfd, SOL_SOCKET, SO_BROADCAST, &val, sizeof(int)))
{
#ifdef DEBUG_UDP_LAYER
std::cerr << "Failed to Make Socket Broadcast" << std::endl;
#endif
}
#endif
errorState = 0;
#ifdef DEBUG_UDP_LAYER
std::cerr << "Socket Bound to : " << laddr << std::endl;
#endif
sockMtx.unlock(); /******** UNLOCK MUTEX *********/
#ifdef DEBUG_UDP_LAYER
std::cerr << "Setting TTL to " << UDP_DEF_TTL << std::endl;
#endif
setTTL(UDP_DEF_TTL);
clearDataTransferred(); // clear statistics.
// start up our thread.
{
bdStackMutex stack(sockMtx); /********** LOCK MUTEX *********/
stopThread = false;
}
start();
return 1;
}
int UdpLayer::setTTL(int t)
{
sockMtx.lock(); /********** LOCK MUTEX *********/
int err = bdnet_setsockopt(sockfd, IPPROTO_IP, IP_TTL, &t, sizeof(int));
ttl = t;
sockMtx.unlock(); /******** UNLOCK MUTEX *********/
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::setTTL(" << t << ") returned: " << err;
std::cerr << std::endl;
#endif
return err;
}
int UdpLayer::getTTL()
{
sockMtx.lock(); /********** LOCK MUTEX *********/
int t = ttl;
sockMtx.unlock(); /******** UNLOCK MUTEX *********/
return t;
}
/* monitoring / updates */
int UdpLayer::okay()
{
sockMtx.lock(); /********** LOCK MUTEX *********/
bool nonFatalError = ((errorState == 0) ||
(errorState == EAGAIN) ||
(errorState == EINPROGRESS));
sockMtx.unlock(); /******** UNLOCK MUTEX *********/
#ifdef DEBUG_UDP_LAYER
if (!nonFatalError)
{
std::cerr << "UdpLayer::NOT okay(): Error: " << errorState << std::endl;
}
#endif
return nonFatalError;
}
int UdpLayer::tick()
{
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::tick()" << std::endl;
#endif
return 1;
}
void UdpLayer::getDataTransferred(uint32_t &read, uint32_t &write)
{
sockMtx.lock(); /********** LOCK MUTEX *********/
read = readBytes;
write = writeBytes;
sockMtx.unlock(); /******** UNLOCK MUTEX *********/
clearDataTransferred();
}
void UdpLayer::clearDataTransferred()
{
sockMtx.lock(); /********** LOCK MUTEX *********/
readBytes = 0;
writeBytes = 0;
sockMtx.unlock(); /******** UNLOCK MUTEX *********/
}
/******************* Internals *************************************/
int UdpLayer::receiveUdpPacket(void *data, int *size, struct sockaddr_in &from)
{
struct sockaddr_in fromaddr;
socklen_t fromsize = sizeof(fromaddr);
int insize = *size;
sockMtx.lock(); /********** LOCK MUTEX *********/
insize = bdnet_recvfrom(sockfd,data,insize,0,
(struct sockaddr*)&fromaddr,&fromsize);
if (0 < insize)
{
readBytes += insize;
}
sockMtx.unlock(); /******** UNLOCK MUTEX *********/
if (0 < insize)
{
#ifdef DEBUG_UDP_LAYER
std::cerr << "receiveUdpPacket() from: " << fromaddr;
std::cerr << " Size: " << insize;
std::cerr << std::endl;
#endif
*size = insize;
from = fromaddr;
return insize;
}
return -1;
}
int UdpLayer::sendUdpPacket(const void *data, int size, const struct sockaddr_in &to)
{
/* send out */
#ifdef DEBUG_UDP_LAYER
std::cerr << "UdpLayer::sendUdpPacket(): size: " << size;
std::cerr << " To: " << to << std::endl;
#endif
struct sockaddr_in toaddr = to;
sockMtx.lock(); /********** LOCK MUTEX *********/
bdnet_sendto(sockfd, data, size, 0,
(struct sockaddr *) &(toaddr),
sizeof(toaddr));
writeBytes += size;
sockMtx.unlock(); /******** UNLOCK MUTEX *********/
return 1;
}
/**************************** LossyUdpLayer - for Testing **************/
LossyUdpLayer::LossyUdpLayer(UdpReceiver *udpr,
struct sockaddr_in &local, double frac)
:UdpLayer(udpr, local), lossFraction(frac)
{
return;
}
LossyUdpLayer::~LossyUdpLayer() { return; }
int LossyUdpLayer::receiveUdpPacket(void *data, int *size, struct sockaddr_in &from)
{
if (0 < UdpLayer::receiveUdpPacket(data, size, from))
{
float prob = bdRandom::random_f32();
if (prob < lossFraction)
{
/* discard */
//std::cerr << "LossyUdpLayer::receiveUdpPacket() Dropping packet!";
//std::cerr << std::endl;
//std::cerr << printPkt(data, *size);
//std::cerr << std::endl;
std::cerr << "LossyUdpLayer::receiveUdpPacket() Packet (" << *size << ") Dropped!";
std::cerr << std::endl;
*size = 0;
return -1;
}
return *size;
}
return -1;
}
int LossyUdpLayer::sendUdpPacket(const void *data, int size, const struct sockaddr_in &to)
{
double prob = (1.0 * (rand() / (RAND_MAX + 1.0)));
if (prob < lossFraction)
{
/* discard */
//std::cerr << "LossyUdpLayer::sendUdpPacket() Dropping packet!";
//std::cerr << std::endl;
//std::cerr << printPkt((void *) data, size);
//std::cerr << std::endl;
std::cerr << "LossyUdpLayer::sendUdpPacket() Packet (" << size << ") Dropped!";
std::cerr << std::endl;
return size;
}
// otherwise read normally;
return UdpLayer::sendUdpPacket(data, size, to);
}
/**************************** LossyUdpLayer - for Testing **************/
PortRange::PortRange() :lport(0), uport(0) { return; }
PortRange::PortRange(uint16_t lp, uint16_t up) :lport(lp), uport(up) { return; }
bool PortRange::inRange(uint16_t port)
{
if (port < lport)
{
return false;
}
if (port > uport)
{
return false;
}
return true;
}
RestrictedUdpLayer::RestrictedUdpLayer(UdpReceiver *udpr,
struct sockaddr_in &local)
:UdpLayer(udpr, local)
{
return;
}
RestrictedUdpLayer::~RestrictedUdpLayer() { return; }
void RestrictedUdpLayer::addRestrictedPortRange(int lp, int up)
{
PortRange pr(lp, up);
mLostPorts.push_back(pr);
}
int RestrictedUdpLayer::receiveUdpPacket(void *data, int *size, struct sockaddr_in &from)
{
if (0 < UdpLayer::receiveUdpPacket(data, size, from))
{
/* check the port against list */
uint16_t inPort = ntohs(from.sin_port);
std::list<PortRange>::iterator it;
for(it = mLostPorts.begin(); it != mLostPorts.end(); it++)
{
if (it->inRange(inPort))
{
#ifdef DEBUG_UDP_LAYER
std::cerr << "RestrictedUdpLayer::receiveUdpPacket() Dropping packet";
std::cerr << ", Port(" << inPort << ") in restricted range!";
std::cerr << std::endl;
//std::cerr << printPkt(data, *size);
//std::cerr << std::endl;
#endif
*size = 0;
return -1;
}
}
#ifdef DEBUG_UDP_LAYER
std::cerr << "RestrictedUdpLayer::receiveUdpPacket() Accepting packet";
std::cerr << ", Port(" << inPort << ") in Okay range!";
std::cerr << std::endl;
#endif
/* acceptable port */
return *size;
}
return -1;
}
int RestrictedUdpLayer::sendUdpPacket(const void *data, int size, const struct sockaddr_in &to)
{
/* check the port against list */
uint16_t outPort = ntohs(to.sin_port);
std::list<PortRange>::iterator it;
for(it = mLostPorts.begin(); it != mLostPorts.end(); it++)
{
if (it->inRange(outPort))
{
/* drop */
#ifdef DEBUG_UDP_LAYER
std::cerr << "RestrictedUdpLayer::sendUdpPacket() Dropping packet";
std::cerr << ", Port(" << outPort << ") in restricted range!";
std::cerr << std::endl;
//std::cerr << printPkt(data, *size);
//std::cerr << std::endl;
#endif
return size;
}
}
#ifdef DEBUG_UDP_LAYER
std::cerr << "RestrictedUdpLayer::sendUdpPacket() Sending packet";
std::cerr << ", Port(" << outPort << ") in Okay range!";
std::cerr << std::endl;
#endif
// otherwise read normally;
return UdpLayer::sendUdpPacket(data, size, to);
}
#define STARTUP_PERIOD 60
TimedUdpLayer::TimedUdpLayer(UdpReceiver *udpr,
struct sockaddr_in &local)
:UdpLayer(udpr, local)
{
mStartTime = time(NULL) + STARTUP_PERIOD;
mActive = false;
return;
}
TimedUdpLayer::~TimedUdpLayer() { return; }
int TimedUdpLayer::receiveUdpPacket(void *data, int *size, struct sockaddr_in &from)
{
if (0 < UdpLayer::receiveUdpPacket(data, size, from))
{
if (!mActive)
{
if (time(NULL) < mStartTime)
{
#ifdef DEBUG_UDP_LAYER
#endif
std::cerr << "TimedUdpLayer::receiveUdpPacket() Dropping packet (Too Early)";
std::cerr << std::endl;
//std::cerr << printPkt(data, *size);
//std::cerr << std::endl;
*size = 0;
return -1;
}
mActive = true;
}
/* acceptable port */
return *size;
}
return -1;
}
int TimedUdpLayer::sendUdpPacket(const void *data, int size, const struct sockaddr_in &to)
{
if (!mActive)
{
if (time(NULL) < mStartTime)
{
/* drop */
#ifdef DEBUG_UDP_LAYER
#endif
std::cerr << "TimedUdpLayer::sendUdpPacket() Dropping packet (Too Early)";
std::cerr << std::endl;
return size;
}
/* else activate */
mActive = true;
}
// otherwise read normally;
return UdpLayer::sendUdpPacket(data, size, to);
}