RetroShare/libretroshare/src/tcponudp/internal_tou.cc

633 lines
14 KiB
C++
Raw Normal View History

/*
* "$Id: internal_tou.cc,v 1.2 2007-02-18 21:46:50 rmf24 Exp $"
*
* TCP-on-UDP (tou) network interface for RetroShare.
*
* Copyright 2004-2006 by Robert Fernie.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License Version 2 as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*
* Please report all bugs and problems to "retroshare@lunamutt.com".
*
*/
/**********************************************************
* There appears (was) to be an elusive bug in the tou internals.
* most likely to be in the packing and unpacking of the
* data queues.
*
* This test is designed to load the queues up and then
* transfer the data, repeatly with different size packets.
*
* to do this effectively we need to access the TcpStream
* objects, instead of the tou.h interface.
*
*/
#include <iostream>
// for printing sockaddr
#include "udplayer.h"
#include "tcpstream.h"
#include "tou.h"
#include "tou_net.h"
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
/* This is a simple test to ensure that the tou behaviour
* is almost identical to a standard tcp socket.
*
* In this version we open 2 sockets, and attempt to
* communicate with ourselves....
*
*/
int setup_socket(struct sockaddr_in addr);
int connect_socket_pair(int fd1, int fd2,
struct sockaddr_in addr1, struct sockaddr_in addr2);
int send_data_via_pair(int sockfd1, int sockfd2, char *data, int size);
void usage(char *name)
{
std::cerr << "Usage: " << name;
std::cerr << " [-pco] <laddr> <lport> ";
std::cerr << " <raddr> <rport> ";
std::cerr << std::endl;
exit(1);
return;
}
int main(int argc, char **argv)
{
int c;
bool isProxy = false;
bool toConnect = false;
bool stayOpen = false;
int i,j;
while(-1 != (c = getopt(argc, argv, "pco")))
{
switch (c)
{
case 'p':
isProxy = true;
break;
case 'c':
toConnect = true;
break;
case 'o':
stayOpen = true;
break;
default:
usage(argv[0]);
break;
}
}
if (argc-optind < 4)
{
usage(argv[0]);
return 1;
}
// tounet_init();
/* setup the local/remote addresses.
*/
struct sockaddr_in laddr;
struct sockaddr_in raddr;
laddr.sin_family = AF_INET;
raddr.sin_family = AF_INET;
if ((!tounet_inet_aton(argv[optind], &(laddr.sin_addr))) ||
(!tounet_inet_aton(argv[optind+2], &(raddr.sin_addr))))
{
std::cerr << "Invalid addresses!" << std::endl;
usage(argv[0]);
}
unsigned short laddr_port = atoi(argv[optind+1]);
unsigned short raddr_port = atoi(argv[optind+3]);
laddr.sin_port = htons(laddr_port);
raddr.sin_port = htons(raddr_port);
/* so create the Udp/Tcp components */
//UdpLayer udp1(laddr);
//UdpLayer udp2(raddr);
LossyUdpLayer udp1(laddr, 0.10);
LossyUdpLayer udp2(raddr, 0.10);
/* check that they are okay */
if ((!udp1.okay()) || (!udp2.okay()))
{
std::cerr << "Trouble opening udp ports!";
std::cerr << std::endl;
return 1;
}
TcpStream tcp1(&udp1);
TcpStream tcp2(&udp2);
udp1.setRemoteAddr(raddr);
udp2.setRemoteAddr(laddr);
tcp1.connect(); // start the connection.
/* now connect them */
while ((!tcp1.isConnected()) || (!tcp2.isConnected()))
{
usleep(10000); /* 10 ms */
tcp1.tick();
tcp2.tick();
}
std::cerr << "Connection Established!" << std::endl;
for(i = 0; i < 10; i++)
{
int size = 1024000;
char rnddata1[size];
char rnddata2[size];
for(j = 0; j < size; j++)
{
rnddata1[j] = (unsigned char) (255.0 *
rand() / (RAND_MAX + 1.0));
rnddata2[j] = (unsigned char) (255.0 *
rand() / (RAND_MAX + 1.0));
}
/* for each iteration, we want to
* (1) fill up the outgoing buffers with stuff
*/
int sent1 = 0;
int sent2 = 0;
int fill1, fill2;
int MaxSend = 1000000;
while((fill1 = tcp1.write_allowed()) && (sent1 < MaxSend))
{
/* fill with a random little bit more */
int psize = (int) ((i + 1.0) * 255.0 *
rand() / (RAND_MAX + 1.0));
/* don't overload */
if (psize > fill1)
{
std::cerr << "LAST FILL1" << std::endl;
psize = fill1;
}
int ret = tcp1.write(&(rnddata1[sent1]), psize);
if (ret)
{
sent1 += ret;
std::cerr << "Filled tcp1 with " << ret << " more bytes, total:";
std::cerr << sent1 << " was allowed: " << fill1;
std::cerr << std::endl;
}
//tcp1.status(std::cerr);
}
std::cerr << "Tcp1 full with " << sent1 << " bytes ";
std::cerr << std::endl;
while((fill2 = tcp2.write_allowed()) && (sent2 < MaxSend))
{
/* fill with a random little bit more */
/* slightly larger sizes */
int psize = (int) ((i + 1.0) * 1255.0 *
rand() / (RAND_MAX + 1.0));
/* don't overload */
if (psize > fill2)
{
std::cerr << "LAST FILL2" << std::endl;
psize = fill2;
}
int ret = tcp2.write(&(rnddata2[sent2]), psize);
if (ret)
{
sent2 += ret;
std::cerr << "Filled tcp2 with " << ret << " more bytes, total:";
std::cerr << sent2 << " was allowed: " << fill2;
std::cerr << std::endl;
}
//tcp2.status(std::cerr);
}
std::cerr << "Tcp2 full with " << sent2 << " bytes ";
std::cerr << std::endl;
/* for every second iteration, fill up the read buffer before starting */
if (i % 2 == 0)
{
for(j = 0; j < 100; j++)
{
tcp1.tick();
tcp2.tick();
}
}
/* now we read/tick and empty */
int read1 = 0;
int read2 = 0;
while(read1 < sent2)
{
tcp1.tick();
tcp2.tick();
/* fill with a random little bit more */
/* This one has a small read, while tcp2 has a large read */
int psize = (int) ((i + 1.0) * 100.0 *
rand() / (RAND_MAX + 1.0));
/* limit to what we have! */
if (psize > sent2 - read1)
{
std::cerr << "LAST READ1" << std::endl;
psize = sent2 - read1;
}
char rbuf[psize];
int rsize = psize;
int ret = tcp1.read(rbuf, rsize);
if (0 < ret)
{
/* check the data */
for(j = 0; j < ret; j++)
{
if (rnddata2[read1 + j] != rbuf[j])
{
std::cerr << "Error Data Mismatch @ read1:" << read1;
std::cerr << " + j:" << j << " rsize: " << rsize;
std::cerr << " Index: " << read1 + j;
std::cerr << std::endl;
int badoffset = read1 + j;
for(int k = -10; k < 10; k++)
{
printf("Orig: %02x, Trans: %02x\n",
(unsigned char) rnddata2[badoffset+k],
(unsigned char) rbuf[j + k]);
}
exit(1);
}
}
read1 += ret;
}
else
{
std::cerr << "Read Error: " << ret << std::endl;
}
std::cerr << "Requested " << psize << ", got " << ret << " bytes" << std::endl;
std::cerr << "Read " << read1 << " of " << sent2 << " bytes" << std::endl;
}
sleep(2);
while(read2 < sent1)
{
tcp1.tick();
tcp2.tick();
/* fill with a random little bit more */
int psize = (int) ((i + 1.0) * 10000.0 *
rand() / (RAND_MAX + 1.0));
/* limit to what we have! */
if (psize > sent1 - read2)
{
std::cerr << "LAST READ2" << std::endl;
psize = sent1 - read2;
}
char rbuf[psize];
int rsize = psize;
int ret = tcp2.read(rbuf, rsize);
if (0 < ret)
{
/* check the data */
for(j = 0; j < ret; j++)
{
if (rnddata1[read2 + j] != rbuf[j])
{
std::cerr << "Error Data Mismatch @ read2:" << read2;
std::cerr << " + j:" << j << " rsize: " << rsize;
std::cerr << " Index: " << read2 + j;
std::cerr << std::endl;
exit(1);
}
}
read2 += ret;
}
else
{
std::cerr << "Read Error: " << ret << std::endl;
}
std::cerr << "Requested " << psize << ", got " << ret << " bytes" << std::endl;
std::cerr << "Read " << read2 << " of " << sent1 << " bytes" << std::endl;
}
std::cerr << "Iteration " << i + 1 << " finished correctly!" << std::endl;
sleep(5);
}
return 1;
}
int setup_socket(struct sockaddr_in addr)
{
int sockfd = tou_socket(PF_INET, SOCK_STREAM, 0);
if (sockfd <= 0)
{
std::cerr << "Failed to open socket!: ";
std::cerr << "Socket Error:" << tou_errno(sockfd) << std::endl;
return -1;
}
std::cerr << "Socket Created: " << sockfd << std::endl;
int err = tou_bind(sockfd, (struct sockaddr *) &addr, sizeof(addr));
if (err < 0)
{
std::cerr << "Error: Cannot bind socket: ";
std::cerr << err << std::endl;
return -1;
}
std::cerr << "Socket1 Bound to: " << addr << std::endl;
return sockfd;
}
int connect_socket_pair(int fd1, int fd2,
struct sockaddr_in addr1, struct sockaddr_in addr2)
{
std::cerr << "Socket2 Listening " << std::endl;
/* listen */
int err = tou_listenfor(fd2, (struct sockaddr *) &addr1, sizeof(addr1));
int err_num;
if (err < 0)
{
err_num = tou_errno(fd2);
if (err_num != EINPROGRESS)
{
std::cerr << "Cannot Listen!: " << err_num << std::endl;
return -1;
}
}
std::cerr << "Socket1 Connecting to: " << addr2 << std::endl;
err = tou_connect(fd1, (struct sockaddr *) &addr2, sizeof(addr2));
if (err < 0)
{
err_num = tou_errno(fd1);
if (err_num != EINPROGRESS)
{
std::cerr << "Cannot Connect!: " << err_num << std::endl;
return -1;
}
}
bool sock1Connected = false;
bool sock2Connected = false;
while((!sock1Connected) || (!sock2Connected))
{
sleep(1);
/* sock1 */
if((!sock1Connected) && (0 == (err = tou_connected(fd1))))
{
std::cerr << "Waiting for Connect (Sock1)!" << std::endl;
}
if ((!sock1Connected) && (err < 0))
{
std::cerr << "Connect Failed" << std::endl;
return 1;
}
else if (!sock1Connected)
{
// else connected!
sock1Connected = true;
}
/* accept - sock2 */
struct sockaddr_in inaddr;
socklen_t addrlen = sizeof(inaddr);
int nsock = -1;
if ((!sock2Connected) && (0 > (nsock = tou_accept(fd2,
(struct sockaddr *) &inaddr, &addrlen))))
{
errno = tou_errno(fd2);
if (errno != EAGAIN)
{
std::cerr << "Cannot Connect!: " << errno << std::endl;
return 1;
}
else
{
std::cerr << "Waiting for Connect (Sock2)!" << std::endl;
}
}
else if (nsock > 0)
{
/* connected */
sock2Connected = true;
fd2 = nsock;
std::cerr << "Socket Accepted from: " << inaddr << std::endl;
}
}
std::cerr << "Socket Connected" << std::endl;
return 1;
}
/* This transmits into sockfd1, and check to see that we recv
* it back from sockfd2
*/
int send_data_via_pair(int sockfd1, int sockfd2, char *data, int size)
{
/* what we recvd */
char *recvd = (char *) malloc(size * 2);
int recvdsize = 0;
int sent = 0;
int sendsize = 0;
int ts_start = time(NULL);
int minsends = 100; /* min of 100 sends to complete all data */
/* ensure we don't end up sending nothing */
if (minsends * 10 > size)
{
minsends = size / 10;
}
bool doneWrite = false;
bool doneRead = false;
while((!doneWrite) || (!doneRead))
{
/* have a little break */
//usleep(10000); /* 0.01 sec */
//usleep(250000); /* 0.25 sec */
usleep(500000); /* 0.50 sec */
/* decide how much to send */
sendsize = (int) (((float) (size / minsends)) *
(rand() / (RAND_MAX + 1.0)));
/* limit send */
if (sent + sendsize > size)
{
sendsize = size - sent;
}
/* if we've finished */
if (sent == size)
{
/* eof */
std::cerr << "Write Done!" << std::endl;
doneWrite = true;
sendsize = 0;
}
/* now we write */
if ((sendsize > 0)&&(-1==tou_write(sockfd1,&(data[sent]),sendsize)))
{
std::cerr << "Write Error: " << tou_errno(sockfd1) << std::endl;
if (tou_errno(sockfd1) != EAGAIN)
{
std::cerr << "FATAL ERROR ending transfer" << std::endl;
doneRead = true;
doneWrite = true;
}
}
else
{
sent += sendsize;
}
int ret = 0;
int readsize = (int) (((float) (size / minsends)) *
(rand() / (RAND_MAX + 1.0)));
if (readsize > size - recvdsize)
readsize = size - recvdsize;
if (0 < (ret = tou_read(sockfd2, &(recvd[recvdsize]), readsize)))
{
std::cerr << "TF(" << ret << ")" << std::endl;
recvdsize += ret;
}
else if (ret == 0)
{
doneRead = true;
std::cerr << "Read Done! (ret:0)" << std::endl;
}
else
{
std::cerr << "Read Error: " << tou_errno(sockfd2) << std::endl;
std::cerr << "Read " << recvdsize << "/" << size;
std::cerr << " attempted: " << readsize << std::endl;
if (tou_errno(sockfd2) != EAGAIN)
{
std::cerr << "FATAL ERROR ending transfer" << std::endl;
doneRead = true;
doneWrite = true;
}
}
if (recvdsize == size)
{
doneRead = true;
std::cerr << "Read Done!" << std::endl;
}
}
/* we have transmitted it all, so
* check the data
*/
int i;
int diffCount = 0;
for(i = 0; i < size; i++)
{
if (recvd[i] != data[i])
{
diffCount++;
if (diffCount < 10)
{
std::cerr << "Error Byte:" << i << " is different";
std::cerr << std::endl;
}
}
}
if (diffCount)
{
std::cerr << "Errors (" << diffCount << "/" << size << ") in tranmission ... Exiting!";
std::cerr << std::endl;
exit(1);
}
int ts_end = time(NULL);
double rough_rate = size / (double) (ts_end - ts_start);
std::cerr << "Successful Data Tranmission: " << size << " in " << ts_end-ts_start << " secs";
std::cerr << std::endl;
std::cerr << "Approximate Rate: " << rough_rate / 1000.0 << " kbytes/sec";
std::cerr << std::endl;
return 1;
}