Reticulum Network Stack
Release 0.3.8 beta

Mark Qvist

Jun 22, 2022

CONTENTS

1 What is Reticulum? 3
1.1 Current Status o e 3

1.2 What does Reticulum Offer? e 3

1.3 Where can Reticulum be Used? e 4

1.4 Interface Types and Devices o o i i i i e e e e e e e e 4

1.5 Caveat Emptor e e e e e e 5

2 Getting Started Fast 7
2.1 Try Using a Reticulum-based Program 7
2.1.1 Nomad Network o e e e e e e e e e e e e e 7

2.1.2 Sideband L e e e e e e e e e e e 8

2.2 Using the Included Utilities e 10

2.3 Creating a Network With Reticulum o o 10
2.4 Connecting Reticulum Instances Over the Internet 10

2.5 Connect to the Public Testnet e e e 11
2.6 Adding Radio Interfaces L e 11

2.7 Develop a Program with Reticulum o 12

2.8 Participate in Reticulum Development e 12

2.9 Reticulumon ARMO4 e 13
2.10 Reticulumon Android e 13
2.11 Pure-Python Reticulum e e 14

3 Using Reticulum on Your System 15
3.1 Configuration & Data e e e e e e e 15
3.2 Included Utility Programs o . e e e e e e e e 17
32,1 Thernsd Utility L . o e e e e e 17

3.22 Thernstatus Utility o o L e e e e 18

323 Thernpath Utility L . e 19

3.2.4 Thernprobe Utility o . e e e e e e 20

325 Therncp Utility L . o o e e e e e e 20

32.6 Thernx Utility o o e e e e e e e 21

3.3 Improving System Configuration. Lo e e 22
3.3.1 Fixed Serial Port Names e 22

3.3.2 Reticulumas a System Service Lo e e e e e e e e e e e 23

4 Building Networks 25
4.1 Concepts & OVEIVIEW o b v v ittt e e e e 25
4.2 Example Scenarios e e e e e e e e e e e e e e e e e e e 26
4.2.1 Interconnected LoRa Sites e e e 26

4.2.2 Bridging Overthe Internet 27

423 Growthand CONVErgence v v v v v i i e e e e e e e e e e e e e e e
5 Supported Interfaces
5.1 AutolInterface e
5.2 I2PInterface e e e
5.3 TCPServerInterface e e e e
5.4 TCPClientInterface e e
5.5 UDPlnterface e e e e e
5.6 RNodeLoRalnterface e
5.7 Serial Interface L e
5.8 Pipelnterface e e e e e
5.9 KISSInterface e e e
5.10 AX25KISS Interface e
5.11 Common Interface Options o o e e
5.12 Interface Modes L e
5.13 Announce Rate Control e
Communications Hardware
6.1 RNode e
6.1.1 Creating RNodes e e e
6.1.2 Supported Boards e e e e e
6.1.3 Installation e e e e e e e e e e e e e e e
6.1.4 Usage withReticulum.
6.1.5 Suppliers e e
6.2 WiFi-based Hardware e
6.3 Combining Hardware Types o o 0 i i e e e e e e e
Understanding Reticulum
T.1 Motivation o e
T2 Goals e e e e
7.3 Introduction & Basic Functionality L o
7.3.1 Destinations e e e e e e e e e e e e e e e e
7.3.2 Public Key Announcements e e e e
7.3.3 Identities L e e e e e e e e e e e
7.3.4 Getting Further L e e e e
7.4 Reticulum Transport e e e
TAT NodeTypes o o v v i e e e e e e e
7.4.2 The Announce Mechanismin Detail
7.4.3 Reaching the Destination e e e
TA44 RESOUICES . . v v v o e i e
7.5 Reference Setup L e e e e e
7.6 Protocol Specifics
7.6.1 Packet Prioritisation e e e e e e e
7.6.2 Interface Access Codes e e e e e e
7.6.3 Wire Format. e e e e e e e e e
7.6.4 Announce PropagationRules L e
7.6.5 Cryptographic Primitives L o
API Reference
8.1 Classes v e e e e e e e e e e e e e e
8.1.1 Reticulum e e e e e e e e
8.1.2 Identityo e e e e e e e e e
8.1.3 Destination e e e e e e e e e e
8.1.4 Packet e e e e e
8.1.5 PacketReceipt. o e e e e e

29
29
30
31
32
33
34
35
35
35
36
37
38
39

41
41
42
42
44
45
45
45
45

47
47
48
48
49
51
51
52
52
52
52
53
55
56
57
57
57
57
60
60

8.1.6 Link e e e e e
8.1.7 Request Receipt i e e e e e e e
8.1.8° Resource e e e e e
8.1.9 Transport e e
9 Code Examples
9.1 Minimal e e e e e e
02 ANNOUNCE ot it e e e e e e e e e e e e e e e e e e
9.3 Broadcast e e e e e e e e
9.4 Echo e
0.5 LinK. e e e e s
9.6 Identification L e e e e e e e
9.7 Requests & Responses e
9.8 Filetransfer L e
10 Support Reticulum
10.1 Donations 0 e e e e e e e e e e
10.2 Provide Feedback e e e
Index

77
77
79
83
85
92
97
104
109

123
123
123

125

Reticulum Network Stack, Release 0.3.8 beta

This manual aims to provide you with all the information you need to understand Reticulum, build networks or develop
programs using it, or to participate in the development of Reticulum itself.

CONTENTS 1

Reticulum Network Stack, Release 0.3.8 beta

2 CONTENTS

CHAPTER
ONE

WHAT IS RETICULUM?

Reticulum is a cryptography-based networking stack for building wide-area networks with readily available hardware,
that can continue to operate even with extremely low bandwidth and very high latency.

Reticulum allows you to build wide-area networks with off-the-shelf tools, and offers end-to-end encryption, autocon-
figuring cryptographically backed multi-hop transport, efficient addressing, unforgeable packet acknowledgements and
more.

Reticulum is a complete networking stack, and does not need IP or higher layers, although it is easy to utilise IP (with
TCP or UDP) as the underlying carrier for Reticulum. It is therefore trivial to tunnel Reticulum over the Internet or
private IP networks. Reticulum is built directly on cryptographic principles, allowing resilience and stable functionality
in open and trustless networks.

No kernel modules or drivers are required. Reticulum runs completely in userland, and can run on practically any
system that runs Python 3. Reticulum runs well even on small single-board computers like the Pi Zero.

1.1 Current Status

Reticulum should currently be considered beta software. All core protocol features are implemented and functioning,
but additions will probably occur as real-world use is explored. There will be bugs. The API and wire-format can be
considered stable at the moment, but could change if absolutely warranted.

1.2 What does Reticulum Offer?

» Coordination-less globally unique adressing and identification

Fully self-configuring multi-hop routing

* Complete initiator anonymity, communicate without revealing your identity

* Asymmetric encryption based on X25519, and Ed25519 signatures as a basis for all communication
» Forward Secrecy by using ephemereal Elliptic Curve Diffie-Hellman keys on Curve25519

* Reticulum uses the Fernet specification for on-the-wire / over-the-air encryption

All keys are ephemeral and derived from an ECDH key exchange on Curve25519
AES-128 in CBC mode with PKCS7 padding
HMAC using SHA256 for authentication

IVs are generated through os.urandom()

» Unforgeable packet delivery confirmations

https://github.com/fernet/spec/blob/master/Spec.md

Reticulum Network Stack, Release 0.3.8 beta

A variety of supported interface types
* An intuitive and developer-friendly API
« Efficient link establishment
— Total bandwidth cost of setting up a link is only 3 packets, totalling 237 bytes

— Low cost of keeping links open at only 0.62 bits per second

Reliable and efficient transfer of arbritrary amounts of data
— Reticulum can handle a few bytes of data or files of many gigabytes
— Sequencing, transfer coordination and checksumming is automatic
— The API is very easy to use, and provides transfer progress

* Authentication and virtual network segmentation on all supported interface types

Flexible scalability allowing extremely low-bandwidth networks to co-exist and interoperate with large, high-
bandwidth networks

1.3 Where can Reticulum be Used?

Over practically any medium that can support at least a half-duplex channel with 500 bits per second throughput, and
an MTU of 500 bytes. Data radios, modems, LoRa radios, serial lines, AX.25 TNCs, amateur radio digital modes,
ad-hoc WiFi, free-space optical links and similar systems are all examples of the types of interfaces Reticulum was
designed for.

An open-source LoRa-based interface called RNode has been designed as an example transceiver that is very suitable
for Reticulum. It is possible to build it yourself, to transform a common LoRa development board into one, or it can be
purchased as a complete transceiver.

Reticulum can also be encapsulated over existing IP networks, so there’s nothing stopping you from using it over wired
ethernet or your local WiFi network, where it’ll work just as well. In fact, one of the strengths of Reticulum is how
easily it allows you to connect different mediums into a self-configuring, resilient and encrypted mesh.

As an example, it’s possible to set up a Raspberry Pi connected to both a LoRa radio, a packet radio TNC and a WiFi
network. Once the interfaces are added, Reticulum will take care of the rest, and any device on the WiFi network can
communicate with nodes on the LoRa and packet radio sides of the network, and vice versa.

1.4 Interface Types and Devices

Reticulum implements a range of generalised interface types that covers the communications hardware that Reticulum
can run over. If your hardware is not supported, it’s relatively simple to implement an interface class. Currently,
Reticulum can use the following devices and communication mediums:

* Any ethernet device

WiFi devices

Wired ethernet devices

Fibre-optic transceivers

Data radios with ethernet ports
* LoRa using RNode

— Can be installed on many popular LoRa boards

4 Chapter 1. What is Reticulum?

https://unsigned.io/rnode
https://unsigned.io/rnode
https://github.com/markqvist/rnodeconfigutil#supported-devices

Reticulum Network Stack, Release 0.3.8 beta

— Can be purchased as a ready to use transceiver

» Packet Radio TNCs, such as OpenModem
— Any packet radio TNC in KISS mode
— Ideal for VHF and UHF radio

* Any device with a serial port

* The I2P network

* TCP over IP networks

» UDP over IP networks

* Anything you can connect via stdio
— Reticulum can use external programs and pipes as interfaces
— This can be used to easily hack in virtual interfaces
— Or to quickly create interfaces with custom hardware

For a full list and more details, see the Supported Interfaces chapter.

1.5 Caveat Emptor

Reticulum is an experimental networking stack, and should be considered as such. While it has been built with cryp-
tography best-practices very foremost in mind, it has not been externally security audited, and there could very well be
privacy-breaking bugs. To be considered secure, Reticulum needs a thourough security review by independt cryptog-
raphers and security researchers. If you want to help out, or help sponsor an audit, please do get in touch.

1.5. Caveat Emptor 5

https://unsigned.io/rnode
https://unsigned.io/openmodem

Reticulum Network Stack, Release 0.3.8 beta

6 Chapter 1. What is Reticulum?

CHAPTER
TWO

GETTING STARTED FAST

The best way to get started with the Reticulum Network Stack depends on what you want to do. This guide will outline
sensible starting paths for different scenarios.

2.1 Try Using a Reticulum-based Program

If you simply want to try using a program built with Reticulum, a few different programs exist that allow basic com-
munication and a range of other useful functions over even extremely low-bandwidth Reticulum networks.

These programs will let you get a feel for how Reticulum works. They have been designed to run well over networks
based on LoRa or packet radio, but can also be used completely over local WiFi, wired ethernet, the Internet, or any
combination.

As such, it is easy to get started experimenting, without having to set up any radio transceivers or infrastructure just to
try it out. Launching the programs on separate devices connected to the same WiFi network is enough to get started,
and physical radio interfaces can then be added later.

2.1.1 Nomad Network

The terminal-based program Nomad Network provides a complete encrypted communications suite built with Reticu-
lum. It features encrypted messaging (both direct and delayed-delivery for offline users), file sharing, and has a built-in
text-browser and page server with support for dynamically rendered pages, user authentication and more.

https://github.com/markqvist/nomadnet

Reticulum Network Stack, Release 0.3.8 beta

@® [Conversations] [Network] [Log 1 [Config] [Guide 1 [Quit 1]

Known Nodes Unsigned Testnode 1

() Unsigned Testnode 1

This node is currently not hosting any content.

You can add pages and files can be added by placing them in the relevant storage directories.

Enter URL

Network Stats
Heard Pe (last
Known Node

Local Peer Info
Addr : 0a59377daec8eb8edc3a
Name UnsignedMark
Last Announce 10 minutes ago
< Announce Now

< Node Info

[C-1] Toggle Nodes-sAnnounces view [C-x] Remove entry [C-w] Disconnect [C-d] Back [<C-f] Forward [<-r] Reload [C-u] Enter URL

Nomad Network is a user-facing client for the messaging and information-sharing protocol LXMF, another project
built with Reticulum.

You can install Nomad Network via pip:

Install ...
pip3 install nomadnet

... and run
nomadnet

Please Note: If this is the very first time you use pip to install a program on your system, you might need to reboot
your system for your program to become available. If you get a “command not found” error or similar when running
the program, reboot your system and try again.

2.1.2 Sideband

If you would rather use a program with a graphical user interface, you can take a look at Sideband, which is available
for Android, Linux and macOS.

8 Chapter 2. Getting Started Fast

_images/nomadnet_3.png
https://github.com/markqvist/nomadnet
https://github.com/markqvist/lxmf
https://unsigned.io/sideband

Reticulum Network Stack, Release 0.3.8 beta

= Alice <39b1fa912f73f0d4047e>

Sent 2022-03-26 18:25:13 Received 2022-03-26 18:25:14

Hi Bob, | received your announce. It seems to be working. Are you getting this
message?

Sent 2022-03-26 18:26:57 State Delivered

| am getting it, and trying to message you back now. Is everything good at your
place?

Sent 2022-03-26 18:28:12 Received 2022-03-26 18:28:12

Very much so, thank you :) Wow, it all seems to be working great. Pretty amazing to
think that this is a completely independent comms system. Would have thought it
was much harder to build something like this.

Sent 2022-03-26 18:29:51 State Delivered

Absolutely! I'm pretty happy with this as well. Can't wait to get the others on the
system too.

Sent 2022-03-26 18:30:51 Received 2022-03-26 18:30:51

They'll be excited to get on. I'll start to look into setting up an information sharing
hub using the page hosting feature in Nomad Network. Can you get radios ordered
and installed for the others?

Sideband is currently in the early stages of development, but already provides basic communication features, and in-
teroperates with Nomad Network, or any other LXMF client.

2.1. Try Using a Reticulum-based Program 9

_images/sideband_1.png

Reticulum Network Stack, Release 0.3.8 beta

2.2 Using the Included Utilities

Reticulum comes with a range of included utilities that make it easier to manage your network, check connectivity and
make Reticulum available to other programs on your system.

You can use rnsd to run Reticulum as a background or foreground service, and the rnstatus, rnpath and rnprobe
utilities to view and query network status and connectivity.

To learn more about these utility programs, have a look at the Using Reticulum on Your System chapter of this manual.

2.3 Creating a Network With Reticulum

To create a network, you will need to specify one or more interfaces for Reticulum to use. This is done in the Reticulum
configuration file, which by default is located at ~/.reticulum/config. You can edit this file by hand, or use the
interactive rnsconfig utility.

When Reticulum is started for the first time, it will create a default configuration file, with one active interface. This
default interface uses your existing ethernet and WiFi networks (if any), and only allows you to communicate with other
Reticulum peers within your local broadcast domains.

To communicate further, you will have to add one or more interfaces. The default configuration includes a number of
examples, ranging from using TCP over the internet, to LoRa and Packet Radio interfaces.

With Reticulum, you only need to configure what interfaces you want to communicate over. There is no need to
configure address spaces, subnets, routing tables, or other things you might be used to from other network types.

Once Reticulum knows which interfaces it should use, it will automatically discover topography and configure transport
of data to any destinations it knows about.

In situations where you already have an established WiFi or ethernet network, and many devices that want to utilise the
same external Reticulum network paths (for example over LoRa), it will often be sufficient to let one system act as a
Reticulum gateway, by adding any external interfaces to the configuration of this system, and then enabling transport
on it. Any other device on your local WiFi will then be able to connect to this wider Reticulum network just using the
default (Autolnterface) configuration.

Possibly, the examples in the config file are enough to get you started. If you want more information, you can read the
Building Networks and Interfaces chapters of this manual.

2.4 Connecting Reticulum Instances Over the Internet

Reticulum currently offers two interfaces suitable for connecting instances over the Internet: 7CP and /2P. Each inter-
face offers a different set of features, and Reticulum users should carefully choose the interface which best suites their
needs.

The TCPServerInterface allows users to host an instance accessible over TCP/IP. This method is generally faster,
lower latency, and more energy efficient than using I2PInterface, however it also leaks more data about the server
host.

TCP connections reveal the IP address of both your instance and the server to anyone who can inspect the connection.
Someone could use this information to determine your location or identity. Adversaries inspecting your packets may
be able to record packet metadata like time of transmission and packet size. Even though Reticulum encrypts traffic,
TCP does not, so an adversary may be able to use packet inspection to learn that a system is running Reticulum, and
what other IP adresses connect to it. Hosting a publicly reachable instance over TCP also requires a publicly reachable
IP address, which most Internet connections don’t offer anymore.

10 Chapter 2. Getting Started Fast

Reticulum Network Stack, Release 0.3.8 beta

The I2PInterface routes messages through the Invisible Internet Protocol (I2P). To use this interface, users must
also run an I2P daemon in parallel to rnsd. For always-on I2P nodes it is recommended to use i2pd.

By default, I2P will encrypt and mix all traffic sent over the Internet, and hide both the sender and receiver Reticulum
instance IP addresses. Running an I2P node will also relay other 12P user’s encrypted packets, which will use extra
bandwidth and compute power, but also makes timing attacks and other forms of deep-packet-inspection much more
difficult.

I2P also allows users to host globally available Reticulum instances from non-public IPs and behind firewalls and NAT.

In general it is recommended to use an I2P node if you want to host a publically accessible instance, while preserving
anonymity. If you care more about performance, and a slightly easier setup, use TCP.

2.5 Connect to the Public Testnet

An experimental public testnet has been made accessible over both I2P and TCP. You can join it by adding one of the
following interfaces to your .reticulum/config file:

For connecting over TCP/IP:

[[RNS Testnet Frankfurt]]
type = TCPClientInterface
interface_enabled = yes
outgoing = True
target_host = frankfurt.rns.unsigned.io
target_port = 4965

For connecting over I2P:
[[RNS Testnet I2P Node A]]
type = I2PInterface
interface_enabled = yes
peers = ykzlw5Sujbaqc2xkec4cpvgyxj257wcrmmgkuxgmgcur7cq3w3lha.b32.i2p

Many other Reticulum instances are connecting to this testnet, and you can also join it via other entry points if you
know them. There is absolutely no control over the network topography, usage or what types of instances connect. It
will also occasionally be used to test various failure scenarios, and there are no availability or service guarantees.

2.6 Adding Radio Interfaces

Once you have Reticulum installed and working, you can add radio interfaces with any compatible hardware you have
available. Reticulum supports a wide range of radio hardware, and if you already have any available, it is very likely
that it will work with Reticulum. For information on how to configure this, see the /nterfaces section of this manual.

If you do not already have transceiver hardware available, you can easily and cheaply build an RNode, which is a
general-purpose long-range digital radio transceiver, that integrates easily with Reticulum.

To build one yourself requires installing a custom firmware on a supported LoRa development board with an auto-
install script. Please see the Communications Hardware chapter for a guide. If you prefer purchasing a ready-made
unit, you can refer to the list of suppliers. For more information on RNode, you can also refer to these additional
external resources:

¢ How To Make Your Own RNodes

* Installing RNode Firmware on Compatible LoRa Devices

2.5. Connect to the Public Testnet 11

https://geti2p.net/en/
https://i2pd.website/
https://unsigned.io/how-to-make-your-own-rnodes/
https://unsigned.io/installing-rnode-firmware-on-t-beam-and-lora32-devices/

Reticulum Network Stack, Release 0.3.8 beta

* Private, Secure and Uncensorable Messaging Over a LoRa Mesh
* RNode Firmware

If you have communications hardware that is not already supported by any of the existing interface types, but you think
would be suitable for use with Reticulum, you are welcome to head over to the GitHub discussion pages and propose
adding an interface for the hardware.

2.7 Develop a Program with Reticulum

If you want to develop programs that use Reticulum, the easiest way to get started is to install the latest release of
Reticulum via pip:

pip3 install rns

The above command will install Reticulum and dependencies, and you will be ready to import and use RNS in your
own programs. The next step will most likely be to look at some Example Programs.

For extended functionality, you can install optional dependencies:

pip3 install pyserial netifaces

Further information can be found in the API Reference.

2.8 Participate in Reticulum Development

If you want to participate in the development of Reticulum and associated utilities, you’ll want to get the latest source
from GitHub. In that case, don’t use pip, but try this recipe:

Install dependencies
pip3 install cryptography pyserial netifaces

Clone repository
git clone https://github.com/markgvist/Reticulum.git

Move into Reticulum folder and symlink library to examples folder
cd Reticulum
In -s ../RNS ./Examples/

Run an example
python3 Examples/Echo.py -s

Unless you've manually created a config file, Reticulum will do so now,
and immediately exit. Make any necessary changes to the file:
nano ~/.reticulum/config

... and launch the example again.
python3 Examples/Echo.py -s

You can now repeat the process on another computer,
and run the same example with -h to get command line options.
python3 Examples/Echo.py -h

(continues on next page)

12 Chapter 2. Getting Started Fast

https://unsigned.io/private-messaging-over-lora/
https://github.com/markqvist/RNode_Firmware/
https://github.com/markqvist/Reticulum/discussions

Reticulum Network Stack, Release 0.3.8 beta

(continued from previous page)

Run the example in client mode to "ping" the server.
Replace the hash below with the actual destination hash of your server.
python3 Examples/Echo.py 3el2£fc71692f8ec47bc5

Have a look at another example
python3 Examples/Filetransfer.py -h

When you have experimented with the basic examples, it’s time to go read the Understanding Reticulum chapter.

2.9 Reticulum on ARM64

On some architectures, including ARM64, not all dependencies have precompiled binaries. On such systems, you will
need to install python3-dev before installing Reticulum or programs that depend on Reticulum.

Install Python and development packages
sudo apt update
sudo apt install python3 python3-pip python3-dev

Install Reticulum
python3 -m pip install rns

2.10 Reticulum on Android

Reticulum can be used on Android in different ways. The easiest way to get started is using an app like Sideband.

For more control and features, you can use Reticulum and related programs via the Termux app, at the time of writing
available on F-droid.

Termux is a terminal emulator and Linux environment for Android based devices, which includes the ability to use
many different programs and libraries, including Reticulum.

Since the Python cryptography.io module does not offer pre-built wheels for Android, the standard one-line install of
Reticulum does not work on Android, and a few extra commands are required.

From within Termux, execute the following:

First, make sure indexes and packages are up to date.
pkg update
pkg upgrade

Then install dependencies for the cryptography library.
pkg install python build-essential openssl libffi rust

Make sure pip is up to date, and install the wheel module.
pip3 install wheel pip --upgrade

To allow the installer to build the cryptography module,
we need to let it know what platform we are compiling for:
export CARGO_BUILD_TARGET="aarch64-linux-android"

(continues on next page)

2.9. Reticulum on ARM64 13

https://unsigned.io/sideband
https://termux.com/
https://f-droid.org

Reticulum Network Stack, Release 0.3.8 beta

(continued from previous page)

Start the install process for the cryptography module.

Depending on your device, this can take several minutes,
since the module must be compiled locally on your device.
pip3 install cryptography

If the above installation succeeds, you can now install
Reticulum and any related software
pip3 install rns

It is also possible to include Reticulum in apps compiled and distributed as Android APKs. A detailed tutorial and
example source code will be included here at a later point.

2.11 Pure-Python Reticulum

In some rare cases, and on more obscure system types, it is not possible to install one or more dependencies

On more unusual systems, and in some rare cases, it might not be possible to install or even compile one or more of
the above modules. In such situations, you can use the rnspure package instead of the rns package. The rnspure
package requires no external dependencies for installation. Please note that the actual contents of the rns and rnspure
packages are completely identical. The only difference is that the rnspure package lists no dependencies required for
installation.

No matter how Reticulum is installed and started, it will load external dependencies only if they are needed and avail-
able. If for example you want to use Reticulum on a system that cannot support pyserial, it is perfectly possible to do
so using the rnspure package, but Reticulum will not be able to use serial-based interfaces. All other available modules
will still be loaded when needed.

Please Note! If you use the ruspure package to run Reticulum on systems that do not support PyCA/cryptography, it
is important that you read and understand the Cryptographic Primitives section of this manual.

14 Chapter 2. Getting Started Fast

https://github.com/pyca/cryptography

CHAPTER
THREE

USING RETICULUM ON YOUR SYSTEM

Reticulum is not installed as a driver or kernel module, as one might expect of a networking stack. Instead, Reticulum
is distributed as a Python module. This means that no special privileges are required to install or use it. It is also very
light-weight, and easy to transfer to and install on new systems. Any program or application that uses Reticulum will
automatically load and initialise Reticulum when it starts.

In many cases, this approach is sufficient. When any program needs to use Reticulum, it is loaded, initialised, interfaces
are brought up, and the program can now communicate over any Reticulum networks available. If another program
starts up and also wants access to the same Reticulum network, the instance is simply shared. This works for any
number of programs running concurrently, and is very easy to use, but depending on your use case, there are other
options.

3.1 Configuration & Data

A Reticulum stores all information that it needs to function in a single file- system directory. By default, this directory
is ~/.reticulum, but you can use any directory you wish. You can also run multiple separate Reticulum instances on
the same physical system, in complete isolation from each other, or connected together.

In most cases, a single physical system will only need to run one Reticulum instance. This can either be launched at
boot, as a system service, or simply be brought up when a program needs it. In either case, any number of programs
running on the same system will automatically share the same Reticulum instance, if the configuration allows for it,
which it does by default.

The entire configuration of Reticulum is found in the ~/.reticulum/config file. When Reticulum is first started on
a new system, a basic, functional configuration file is created. The default configuration looks like this:

This is the default Reticulum config file.
You should probably edit it to include any additional,
interfaces and settings you might need.

H*

Only the most basic options are included in this default
configuration. To see a more verbose, and much longer,
configuration example, you can run the command:

rnsd --exampleconfig

H W R w

[reticulum]

If you enable Transport, your system will route traffic
for other peers, pass announces and serve path requests.
This should only be done for systems that are suited to

(continues on next page)

15

Reticulum Network Stack, Release 0.3.8 beta

(continued from previous page)

act as transport nodes, ie. if they are stationary and
always-on. This directive is optional and can be removed
for brevity.

enable_transport = False

By default, the first program to launch the Reticulum

Network Stack will create a shared instance, that other

programs can communicate with. Only the shared instance

opens all the configured interfaces directly, and other

local programs communicate with the shared instance over
a local socket. This is completely transparent to the

user, and should generally be turned on. This directive

is optional and can be removed for brevity.

share_instance = Yes

If you want to run multiple *different® shared instances
on the same system, you will need to specify different
shared instance ports for each. The defaults are given
below, and again, these options can be left out if you
don't need them.

shared_instance_port = 37428
instance_control_port = 37429

You can configure Reticulum to panic and forcibly close
i1f an unrecoverable interface error occurs, such as the
hardware device for an interface disappearing. This is

an optional directive, and can be left out for brevity.
This behaviour is disabled by default.

panic_on_interface_error = No

[logging]

Valid log levels are 0 through 7:

0: Log only critical information

: Log errors and lower log levels

: Log warnings and lower log levels

: Log notices and lower log levels

: Log info and lower (this is the default)
: Verbose logging

: Debug logging

: Extreme logging

H*

HOH K K W R R
NO Ui WN R

loglevel = 4

(continues on next page)

16 Chapter 3. Using Reticulum on Your System

Reticulum Network Stack, Release 0.3.8 beta

(continued from previous page)

The interfaces section defines the physical and virtual
interfaces Reticulum will use to communicate on. This

section will contain examples for a variety of interface
types. You can modify these or use them as a basis for
your own config, or simply remove the unused ones.

[interfaces]

This interface enables communication with other
link-local Reticulum nodes over UDP. It does not
need any functional IP infrastructure like routers

or DHCP servers, but will require that at least link-
local IPv6 is enabled in your operating system, which
should be enabled by default in almost any 0S. See
the Reticulum Manual for more configuration options.

O W W W W W

[[Default Interface]]
type = AutolInterface
interface_enabled = True

If Reticulum infrastructure already exists locally, you probably don’t need to change anything, and you may already be
connected to a wider network. If not, you will probably need to add relevant inferfaces to the configuration, in order to
communicate with other systems. It is a good idea to read the comments and explanations in the above default config.
It will teach you the basic concepts you need to understand to configure your network. Once you have done that, take
a look at the Interfaces chapter of this manual.

3.2 Included Utility Programs

Reticulum includes a range of useful utilities, both for managing your Reticulum networks, and for carrying out common
tasks over Reticulum networks, such as transferring files to remote systems, and executing commands and programs
remotely.

If you often use Reticulum from several different programs, or simply want Reticulum to stay available all the time, for
example if you are hosting a transport node, you might want to run Reticulum as a separate service that other programs,
applications and services can utilise.

3.2.1 The rnsd Utility

It is very easy to run Reticulum as a service. Simply run the included rnsd command. When rnsd is running, it will
keep all configured interfaces open, handle transport if it is enabled, and allow any other programs to immediately
utilise the Reticulum network it is configured for.

You can even run multiple instances of rnsd with different configurations on the same system.

Install Reticulum
pip3 install rns

Run rnsd
rnsd

3.2. Included Utility Programs 17

Reticulum Network Stack, Release 0.3.8 beta

usage: rnsd [-h] [--config CONFIG] [-v] [-q] [--version]
Reticulum Network Stack Daemon

optional arguments:

-h, --help show this help message and exit

--config CONFIG path to alternative Reticulum config directory
-v, --verbose

-q, --quiet

--version show program's version number and exit

You can easily add rnsd as an always-on service by configuring a service.

3.2.2 The rnstatus Utility

Using the rnstatus utility, you can view the status of configured Reticulum interfaces, similar to the ifconfig
program

Run rnstatus
rnstatus

Example output

Shared Instance[37428]
Status : Up
Serving : 1 program

Rate : 1.00 Gbps
Traffic : 83.13 KB?T
86.10 KB

AutoInterface[Local]
Status : Up

Mode : Full

Rate : 10.00 Mbps

Peers : 1 reachable

Traffic : 63.23 KB?T
80.17 KBV

TCPInterface[RNS Testnet Frankfurt/frankfurt.rns.unsigned.io:4965]
Status : Up

Mode : Full

Rate : 10.00 Mbps

Traffic : 187.27 KB?T
74.17 KBV

RNodeInterface[RNode UHF]
Status : Up
Mode : Access Point
Rate : 1.30 kbps
Access : 64-bit IFAC by <...e702c42ba8>
Traffic : 8.49 KB?T
9.23 KBY

(continues on next page)

18 Chapter 3. Using Reticulum on Your System

Reticulum Network Stack, Release 0.3.8 beta

(continued from previous page)

Reticulum Transport Instance <5245a8efel788c6a70el> running

usage: rnstatus [-h] [--config CONFIG] [--version] [-a] [-v]
Reticulum Network Stack Status

optional arguments:

-h, --help show this help message and exit

--config CONFIG path to alternative Reticulum config directory
--version show program's version number and exit

-a, --all show all interfaces

-v, --verbose

3.2.3 The rnpath Utility

With the rnpath utility, you can look up and view paths for destinations on the Reticulum network.

Run rnpath
rnpath eca6f4ed4dc26ae329e61

Example output
Path found, destination <eca6f4e4dc26ae329e61> is 4 hops away via <56b115c30cd386cad69c>..
—on TCPInterface[Testnet/frankfurt.rns.unsigned.io:4965]

usage: rnpath [-h] [--config CONFIG] [--version] [-t] [-r] [-d] [-D] [-w seconds] [-Vv].
— [destination]

Reticulum Path Discovery Utility

positional arguments:
destination hexadecimal hash of the destination

optional arguments:

-h, --help show this help message and exit

--config CONFIG path to alternative Reticulum config directory
--version show program's version number and exit

-t, --table show all known paths

-r, --rates show announce rate info

-d, --drop remove the path to a destination

-D, --drop-announces drop all queued announces

-w seconds timeout before giving up

-v, --verbose

3.2. Included Utility Programs 19

Reticulum Network Stack, Release 0.3.8 beta

3.2.4 The rnprobe Utility

The rnprobe utility lets you probe a destination for connectivity, similar to the ping program. Please note that probes
will only be answered if the specified destination is configured to send proofs for received packets. Many destinations
will not have this option enabled, and will not be probable.

Run rnprobe
rnprobe example_utilities.echo.request 9382f334de63217a4278

Example output

Sent 16 byte probe to <9382f334de63217a4278>
Valid reply received from <9382f334de63217a4278>
Round-trip time is 38.469 milliseconds over 2 hops

usage: rnprobe [-h] [--config CONFIG] [--version] [-v] [full_name] [destination_hash]
Reticulum Probe Utility
positional arguments:

full_name full destination name in dotted notation

destination_hash hexadecimal hash of the destination

optional arguments:

-h, --help show this help message and exit

--config CONFIG path to alternative Reticulum config directory
--version show program's version number and exit

-v, --verbose

3.2.5 The rncp Utility

The rncp utility is a simple file transfer tool. Using it, you can transfer files through Reticulum.

Run rncp on the receiving system, specifying which identities
are allowed to send files
rncp --receive -a 940ea3f9e1037d38758f -a e28d5aee4317c24a9041

From another system, copy a file to the receiving system
rncp ~/path/to/file.tgz 256320d405d6d525d1e9

You can specify as many allowed senders as needed, or complete disable authentication.

usage: rncp [-h] [--config path] [-v] [-q] [-p] [-r] [-b] [-a allowed_hash] [-n] [-w.
—seconds] [--version] [file] [destination]

Reticulum File Transfer Utility
positional arguments:
file file to be transferred

destination hexadecimal hash of the receiver

optional arguments:
-h, --help show this help message and exit

(continues on next page)

20 Chapter 3. Using Reticulum on Your System

Reticulum Network Stack, Release 0.3.8 beta

(continued from previous page)

--config path path to alternative Reticulum config directory
-v, --verbose increase verbosity

-q, --quiet decrease verbosity

-p, --print-identity print identity and destination info and exit
-r, --receive wait for incoming files

-b, --no-announce don't announce at program start

-a allowed_hash accept from this identity

-n, --no-auth accept files from anyone

-w seconds sender timeout before giving up

--version show program's version number and exit

-v, --verbose

3.2.6 The rnx Utility

The rnx utility is a basic remote command execution program. It allows you to execute commands on remote systems
over Reticulum, and to view returned command output.

Run rnx on the listening system, specifying which identities
are allowed to execute commands
rncp --listen -a 8111c4ff2968ab0c1286 -a 590256654482b4bad038

From another system, run a command
rnx ad9a4c9da60089d41c29 "cat /proc/cpuinfo”

Or enter the interactive mode pseudo-shell
rnx ad9a4c9da60089d41c29 -x

The default identity file is stored in

~/.reticulum/identities/rnx, but you can use
another one, which will be created if it does
not already exist

rnx ad9a4c9da60089d41c29 -i /path/to/identity

You can specify as many allowed senders as needed, or complete disable authentication.

usage: rnx [-h] [--config path] [-v] [-q] [-p] [-1] [-i identity] [-x] [-b] [-a allowed_
—~hash] [-n] [-N] [-d] [-m] [-w seconds] [-W seconds] [--stdin STDIN] [--stdout STDOUT].
—[--stderr STDERR] [--version]

[destination] [command]

Reticulum Remote Execution Utility
positional arguments:
destination hexadecimal hash of the listener

command command to be execute

optional arguments:

-h, --help show this help message and exit

--config path path to alternative Reticulum config directory
-v, --verbose increase verbosity

-q, --quiet decrease verbosity

(continues on next page)

3.2. Included Utility Programs 21

Reticulum Network Stack, Release 0.3.8 beta

(continued from previous page)

-p, --print-identity print identity and destination info and exit
-1, --listen listen for incoming commands

-i identity path to identity to use

-X, --interactive enter interactive mode

-b, --no-announce don't announce at program start

-a allowed_hash accept from this identity

-n, --noauth accept files from anyone

-N, --noid don't identify to listener

-d, --detailed show detailed result output

-m mirror exit code of remote command

-w seconds connect and request timeout before giving up
-W seconds max result download time

--stdin STDIN pass input to stdin

--stdout STDOUT max size in bytes of returned stdout
--stderr STDERR max size in bytes of returned stderr
--version show program's version number and exit

3.3 Improving System Configuration

If you are setting up a system for permanent use with Reticulum, there is a few system configuration changes that can
make this easier to administrate. These changes will be detailed here.

3.3.1 Fixed Serial Port Names

On a Reticulum instance with several serial port based interfaces, it can be beneficial to use the fixed device names for
the serial ports, instead of the dynamically allocated shorthands such as /dev/ttyUSBO®. Under most Debian-based
distributions, including Ubuntu and Raspberry Pi OS, these nodes can be found under /dev/serial/by-id.

You can use such a device path directly in place of the numbered shorthands. Here is an example of a packet radio
TNC configured as such:

[[Packet Radio KISS Interface]]
type = KISSInterface
interface_enabled = True
outgoing = true
port = /dev/serial/by-id/usb-FTDI_FT230X_Basic_UART_43891CKM-if00-port®
speed = 115200
databits = 8
parity = none

stopbits =1
preamble = 150
txtail = 10

persistence = 200
slottime = 20

Using this methodology avoids potential naming mix-ups where physical devices might be plugged and unplugged in
different orders, or when device name assignment varies from one boot to another.

22 Chapter 3. Using Reticulum on Your System

Reticulum Network Stack, Release 0.3.8 beta

3.3.2 Reticulum as a System Service

Instead of starting Reticulum manually, you can install rnsd as a system service and have it start automatically at boot.

If you installed Reticulum with pip, the rnsd program will most likely be located in a user-local installation path only,
which means systemd will not be able to execute it. In this case, you can simply symlink the rnsd program into a
directory that is in systemd’s path:

sudo 1n -s $(which rnsd) /usr/local/bin/

You can then create the service file /etc/systemd/system/rnsd. service with the following content:

[Unit]
Description=Reticulum Network Stack Daemon
After=multi-user.target

[Service]

If you run Reticulum on WiFi devices,
or other devices that need some extra
time to initialise, you might want to
add a short delay before Reticulum is
started by systemd:

ExecStartPre=/bin/sleep 10

Type=simple
Restart=always
RestartSec=3
User=USERNAMEHERE
ExecStart=rnsd --service

[Install]
WantedBy=multi-user.target

Be sure to replace USERNAMEHERE with the user you want to run rnsd as.

To manually start rnsd run:

sudo systemctl start rnsd

If you want to automatically start rnsd at boot, run:

sudo systemctl enable rnsd

3.3. Improving System Configuration 23

Reticulum Network Stack, Release 0.3.8 beta

24

Chapter 3. Using Reticulum on Your System

CHAPTER
FOUR

BUILDING NETWORKS

This chapter will provide you with the knowledge needed to build networks with Reticulum, which can often be easier
than using traditional stacks, since you don’t have to worry about coordinating addresses, subnets and routing for an
entire network that you might not know how will evolve in the future. With Reticulum, you can simply add more
segments to your network when it becomes necesarry, and Reticulum will handle the convergence of the entire network
automatically.

4.1

Concepts & Overview

There are important points that need to be kept in mind when building networks with Reticulum:

In a Reticulum network, any node can autonomously generate as many adresses (called destinations in
Reticulum terminology) as it needs, which become globally reachable to the rest of the network. There is no
central point of control over the adress space.

Reticulum was designed to handle both very small, and very large networks. While the adress space can
support billions of endpoints, Reticulum is also very useful when just a few devices needs to communicate.

Low-bandwidth networks, like LoRa and packet radio, can interoperate and interconnect with much larger and
higher bandwidth networks without issue. Reticulum automatically manages the flow of information to and
from various network segments, and when bandwidth is limited, local traffic is prioritised.

Reticulum provides sender/initiator anonymity by default. There is no way to filter traffic or discriminate it
based on the source of the traffic.

All traffic is encrypted using ephemeral keys generated by an Elliptic Curve Diffie-Hellman key exchange on
Curve25519. There is no way to inspect traffic contents, and no way to prioritise or throttle certain kinds of
traffic. All transport and routing layers are thus completely agnostic to traffic type, and will pass all traffic
equally.

Reticulum can function both with and without infrastructure. When transport nodes are available, they can
route traffic over multiple hops for other nodes, and will function as a distributed cryptographic keystore. When
there is no transport nodes available, all nodes that are within communication range can still communicate.

Every node can become a transport node, simply by enabling it in it’s configuration, but there is no need for
every node on the network to be a transport node. Letting every node be a transport node will in most cases
degrade the performance and reliability of the network.

In general terms, if a node is stationary, well-connected and kept running most of the time, it is a good
candidate to be a transport node. For optimal performance, a network should contain the amount of
transport nodes that provides connectivity to the intended area / topography, and not many more than
that.

Reticulum is designed to work reliably in open, trustless environments. This means you can use it to create
open-access networks, where participants can join and leave in an free and unorganised manner. This property

25

Reticulum Network Stack, Release 0.3.8 beta

allows an entirely new, and so far, mostly unexplored class of networked applications, where networks, and the
information flow within them can form and dissolve organically.

* You can just as easily create closed networks, since Reticulum allows you to add authentication to any interface.
This means you can restrict access on any interface type, even when using legacy devices, such as modems.
You can also mix authenticated and open interfaces on the same system. See the Common Interface Options
section of the Interfaces chapter of this manual for information on how to set up interface authentication.

Reticulum allows you to mix very different kinds of networking mediums into a unified mesh, or to keep everything
within one medium. You could build a “virtual network” running entirely over the Internet, where all nodes commu-
nicate over TCP and UDP “channels”. You could also build such a network using other already-established communi-
cations channels as the underlying carrier for Reticulum.

However, most real-world networks will probably involve either some form of wireless or direct hardline communica-
tions. To allow Reticulum to communicate over any type of medium, you must specify it in the configuration file, by
default located at ~/.reticulum/config. See the Supported Interfaces chapter of this manual for interface configu-
ration examples.

Any number of interfaces can be configured, and Reticulum will automatically decide which are suitable to use in any
given situation, depending on where traffic needs to flow.

4.2 Example Scenarios

This section illustrates a few example scenarios, and how they would, in general terms, be planned, implemented and
configured.

4.2.1 Interconnected LoRa Sites

An organisation wants to provide communication and information services to it’s members, which are located mainly
in three separate areas. Three suitable hill-top locations are found, where the organisation can install equipment: Site
A,BandC.

Since the amount of data that needs to be exchanged between users is mainly text- based, the bandwidth requirements
are low, and LoRa radios are chosen to connect users to the network.

Due to the hill-top locations found, there is radio line-of-sight between site A and B, and also between site B and
C. Because of this, the organisation does not need to use the Internet to interconnect the sites, but purchases four
Point-to-Point WiFi based radios for interconnecting the sites.

At each site, a Raspberry Pi is installed to function as a gateway. A LoRa radio is connected to the Pi with a USB cable,
and the WiFi radio is connected to the ethernet port of the Pi. At site B, two WiFi radios are needed to be able to reach
both site A and site C, so an extra ethernet adapter is connected to the Pi in this location.

Once the hardware has been installed, Reticulum is installed on all the Pis, and at site A and C, one interface is added
for the LoRa radio, as well as one for the WiFi radio. At site B, an interface for the LoRa radio, and one interface for
each WiFi radio is added to the Reticulum configuration file. The transport node option is enabled in the configuration
of all three gateways.

The network is now operational, and ready to serve users across all three areas. The organisation prepares a LoRa
radio that is supplied to the end users, along with a Reticulum configuration file, that contains the right parameters for
communicating with the LoRa radios installed at the gateway sites.

Once users connect to the network, anyone will be able to communicate with anyone else across all three sites.

26 Chapter 4. Building Networks

Reticulum Network Stack, Release 0.3.8 beta

4.2.2 Bridging Over the Internet

As the organisation grows, several new communities form in places too far away from the core network to be reachable
over WiFi links. New gateways similar to those previously installed are set up for the new communities at the new sites
D and E, but they are islanded from the core network, and only serve the local users.

After investigating the options, it is found that it is possible to install an Internet connection at site A, and an interface
on the Internet connection is configured for Reticulum on the Raspberry Pi at site A.

A member of the organisation at site D, named Dori, is willing to help by sharing the Internet connection she already
has in her home, and is able to leave a Raspberry Pi running. A new Reticulum interface is configured on her Pi,
connecting to the newly enabled Internet interface on the gateway at site A. Dori is now connected to both all the nodes
at her own local site (through the hill-top LoRa gateway), and all the combined users of sites A, B and C. She then
enables transport on her node, and traffic from site D can now reach everyone at site A, B and C, and vice versa.

4.2.3 Growth and Convergence

As the organisation grows, more gateways are added to keep up with the growing user base. Some local gateways even
add VHF radios and packet modems to reach outlying users and communities that are out of reach for the LoRa radios
and WiFi backhauls.

As more sites, gateways and users are connected, the amount of coordination required is kept to a minimum. If one
community wants to add connectivity to the next one over, it can simply be done without having to involve everyone or
coordinate address space or routing tables.

With the added geographical coverage, the operators at site A one day find that the original internet bridged interfaces
are no longer utilised. The network has converged to be completely self-connected, and the sites that were once poorly
connected outliers are now an integral part of the network.

4.2. Example Scenarios 27

Reticulum Network Stack, Release 0.3.8 beta

28

Chapter 4. Building Networks

CHAPTER
FIVE

SUPPORTED INTERFACES

Reticulum supports using many kinds of devices as networking interfaces, and allows you to mix and match them in
any way you choose. The number of distinct network topologies you can create with Reticulum is more or less endless,
but common to them all is that you will need to define one or more interfaces for Reticulum to use.

The following sections describe the interfaces currently available in Reticulum, and gives example configurations for
the respective interface types.

For a high-level overview of how networks can be formed over different interface ty