mirror of
https://github.com/markqvist/Reticulum.git
synced 2024-12-25 07:29:35 -05:00
Fixed spelling errors
This commit is contained in:
parent
7f70ffdc21
commit
30e75b1bfb
@ -16,7 +16,7 @@ over even extremely low-bandwidth Reticulum networks.
|
||||
|
||||
These programs will let you get a feel for how Reticulum works. They have been designed
|
||||
to run well over networks based on LoRa or packet radio, but can also be used completely
|
||||
over local WiFi, wired ethernet, the Internet, or any combination.
|
||||
over local WiFi, wired Ethernet, the Internet, or any combination.
|
||||
|
||||
As such, it is easy to get started experimenting, without having to set up any radio
|
||||
transceivers or infrastructure just to try it out. Launching the programs on separate
|
||||
@ -91,7 +91,7 @@ or use the interactive ``rnsconfig`` utility.
|
||||
|
||||
When Reticulum is started for the first time, it will create a default
|
||||
configuration file, with one active interface. This default interface uses
|
||||
your existing ethernet and WiFi networks (if any), and only allows you to
|
||||
your existing Ethernet and WiFi networks (if any), and only allows you to
|
||||
communicate with other Reticulum peers within your local broadcast domains.
|
||||
|
||||
To communicate further, you will have to add one or more interfaces. The default
|
||||
@ -106,7 +106,7 @@ Once Reticulum knows which interfaces it should use, it will automatically
|
||||
discover topography and configure transport of data to any destinations it
|
||||
knows about.
|
||||
|
||||
In situations where you already have an established WiFi or ethernet network, and
|
||||
In situations where you already have an established WiFi or Ethernet network, and
|
||||
many devices that want to utilise the same external Reticulum network paths (for example over
|
||||
LoRa), it will often be sufficient to let one system act as a Reticulum gateway, by
|
||||
adding any external interfaces to the configuration of this system, and then enabling transport on it. Any
|
||||
@ -131,7 +131,7 @@ TCP connections reveal the IP address of both your instance and the server to an
|
||||
inspect the connection. Someone could use this information to determine your location or identity. Adversaries
|
||||
inspecting your packets may be able to record packet metadata like time of transmission and packet size.
|
||||
Even though Reticulum encrypts traffic, TCP does not, so an adversary may be able to use
|
||||
packet inspection to learn that a system is running Reticulum, and what other IP adresses connect to it.
|
||||
packet inspection to learn that a system is running Reticulum, and what other IP addresses connect to it.
|
||||
Hosting a publicly reachable instance over TCP also requires a publicly reachable IP address,
|
||||
which most Internet connections don't offer anymore.
|
||||
|
||||
@ -145,9 +145,9 @@ will also relay other I2P user's encrypted packets, which will use extra
|
||||
bandwidth and compute power, but also makes timing attacks and other forms of
|
||||
deep-packet-inspection much more difficult.
|
||||
|
||||
I2P also allows users to host globally available Reticulum instances from non-public IPs and behind firewalls and NAT.
|
||||
I2P also allows users to host globally available Reticulum instances from non-public IP's and behind firewalls and NAT.
|
||||
|
||||
In general it is recommended to use an I2P node if you want to host a publically accessible
|
||||
In general it is recommended to use an I2P node if you want to host a publicly accessible
|
||||
instance, while preserving anonymity. If you care more about performance, and a slightly
|
||||
easier setup, use TCP.
|
||||
|
||||
|
@ -52,7 +52,7 @@ the discussion to RNodes using *LoRa* modulation in common ISM bands.
|
||||
**Avoid Confusion!** RNodes can use LoRa as a *physical-layer modulation*, but it
|
||||
does not use, and has nothing to do with the *LoRaWAN* protocol and standard, commonly
|
||||
used for centrally controlled IoT devices. RNodes use *raw LoRa modulation*, without
|
||||
any additional protocol overhead. All high-level protocol funcionality is handled
|
||||
any additional protocol overhead. All high-level protocol functionality is handled
|
||||
directly by Reticulum.
|
||||
|
||||
.. _rnode-creating:
|
||||
@ -205,8 +205,8 @@ get started with producing RNodes.
|
||||
WiFi-based Hardware
|
||||
===================
|
||||
|
||||
It is possible to use all kinds of both short- and long-range Wifi-based hardware
|
||||
with Reticulum. Any kind of hardware that fully supports bridged ethernet over the
|
||||
It is possible to use all kinds of both short- and long-range WiFi-based hardware
|
||||
with Reticulum. Any kind of hardware that fully supports bridged Ethernet over the
|
||||
WiFi interface will work with the :ref:`AutoInterface<interfaces-auto>` in Reticulum.
|
||||
Most devices will behave like this by default, or allow it via configuration options.
|
||||
|
||||
|
@ -98,13 +98,13 @@ and persistent I2P address that your Reticulum instance can be reached
|
||||
at.
|
||||
|
||||
To use the I2P interface, you must have an I2P router running
|
||||
on your system. The easiest way to acheive this is to download and
|
||||
on your system. The easiest way to achieve this is to download and
|
||||
install the `latest release <https://github.com/PurpleI2P/i2pd/releases/latest>`_
|
||||
of the ``i2pd`` package. For more details about I2P, see the
|
||||
`geti2p.net website <https://geti2p.net/en/about/intro>`_.
|
||||
|
||||
When an I2P router is running on your system, you can simply add
|
||||
an I2P interface to reticulum:
|
||||
an I2P interface to Reticulum:
|
||||
|
||||
.. code::
|
||||
|
||||
@ -270,7 +270,7 @@ with all other peers on a local area network.
|
||||
|
||||
*Please Note!* Using broadcast UDP traffic has performance implications,
|
||||
especially on WiFi. If your goal is simply to enable easy communication
|
||||
with all peers in your local ethernet broadcast domain, the
|
||||
with all peers in your local Ethernet broadcast domain, the
|
||||
:ref:`Auto Interface<interfaces-auto>` performs better, and is even
|
||||
easier to use.
|
||||
|
||||
@ -404,7 +404,7 @@ directly over a wire-pair, or for using devices such as data radios and lasers.
|
||||
Pipe Interface
|
||||
==============
|
||||
|
||||
Using this interface, reticulum can use any program as an interface via `stdin` and
|
||||
Using this interface, Reticulum can use any program as an interface via `stdin` and
|
||||
`stdout`. This can be used to easily create virtual interfaces, or to interface with
|
||||
custom hardware or other systems.
|
||||
|
||||
@ -421,7 +421,7 @@ custom hardware or other systems.
|
||||
respawn_delay = 5
|
||||
|
||||
Reticulum will write all packets to `stdin` of the ``command`` option, and will
|
||||
continously read and scan its `stdout` for Reticulum packets. If ``EOF`` is reached,
|
||||
continuously read and scan its `stdout` for Reticulum packets. If ``EOF`` is reached,
|
||||
Reticulum will try to respawn the program after waiting for ``respawn_interval`` seconds.
|
||||
|
||||
.. _interfaces-kiss:
|
||||
|
@ -9,7 +9,7 @@ Reticulum, which can often be easier than using traditional stacks, since you
|
||||
don't have to worry about coordinating addresses, subnets and routing for an
|
||||
entire network that you might not know how will evolve in the future. With
|
||||
Reticulum, you can simply add more segments to your network when it becomes
|
||||
necesarry, and Reticulum will handle the convergence of the entire network
|
||||
necessary, and Reticulum will handle the convergence of the entire network
|
||||
automatically.
|
||||
|
||||
Concepts & Overview
|
||||
@ -18,13 +18,13 @@ Concepts & Overview
|
||||
There are important points that need to be kept in mind when building networks
|
||||
with Reticulum:
|
||||
|
||||
* | In a Reticulum network, any node can autonomously generate as many adresses
|
||||
* | In a Reticulum network, any node can autonomously generate as many addresses
|
||||
(called *destinations* in Reticulum terminology) as it needs, which become
|
||||
globally reachable to the rest of the network. There is no central point of
|
||||
control over the adress space.
|
||||
control over the address space.
|
||||
|
||||
* | Reticulum was designed to handle both very small, and very large networks.
|
||||
While the adress space can support billions of endpoints, Reticulum is
|
||||
While the address space can support billions of endpoints, Reticulum is
|
||||
also very useful when just a few devices needs to communicate.
|
||||
|
||||
* | Low-bandwidth networks, like LoRa and packet radio, can interoperate and
|
||||
@ -113,8 +113,8 @@ WiFi based radios for interconnecting the sites.
|
||||
|
||||
At each site, a Raspberry Pi is installed to function as a gateway. A LoRa radio
|
||||
is connected to the Pi with a USB cable, and the WiFi radio is connected to the
|
||||
ethernet port of the Pi. At site B, two WiFi radios are needed to be able to reach
|
||||
both site A and site C, so an extra ethernet adapter is connected to the Pi in
|
||||
Ethernet port of the Pi. At site B, two WiFi radios are needed to be able to reach
|
||||
both site A and site C, so an extra Ethernet adapter is connected to the Pi in
|
||||
this location.
|
||||
|
||||
Once the hardware has been installed, Reticulum is installed on all the Pis, and at
|
||||
|
@ -32,7 +32,7 @@ Provide Feedback
|
||||
================
|
||||
All feedback on the usage, functioning and potential dysfunctioning of any and
|
||||
all components of the system is very valuable to the continued development and
|
||||
improvement of Reticulum. Absolutely no automated analytics, telemetly, error
|
||||
improvement of Reticulum. Absolutely no automated analytics, telemetry, error
|
||||
reporting or statistics is collected and reported by Reticulum under any
|
||||
circumstances, so we rely on old-fashioned human feedback.
|
||||
|
||||
|
@ -70,7 +70,7 @@ guide the design of Reticulum:
|
||||
* **Hardware layer agnosticism**
|
||||
Reticulum must be fully hardware agnostic, and shall be useable over a wide range of
|
||||
physical networking layers, such as data radios, serial lines, modems, handheld transceivers,
|
||||
wired ethernet, wifi, or anything else that can carry a digital data stream. Hardware made for
|
||||
wired Ethernet, WiFi, or anything else that can carry a digital data stream. Hardware made for
|
||||
dedicated Reticulum use shall be as cheap as possible and use off-the-shelf components, so
|
||||
it can be easily modified and replicated by anyone interested in doing so.
|
||||
* **Very low bandwidth requirements**
|
||||
@ -109,7 +109,7 @@ Introduction & Basic Functionality
|
||||
|
||||
Reticulum is a networking stack suited for high-latency, low-bandwidth links. Reticulum is at it’s
|
||||
core a *message oriented* system. It is suited for both local point-to-point or point-to-multipoint
|
||||
scenarios where alle nodes are within range of each other, as well as scenarios where packets need
|
||||
scenarios where all nodes are within range of each other, as well as scenarios where packets need
|
||||
to be transported over multiple hops in a complex network to reach the recipient.
|
||||
|
||||
Reticulum does away with the idea of addresses and ports known from IP, TCP and UDP. Instead
|
||||
@ -121,14 +121,14 @@ All destinations in Reticulum are _represented_ as a 16 byte hash. This hash is
|
||||
SHA-256 hash of identifying characteristics of the destination. To users, the destination addresses
|
||||
will be displayed as 16 hexadecimal bytes, like this example: ``<13425ec15b621c1d928589718000d814>``.
|
||||
|
||||
The truncation size of 16 bytes (128 bits) for destinations has been choosen as a reasonable tradeoff
|
||||
The truncation size of 16 bytes (128 bits) for destinations has been chosen as a reasonable trade-off
|
||||
between address space
|
||||
and packet overhead. The address space accomodated by this size can support many billions of
|
||||
and packet overhead. The address space accommodated by this size can support many billions of
|
||||
simultaneously active devices on the same network, while keeping packet overhead low, which is
|
||||
essential on low-bandwidth networks. In the very unlikely case that this address space nears
|
||||
congestion, a one-line code change can upgrade the Reticulum address space all the way up to 256
|
||||
bits, ensuring the Reticulum address space could potentially support galactic-scale networks.
|
||||
This is obviusly complete and ridiculous over-allocation, and as such, the current 128 bits should
|
||||
This is obviously complete and ridiculous over-allocation, and as such, the current 128 bits should
|
||||
be sufficient, even far into the future.
|
||||
|
||||
By default Reticulum encrypts all data using elliptic curve cryptography. Any packet sent to a
|
||||
@ -163,7 +163,7 @@ destinations. Reticulum uses three different basic destination types, and one sp
|
||||
A *plain* destination type is unencrypted, and suited for traffic that should be broadcast to a
|
||||
number of users, or should be readable by anyone. Traffic to a *plain* destination is not encrypted.
|
||||
Generally, *plain* destinations can be used for broadcast information intended to be public.
|
||||
Plain destinations are only reachable directly, and packets adressed to plain destinations are
|
||||
Plain destinations are only reachable directly, and packets addressed to plain destinations are
|
||||
never transported over multiple hops in the network. To be transportable over multiple hops in Reticulum, information
|
||||
*must* be encrypted, since Reticulum uses the per-packet encryption to verify routing paths and
|
||||
keep them alive.
|
||||
@ -219,10 +219,10 @@ packet.
|
||||
|
||||
In actual use of *single* destination naming, it is advisable not to use any uniquely identifying
|
||||
features in aspect naming. Aspect names should be general terms describing what kind of destination
|
||||
is represented. The uniquely identifying aspect is always acheived by the appending the public key,
|
||||
which expands the destination into a uniquely identifyable one. Reticulum does this automatically.
|
||||
is represented. The uniquely identifying aspect is always achieved by the appending the public key,
|
||||
which expands the destination into a uniquely identifiable one. Reticulum does this automatically.
|
||||
|
||||
Any destination on a Reticulum network can be addressed and reached simply by knowning its
|
||||
Any destination on a Reticulum network can be addressed and reached simply by knowing its
|
||||
destination hash (and public key, but if the public key is not known, it can be requested from the
|
||||
network simply by knowing the destination hash). The use of app names and aspects makes it easy to
|
||||
structure Reticulum programs and makes it possible to filter what information and data your program
|
||||
@ -349,7 +349,7 @@ Node Types
|
||||
----------
|
||||
|
||||
Currently, Reticulum distinguishes between two types of network nodes. All nodes on a Reticulum network
|
||||
are *Reticulum Instances*, and some are alo *Transport Nodes*. If a system running Reticulum is fixed in
|
||||
are *Reticulum Instances*, and some are also *Transport Nodes*. If a system running Reticulum is fixed in
|
||||
one place, and is intended to be kept available most of the time, it is a good contender to be a *Transport Node*.
|
||||
|
||||
Any Reticulum Instance can become a Transport Node by enabling it in the configuration.
|
||||
@ -485,13 +485,18 @@ For exchanges of larger amounts of data, or when longer sessions of bidirectiona
|
||||
the destination using a Reticulum Identity. This authentication is happening inside the encrypted
|
||||
link, and is only revealed to the verified destination, and no intermediaries.
|
||||
|
||||
In a moment, we will discuss the details of how this methodology is implemented, but let’s first
|
||||
recap what purposes this methodology serves. We first ensure that the node answering our request
|
||||
is actually the one we want to communicate with, and not a malicious actor pretending to be so.
|
||||
At the same time we establish an efficient encrypted channel. The setup of this is relatively cheap in
|
||||
terms of bandwidth, so it can be used just for a short exchange, and then recreated as needed, which will
|
||||
also rotate encryption keys. The link can also be kept alive for longer periods of time, if this is
|
||||
more suitable to the application. The procedure also inserts the *link id* , a hash calculated from the link request packet, into the memory of forwarding nodes, which means that the communicating nodes can thereafter reach each other simply by referring to this *link id*.
|
||||
In a moment, we will discuss the details of how this methodology is
|
||||
implemented, but let’s first recap what purposes this methodology serves. We
|
||||
first ensure that the node answering our request is actually the one we want to
|
||||
communicate with, and not a malicious actor pretending to be so. At the same
|
||||
time we establish an efficient encrypted channel. The setup of this is
|
||||
relatively cheap in terms of bandwidth, so it can be used just for a short
|
||||
exchange, and then recreated as needed, which will also rotate encryption keys.
|
||||
The link can also be kept alive for longer periods of time, if this is more
|
||||
suitable to the application. The procedure also inserts the *link id* , a hash
|
||||
calculated from the link request packet, into the memory of forwarding nodes,
|
||||
which means that the communicating nodes can thereafter reach each other simply
|
||||
by referring to this *link id*.
|
||||
|
||||
The combined bandwidth cost of setting up a link is 3 packets totalling 265 bytes (more info in the
|
||||
:ref:`Binary Packet Format<understanding-packetformat>` section). The amount of bandwidth used on keeping
|
||||
@ -544,7 +549,7 @@ an arbitrary number of hops, where information will be exchanged between two nod
|
||||
* | By verifying this *link proof* packet, all nodes that originally transported the *link request*
|
||||
packet to the destination from the originator can now verify that the intended destination received
|
||||
the request and accepted it, and that the path they chose for forwarding the request was valid.
|
||||
In sucessfully carrying out this verification, the transporting nodes marks the link as active.
|
||||
In successfully carrying out this verification, the transporting nodes marks the link as active.
|
||||
An abstract bi-directional communication channel has now been established along a path in the network.
|
||||
|
||||
* | When the source receives the *proof* , it will know unequivocally that a verified path has been
|
||||
|
@ -2,23 +2,38 @@
|
||||
What is Reticulum?
|
||||
******************
|
||||
|
||||
Reticulum is a cryptography-based networking stack for building wide-area networks with readily available hardware, that can continue to operate even with extremely low bandwidth and very high latency.
|
||||
Reticulum is a cryptography-based networking stack for building wide-area
|
||||
networks with readily available hardware, that can continue to operate even
|
||||
with extremely low bandwidth and very high latency.
|
||||
|
||||
Reticulum allows you to build wide-area networks with off-the-shelf tools, and offers end-to-end encryption, autoconfiguring cryptographically backed multi-hop transport, efficient addressing, unforgeable packet acknowledgements and more.
|
||||
Reticulum allows you to build wide-area networks with off-the-shelf tools, and
|
||||
offers end-to-end encryption, autoconfiguring cryptographically backed
|
||||
multi-hop transport, efficient addressing, unforgeable packet acknowledgements
|
||||
and more.
|
||||
|
||||
Reticulum is a complete networking stack, and does not need IP or higher layers, although it is easy to utilise IP (with TCP or UDP) as the underlying carrier for Reticulum. It is therefore trivial to tunnel Reticulum over the Internet or private IP networks. Reticulum is built directly on cryptographic principles, allowing resilience and stable functionality in open and trustless networks.
|
||||
Reticulum is a complete networking stack, and does not need IP or higher
|
||||
layers, although it is easy to utilise IP (with TCP or UDP) as the underlying
|
||||
carrier for Reticulum. It is therefore trivial to tunnel Reticulum over the
|
||||
Internet or private IP networks. Reticulum is built directly on cryptographic
|
||||
principles, allowing resilience and stable functionality in open and trustless
|
||||
networks.
|
||||
|
||||
No kernel modules or drivers are required. Reticulum runs completely in userland, and can run on practically any system that runs Python 3. Reticulum runs well even on small single-board computers like the Pi Zero.
|
||||
No kernel modules or drivers are required. Reticulum runs completely in
|
||||
userland, and can run on practically any system that runs Python 3. Reticulum
|
||||
runs well even on small single-board computers like the Pi Zero.
|
||||
|
||||
|
||||
Current Status
|
||||
==============
|
||||
Reticulum should currently be considered beta software. All core protocol features are implemented and functioning, but additions will probably occur as real-world use is explored. There will be bugs. The API and wire-format can be considered stable at the moment, but could change if absolutely warranted.
|
||||
Reticulum should currently be considered beta software. All core protocol
|
||||
features are implemented and functioning, but additions will probably occur as
|
||||
real-world use is explored. There will be bugs. The API and wire-format can be
|
||||
considered stable at the moment, but could change if absolutely warranted.
|
||||
|
||||
|
||||
What does Reticulum Offer?
|
||||
==========================
|
||||
* Coordination-less globally unique adressing and identification
|
||||
* Coordination-less globally unique addressing and identification
|
||||
|
||||
* Fully self-configuring multi-hop routing
|
||||
|
||||
@ -26,7 +41,7 @@ What does Reticulum Offer?
|
||||
|
||||
* Asymmetric encryption based on X25519, and Ed25519 signatures as a basis for all communication
|
||||
|
||||
* Forward Secrecy by using ephemereal Elliptic Curve Diffie-Hellman keys on Curve25519
|
||||
* Forward Secrecy by using ephemeral Elliptic Curve Diffie-Hellman keys on Curve25519
|
||||
|
||||
* Reticulum uses the `Fernet <https://github.com/fernet/spec/blob/master/Spec.md>`_ specification for on-the-wire / over-the-air encryption
|
||||
|
||||
@ -77,7 +92,7 @@ Reticulum. It is possible to build it yourself, to transform a common LoRa
|
||||
development board into one, or it can be purchased as a complete transceiver.
|
||||
|
||||
Reticulum can also be encapsulated over existing IP networks, so there's
|
||||
nothing stopping you from using it over wired ethernet or your local WiFi
|
||||
nothing stopping you from using it over wired Ethernet or your local WiFi
|
||||
network, where it'll work just as well. In fact, one of the strengths of
|
||||
Reticulum is how easily it allows you to connect different mediums into a
|
||||
self-configuring, resilient and encrypted mesh.
|
||||
@ -92,15 +107,15 @@ Interface Types and Devices
|
||||
===========================
|
||||
Reticulum implements a range of generalised interface types that covers the communications hardware that Reticulum can run over. If your hardware is not supported, it's relatively simple to implement an interface class. Currently, Reticulum can use the following devices and communication mediums:
|
||||
|
||||
* Any ethernet device
|
||||
* Any Ethernet device
|
||||
|
||||
* WiFi devices
|
||||
|
||||
* Wired ethernet devices
|
||||
* Wired Ethernet devices
|
||||
|
||||
* Fibre-optic transceivers
|
||||
|
||||
* Data radios with ethernet ports
|
||||
* Data radios with Ethernet ports
|
||||
|
||||
* LoRa using `RNode <https://unsigned.io/rnode>`_
|
||||
|
||||
@ -135,4 +150,9 @@ For a full list and more details, see the :ref:`Supported Interfaces<interfaces-
|
||||
|
||||
Caveat Emptor
|
||||
==============
|
||||
Reticulum is an experimental networking stack, and should be considered as such. While it has been built with cryptography best-practices very foremost in mind, it has not been externally security audited, and there could very well be privacy-breaking bugs. To be considered secure, Reticulum needs a thourough security review by independt cryptographers and security researchers. If you want to help out, or help sponsor an audit, please do get in touch.
|
||||
Reticulum is an experimental networking stack, and should be considered as
|
||||
such. While it has been built with cryptography best-practices very foremost in
|
||||
mind, it has not been externally security audited, and there could very well be
|
||||
privacy-breaking bugs. To be considered secure, Reticulum needs a thorough
|
||||
security review by independent cryptographers and security researchers. If you
|
||||
want to help out, or help sponsor an audit, please do get in touch.
|
||||
|
Loading…
Reference in New Issue
Block a user