RNode_Firmware_CE/Utilities.h
2024-09-13 10:08:52 +01:00

1546 lines
43 KiB
C++

// Copyright (C) 2023, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "Radio.hpp"
#include "Config.h"
// Included for sorting
#include <algorithm>
#include <iterator>
#if HAS_EEPROM
#include <EEPROM.h>
#elif PLATFORM == PLATFORM_NRF52
#include <Adafruit_LittleFS.h>
#include <InternalFileSystem.h>
using namespace Adafruit_LittleFS_Namespace;
#define EEPROM_FILE "eeprom"
bool file_exists = false;
int written_bytes = 4;
File file(InternalFS);
#endif
#include <stddef.h>
#include "ROM.h"
#include "Framing.h"
#include "MD5.h"
#if !HAS_EEPROM && MCU_VARIANT == MCU_NRF52
uint8_t eeprom_read(uint32_t mapped_addr);
#endif
#if HAS_DISPLAY == true
#include "Display.h"
#endif
#if HAS_BLUETOOTH == true || HAS_BLE == true
void kiss_indicate_btpin();
#include "Bluetooth.h"
#endif
#if HAS_PMU == true
#include "Power.h"
#endif
#if HAS_INPUT == true
#include "Input.h"
#endif
#if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52
#include "Device.h"
#endif
#if MCU_VARIANT == MCU_ESP32
#if BOARD_MODEL == BOARD_HELTEC32_V3
//https://github.com/espressif/esp-idf/issues/8855
#include "hal/wdt_hal.h"
#elif BOARD_MODEL == BOARD_T3S3
#include "hal/wdt_hal.h"
#else BOARD_MODEL != BOARD_T3S3
#include "soc/rtc_wdt.h"
#endif
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
uint8_t boot_vector = 0x00;
#if MCU_VARIANT == MCU_ESP32
// TODO: Get ESP32 boot flags
#elif MCU_VARIANT == MCU_NRF52
// TODO: Get NRF52 boot flags
#endif
#if HAS_NP == true
#include <Adafruit_NeoPixel.h>
#define NUMPIXELS 1
#define NP_M 0.15
Adafruit_NeoPixel pixels(NUMPIXELS, pin_np, NEO_GRB + NEO_KHZ800);
uint8_t npr = 0;
uint8_t npg = 0;
uint8_t npb = 0;
bool pixels_started = false;
void npset(uint8_t r, uint8_t g, uint8_t b) {
if (pixels_started != true) {
pixels.begin();
pixels_started = true;
}
if (r != npr || g != npg || b != npb) {
npr = r; npg = g; npb = b;
pixels.setPixelColor(0, pixels.Color(npr*NP_M, npg*NP_M, npb*NP_M));
pixels.show();
}
}
void boot_seq() {
uint8_t rs[] = { 0x00, 0x00, 0x00 };
uint8_t gs[] = { 0x10, 0x08, 0x00 };
uint8_t bs[] = { 0x00, 0x08, 0x10 };
for (int i = 0; i < 1*sizeof(rs); i++) {
npset(rs[i%sizeof(rs)], gs[i%sizeof(gs)], bs[i%sizeof(bs)]);
delay(33);
npset(0x00, 0x00, 0x00);
delay(66);
}
}
#else
void boot_seq() { }
#endif
#if MCU_VARIANT == MCU_ESP32
#if HAS_NP == true
void led_rx_on() { npset(0, 0, 0xFF); }
void led_rx_off() { npset(0, 0, 0); }
void led_tx_on() { npset(0xFF, 0x50, 0x00); }
void led_tx_off() { npset(0, 0, 0); }
#elif BOARD_MODEL == BOARD_RNODE_NG_20
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#elif BOARD_MODEL == BOARD_RNODE_NG_21
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#elif BOARD_MODEL == BOARD_T3S3
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#elif BOARD_MODEL == BOARD_E22_ESP32
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#elif BOARD_MODEL == BOARD_TBEAM
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, LOW); }
void led_tx_off() { digitalWrite(pin_led_tx, HIGH); }
#elif BOARD_MODEL == BOARD_LORA32_V1_0
#if defined(EXTERNAL_LEDS)
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#else
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#endif
#elif BOARD_MODEL == BOARD_LORA32_V2_0
#if defined(EXTERNAL_LEDS)
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#else
void led_rx_on() { digitalWrite(pin_led_rx, LOW); }
void led_rx_off() { digitalWrite(pin_led_rx, HIGH); }
void led_tx_on() { digitalWrite(pin_led_tx, LOW); }
void led_tx_off() { digitalWrite(pin_led_tx, HIGH); }
#endif
#elif BOARD_MODEL == BOARD_HELTEC32_V2
#if defined(EXTERNAL_LEDS)
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#else
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#endif
#elif BOARD_MODEL == BOARD_HELTEC32_V3
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#elif BOARD_MODEL == BOARD_LORA32_V2_1
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#elif BOARD_MODEL == BOARD_HUZZAH32
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#elif BOARD_MODEL == BOARD_GENERIC_ESP32
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#endif
#elif MCU_VARIANT == MCU_NRF52
#if BOARD_MODEL == BOARD_RAK4631
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#elif BOARD_MODEL == BOARD_TECHO
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
#endif
#endif
void hard_reset(void) {
#if MCU_VARIANT == MCU_ESP32
ESP.restart();
#elif MCU_VARIANT == MCU_NRF52
NVIC_SystemReset();
#endif
}
// LED Indication: Error
void led_indicate_error(int cycles) {
#if HAS_NP == true
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
while(cycles > 0) {
npset(0xFF, 0x00, 0x00);
delay(100);
npset(0xFF, 0x50, 0x00);
delay(100);
if (!forever) cycles--;
}
npset(0,0,0);
#else
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
while(cycles > 0) {
digitalWrite(pin_led_rx, HIGH);
digitalWrite(pin_led_tx, LOW);
delay(100);
digitalWrite(pin_led_rx, LOW);
digitalWrite(pin_led_tx, HIGH);
delay(100);
if (!forever) cycles--;
}
led_rx_off();
led_tx_off();
#endif
}
// LED Indication: Airtime Lock
void led_indicate_airtime_lock() {
#if HAS_NP == true
npset(32,0,2);
#endif
}
// LED Indication: Boot Error
void led_indicate_boot_error() {
#if HAS_NP == true
while(true) {
npset(0xFF, 0xFF, 0xFF);
}
#else
while (true) {
led_tx_on();
led_rx_off();
delay(10);
led_rx_on();
led_tx_off();
delay(5);
}
#endif
}
// LED Indication: Warning
void led_indicate_warning(int cycles) {
#if HAS_NP == true
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
while(cycles > 0) {
npset(0xFF, 0x50, 0x00);
delay(100);
npset(0x00, 0x00, 0x00);
delay(100);
if (!forever) cycles--;
}
npset(0,0,0);
#else
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
digitalWrite(pin_led_tx, HIGH);
while(cycles > 0) {
led_tx_off();
delay(100);
led_tx_on();
delay(100);
if (!forever) cycles--;
}
led_tx_off();
#endif
}
// LED Indication: Info
#if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52
#if HAS_NP == true
void led_indicate_info(int cycles) {
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
while(cycles > 0) {
npset(0x00, 0x00, 0xFF);
delay(100);
npset(0x00, 0x00, 0x00);
delay(100);
if (!forever) cycles--;
}
npset(0,0,0);
}
#elif BOARD_MODEL == BOARD_LORA32_V2_1
void led_indicate_info(int cycles) {
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
while(cycles > 0) {
led_rx_off();
delay(100);
led_rx_on();
delay(100);
if (!forever) cycles--;
}
led_rx_off();
}
#elif BOARD_MODEL == BOARD_LORA32_V2_0
void led_indicate_info(int cycles) {
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
while(cycles > 0) {
led_rx_off();
delay(100);
led_rx_on();
delay(100);
if (!forever) cycles--;
}
led_rx_off();
}
#else
void led_indicate_info(int cycles) {
bool forever = (cycles == 0) ? true : false;
cycles = forever ? 1 : cycles;
while(cycles > 0) {
led_tx_off();
delay(100);
led_tx_on();
delay(100);
if (!forever) cycles--;
}
led_tx_off();
}
#endif
#endif
unsigned long led_standby_ticks = 0;
#if MCU_VARIANT == MCU_ESP32
#if HAS_NP == true
int led_standby_lng = 100;
int led_standby_cut = 200;
int led_standby_min = 0;
int led_standby_max = 375+led_standby_lng;
int led_notready_min = 0;
int led_notready_max = led_standby_max;
int led_notready_value = led_notready_min;
int8_t led_notready_direction = 0;
unsigned long led_notready_ticks = 0;
unsigned long led_standby_wait = 350;
unsigned long led_console_wait = 1;
unsigned long led_notready_wait = 200;
#else
uint8_t led_standby_min = 200;
uint8_t led_standby_max = 255;
uint8_t led_notready_min = 0;
uint8_t led_notready_max = 255;
uint8_t led_notready_value = led_notready_min;
int8_t led_notready_direction = 0;
unsigned long led_notready_ticks = 0;
unsigned long led_standby_wait = 1768;
unsigned long led_notready_wait = 150;
#endif
#elif MCU_VARIANT == MCU_NRF52
uint8_t led_standby_min = 200;
uint8_t led_standby_max = 255;
uint8_t led_notready_min = 0;
uint8_t led_notready_max = 255;
uint8_t led_notready_value = led_notready_min;
int8_t led_notready_direction = 0;
unsigned long led_notready_ticks = 0;
unsigned long led_standby_wait = 1768;
unsigned long led_notready_wait = 150;
#endif
unsigned long led_standby_value = led_standby_min;
int8_t led_standby_direction = 0;
#if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52
#if HAS_NP == true
void led_indicate_standby() {
led_standby_ticks++;
if (led_standby_ticks > led_standby_wait) {
led_standby_ticks = 0;
if (led_standby_value <= led_standby_min) {
led_standby_direction = 1;
} else if (led_standby_value >= led_standby_max) {
led_standby_direction = -1;
}
uint8_t led_standby_intensity;
led_standby_value += led_standby_direction;
int led_standby_ti = led_standby_value - led_standby_lng;
if (led_standby_ti < 0) {
led_standby_intensity = 0;
} else if (led_standby_ti > led_standby_cut) {
led_standby_intensity = led_standby_cut;
} else {
led_standby_intensity = led_standby_ti;
}
npset(0x00, 0x00, led_standby_intensity);
}
}
void led_indicate_console() {
npset(0x60, 0x00, 0x60);
// led_standby_ticks++;
// if (led_standby_ticks > led_console_wait) {
// led_standby_ticks = 0;
// if (led_standby_value <= led_standby_min) {
// led_standby_direction = 1;
// } else if (led_standby_value >= led_standby_max) {
// led_standby_direction = -1;
// }
// uint8_t led_standby_intensity;
// led_standby_value += led_standby_direction;
// int led_standby_ti = led_standby_value - led_standby_lng;
// if (led_standby_ti < 0) {
// led_standby_intensity = 0;
// } else if (led_standby_ti > led_standby_cut) {
// led_standby_intensity = led_standby_cut;
// } else {
// led_standby_intensity = led_standby_ti;
// }
// npset(led_standby_intensity, 0x00, led_standby_intensity);
// }
}
#else
void led_indicate_standby() {
led_standby_ticks++;
if (led_standby_ticks > led_standby_wait) {
led_standby_ticks = 0;
if (led_standby_value <= led_standby_min) {
led_standby_direction = 1;
} else if (led_standby_value >= led_standby_max) {
led_standby_direction = -1;
}
led_standby_value += led_standby_direction;
if (led_standby_value > 253) {
led_tx_on();
} else {
led_tx_off();
}
#if BOARD_MODEL == BOARD_LORA32_V2_1
#if defined(EXTERNAL_LEDS)
led_rx_off();
#endif
#elif BOARD_MODEL == BOARD_LORA32_V2_0
#if defined(EXTERNAL_LEDS)
led_rx_off();
#endif
#else
led_rx_off();
#endif
}
}
void led_indicate_console() {
led_indicate_standby();
}
#endif
#endif
#if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52
#if HAS_NP == true
void led_indicate_not_ready() {
led_standby_ticks++;
if (led_standby_ticks > led_notready_wait) {
led_standby_ticks = 0;
if (led_standby_value <= led_standby_min) {
led_standby_direction = 1;
} else if (led_standby_value >= led_standby_max) {
led_standby_direction = -1;
}
uint8_t led_standby_intensity;
led_standby_value += led_standby_direction;
int led_standby_ti = led_standby_value - led_standby_lng;
if (led_standby_ti < 0) {
led_standby_intensity = 0;
} else if (led_standby_ti > led_standby_cut) {
led_standby_intensity = led_standby_cut;
} else {
led_standby_intensity = led_standby_ti;
}
npset(led_standby_intensity, 0x00, 0x00);
}
}
#else
void led_indicate_not_ready() {
led_notready_ticks++;
if (led_notready_ticks > led_notready_wait) {
led_notready_ticks = 0;
if (led_notready_value <= led_notready_min) {
led_notready_direction = 1;
} else if (led_notready_value >= led_notready_max) {
led_notready_direction = -1;
}
led_notready_value += led_notready_direction;
if (led_notready_value > 128) {
led_tx_on();
} else {
led_tx_off();
}
#if BOARD_MODEL == BOARD_LORA32_V2_1
#if defined(EXTERNAL_LEDS)
led_rx_off();
#endif
#elif BOARD_MODEL == BOARD_LORA32_V2_0
#if defined(EXTERNAL_LEDS)
led_rx_off();
#endif
#else
led_rx_off();
#endif
}
}
#endif
#endif
bool interface_bitrate_cmp(RadioInterface* p, RadioInterface* q) {
long p_bitrate = p->getBitrate();
long q_bitrate = q->getBitrate();
return p_bitrate > q_bitrate;
}
// Sort interfaces in descending order according to bitrate.
void sort_interfaces() {
std::sort(std::begin(interface_obj_sorted), std::end(interface_obj_sorted), interface_bitrate_cmp);
}
void serial_write(uint8_t byte) {
#if HAS_BLUETOOTH || HAS_BLE == true
if (bt_state != BT_STATE_CONNECTED) {
Serial.write(byte);
} else {
SerialBT.write(byte);
#if MCU_VARIANT == MCU_NRF52 && HAS_BLE
// This ensures that the TX buffer is flushed after a frame is queued in serial.
// serial_in_frame is used to ensure that the flush only happens at the end of the frame
if (serial_in_frame && byte == FEND) {
SerialBT.flushTXD();
serial_in_frame = false;
}
else if (!serial_in_frame && byte == FEND) {
serial_in_frame = true;
}
#endif
}
#else
Serial.write(byte);
#endif
}
void escaped_serial_write(uint8_t byte) {
if (byte == FEND) { serial_write(FESC); byte = TFEND; }
if (byte == FESC) { serial_write(FESC); byte = TFESC; }
serial_write(byte);
}
void kiss_indicate_reset() {
serial_write(FEND);
serial_write(CMD_RESET);
serial_write(CMD_RESET_BYTE);
serial_write(FEND);
}
void kiss_indicate_error(uint8_t error_code) {
serial_write(FEND);
serial_write(CMD_ERROR);
serial_write(error_code);
serial_write(FEND);
}
void kiss_indicate_radiostate(RadioInterface* radio) {
serial_write(FEND);
serial_write(CMD_RADIO_STATE);
serial_write(radio->getRadioOnline());
serial_write(FEND);
}
void kiss_indicate_stat_rx() {
// todo, implement
//serial_write(FEND);
//serial_write(CMD_STAT_RX);
//escaped_serial_write(stat_rx>>24);
//escaped_serial_write(stat_rx>>16);
//escaped_serial_write(stat_rx>>8);
//escaped_serial_write(stat_rx);
//serial_write(FEND);
}
void kiss_indicate_stat_tx() {
// todo, implement
//serial_write(FEND);
//serial_write(CMD_STAT_TX);
//escaped_serial_write(stat_tx>>24);
//escaped_serial_write(stat_tx>>16);
//escaped_serial_write(stat_tx>>8);
//escaped_serial_write(stat_tx);
//serial_write(FEND);
}
void kiss_indicate_stat_rssi() {
uint8_t packet_rssi_val = (uint8_t)(last_rssi+rssi_offset);
serial_write(FEND);
serial_write(CMD_STAT_RSSI);
escaped_serial_write(packet_rssi_val);
serial_write(FEND);
}
void kiss_indicate_stat_snr() {
serial_write(FEND);
serial_write(CMD_STAT_SNR);
escaped_serial_write(last_snr_raw);
serial_write(FEND);
}
void kiss_indicate_radio_lock(RadioInterface* radio) {
serial_write(FEND);
serial_write(CMD_RADIO_LOCK);
serial_write(radio->getRadioLock());
serial_write(FEND);
}
void kiss_indicate_spreadingfactor(RadioInterface* radio) {
serial_write(FEND);
serial_write(CMD_SF);
serial_write(radio->getSpreadingFactor());
serial_write(FEND);
}
void kiss_indicate_codingrate(RadioInterface* radio) {
serial_write(FEND);
serial_write(CMD_CR);
serial_write(radio->getCodingRate4());
serial_write(FEND);
}
void kiss_indicate_implicit_length() {
serial_write(FEND);
serial_write(CMD_IMPLICIT);
serial_write(implicit_l);
serial_write(FEND);
}
void kiss_indicate_txpower(RadioInterface* radio) {
int8_t txp = radio->getTxPower();
serial_write(FEND);
serial_write(CMD_TXPOWER);
serial_write(txp);
serial_write(FEND);
}
void kiss_indicate_bandwidth(RadioInterface* radio) {
uint32_t bw = radio->getSignalBandwidth();
serial_write(FEND);
serial_write(CMD_BANDWIDTH);
escaped_serial_write(bw>>24);
escaped_serial_write(bw>>16);
escaped_serial_write(bw>>8);
escaped_serial_write(bw);
serial_write(FEND);
}
void kiss_indicate_frequency(RadioInterface* radio) {
uint32_t freq = radio->getFrequency();
serial_write(FEND);
serial_write(CMD_FREQUENCY);
escaped_serial_write(freq>>24);
escaped_serial_write(freq>>16);
escaped_serial_write(freq>>8);
escaped_serial_write(freq);
serial_write(FEND);
}
void kiss_indicate_interface(int index) {
serial_write(FEND);
serial_write(CMD_INTERFACES);
// print the index to the interface and the interface type
serial_write(index);
serial_write(interfaces[index]);
serial_write(FEND);
}
void kiss_indicate_st_alock(RadioInterface* radio) {
uint16_t at = (uint16_t)(radio->getSTALock()*100*100);
serial_write(FEND);
serial_write(CMD_ST_ALOCK);
escaped_serial_write(at>>8);
escaped_serial_write(at);
serial_write(FEND);
}
void kiss_indicate_lt_alock(RadioInterface* radio) {
uint16_t at = (uint16_t)(radio->getLTALock()*100*100);
serial_write(FEND);
serial_write(CMD_LT_ALOCK);
escaped_serial_write(at>>8);
escaped_serial_write(at);
serial_write(FEND);
}
void kiss_indicate_channel_stats(RadioInterface* radio) {
uint16_t ats = (uint16_t)(radio->getAirtime()*100*100);
uint16_t atl = (uint16_t)(radio->getLongtermAirtime()*100*100);
uint16_t cls = (uint16_t)(radio->getTotalChannelUtil()*100*100);
uint16_t cll = (uint16_t)(radio->getLongtermChannelUtil()*100*100);
serial_write(FEND);
serial_write(CMD_STAT_CHTM);
escaped_serial_write(ats>>8);
escaped_serial_write(ats);
escaped_serial_write(atl>>8);
escaped_serial_write(atl);
escaped_serial_write(cls>>8);
escaped_serial_write(cls);
escaped_serial_write(cll>>8);
escaped_serial_write(cll);
serial_write(FEND);
}
void kiss_indicate_phy_stats(RadioInterface* radio) {
uint16_t lst = (uint16_t)(radio->getSymbolTime()*1000);
uint16_t lsr = (uint16_t)(radio->getSymbolRate());
uint16_t prs = (uint16_t)(radio->getPreambleLength()+4);
uint16_t prt = (uint16_t)((radio->getPreambleLength()+4)*radio->getSymbolTime());
uint16_t cst = (uint16_t)(radio->getCSMASlotMS());
serial_write(FEND);
serial_write(CMD_STAT_PHYPRM);
escaped_serial_write(lst>>8);
escaped_serial_write(lst);
escaped_serial_write(lsr>>8);
escaped_serial_write(lsr);
escaped_serial_write(prs>>8);
escaped_serial_write(prs);
escaped_serial_write(prt>>8);
escaped_serial_write(prt);
escaped_serial_write(cst>>8);
escaped_serial_write(cst);
serial_write(FEND);
}
void kiss_indicate_battery() {
#if MCU_VARIANT == MCU_ESP32
serial_write(FEND);
serial_write(CMD_STAT_BAT);
escaped_serial_write(battery_state);
escaped_serial_write((uint8_t)int(battery_percent));
serial_write(FEND);
#endif
}
void kiss_indicate_btpin() {
#if HAS_BLUETOOTH || HAS_BLE == true
serial_write(FEND);
serial_write(CMD_BT_PIN);
escaped_serial_write(bt_ssp_pin>>24);
escaped_serial_write(bt_ssp_pin>>16);
escaped_serial_write(bt_ssp_pin>>8);
escaped_serial_write(bt_ssp_pin);
serial_write(FEND);
#endif
}
void kiss_indicate_random(uint8_t byte) {
serial_write(FEND);
serial_write(CMD_RANDOM);
serial_write(byte);
serial_write(FEND);
}
void kiss_indicate_fbstate() {
serial_write(FEND);
serial_write(CMD_FB_EXT);
#if HAS_DISPLAY
if (disp_ext_fb) {
serial_write(0x01);
} else {
serial_write(0x00);
}
#else
serial_write(0xFF);
#endif
serial_write(FEND);
}
#if MCU_VARIANT == MCU_ESP32 || MCU_VARIANT == MCU_NRF52
void kiss_indicate_device_hash() {
serial_write(FEND);
serial_write(CMD_DEV_HASH);
for (int i = 0; i < DEV_HASH_LEN; i++) {
uint8_t byte = dev_hash[i];
escaped_serial_write(byte);
}
serial_write(FEND);
}
void kiss_indicate_target_fw_hash() {
serial_write(FEND);
serial_write(CMD_HASHES);
serial_write(0x01);
for (int i = 0; i < DEV_HASH_LEN; i++) {
uint8_t byte = dev_firmware_hash_target[i];
escaped_serial_write(byte);
}
serial_write(FEND);
}
void kiss_indicate_fw_hash() {
serial_write(FEND);
serial_write(CMD_HASHES);
serial_write(0x02);
for (int i = 0; i < DEV_HASH_LEN; i++) {
uint8_t byte = dev_firmware_hash[i];
escaped_serial_write(byte);
}
serial_write(FEND);
}
void kiss_indicate_bootloader_hash() {
serial_write(FEND);
serial_write(CMD_HASHES);
serial_write(0x03);
for (int i = 0; i < DEV_HASH_LEN; i++) {
uint8_t byte = dev_bootloader_hash[i];
escaped_serial_write(byte);
}
serial_write(FEND);
}
void kiss_indicate_partition_table_hash() {
serial_write(FEND);
serial_write(CMD_HASHES);
serial_write(0x04);
for (int i = 0; i < DEV_HASH_LEN; i++) {
uint8_t byte = dev_partition_table_hash[i];
escaped_serial_write(byte);
}
serial_write(FEND);
}
#endif
void kiss_indicate_fb() {
serial_write(FEND);
serial_write(CMD_FB_READ);
#if HAS_DISPLAY
for (int i = 0; i < 512; i++) {
uint8_t byte = fb[i];
escaped_serial_write(byte);
}
#else
serial_write(0xFF);
#endif
serial_write(FEND);
}
void kiss_indicate_ready() {
serial_write(FEND);
serial_write(CMD_READY);
serial_write(0x01);
serial_write(FEND);
}
void kiss_indicate_not_ready() {
serial_write(FEND);
serial_write(CMD_READY);
serial_write(0x00);
serial_write(FEND);
}
void kiss_indicate_promisc() {
serial_write(FEND);
serial_write(CMD_PROMISC);
if (promisc) {
serial_write(0x01);
} else {
serial_write(0x00);
}
serial_write(FEND);
}
void kiss_indicate_detect() {
serial_write(FEND);
serial_write(CMD_DETECT);
serial_write(DETECT_RESP);
serial_write(FEND);
}
void kiss_indicate_version() {
serial_write(FEND);
serial_write(CMD_FW_VERSION);
serial_write(MAJ_VERS);
serial_write(MIN_VERS);
serial_write(FEND);
}
void kiss_indicate_platform() {
serial_write(FEND);
serial_write(CMD_PLATFORM);
serial_write(PLATFORM);
serial_write(FEND);
}
void kiss_indicate_board() {
serial_write(FEND);
serial_write(CMD_BOARD);
serial_write(BOARD_MODEL);
serial_write(FEND);
}
void kiss_indicate_mcu() {
serial_write(FEND);
serial_write(CMD_MCU);
serial_write(MCU_VARIANT);
serial_write(FEND);
}
inline bool isSplitPacket(uint8_t header) {
return (header & FLAG_SPLIT);
}
inline uint8_t packetSequence(uint8_t header) {
return header >> 4;
}
void set_implicit_length(uint8_t len) {
implicit_l = len;
if (implicit_l != 0) {
implicit = true;
} else {
implicit = false;
}
}
void setTXPower(RadioInterface* radio, int txp) {
// Todo, revamp this function. The current parameters for setTxPower are
// suboptimal, as some chips have power amplifiers which means that the max
// dBm is not always the same.
if (model == MODEL_11) {
if (interfaces[radio->getIndex()] == SX128X) {
radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
} else {
radio->setTxPower(txp, PA_OUTPUT_RFO_PIN);
}
}
if (model == MODEL_12) {
if (interfaces[radio->getIndex()] == SX128X) {
radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
} else {
radio->setTxPower(txp, PA_OUTPUT_RFO_PIN);
}
}
if (model == MODEL_21) {
if (interfaces[radio->getIndex()] == SX128X) {
radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
} else {
radio->setTxPower(txp, PA_OUTPUT_RFO_PIN);
}
}
if (model == MODEL_A1) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_A2) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_A3) radio->setTxPower(txp, PA_OUTPUT_RFO_PIN);
if (model == MODEL_A4) radio->setTxPower(txp, PA_OUTPUT_RFO_PIN);
if (model == MODEL_A5) radio->setTxPower(txp, PA_OUTPUT_RFO_PIN);
if (model == MODEL_A6) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_A7) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_A8) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_A9) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_B3) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_B4) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_B8) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_B9) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_C4) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_C9) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_E4) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_E9) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_E3) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_E8) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_FE) radio->setTxPower(txp, PA_OUTPUT_PA_BOOST_PIN);
if (model == MODEL_FF) radio->setTxPower(txp, PA_OUTPUT_RFO_PIN);
}
uint8_t getRandom(RadioInterface* radio) {
if (radio->getRadioOnline()) {
return radio->random();
} else {
return 0x00;
}
}
uint8_t getInterfaceIndex(uint8_t byte) {
switch (byte) {
case CMD_INT0_DATA:
case CMD_SEL_INT0:
return 0;
case CMD_INT1_DATA:
case CMD_SEL_INT1:
return 1;
case CMD_INT2_DATA:
case CMD_SEL_INT2:
return 2;
case CMD_INT3_DATA:
case CMD_SEL_INT3:
return 3;
case CMD_INT4_DATA:
case CMD_SEL_INT4:
return 4;
case CMD_INT5_DATA:
case CMD_SEL_INT5:
return 5;
case CMD_INT6_DATA:
case CMD_SEL_INT6:
return 6;
case CMD_INT7_DATA:
case CMD_SEL_INT7:
return 7;
case CMD_INT8_DATA:
case CMD_SEL_INT8:
return 8;
case CMD_INT9_DATA:
case CMD_SEL_INT9:
return 9;
case CMD_INT10_DATA:
case CMD_SEL_INT10:
return 10;
case CMD_INT11_DATA:
case CMD_SEL_INT11:
return 11;
default:
return 0;
}
}
uint8_t getInterfaceCommandByte(uint8_t index) {
switch (index) {
case 0:
return CMD_INT0_DATA;
case 1:
return CMD_INT1_DATA;
case 2:
return CMD_INT2_DATA;
case 3:
return CMD_INT3_DATA;
case 4:
return CMD_INT4_DATA;
case 5:
return CMD_INT5_DATA;
case 6:
return CMD_INT6_DATA;
case 7:
return CMD_INT7_DATA;
case 8:
return CMD_INT8_DATA;
case 9:
return CMD_INT9_DATA;
case 10:
return CMD_INT10_DATA;
case 11:
return CMD_INT11_DATA;
default:
return 0;
}
}
uint16_t getQueueSize(uint8_t index) {
switch (index) {
case 0:
return CONFIG_QUEUE_0_SIZE;
#if INTERFACE_COUNT > 1
case 1:
return CONFIG_QUEUE_1_SIZE;
#endif
#if INTERFACE_COUNT > 2
case 2:
return CONFIG_QUEUE_2_SIZE;
#endif
#if INTERFACE_COUNT > 3
case 3:
return CONFIG_QUEUE_3_SIZE;
#endif
#if INTERFACE_COUNT > 4
case 4:
return CONFIG_QUEUE_4_SIZE;
#endif
#if INTERFACE_COUNT > 5
case 5:
return CONFIG_QUEUE_5_SIZE;
#endif
#if INTERFACE_COUNT > 6
case 6:
return CONFIG_QUEUE_6_SIZE;
#endif
#if INTERFACE_COUNT > 7
case 7:
return CONFIG_QUEUE_7_SIZE;
#endif
#if INTERFACE_COUNT > 8
case 8:
return CONFIG_QUEUE_8_SIZE;
#endif
#if INTERFACE_COUNT > 9
case 9:
return CONFIG_QUEUE_9_SIZE;
#endif
#if INTERFACE_COUNT > 10
case 10:
return CONFIG_QUEUE_10_SIZE;
#endif
#if INTERFACE_COUNT > 11
case 11:
return CONFIG_QUEUE_11_SIZE;
#endif
default:
return CONFIG_QUEUE_0_SIZE;
}
}
void promisc_enable() {
promisc = true;
}
void promisc_disable() {
promisc = false;
}
#if !HAS_EEPROM && MCU_VARIANT == MCU_NRF52
bool eeprom_begin() {
InternalFS.begin();
file.open(EEPROM_FILE, FILE_O_READ);
// if file doesn't exist
if (!file) {
if (file.open(EEPROM_FILE, FILE_O_WRITE)) {
// initialise the file with empty content
uint8_t empty_content[EEPROM_SIZE] = {0};
file.write(empty_content, EEPROM_SIZE);
return true;
} else {
return false;
}
} else {
file.close();
file.open(EEPROM_FILE, FILE_O_WRITE);
return true;
}
}
uint8_t eeprom_read(uint32_t mapped_addr) {
uint8_t byte;
void* byte_ptr = &byte;
file.seek(mapped_addr);
file.read(byte_ptr, 1);
return byte;
}
#endif
bool eeprom_info_locked() {
#if HAS_EEPROM
uint8_t lock_byte = EEPROM.read(eeprom_addr(ADDR_INFO_LOCK));
#elif MCU_VARIANT == MCU_NRF52
uint8_t lock_byte = eeprom_read(eeprom_addr(ADDR_INFO_LOCK));
#endif
if (lock_byte == INFO_LOCK_BYTE) {
return true;
} else {
return false;
}
}
void eeprom_dump_info() {
for (int addr = ADDR_PRODUCT; addr <= ADDR_INFO_LOCK; addr++) {
#if HAS_EEPROM
uint8_t byte = EEPROM.read(eeprom_addr(addr));
#elif MCU_VARIANT == MCU_NRF52
uint8_t byte = eeprom_read(eeprom_addr(addr));
#endif
escaped_serial_write(byte);
}
}
void eeprom_dump_config() {
for (int addr = ADDR_CONF_SF; addr <= ADDR_CONF_OK; addr++) {
#if HAS_EEPROM
uint8_t byte = EEPROM.read(eeprom_addr(addr));
#elif MCU_VARIANT == MCU_NRF52
uint8_t byte = eeprom_read(eeprom_addr(addr));
#endif
escaped_serial_write(byte);
}
}
void eeprom_dump_all() {
for (int addr = 0; addr < EEPROM_RESERVED; addr++) {
#if HAS_EEPROM
uint8_t byte = EEPROM.read(eeprom_addr(addr));
#elif MCU_VARIANT == MCU_NRF52
uint8_t byte = eeprom_read(eeprom_addr(addr));
#endif
escaped_serial_write(byte);
}
}
void kiss_dump_eeprom() {
serial_write(FEND);
serial_write(CMD_ROM_READ);
eeprom_dump_all();
serial_write(FEND);
}
#if !HAS_EEPROM && MCU_VARIANT == MCU_NRF52
void eeprom_flush() {
// sync file contents to flash
file.close();
file.open(EEPROM_FILE, FILE_O_WRITE);
written_bytes = 0;
}
#endif
void eeprom_update(int mapped_addr, uint8_t byte) {
#if MCU_VARIANT == MCU_ESP32
if (EEPROM.read(mapped_addr) != byte) {
EEPROM.write(mapped_addr, byte);
EEPROM.commit();
}
#elif !HAS_EEPROM && MCU_VARIANT == MCU_NRF52
// todo: clean up this implementation, writing one byte and syncing
// each time is really slow, but this is also suboptimal
uint8_t read_byte;
void* read_byte_ptr = &read_byte;
file.seek(mapped_addr);
file.read(read_byte_ptr, 1);
file.seek(mapped_addr);
if (read_byte != byte) {
file.write(byte);
}
written_bytes++;
if (((mapped_addr - eeprom_addr(0)) == ADDR_INFO_LOCK) || (mapped_addr - eeprom_addr(0)) == ADDR_CONF_OK) {
// have to do a flush because we're only writing 1 byte and it syncs after 4
eeprom_flush();
}
if (written_bytes >= 4) {
file.close();
file.open(EEPROM_FILE, FILE_O_WRITE);
written_bytes = 0;
}
#endif
}
void eeprom_write(uint8_t addr, uint8_t byte) {
if (!eeprom_info_locked() && addr >= 0 && addr < EEPROM_RESERVED) {
eeprom_update(eeprom_addr(addr), byte);
} else {
kiss_indicate_error(ERROR_EEPROM_LOCKED);
}
}
void eeprom_erase() {
for (int addr = 0; addr < EEPROM_RESERVED; addr++) {
eeprom_update(eeprom_addr(addr), 0xFF);
}
hard_reset();
}
bool eeprom_lock_set() {
#if HAS_EEPROM
if (EEPROM.read(eeprom_addr(ADDR_INFO_LOCK)) == INFO_LOCK_BYTE) {
#elif MCU_VARIANT == MCU_NRF52
if (eeprom_read(eeprom_addr(ADDR_INFO_LOCK)) == INFO_LOCK_BYTE) {
#endif
return true;
} else {
return false;
}
}
bool eeprom_product_valid() {
#if HAS_EEPROM
uint8_t rval = EEPROM.read(eeprom_addr(ADDR_PRODUCT));
#elif MCU_VARIANT == MCU_NRF52
uint8_t rval = eeprom_read(eeprom_addr(ADDR_PRODUCT));
#endif
#if PLATFORM == PLATFORM_ESP32
if (rval == PRODUCT_RNODE || rval == BOARD_RNODE_NG_20 || rval == BOARD_RNODE_NG_21 || rval == PRODUCT_HMBRW || rval == PRODUCT_TBEAM || rval == PRODUCT_T32_10 || rval == PRODUCT_T32_20 || rval == PRODUCT_T32_21 || rval == PRODUCT_H32_V2 || rval == PRODUCT_H32_V3) {
#elif PLATFORM == PLATFORM_NRF52
if (rval == PRODUCT_TECHO || rval == PRODUCT_RAK4631 || rval == PRODUCT_HMBRW || rval == PRODUCT_FREENODE) {
#else
if (false) {
#endif
return true;
} else {
return false;
}
}
bool eeprom_model_valid() {
#if HAS_EEPROM
model = EEPROM.read(eeprom_addr(ADDR_MODEL));
#elif MCU_VARIANT == MCU_NRF52
model = eeprom_read(eeprom_addr(ADDR_MODEL));
#endif
#if BOARD_MODEL == BOARD_RNODE
if (model == MODEL_A4 || model == MODEL_A9 || model == MODEL_FF || model == MODEL_FE) {
#elif BOARD_MODEL == BOARD_RNODE_NG_20
if (model == MODEL_A3 || model == MODEL_A8) {
#elif BOARD_MODEL == BOARD_RNODE_NG_21
if (model == MODEL_A2 || model == MODEL_A7) {
#elif BOARD_MODEL == BOARD_T3S3
if (model == MODEL_A1 || model == MODEL_A5 || model == MODEL_A6) {
#elif BOARD_MODEL == BOARD_HMBRW
if (model == MODEL_FF || model == MODEL_FE) {
#elif BOARD_MODEL == BOARD_TBEAM
if (model == MODEL_E4 || model == MODEL_E9 || model == MODEL_E3 || model == MODEL_E8) {
#elif BOARD_MODEL == BOARD_TECHO
if (model == MODEL_16 || model == MODEL_17) {
#elif BOARD_MODEL == BOARD_LORA32_V1_0
if (model == MODEL_BA || model == MODEL_BB) {
#elif BOARD_MODEL == BOARD_LORA32_V2_0
if (model == MODEL_B3 || model == MODEL_B8) {
#elif BOARD_MODEL == BOARD_LORA32_V2_1
if (model == MODEL_B4 || model == MODEL_B9) {
#elif BOARD_MODEL == BOARD_HELTEC32_V2
if (model == MODEL_C4 || model == MODEL_C9) {
#elif BOARD_MODEL == BOARD_HELTEC32_V3
if (model == MODEL_C5 || model == MODEL_CA) {
#elif BOARD_MODEL == BOARD_RAK4631
if (model == MODEL_11 || model == MODEL_12 || model == MODEL_13 || model == MODEL_14 || model == MODEL_21) {
#elif BOARD_MODEL == BOARD_HUZZAH32
if (model == MODEL_FF) {
#elif BOARD_MODEL == BOARD_GENERIC_ESP32
if (model == MODEL_FF || model == MODEL_FE) {
#else
if (false) {
#endif
return true;
} else {
return false;
}
}
bool eeprom_hwrev_valid() {
#if HAS_EEPROM
hwrev = EEPROM.read(eeprom_addr(ADDR_HW_REV));
#elif MCU_VARIANT == MCU_NRF52
hwrev = eeprom_read(eeprom_addr(ADDR_HW_REV));
#endif
if (hwrev != 0x00 && hwrev != 0xFF) {
return true;
} else {
return false;
}
}
bool eeprom_checksum_valid() {
char *data = (char*)malloc(CHECKSUMMED_SIZE);
for (uint8_t i = 0; i < CHECKSUMMED_SIZE; i++) {
#if HAS_EEPROM
char byte = EEPROM.read(eeprom_addr(i));
#elif MCU_VARIANT == MCU_NRF52
char byte = eeprom_read(eeprom_addr(i));
#endif
data[i] = byte;
}
unsigned char *hash = MD5::make_hash(data, CHECKSUMMED_SIZE);
bool checksum_valid = true;
for (uint8_t i = 0; i < 16; i++) {
#if HAS_EEPROM
uint8_t stored_chk_byte = EEPROM.read(eeprom_addr(ADDR_CHKSUM+i));
#elif MCU_VARIANT == MCU_NRF52
uint8_t stored_chk_byte = eeprom_read(eeprom_addr(ADDR_CHKSUM+i));
#endif
uint8_t calced_chk_byte = (uint8_t)hash[i];
if (stored_chk_byte != calced_chk_byte) {
checksum_valid = false;
}
}
free(hash);
free(data);
return checksum_valid;
}
void bt_conf_save(bool is_enabled) {
if (is_enabled) {
eeprom_update(eeprom_addr(ADDR_CONF_BT), BT_ENABLE_BYTE);
#if !HAS_EEPROM && MCU_VARIANT == MCU_NRF52
// have to do a flush because we're only writing 1 byte and it syncs after 8
eeprom_flush();
#endif
} else {
eeprom_update(eeprom_addr(ADDR_CONF_BT), 0x00);
#if !HAS_EEPROM && MCU_VARIANT == MCU_NRF52
// have to do a flush because we're only writing 1 byte and it syncs after 8
eeprom_flush();
#endif
}
}
void di_conf_save(uint8_t dint) {
eeprom_update(eeprom_addr(ADDR_CONF_DINT), dint);
}
void da_conf_save(uint8_t dadr) {
eeprom_update(eeprom_addr(ADDR_CONF_DADR), dadr);
}
bool eeprom_have_conf() {
#if HAS_EEPROM
if (EEPROM.read(eeprom_addr(ADDR_CONF_OK)) == CONF_OK_BYTE) {
#elif MCU_VARIANT == MCU_NRF52
if (eeprom_read(eeprom_addr(ADDR_CONF_OK)) == CONF_OK_BYTE) {
#endif
return true;
} else {
return false;
}
}
void eeprom_conf_load(RadioInterface* radio) {
if (eeprom_have_conf()) {
if (!(radio->getRadioOnline())) {
#if HAS_EEPROM
uint8_t sf = EEPROM.read(eeprom_addr(ADDR_CONF_SF));
uint8_t cr = EEPROM.read(eeprom_addr(ADDR_CONF_CR));
uint8_t txp = EEPROM.read(eeprom_addr(ADDR_CONF_TXP));
uint32_t freq = (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x00) << 24 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x01) << 16 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x02) << 8 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_FREQ)+0x03);
uint32_t bw = (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x00) << 24 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x01) << 16 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x02) << 8 | (uint32_t)EEPROM.read(eeprom_addr(ADDR_CONF_BW)+0x03);
#elif MCU_VARIANT == MCU_NRF52
uint8_t sf = eeprom_read(eeprom_addr(ADDR_CONF_SF));
uint8_t cr = eeprom_read(eeprom_addr(ADDR_CONF_CR));
uint8_t txp = eeprom_read(eeprom_addr(ADDR_CONF_TXP));
uint32_t freq = (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_FREQ)+0x00) << 24 | (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_FREQ)+0x01) << 16 | (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_FREQ)+0x02) << 8 | (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_FREQ)+0x03);
uint32_t bw = (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_BW)+0x00) << 24 | (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_BW)+0x01) << 16 | (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_BW)+0x02) << 8 | (uint32_t)eeprom_read(eeprom_addr(ADDR_CONF_BW)+0x03);
#endif
radio->setSpreadingFactor(sf);
radio->setCodingRate4(cr);
setTXPower(radio, txp);
radio->setFrequency(freq);
radio->setSignalBandwidth(bw);
radio->updateBitrate();
}
}
}
void eeprom_conf_save(RadioInterface* radio) {
if (hw_ready && radio->getRadioOnline()) {
eeprom_update(eeprom_addr(ADDR_CONF_SF), radio->getSpreadingFactor());
eeprom_update(eeprom_addr(ADDR_CONF_CR), radio->getCodingRate4());
eeprom_update(eeprom_addr(ADDR_CONF_TXP), radio->getTxPower());
uint32_t bw = radio->getSignalBandwidth();
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x00, bw>>24);
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x01, bw>>16);
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x02, bw>>8);
eeprom_update(eeprom_addr(ADDR_CONF_BW)+0x03, bw);
uint32_t freq = radio->getFrequency();
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x00, freq>>24);
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x01, freq>>16);
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x02, freq>>8);
eeprom_update(eeprom_addr(ADDR_CONF_FREQ)+0x03, freq);
eeprom_update(eeprom_addr(ADDR_CONF_OK), CONF_OK_BYTE);
led_indicate_info(10);
} else {
led_indicate_warning(10);
}
}
void eeprom_conf_delete() {
eeprom_update(eeprom_addr(ADDR_CONF_OK), 0x00);
}
void unlock_rom() {
led_indicate_error(50);
eeprom_erase();
}
#include "src/misc/FIFOBuffer.h"