RNode_Firmware_CE/Power.h
2024-10-11 18:54:40 +01:00

453 lines
15 KiB
C

#if BOARD_MODEL == BOARD_TBEAM
#include <XPowersLib.h>
XPowersLibInterface* PMU = NULL;
#ifndef PMU_WIRE_PORT
#define PMU_WIRE_PORT Wire
#endif
#define BAT_V_MIN 3.15
#define BAT_V_MAX 4.14
void disablePeripherals() {
if (PMU) {
// GNSS RTC PowerVDD
PMU->enablePowerOutput(XPOWERS_VBACKUP);
// LoRa VDD
PMU->disablePowerOutput(XPOWERS_ALDO2);
// GNSS VDD
PMU->disablePowerOutput(XPOWERS_ALDO3);
}
}
bool pmuInterrupt;
void setPmuFlag()
{
pmuInterrupt = true;
}
#elif BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1
#define BAT_C_SAMPLES 7
#define BAT_D_SAMPLES 2
#define BAT_V_MIN 3.15
#define BAT_V_MAX 4.3
#define BAT_V_CHG 4.48
#define BAT_V_FLOAT 4.33
#define BAT_SAMPLES 5
const uint8_t pin_vbat = 35;
float bat_p_samples[BAT_SAMPLES];
float bat_v_samples[BAT_SAMPLES];
uint8_t bat_samples_count = 0;
int bat_discharging_samples = 0;
int bat_charging_samples = 0;
int bat_charged_samples = 0;
bool bat_voltage_dropping = false;
float bat_delay_v = 0;
#elif BOARD_MODEL == BOARD_RAK4631
#include "nrfx_power.h"
#define BAT_C_SAMPLES 7
#define BAT_D_SAMPLES 2
#define BAT_V_MIN 2.75
#define BAT_V_MAX 4.2
#define BAT_V_FLOAT 4.22
#define BAT_SAMPLES 5
#define VBAT_MV_PER_LSB (0.73242188F) // 3.0V ADC range and 12 - bit ADC resolution = 3000mV / 4096
#define VBAT_DIVIDER_COMP (1.73) // Compensation factor for the VBAT divider
#define VBAT_MV_PER_LSB_FIN (VBAT_DIVIDER_COMP * VBAT_MV_PER_LSB)
#define PIN_VBAT WB_A0
float bat_p_samples[BAT_SAMPLES];
float bat_v_samples[BAT_SAMPLES];
uint8_t bat_samples_count = 0;
int bat_discharging_samples = 0;
int bat_charging_samples = 0;
int bat_charged_samples = 0;
bool bat_voltage_dropping = false;
float bat_delay_v = 0;
#endif
uint32_t last_pmu_update = 0;
uint8_t pmu_target_pps = 1;
int pmu_update_interval = 1000/pmu_target_pps;
uint8_t pmu_rc = 0;
#define PMU_R_INTERVAL 5
void kiss_indicate_battery();
void measure_battery() {
#if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1
battery_installed = true;
battery_indeterminate = true;
bat_v_samples[bat_samples_count%BAT_SAMPLES] = (float)(analogRead(pin_vbat)) / 4095*2*3.3*1.1;
bat_p_samples[bat_samples_count%BAT_SAMPLES] = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0;
bat_samples_count++;
if (!battery_ready && bat_samples_count >= BAT_SAMPLES) {
battery_ready = true;
}
if (battery_ready) {
battery_percent = 0;
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) {
battery_percent += bat_p_samples[bi];
}
battery_percent = battery_percent/BAT_SAMPLES;
battery_voltage = 0;
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) {
battery_voltage += bat_v_samples[bi];
}
battery_voltage = battery_voltage/BAT_SAMPLES;
if (bat_delay_v == 0) bat_delay_v = battery_voltage;
if (battery_percent > 100.0) battery_percent = 100.0;
if (battery_percent < 0.0) battery_percent = 0.0;
if (bat_samples_count%BAT_SAMPLES == 0) {
if (battery_voltage < bat_delay_v && battery_voltage < BAT_V_FLOAT) {
bat_voltage_dropping = true;
} else {
bat_voltage_dropping = false;
}
bat_samples_count = 0;
}
if (bat_voltage_dropping && battery_voltage < BAT_V_FLOAT) {
battery_state = BATTERY_STATE_DISCHARGING;
} else {
#if BOARD_MODEL == BOARD_RNODE_NG_21
battery_state = BATTERY_STATE_CHARGING;
#else
battery_state = BATTERY_STATE_DISCHARGING;
#endif
}
// if (bt_state == BT_STATE_CONNECTED) {
// SerialBT.printf("Bus voltage %.3fv. Unfiltered %.3fv.", battery_voltage, bat_v_samples[BAT_SAMPLES-1]);
// if (bat_voltage_dropping) {
// SerialBT.printf(" Voltage is dropping. Percentage %.1f%%.\n", battery_percent);
// } else {
// SerialBT.print(" Voltage is not dropping.\n");
// }
// }
}
#elif BOARD_MODEL == BOARD_TBEAM
if (PMU) {
float discharge_current = 0;
float charge_current = 0;
float ext_voltage = 0;
float ext_current = 0;
if (PMU->getChipModel() == XPOWERS_AXP192) {
discharge_current = ((XPowersAXP192*)PMU)->getBattDischargeCurrent();
charge_current = ((XPowersAXP192*)PMU)->getBatteryChargeCurrent();
battery_voltage = PMU->getBattVoltage()/1000.0;
// battery_percent = PMU->getBattPercentage()*1.0;
battery_installed = PMU->isBatteryConnect();
external_power = PMU->isVbusIn();
ext_voltage = PMU->getVbusVoltage()/1000.0;
ext_current = ((XPowersAXP192*)PMU)->getVbusCurrent();
}
else if (PMU->getChipModel() == XPOWERS_AXP2101) {
battery_voltage = PMU->getBattVoltage()/1000.0;
// battery_percent = PMU->getBattPercentage()*1.0;
battery_installed = PMU->isBatteryConnect();
external_power = PMU->isVbusIn();
ext_voltage = PMU->getVbusVoltage()/1000.0;
}
if (battery_installed) {
if (PMU->isCharging()) {
battery_state = BATTERY_STATE_CHARGING;
battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0;
} else {
if (PMU->isDischarge()) {
battery_state = BATTERY_STATE_DISCHARGING;
battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0;
} else {
battery_state = BATTERY_STATE_CHARGED;
battery_percent = 100.0;
}
}
} else {
battery_state = BATTERY_STATE_DISCHARGING;
battery_percent = 0.0;
battery_voltage = 0.0;
}
if (battery_percent > 100.0) battery_percent = 100.0;
if (battery_percent < 0.0) battery_percent = 0.0;
float charge_watts = battery_voltage*(charge_current/1000.0);
float discharge_watts = battery_voltage*(discharge_current/1000.0);
float ext_watts = ext_voltage*(ext_current/1000.0);
battery_ready = true;
// if (bt_state == BT_STATE_CONNECTED) {
// if (battery_installed) {
// if (external_power) {
// SerialBT.printf("External power connected, drawing %.2fw, %.1fmA at %.1fV\n", ext_watts, ext_current, ext_voltage);
// } else {
// SerialBT.println("Running on battery");
// }
// SerialBT.printf("Battery percentage %.1f%%\n", battery_percent);
// SerialBT.printf("Battery voltage %.2fv\n", battery_voltage);
// // SerialBT.printf("Temperature %.1f%\n", auxillary_temperature);
// if (battery_state == BATTERY_STATE_CHARGING) {
// SerialBT.printf("Charging with %.2fw, %.1fmA at %.1fV\n", charge_watts, charge_current, battery_voltage);
// } else if (battery_state == BATTERY_STATE_DISCHARGING) {
// SerialBT.printf("Discharging at %.2fw, %.1fmA at %.1fV\n", discharge_watts, discharge_current, battery_voltage);
// } else if (battery_state == BATTERY_STATE_CHARGED) {
// SerialBT.printf("Battery charged\n");
// }
// } else {
// SerialBT.println("No battery installed");
// }
// SerialBT.println("");
// }
}
else {
battery_ready = false;
}
#elif BOARD_MODEL == BOARD_RAK4631
battery_installed = true;
battery_indeterminate = false;
bat_v_samples[bat_samples_count%BAT_SAMPLES] = (float)(analogRead(PIN_VBAT)) * VBAT_MV_PER_LSB_FIN;
if (bat_v_samples[bat_samples_count%BAT_SAMPLES] < 3300) {
bat_p_samples[bat_samples_count%BAT_SAMPLES] = 0;
}
else if (bat_v_samples[bat_samples_count%BAT_SAMPLES] < 3600)
{
bat_v_samples[bat_samples_count%BAT_SAMPLES] -= 3300;
bat_p_samples[bat_samples_count%BAT_SAMPLES] = bat_v_samples[bat_samples_count%BAT_SAMPLES] / 30;
} else {
bat_v_samples[bat_samples_count%BAT_SAMPLES] -= 3600;
}
bat_p_samples[bat_samples_count%BAT_SAMPLES] = 10 + (bat_v_samples[bat_samples_count%BAT_SAMPLES] * 0.15F);
bat_samples_count++;
if (!battery_ready && bat_samples_count >= BAT_SAMPLES) {
battery_ready = true;
}
battery_percent = 0;
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) {
battery_percent += bat_p_samples[bi];
}
battery_percent = battery_percent/BAT_SAMPLES;
battery_voltage = 0;
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) {
battery_voltage += bat_v_samples[bi];
}
battery_voltage = battery_voltage/BAT_SAMPLES;
if (bat_delay_v == 0) bat_delay_v = battery_voltage;
if (battery_percent > 100.0) battery_percent = 100.0;
if (battery_percent < 0.0) battery_percent = 0.0;
if (bat_samples_count%BAT_SAMPLES == 0) {
if (battery_voltage < bat_delay_v && battery_voltage < BAT_V_FLOAT) {
bat_voltage_dropping = true;
} else {
bat_voltage_dropping = false;
}
bat_samples_count = 0;
}
nrfx_power_usb_state_t usbstate = nrfx_power_usbstatus_get();
if (usbstate == NRFX_POWER_USB_STATE_CONNECTED || usbstate == NRFX_POWER_USB_STATE_READY) {
// charging
battery_state = BATTERY_STATE_CHARGING;
} else {
battery_state = BATTERY_STATE_DISCHARGING;
}
if (battery_percent >= 98) {
battery_state = BATTERY_STATE_CHARGED;
}
#if HAS_BLE
if ((bt_state == BT_STATE_ON) || bt_state == BT_STATE_CONNECTED) {
if (battery_state != BATTERY_STATE_CHARGING) {
blebas.write(battery_percent);
} else {
blebas.write(100);
}
}
#endif
#endif
if (battery_ready) {
pmu_rc++;
if (pmu_rc%PMU_R_INTERVAL == 0) {
kiss_indicate_battery();
}
}
}
void update_pmu() {
if (millis()-last_pmu_update >= pmu_update_interval) {
measure_battery();
last_pmu_update = millis();
}
}
bool init_pmu() {
#if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1
pinMode(pin_vbat, INPUT);
return true;
#elif BOARD_MODEL == BOARD_TBEAM
Wire.begin(I2C_SDA, I2C_SCL);
if (!PMU) {
PMU = new XPowersAXP2101(PMU_WIRE_PORT);
if (!PMU->init()) {
Serial.println("Warning: Failed to find AXP2101 power management");
delete PMU;
PMU = NULL;
} else {
Serial.println("AXP2101 PMU init succeeded, using AXP2101 PMU");
}
}
if (!PMU) {
PMU = new XPowersAXP192(PMU_WIRE_PORT);
if (!PMU->init()) {
Serial.println("Warning: Failed to find AXP192 power management");
delete PMU;
PMU = NULL;
} else {
Serial.println("AXP192 PMU init succeeded, using AXP192 PMU");
}
}
if (!PMU) {
return false;
}
// Configure charging indicator
PMU->setChargingLedMode(XPOWERS_CHG_LED_OFF);
pinMode(PMU_IRQ, INPUT_PULLUP);
attachInterrupt(PMU_IRQ, setPmuFlag, FALLING);
if (PMU->getChipModel() == XPOWERS_AXP192) {
// Turn off unused power sources to save power
PMU->disablePowerOutput(XPOWERS_DCDC1);
PMU->disablePowerOutput(XPOWERS_DCDC2);
PMU->disablePowerOutput(XPOWERS_LDO2);
PMU->disablePowerOutput(XPOWERS_LDO3);
// Set the power of LoRa and GPS module to 3.3V
// LoRa
PMU->setPowerChannelVoltage(XPOWERS_LDO2, 3300);
// GPS
PMU->setPowerChannelVoltage(XPOWERS_LDO3, 3300);
// OLED
PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300);
// Turn on LoRa
PMU->enablePowerOutput(XPOWERS_LDO2);
// Turn on GPS
//PMU->enablePowerOutput(XPOWERS_LDO3);
// protected oled power source
PMU->setProtectedChannel(XPOWERS_DCDC1);
// protected esp32 power source
PMU->setProtectedChannel(XPOWERS_DCDC3);
// enable oled power
PMU->enablePowerOutput(XPOWERS_DCDC1);
PMU->disableIRQ(XPOWERS_AXP192_ALL_IRQ);
PMU->enableIRQ(XPOWERS_AXP192_VBUS_REMOVE_IRQ |
XPOWERS_AXP192_VBUS_INSERT_IRQ |
XPOWERS_AXP192_BAT_CHG_DONE_IRQ |
XPOWERS_AXP192_BAT_CHG_START_IRQ |
XPOWERS_AXP192_BAT_REMOVE_IRQ |
XPOWERS_AXP192_BAT_INSERT_IRQ |
XPOWERS_AXP192_PKEY_SHORT_IRQ
);
}
else if (PMU->getChipModel() == XPOWERS_AXP2101) {
// Turn off unused power sources to save power
PMU->disablePowerOutput(XPOWERS_DCDC2);
PMU->disablePowerOutput(XPOWERS_DCDC3);
PMU->disablePowerOutput(XPOWERS_DCDC4);
PMU->disablePowerOutput(XPOWERS_DCDC5);
PMU->disablePowerOutput(XPOWERS_ALDO1);
PMU->disablePowerOutput(XPOWERS_ALDO2);
PMU->disablePowerOutput(XPOWERS_ALDO3);
PMU->disablePowerOutput(XPOWERS_ALDO4);
PMU->disablePowerOutput(XPOWERS_BLDO1);
PMU->disablePowerOutput(XPOWERS_BLDO2);
PMU->disablePowerOutput(XPOWERS_DLDO1);
PMU->disablePowerOutput(XPOWERS_DLDO2);
PMU->disablePowerOutput(XPOWERS_VBACKUP);
// Set the power of LoRa and GPS module to 3.3V
// LoRa
PMU->setPowerChannelVoltage(XPOWERS_ALDO2, 3300);
// GPS
PMU->setPowerChannelVoltage(XPOWERS_ALDO3, 3300);
PMU->setPowerChannelVoltage(XPOWERS_VBACKUP, 3300);
// ESP32 VDD
// ! No need to set, automatically open , Don't close it
// PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300);
// PMU->setProtectedChannel(XPOWERS_DCDC1);
PMU->setProtectedChannel(XPOWERS_DCDC1);
// LoRa VDD
PMU->enablePowerOutput(XPOWERS_ALDO2);
// GNSS VDD
//PMU->enablePowerOutput(XPOWERS_ALDO3);
// GNSS RTC PowerVDD
//PMU->enablePowerOutput(XPOWERS_VBACKUP);
}
PMU->enableSystemVoltageMeasure();
PMU->enableVbusVoltageMeasure();
PMU->enableBattVoltageMeasure();
// It is necessary to disable the detection function of the TS pin on the board
// without the battery temperature detection function, otherwise it will cause abnormal charging
PMU->disableTSPinMeasure();
// Set the time of pressing the button to turn off
PMU->setPowerKeyPressOffTime(XPOWERS_POWEROFF_4S);
return true;
#elif BOARD_MODEL == BOARD_RAK4631 || BOARD_MODEL == BOARD_FREENODE
// board doesn't have PMU but we can measure batt voltage
// prep ADC for reading battery level
analogReference(AR_INTERNAL_3_0);
// Set the resolution to 12-bit (0..4095)
analogReadResolution(12);
// Let the ADC settle
delay(1);
// Get a single ADC sample and throw it away
float raw = analogRead(PIN_VBAT);
return true;
#else
return false;
#endif
}