// Copyright (c) Sandeep Mistry. All rights reserved.
// Licensed under the MIT license.

// Modifications and additions copyright 2018 by Mark Qvist
// Obviously still under the MIT license.

#include "LoRa.h"

#define MCU_1284P 0x91
#define MCU_2560  0x92
#define MCU_ESP32 0x81
#if defined(__AVR_ATmega1284P__)
  #define PLATFORM PLATFORM_AVR
  #define MCU_VARIANT MCU_1284P
#elif defined(__AVR_ATmega2560__)
  #define PLATFORM PLATFORM_AVR
  #define MCU_VARIANT MCU_2560
#elif defined(ESP32)
  #define PLATFORM PLATFORM_ESP32
  #define MCU_VARIANT MCU_ESP32
#endif

#ifndef MCU_VARIANT
  #error No MCU variant defined, cannot compile
#endif

#if MCU_VARIANT == MCU_ESP32
  #include "soc/rtc_wdt.h"
  #define ISR_VECT IRAM_ATTR
#else
  #define ISR_VECT
#endif

// Registers
#define REG_FIFO                 0x00
#define REG_OP_MODE              0x01
#define REG_FRF_MSB              0x06
#define REG_FRF_MID              0x07
#define REG_FRF_LSB              0x08
#define REG_PA_CONFIG            0x09
#define REG_OCP                  0x0b
#define REG_LNA                  0x0c
#define REG_FIFO_ADDR_PTR        0x0d
#define REG_FIFO_TX_BASE_ADDR    0x0e
#define REG_FIFO_RX_BASE_ADDR    0x0f
#define REG_FIFO_RX_CURRENT_ADDR 0x10
#define REG_IRQ_FLAGS            0x12
#define REG_RX_NB_BYTES          0x13
#define REG_MODEM_STAT           0x18
#define REG_PKT_SNR_VALUE        0x19
#define REG_PKT_RSSI_VALUE       0x1a
#define REG_MODEM_CONFIG_1       0x1d
#define REG_MODEM_CONFIG_2       0x1e
#define REG_PREAMBLE_MSB         0x20
#define REG_PREAMBLE_LSB         0x21
#define REG_PAYLOAD_LENGTH       0x22
#define REG_MODEM_CONFIG_3       0x26
#define REG_FREQ_ERROR_MSB       0x28
#define REG_FREQ_ERROR_MID       0x29
#define REG_FREQ_ERROR_LSB       0x2a
#define REG_RSSI_WIDEBAND        0x2c
#define REG_DETECTION_OPTIMIZE   0x31
#define REG_DETECTION_THRESHOLD  0x37
#define REG_SYNC_WORD            0x39
#define REG_DIO_MAPPING_1        0x40
#define REG_VERSION              0x42
#define REG_PA_DAC               0x4d

// Modes
#define MODE_LONG_RANGE_MODE     0x80
#define MODE_SLEEP               0x00
#define MODE_STDBY               0x01
#define MODE_TX                  0x03
#define MODE_RX_CONTINUOUS       0x05
#define MODE_RX_SINGLE           0x06

// PA config
#define PA_BOOST                 0x80

// IRQ masks
#define IRQ_TX_DONE_MASK           0x08
#define IRQ_PAYLOAD_CRC_ERROR_MASK 0x20
#define IRQ_RX_DONE_MASK           0x40

#define MAX_PKT_LENGTH           255

LoRaClass::LoRaClass() :
  _spiSettings(8E6, MSBFIRST, SPI_MODE0),
  _ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN),
  _frequency(0),
  _packetIndex(0),
  _implicitHeaderMode(0),
  _onReceive(NULL)
{
  // overide Stream timeout value
  setTimeout(0);
}

int LoRaClass::begin(long frequency)
{
  // setup pins
  pinMode(_ss, OUTPUT);
  // set SS high
  digitalWrite(_ss, HIGH);

  if (_reset != -1) {
    pinMode(_reset, OUTPUT);

    // perform reset
    digitalWrite(_reset, LOW);
    delay(10);
    digitalWrite(_reset, HIGH);
    delay(10);
  }

  // start SPI
  SPI.begin();

  // check version
  uint8_t version = readRegister(REG_VERSION);
  if (version != 0x12) {
    return 0;
  }

  // put in sleep mode
  sleep();

  // set frequency
  setFrequency(frequency);

  // set base addresses
  writeRegister(REG_FIFO_TX_BASE_ADDR, 0);
  writeRegister(REG_FIFO_RX_BASE_ADDR, 0);

  // set LNA boost
  writeRegister(REG_LNA, readRegister(REG_LNA) | 0x03);

  // set auto AGC
  writeRegister(REG_MODEM_CONFIG_3, 0x04);

  // set output power to 2 dBm
  setTxPower(2);

  // put in standby mode
  idle();

  return 1;
}

void LoRaClass::end()
{
  // put in sleep mode
  sleep();

  // stop SPI
  SPI.end();
}

int LoRaClass::beginPacket(int implicitHeader)
{
  // put in standby mode
  idle();

  if (implicitHeader) {
    implicitHeaderMode();
  } else {
    explicitHeaderMode();
  }

  // reset FIFO address and paload length
  writeRegister(REG_FIFO_ADDR_PTR, 0);
  writeRegister(REG_PAYLOAD_LENGTH, 0);

  return 1;
}

int LoRaClass::endPacket()
{
  // put in TX mode
  writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_TX);

  // wait for TX done
  while ((readRegister(REG_IRQ_FLAGS) & IRQ_TX_DONE_MASK) == 0) {
    yield();
  }

  // clear IRQ's
  writeRegister(REG_IRQ_FLAGS, IRQ_TX_DONE_MASK);

  return 1;
}

int LoRaClass::parsePacket(int size)
{
  int packetLength = 0;
  int irqFlags = readRegister(REG_IRQ_FLAGS);

  if (size > 0) {
    implicitHeaderMode();

    writeRegister(REG_PAYLOAD_LENGTH, size & 0xff);
  } else {
    explicitHeaderMode();
  }

  // clear IRQ's
  writeRegister(REG_IRQ_FLAGS, irqFlags);

  if ((irqFlags & IRQ_RX_DONE_MASK) && (irqFlags & IRQ_PAYLOAD_CRC_ERROR_MASK) == 0) {
    // received a packet
    _packetIndex = 0;

    // read packet length
    if (_implicitHeaderMode) {
      packetLength = readRegister(REG_PAYLOAD_LENGTH);
    } else {
      packetLength = readRegister(REG_RX_NB_BYTES);
    }

    // set FIFO address to current RX address
    writeRegister(REG_FIFO_ADDR_PTR, readRegister(REG_FIFO_RX_CURRENT_ADDR));

    // put in standby mode
    idle();
  } else if (readRegister(REG_OP_MODE) != (MODE_LONG_RANGE_MODE | MODE_RX_SINGLE)) {
    // not currently in RX mode

    // reset FIFO address
    writeRegister(REG_FIFO_ADDR_PTR, 0);

    // put in single RX mode
    writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_RX_SINGLE);
  }

  return packetLength;
}

uint8_t LoRaClass::modemStatus() {
  return readRegister(REG_MODEM_STAT);
}

uint8_t LoRaClass::packetRssiRaw() {
  uint8_t pkt_rssi_value = readRegister(REG_PKT_RSSI_VALUE);
  return pkt_rssi_value;
}

int ISR_VECT LoRaClass::packetRssi() {
  int pkt_rssi = (int)readRegister(REG_PKT_RSSI_VALUE) - RSSI_OFFSET;
  int pkt_snr = packetSnr();

  if (_frequency < 820E6) pkt_rssi -= 7;

  if (pkt_snr < 0) {
    pkt_rssi += pkt_snr;
  } else {
    // Slope correction is (16/15)*pkt_rssi,
    // this estimation looses one floating point
    // operation, and should be precise enough.
    pkt_rssi = (int)(1.066 * pkt_rssi);
  }

  return pkt_rssi;
}

uint8_t ISR_VECT LoRaClass::packetSnrRaw() {
  return readRegister(REG_PKT_SNR_VALUE);
}

float ISR_VECT LoRaClass::packetSnr() {
  return ((int8_t)readRegister(REG_PKT_SNR_VALUE)) * 0.25;
}

long LoRaClass::packetFrequencyError()
{
  int32_t freqError = 0;
  freqError = static_cast<int32_t>(readRegister(REG_FREQ_ERROR_MSB) & B111);
  freqError <<= 8L;
  freqError += static_cast<int32_t>(readRegister(REG_FREQ_ERROR_MID));
  freqError <<= 8L;
  freqError += static_cast<int32_t>(readRegister(REG_FREQ_ERROR_LSB));

  if (readRegister(REG_FREQ_ERROR_MSB) & B1000) { // Sign bit is on
     freqError -= 524288; // B1000'0000'0000'0000'0000
  }

  const float fXtal = 32E6; // FXOSC: crystal oscillator (XTAL) frequency (2.5. Chip Specification, p. 14)
  const float fError = ((static_cast<float>(freqError) * (1L << 24)) / fXtal) * (getSignalBandwidth() / 500000.0f); // p. 37

  return static_cast<long>(fError);
}

size_t LoRaClass::write(uint8_t byte)
{
  return write(&byte, sizeof(byte));
}

size_t LoRaClass::write(const uint8_t *buffer, size_t size)
{
  int currentLength = readRegister(REG_PAYLOAD_LENGTH);

  // check size
  if ((currentLength + size) > MAX_PKT_LENGTH) {
    size = MAX_PKT_LENGTH - currentLength;
  }

  // write data
  for (size_t i = 0; i < size; i++) {
    writeRegister(REG_FIFO, buffer[i]);
  }

  // update length
  writeRegister(REG_PAYLOAD_LENGTH, currentLength + size);

  return size;
}

int ISR_VECT LoRaClass::available()
{
  return (readRegister(REG_RX_NB_BYTES) - _packetIndex);
}

int ISR_VECT LoRaClass::read()
{
  if (!available()) {
    return -1;
  }

  _packetIndex++;

  return readRegister(REG_FIFO);
}

int LoRaClass::peek()
{
  if (!available()) {
    return -1;
  }

  // store current FIFO address
  int currentAddress = readRegister(REG_FIFO_ADDR_PTR);

  // read
  uint8_t b = readRegister(REG_FIFO);

  // restore FIFO address
  writeRegister(REG_FIFO_ADDR_PTR, currentAddress);

  return b;
}

void LoRaClass::flush()
{
}

void LoRaClass::onReceive(void(*callback)(int))
{
  _onReceive = callback;

  if (callback) {
    pinMode(_dio0, INPUT);

    writeRegister(REG_DIO_MAPPING_1, 0x00);
#ifdef SPI_HAS_NOTUSINGINTERRUPT
    SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
#endif
    attachInterrupt(digitalPinToInterrupt(_dio0), LoRaClass::onDio0Rise, RISING);
  } else {
    detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
    SPI.notUsingInterrupt(digitalPinToInterrupt(_dio0));
#endif
  }
}

void LoRaClass::receive(int size)
{
  if (size > 0) {
    implicitHeaderMode();

    writeRegister(REG_PAYLOAD_LENGTH, size & 0xff);
  } else {
    explicitHeaderMode();
  }

  writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_RX_CONTINUOUS);
}

void LoRaClass::idle()
{
  writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_STDBY);
}

void LoRaClass::sleep()
{
  writeRegister(REG_OP_MODE, MODE_LONG_RANGE_MODE | MODE_SLEEP);
}

void LoRaClass::setTxPower(int level, int outputPin) {
  if (PA_OUTPUT_RFO_PIN == outputPin) {
    // RFO
    if (level < 0) {
      level = 0;
    } else if (level > 14) {
      level = 14;
    }

    writeRegister(REG_PA_DAC, 0x84);
    writeRegister(REG_PA_CONFIG, 0x70 | level);

  } else {
    // PA BOOST
    if (level < 2) {
      level = 2;
    } else if (level > 17) {
      level = 17;
    }

    writeRegister(REG_PA_DAC, 0x84);
    writeRegister(REG_PA_CONFIG, PA_BOOST | (level - 2));
  }
}

void LoRaClass::setFrequency(long frequency) {
  _frequency = frequency;

  uint32_t frf = ((uint64_t)frequency << 19) / 32000000;

  writeRegister(REG_FRF_MSB, (uint8_t)(frf >> 16));
  writeRegister(REG_FRF_MID, (uint8_t)(frf >> 8));
  writeRegister(REG_FRF_LSB, (uint8_t)(frf >> 0));
}

uint32_t LoRaClass::getFrequency() {
  uint8_t msb = readRegister(REG_FRF_MSB);
  uint8_t mid = readRegister(REG_FRF_MID);
  uint8_t lsb = readRegister(REG_FRF_LSB);

  uint32_t frf = ((uint32_t)msb << 16) | ((uint32_t)mid << 8) | (uint32_t)lsb;
  uint64_t frm = (uint64_t)frf*32000000;
  uint32_t frequency = (frm >> 19);

  return frequency;
}

void LoRaClass::setSpreadingFactor(int sf)
{
  if (sf < 6) {
    sf = 6;
  } else if (sf > 12) {
    sf = 12;
  }

  if (sf == 6) {
    writeRegister(REG_DETECTION_OPTIMIZE, 0xc5);
    writeRegister(REG_DETECTION_THRESHOLD, 0x0c);
  } else {
    writeRegister(REG_DETECTION_OPTIMIZE, 0xc3);
    writeRegister(REG_DETECTION_THRESHOLD, 0x0a);
  }

  writeRegister(REG_MODEM_CONFIG_2, (readRegister(REG_MODEM_CONFIG_2) & 0x0f) | ((sf << 4) & 0xf0));

  handleLowDataRate();
}

long LoRaClass::getSignalBandwidth()
{
  byte bw = (readRegister(REG_MODEM_CONFIG_1) >> 4);
  switch (bw) {
    case 0: return 7.8E3;
    case 1: return 10.4E3; 
    case 2: return 15.6E3; 
    case 3: return 20.8E3; 
    case 4: return 31.25E3; 
    case 5: return 41.7E3; 
    case 6: return 62.5E3; 
    case 7: return 125E3; 
    case 8: return 250E3; 
    case 9: return 500E3; 
  }
  
  return 0;
}

void LoRaClass::handleLowDataRate(){
  int sf = (readRegister(REG_MODEM_CONFIG_2) >> 4);
  if ( long( (1<<sf) / (getSignalBandwidth()/1000)) > 16) {
    // set auto AGC and LowDataRateOptimize
    writeRegister(REG_MODEM_CONFIG_3, (1<<3)|(1<<2));
  }
  else {
    // set auto AGC
    writeRegister(REG_MODEM_CONFIG_3, (1<<2));
  }
}

void LoRaClass::setSignalBandwidth(long sbw)
{
  int bw;

  if (sbw <= 7.8E3) {
    bw = 0;
  } else if (sbw <= 10.4E3) {
    bw = 1;
  } else if (sbw <= 15.6E3) {
    bw = 2;
  } else if (sbw <= 20.8E3) {
    bw = 3;
  } else if (sbw <= 31.25E3) {
    bw = 4;
  } else if (sbw <= 41.7E3) {
    bw = 5;
  } else if (sbw <= 62.5E3) {
    bw = 6;
  } else if (sbw <= 125E3) {
    bw = 7;
  } else if (sbw <= 250E3) {
    bw = 8;
  } else /*if (sbw <= 250E3)*/ {
    bw = 9;
  }

  writeRegister(REG_MODEM_CONFIG_1, (readRegister(REG_MODEM_CONFIG_1) & 0x0f) | (bw << 4));
  
  handleLowDataRate();
}

void LoRaClass::setCodingRate4(int denominator)
{
  if (denominator < 5) {
    denominator = 5;
  } else if (denominator > 8) {
    denominator = 8;
  }

  int cr = denominator - 4;

  writeRegister(REG_MODEM_CONFIG_1, (readRegister(REG_MODEM_CONFIG_1) & 0xf1) | (cr << 1));
}

void LoRaClass::setPreambleLength(long length)
{
  writeRegister(REG_PREAMBLE_MSB, (uint8_t)(length >> 8));
  writeRegister(REG_PREAMBLE_LSB, (uint8_t)(length >> 0));
}

void LoRaClass::setSyncWord(int sw)
{
  writeRegister(REG_SYNC_WORD, sw);
}

void LoRaClass::enableCrc()
{
  writeRegister(REG_MODEM_CONFIG_2, readRegister(REG_MODEM_CONFIG_2) | 0x04);
}

void LoRaClass::disableCrc()
{
  writeRegister(REG_MODEM_CONFIG_2, readRegister(REG_MODEM_CONFIG_2) & 0xfb);
}

byte LoRaClass::random()
{
  return readRegister(REG_RSSI_WIDEBAND);
}

void LoRaClass::setPins(int ss, int reset, int dio0)
{
  _ss = ss;
  _reset = reset;
  _dio0 = dio0;
}

void LoRaClass::setSPIFrequency(uint32_t frequency)
{
  _spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0);
}

void LoRaClass::dumpRegisters(Stream& out)
{
  for (int i = 0; i < 128; i++) {
    out.print("0x");
    out.print(i, HEX);
    out.print(": 0x");
    out.println(readRegister(i), HEX);
  }
}

void LoRaClass::explicitHeaderMode()
{
  _implicitHeaderMode = 0;

  writeRegister(REG_MODEM_CONFIG_1, readRegister(REG_MODEM_CONFIG_1) & 0xfe);
}

void LoRaClass::implicitHeaderMode()
{
  _implicitHeaderMode = 1;

  writeRegister(REG_MODEM_CONFIG_1, readRegister(REG_MODEM_CONFIG_1) | 0x01);
}


void ISR_VECT LoRaClass::handleDio0Rise()
{
  int irqFlags = readRegister(REG_IRQ_FLAGS);

  // clear IRQ's
  writeRegister(REG_IRQ_FLAGS, irqFlags);

  if ((irqFlags & IRQ_PAYLOAD_CRC_ERROR_MASK) == 0) {
    // received a packet
    _packetIndex = 0;

    // read packet length
    int packetLength = _implicitHeaderMode ? readRegister(REG_PAYLOAD_LENGTH) : readRegister(REG_RX_NB_BYTES);

    // set FIFO address to current RX address
    writeRegister(REG_FIFO_ADDR_PTR, readRegister(REG_FIFO_RX_CURRENT_ADDR));

    if (_onReceive) {
      _onReceive(packetLength);
    }

    // reset FIFO address
    writeRegister(REG_FIFO_ADDR_PTR, 0);
  }
}

uint8_t ISR_VECT LoRaClass::readRegister(uint8_t address)
{
  return singleTransfer(address & 0x7f, 0x00);
}

void LoRaClass::writeRegister(uint8_t address, uint8_t value)
{
  singleTransfer(address | 0x80, value);
}

uint8_t ISR_VECT LoRaClass::singleTransfer(uint8_t address, uint8_t value)
{
  uint8_t response;

  digitalWrite(_ss, LOW);

  SPI.beginTransaction(_spiSettings);
  SPI.transfer(address);
  response = SPI.transfer(value);
  SPI.endTransaction();

  digitalWrite(_ss, HIGH);

  return response;
}

void ISR_VECT LoRaClass::onDio0Rise()
{
  LoRa.handleDio0Rise();
}

LoRaClass LoRa;