mirror of
https://github.com/liberatedsystems/RNode_Firmware_CE.git
synced 2025-02-02 10:26:21 -05:00
Added very basic support for Heltec V3 battery voltage
This commit is contained in:
parent
06b4683993
commit
a73bdad9fd
857
Power.h
857
Power.h
@ -1,57 +1,59 @@
|
||||
#if BOARD_MODEL == BOARD_TBEAM
|
||||
#include <XPowersLib.h>
|
||||
XPowersLibInterface* PMU = NULL;
|
||||
#include <XPowersLib.h>
|
||||
XPowersLibInterface *PMU = NULL;
|
||||
|
||||
#ifndef PMU_WIRE_PORT
|
||||
#define PMU_WIRE_PORT Wire
|
||||
#endif
|
||||
#ifndef PMU_WIRE_PORT
|
||||
#define PMU_WIRE_PORT Wire
|
||||
#endif
|
||||
|
||||
#define BAT_V_MIN 3.15
|
||||
#define BAT_V_MAX 4.14
|
||||
#define BAT_V_MIN 3.15
|
||||
#define BAT_V_MAX 4.14
|
||||
|
||||
void disablePeripherals() {
|
||||
if (PMU) {
|
||||
// GNSS RTC PowerVDD
|
||||
PMU->enablePowerOutput(XPOWERS_VBACKUP);
|
||||
|
||||
// LoRa VDD
|
||||
PMU->disablePowerOutput(XPOWERS_ALDO2);
|
||||
|
||||
// GNSS VDD
|
||||
PMU->disablePowerOutput(XPOWERS_ALDO3);
|
||||
}
|
||||
}
|
||||
|
||||
bool pmuInterrupt;
|
||||
void setPmuFlag()
|
||||
void disablePeripherals()
|
||||
{
|
||||
if (PMU)
|
||||
{
|
||||
pmuInterrupt = true;
|
||||
// GNSS RTC PowerVDD
|
||||
PMU->enablePowerOutput(XPOWERS_VBACKUP);
|
||||
|
||||
// LoRa VDD
|
||||
PMU->disablePowerOutput(XPOWERS_ALDO2);
|
||||
|
||||
// GNSS VDD
|
||||
PMU->disablePowerOutput(XPOWERS_ALDO3);
|
||||
}
|
||||
}
|
||||
|
||||
bool pmuInterrupt;
|
||||
void setPmuFlag()
|
||||
{
|
||||
pmuInterrupt = true;
|
||||
}
|
||||
#elif BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1
|
||||
#define BAT_C_SAMPLES 7
|
||||
#define BAT_D_SAMPLES 2
|
||||
#define BAT_V_MIN 3.15
|
||||
#define BAT_V_MAX 4.3
|
||||
#define BAT_V_CHG 4.48
|
||||
#define BAT_V_FLOAT 4.33
|
||||
#define BAT_SAMPLES 5
|
||||
const uint8_t pin_vbat = 35;
|
||||
float bat_p_samples[BAT_SAMPLES];
|
||||
float bat_v_samples[BAT_SAMPLES];
|
||||
uint8_t bat_samples_count = 0;
|
||||
int bat_discharging_samples = 0;
|
||||
int bat_charging_samples = 0;
|
||||
int bat_charged_samples = 0;
|
||||
bool bat_voltage_dropping = false;
|
||||
float bat_delay_v = 0;
|
||||
#define BAT_C_SAMPLES 7
|
||||
#define BAT_D_SAMPLES 2
|
||||
#define BAT_V_MIN 3.15
|
||||
#define BAT_V_MAX 4.3
|
||||
#define BAT_V_CHG 4.48
|
||||
#define BAT_V_FLOAT 4.33
|
||||
#define BAT_SAMPLES 5
|
||||
const uint8_t pin_vbat = 35;
|
||||
float bat_p_samples[BAT_SAMPLES];
|
||||
float bat_v_samples[BAT_SAMPLES];
|
||||
uint8_t bat_samples_count = 0;
|
||||
int bat_discharging_samples = 0;
|
||||
int bat_charging_samples = 0;
|
||||
int bat_charged_samples = 0;
|
||||
bool bat_voltage_dropping = false;
|
||||
float bat_delay_v = 0;
|
||||
#elif BOARD_MODEL == BOARD_RAK4631
|
||||
#include "nrfx_power.h"
|
||||
#define BAT_C_SAMPLES 7
|
||||
#define BAT_D_SAMPLES 2
|
||||
#define BAT_V_MIN 2.75
|
||||
#define BAT_V_MAX 4.2
|
||||
#define BAT_V_FLOAT 4.22
|
||||
#define BAT_SAMPLES 5
|
||||
#define BAT_C_SAMPLES 7
|
||||
#define BAT_D_SAMPLES 2
|
||||
#define BAT_V_MIN 2.75
|
||||
#define BAT_V_MAX 4.2
|
||||
#define BAT_V_FLOAT 4.22
|
||||
#define BAT_SAMPLES 5
|
||||
#define VBAT_MV_PER_LSB (0.73242188F) // 3.0V ADC range and 12 - bit ADC resolution = 3000mV / 4096
|
||||
#define VBAT_DIVIDER_COMP (1.73) // Compensation factor for the VBAT divider
|
||||
#define VBAT_MV_PER_LSB_FIN (VBAT_DIVIDER_COMP * VBAT_MV_PER_LSB)
|
||||
@ -64,379 +66,480 @@ int bat_charging_samples = 0;
|
||||
int bat_charged_samples = 0;
|
||||
bool bat_voltage_dropping = false;
|
||||
float bat_delay_v = 0;
|
||||
#elif BOARD_MODEL == BOARD_HELTEC32_V3
|
||||
#define PIN_VBAT 1
|
||||
#define VBAT_READ_CNTRL_PIN 37
|
||||
#endif
|
||||
|
||||
uint32_t last_pmu_update = 0;
|
||||
uint8_t pmu_target_pps = 1;
|
||||
int pmu_update_interval = 1000/pmu_target_pps;
|
||||
int pmu_update_interval = 1000 / pmu_target_pps;
|
||||
uint8_t pmu_rc = 0;
|
||||
#define PMU_R_INTERVAL 5
|
||||
void kiss_indicate_battery();
|
||||
|
||||
void measure_battery() {
|
||||
#if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1
|
||||
battery_installed = true;
|
||||
battery_indeterminate = true;
|
||||
bat_v_samples[bat_samples_count%BAT_SAMPLES] = (float)(analogRead(pin_vbat)) / 4095*2*3.3*1.1;
|
||||
bat_p_samples[bat_samples_count%BAT_SAMPLES] = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0;
|
||||
|
||||
bat_samples_count++;
|
||||
if (!battery_ready && bat_samples_count >= BAT_SAMPLES) {
|
||||
battery_ready = true;
|
||||
}
|
||||
void measure_battery()
|
||||
{
|
||||
#if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1
|
||||
battery_installed = true;
|
||||
battery_indeterminate = true;
|
||||
bat_v_samples[bat_samples_count % BAT_SAMPLES] = (float)(analogRead(pin_vbat)) / 4095 * 2 * 3.3 * 1.1;
|
||||
bat_p_samples[bat_samples_count % BAT_SAMPLES] = ((battery_voltage - BAT_V_MIN) / (BAT_V_MAX - BAT_V_MIN)) * 100.0;
|
||||
|
||||
if (battery_ready) {
|
||||
bat_samples_count++;
|
||||
if (!battery_ready && bat_samples_count >= BAT_SAMPLES)
|
||||
{
|
||||
battery_ready = true;
|
||||
}
|
||||
|
||||
battery_percent = 0;
|
||||
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) {
|
||||
battery_percent += bat_p_samples[bi];
|
||||
}
|
||||
battery_percent = battery_percent/BAT_SAMPLES;
|
||||
|
||||
battery_voltage = 0;
|
||||
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) {
|
||||
battery_voltage += bat_v_samples[bi];
|
||||
}
|
||||
battery_voltage = battery_voltage/BAT_SAMPLES;
|
||||
|
||||
if (bat_delay_v == 0) bat_delay_v = battery_voltage;
|
||||
if (battery_percent > 100.0) battery_percent = 100.0;
|
||||
if (battery_percent < 0.0) battery_percent = 0.0;
|
||||
|
||||
if (bat_samples_count%BAT_SAMPLES == 0) {
|
||||
if (battery_voltage < bat_delay_v && battery_voltage < BAT_V_FLOAT) {
|
||||
bat_voltage_dropping = true;
|
||||
} else {
|
||||
bat_voltage_dropping = false;
|
||||
}
|
||||
bat_samples_count = 0;
|
||||
}
|
||||
|
||||
if (bat_voltage_dropping && battery_voltage < BAT_V_FLOAT) {
|
||||
battery_state = BATTERY_STATE_DISCHARGING;
|
||||
} else {
|
||||
#if BOARD_MODEL == BOARD_RNODE_NG_21
|
||||
battery_state = BATTERY_STATE_CHARGING;
|
||||
#else
|
||||
battery_state = BATTERY_STATE_DISCHARGING;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
||||
// if (bt_state == BT_STATE_CONNECTED) {
|
||||
// SerialBT.printf("Bus voltage %.3fv. Unfiltered %.3fv.", battery_voltage, bat_v_samples[BAT_SAMPLES-1]);
|
||||
// if (bat_voltage_dropping) {
|
||||
// SerialBT.printf(" Voltage is dropping. Percentage %.1f%%.\n", battery_percent);
|
||||
// } else {
|
||||
// SerialBT.print(" Voltage is not dropping.\n");
|
||||
// }
|
||||
// }
|
||||
}
|
||||
|
||||
#elif BOARD_MODEL == BOARD_TBEAM
|
||||
if (PMU) {
|
||||
float discharge_current = 0;
|
||||
float charge_current = 0;
|
||||
float ext_voltage = 0;
|
||||
float ext_current = 0;
|
||||
if (PMU->getChipModel() == XPOWERS_AXP192) {
|
||||
discharge_current = ((XPowersAXP192*)PMU)->getBattDischargeCurrent();
|
||||
charge_current = ((XPowersAXP192*)PMU)->getBatteryChargeCurrent();
|
||||
battery_voltage = PMU->getBattVoltage()/1000.0;
|
||||
// battery_percent = PMU->getBattPercentage()*1.0;
|
||||
battery_installed = PMU->isBatteryConnect();
|
||||
external_power = PMU->isVbusIn();
|
||||
ext_voltage = PMU->getVbusVoltage()/1000.0;
|
||||
ext_current = ((XPowersAXP192*)PMU)->getVbusCurrent();
|
||||
}
|
||||
else if (PMU->getChipModel() == XPOWERS_AXP2101) {
|
||||
battery_voltage = PMU->getBattVoltage()/1000.0;
|
||||
// battery_percent = PMU->getBattPercentage()*1.0;
|
||||
battery_installed = PMU->isBatteryConnect();
|
||||
external_power = PMU->isVbusIn();
|
||||
ext_voltage = PMU->getVbusVoltage()/1000.0;
|
||||
}
|
||||
|
||||
if (battery_installed) {
|
||||
if (PMU->isCharging()) {
|
||||
battery_state = BATTERY_STATE_CHARGING;
|
||||
battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0;
|
||||
} else {
|
||||
if (PMU->isDischarge()) {
|
||||
battery_state = BATTERY_STATE_DISCHARGING;
|
||||
battery_percent = ((battery_voltage-BAT_V_MIN) / (BAT_V_MAX-BAT_V_MIN))*100.0;
|
||||
} else {
|
||||
battery_state = BATTERY_STATE_CHARGED;
|
||||
battery_percent = 100.0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
battery_state = BATTERY_STATE_DISCHARGING;
|
||||
battery_percent = 0.0;
|
||||
battery_voltage = 0.0;
|
||||
}
|
||||
|
||||
if (battery_percent > 100.0) battery_percent = 100.0;
|
||||
if (battery_percent < 0.0) battery_percent = 0.0;
|
||||
|
||||
float charge_watts = battery_voltage*(charge_current/1000.0);
|
||||
float discharge_watts = battery_voltage*(discharge_current/1000.0);
|
||||
float ext_watts = ext_voltage*(ext_current/1000.0);
|
||||
|
||||
battery_ready = true;
|
||||
|
||||
// if (bt_state == BT_STATE_CONNECTED) {
|
||||
// if (battery_installed) {
|
||||
// if (external_power) {
|
||||
// SerialBT.printf("External power connected, drawing %.2fw, %.1fmA at %.1fV\n", ext_watts, ext_current, ext_voltage);
|
||||
// } else {
|
||||
// SerialBT.println("Running on battery");
|
||||
// }
|
||||
// SerialBT.printf("Battery percentage %.1f%%\n", battery_percent);
|
||||
// SerialBT.printf("Battery voltage %.2fv\n", battery_voltage);
|
||||
// // SerialBT.printf("Temperature %.1f%\n", auxillary_temperature);
|
||||
|
||||
// if (battery_state == BATTERY_STATE_CHARGING) {
|
||||
// SerialBT.printf("Charging with %.2fw, %.1fmA at %.1fV\n", charge_watts, charge_current, battery_voltage);
|
||||
// } else if (battery_state == BATTERY_STATE_DISCHARGING) {
|
||||
// SerialBT.printf("Discharging at %.2fw, %.1fmA at %.1fV\n", discharge_watts, discharge_current, battery_voltage);
|
||||
// } else if (battery_state == BATTERY_STATE_CHARGED) {
|
||||
// SerialBT.printf("Battery charged\n");
|
||||
// }
|
||||
// } else {
|
||||
// SerialBT.println("No battery installed");
|
||||
// }
|
||||
// SerialBT.println("");
|
||||
// }
|
||||
}
|
||||
else {
|
||||
battery_ready = false;
|
||||
}
|
||||
|
||||
#elif BOARD_MODEL == BOARD_RAK4631
|
||||
battery_installed = true;
|
||||
battery_indeterminate = false;
|
||||
|
||||
bat_v_samples[bat_samples_count%BAT_SAMPLES] = (float)(analogRead(PIN_VBAT)) * VBAT_MV_PER_LSB_FIN;
|
||||
|
||||
if (bat_v_samples[bat_samples_count%BAT_SAMPLES] < 3300) {
|
||||
bat_p_samples[bat_samples_count%BAT_SAMPLES] = 0;
|
||||
}
|
||||
else if (bat_v_samples[bat_samples_count%BAT_SAMPLES] < 3600)
|
||||
{
|
||||
bat_v_samples[bat_samples_count%BAT_SAMPLES] -= 3300;
|
||||
bat_p_samples[bat_samples_count%BAT_SAMPLES] = bat_v_samples[bat_samples_count%BAT_SAMPLES] / 30;
|
||||
} else {
|
||||
bat_v_samples[bat_samples_count%BAT_SAMPLES] -= 3600;
|
||||
}
|
||||
bat_p_samples[bat_samples_count%BAT_SAMPLES] = 10 + (bat_v_samples[bat_samples_count%BAT_SAMPLES] * 0.15F);
|
||||
|
||||
bat_samples_count++;
|
||||
if (!battery_ready && bat_samples_count >= BAT_SAMPLES) {
|
||||
battery_ready = true;
|
||||
}
|
||||
if (battery_ready)
|
||||
{
|
||||
|
||||
battery_percent = 0;
|
||||
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) {
|
||||
battery_percent += bat_p_samples[bi];
|
||||
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++)
|
||||
{
|
||||
battery_percent += bat_p_samples[bi];
|
||||
}
|
||||
battery_percent = battery_percent/BAT_SAMPLES;
|
||||
battery_percent = battery_percent / BAT_SAMPLES;
|
||||
|
||||
battery_voltage = 0;
|
||||
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++) {
|
||||
battery_voltage += bat_v_samples[bi];
|
||||
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++)
|
||||
{
|
||||
battery_voltage += bat_v_samples[bi];
|
||||
}
|
||||
battery_voltage = battery_voltage/BAT_SAMPLES;
|
||||
battery_voltage = battery_voltage / BAT_SAMPLES;
|
||||
|
||||
if (bat_delay_v == 0) bat_delay_v = battery_voltage;
|
||||
if (battery_percent > 100.0) battery_percent = 100.0;
|
||||
if (battery_percent < 0.0) battery_percent = 0.0;
|
||||
if (bat_delay_v == 0)
|
||||
bat_delay_v = battery_voltage;
|
||||
if (battery_percent > 100.0)
|
||||
battery_percent = 100.0;
|
||||
if (battery_percent < 0.0)
|
||||
battery_percent = 0.0;
|
||||
|
||||
if (bat_samples_count%BAT_SAMPLES == 0) {
|
||||
if (battery_voltage < bat_delay_v && battery_voltage < BAT_V_FLOAT) {
|
||||
bat_voltage_dropping = true;
|
||||
} else {
|
||||
bat_voltage_dropping = false;
|
||||
}
|
||||
bat_samples_count = 0;
|
||||
if (bat_samples_count % BAT_SAMPLES == 0)
|
||||
{
|
||||
if (battery_voltage < bat_delay_v && battery_voltage < BAT_V_FLOAT)
|
||||
{
|
||||
bat_voltage_dropping = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
bat_voltage_dropping = false;
|
||||
}
|
||||
bat_samples_count = 0;
|
||||
}
|
||||
|
||||
nrfx_power_usb_state_t usbstate = nrfx_power_usbstatus_get();
|
||||
if (usbstate == NRFX_POWER_USB_STATE_CONNECTED || usbstate == NRFX_POWER_USB_STATE_READY) {
|
||||
// charging
|
||||
if (bat_voltage_dropping && battery_voltage < BAT_V_FLOAT)
|
||||
{
|
||||
battery_state = BATTERY_STATE_DISCHARGING;
|
||||
}
|
||||
else
|
||||
{
|
||||
#if BOARD_MODEL == BOARD_RNODE_NG_21
|
||||
battery_state = BATTERY_STATE_CHARGING;
|
||||
#else
|
||||
battery_state = BATTERY_STATE_DISCHARGING;
|
||||
#endif
|
||||
}
|
||||
|
||||
// if (bt_state == BT_STATE_CONNECTED) {
|
||||
// SerialBT.printf("Bus voltage %.3fv. Unfiltered %.3fv.", battery_voltage, bat_v_samples[BAT_SAMPLES-1]);
|
||||
// if (bat_voltage_dropping) {
|
||||
// SerialBT.printf(" Voltage is dropping. Percentage %.1f%%.\n", battery_percent);
|
||||
// } else {
|
||||
// SerialBT.print(" Voltage is not dropping.\n");
|
||||
// }
|
||||
// }
|
||||
}
|
||||
|
||||
#elif BOARD_MODEL == BOARD_HELTEC32_V3
|
||||
battery_installed = true;
|
||||
battery_indeterminate = false;
|
||||
battery_state = BATTERY_STATE_DISCHARGING;
|
||||
battery_ready = true;
|
||||
|
||||
digitalWrite(VBAT_READ_CNTRL_PIN, LOW);
|
||||
analogSetPinAttenuation(PIN_VBAT, ADC_2_5db);
|
||||
delay(50);
|
||||
analogRead(PIN_VBAT); // to clear out potential wrong reads on first read
|
||||
int analogValue = 0;
|
||||
for (int i = 0; i < 5; i++)
|
||||
{
|
||||
analogValue += analogRead(PIN_VBAT); // reading value to make an average over 5 values
|
||||
delay(10);
|
||||
}
|
||||
analogValue /= 5; // calculate average value
|
||||
digitalWrite(VBAT_READ_CNTRL_PIN, HIGH);
|
||||
battery_voltage = (float(analogValue) / 4095.0) * 1.25 * (4.9); // at 2.5db attenuation range is 0-1250mV, 4.9 is voltage divider ratio
|
||||
battery_percent = (battery_voltage - 3.4) * 125.0;
|
||||
if (battery_percent > 100.0)
|
||||
{
|
||||
battery_percent = 100.0;
|
||||
}
|
||||
if (battery_percent < 0.0)
|
||||
{
|
||||
battery_percent = 0.0;
|
||||
}
|
||||
|
||||
#elif BOARD_MODEL == BOARD_TBEAM
|
||||
if (PMU)
|
||||
{
|
||||
float discharge_current = 0;
|
||||
float charge_current = 0;
|
||||
float ext_voltage = 0;
|
||||
float ext_current = 0;
|
||||
if (PMU->getChipModel() == XPOWERS_AXP192)
|
||||
{
|
||||
discharge_current = ((XPowersAXP192 *)PMU)->getBattDischargeCurrent();
|
||||
charge_current = ((XPowersAXP192 *)PMU)->getBatteryChargeCurrent();
|
||||
battery_voltage = PMU->getBattVoltage() / 1000.0;
|
||||
// battery_percent = PMU->getBattPercentage()*1.0;
|
||||
battery_installed = PMU->isBatteryConnect();
|
||||
external_power = PMU->isVbusIn();
|
||||
ext_voltage = PMU->getVbusVoltage() / 1000.0;
|
||||
ext_current = ((XPowersAXP192 *)PMU)->getVbusCurrent();
|
||||
}
|
||||
else if (PMU->getChipModel() == XPOWERS_AXP2101)
|
||||
{
|
||||
battery_voltage = PMU->getBattVoltage() / 1000.0;
|
||||
// battery_percent = PMU->getBattPercentage()*1.0;
|
||||
battery_installed = PMU->isBatteryConnect();
|
||||
external_power = PMU->isVbusIn();
|
||||
ext_voltage = PMU->getVbusVoltage() / 1000.0;
|
||||
}
|
||||
|
||||
if (battery_installed)
|
||||
{
|
||||
if (PMU->isCharging())
|
||||
{
|
||||
battery_state = BATTERY_STATE_CHARGING;
|
||||
} else {
|
||||
battery_state = BATTERY_STATE_DISCHARGING;
|
||||
battery_percent = ((battery_voltage - BAT_V_MIN) / (BAT_V_MAX - BAT_V_MIN)) * 100.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (PMU->isDischarge())
|
||||
{
|
||||
battery_state = BATTERY_STATE_DISCHARGING;
|
||||
battery_percent = ((battery_voltage - BAT_V_MIN) / (BAT_V_MAX - BAT_V_MIN)) * 100.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
battery_state = BATTERY_STATE_CHARGED;
|
||||
battery_percent = 100.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
battery_state = BATTERY_STATE_DISCHARGING;
|
||||
battery_percent = 0.0;
|
||||
battery_voltage = 0.0;
|
||||
}
|
||||
|
||||
if (battery_percent >= 98) {
|
||||
battery_state = BATTERY_STATE_CHARGED;
|
||||
}
|
||||
#endif
|
||||
if (battery_percent > 100.0)
|
||||
battery_percent = 100.0;
|
||||
if (battery_percent < 0.0)
|
||||
battery_percent = 0.0;
|
||||
|
||||
if (battery_ready) {
|
||||
float charge_watts = battery_voltage * (charge_current / 1000.0);
|
||||
float discharge_watts = battery_voltage * (discharge_current / 1000.0);
|
||||
float ext_watts = ext_voltage * (ext_current / 1000.0);
|
||||
|
||||
battery_ready = true;
|
||||
|
||||
// if (bt_state == BT_STATE_CONNECTED) {
|
||||
// if (battery_installed) {
|
||||
// if (external_power) {
|
||||
// SerialBT.printf("External power connected, drawing %.2fw, %.1fmA at %.1fV\n", ext_watts, ext_current, ext_voltage);
|
||||
// } else {
|
||||
// SerialBT.println("Running on battery");
|
||||
// }
|
||||
// SerialBT.printf("Battery percentage %.1f%%\n", battery_percent);
|
||||
// SerialBT.printf("Battery voltage %.2fv\n", battery_voltage);
|
||||
// // SerialBT.printf("Temperature %.1f%\n", auxillary_temperature);
|
||||
|
||||
// if (battery_state == BATTERY_STATE_CHARGING) {
|
||||
// SerialBT.printf("Charging with %.2fw, %.1fmA at %.1fV\n", charge_watts, charge_current, battery_voltage);
|
||||
// } else if (battery_state == BATTERY_STATE_DISCHARGING) {
|
||||
// SerialBT.printf("Discharging at %.2fw, %.1fmA at %.1fV\n", discharge_watts, discharge_current, battery_voltage);
|
||||
// } else if (battery_state == BATTERY_STATE_CHARGED) {
|
||||
// SerialBT.printf("Battery charged\n");
|
||||
// }
|
||||
// } else {
|
||||
// SerialBT.println("No battery installed");
|
||||
// }
|
||||
// SerialBT.println("");
|
||||
// }
|
||||
}
|
||||
else
|
||||
{
|
||||
battery_ready = false;
|
||||
}
|
||||
|
||||
#elif BOARD_MODEL == BOARD_RAK4631
|
||||
battery_installed = true;
|
||||
battery_indeterminate = false;
|
||||
|
||||
bat_v_samples[bat_samples_count % BAT_SAMPLES] = (float)(analogRead(PIN_VBAT)) * VBAT_MV_PER_LSB_FIN;
|
||||
|
||||
if (bat_v_samples[bat_samples_count % BAT_SAMPLES] < 3300)
|
||||
{
|
||||
bat_p_samples[bat_samples_count % BAT_SAMPLES] = 0;
|
||||
}
|
||||
else if (bat_v_samples[bat_samples_count % BAT_SAMPLES] < 3600)
|
||||
{
|
||||
bat_v_samples[bat_samples_count % BAT_SAMPLES] -= 3300;
|
||||
bat_p_samples[bat_samples_count % BAT_SAMPLES] = bat_v_samples[bat_samples_count % BAT_SAMPLES] / 30;
|
||||
}
|
||||
else
|
||||
{
|
||||
bat_v_samples[bat_samples_count % BAT_SAMPLES] -= 3600;
|
||||
}
|
||||
bat_p_samples[bat_samples_count % BAT_SAMPLES] = 10 + (bat_v_samples[bat_samples_count % BAT_SAMPLES] * 0.15F);
|
||||
|
||||
bat_samples_count++;
|
||||
if (!battery_ready && bat_samples_count >= BAT_SAMPLES)
|
||||
{
|
||||
battery_ready = true;
|
||||
}
|
||||
|
||||
battery_percent = 0;
|
||||
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++)
|
||||
{
|
||||
battery_percent += bat_p_samples[bi];
|
||||
}
|
||||
battery_percent = battery_percent / BAT_SAMPLES;
|
||||
|
||||
battery_voltage = 0;
|
||||
for (uint8_t bi = 0; bi < BAT_SAMPLES; bi++)
|
||||
{
|
||||
battery_voltage += bat_v_samples[bi];
|
||||
}
|
||||
battery_voltage = battery_voltage / BAT_SAMPLES;
|
||||
|
||||
if (bat_delay_v == 0)
|
||||
bat_delay_v = battery_voltage;
|
||||
if (battery_percent > 100.0)
|
||||
battery_percent = 100.0;
|
||||
if (battery_percent < 0.0)
|
||||
battery_percent = 0.0;
|
||||
|
||||
if (bat_samples_count % BAT_SAMPLES == 0)
|
||||
{
|
||||
if (battery_voltage < bat_delay_v && battery_voltage < BAT_V_FLOAT)
|
||||
{
|
||||
bat_voltage_dropping = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
bat_voltage_dropping = false;
|
||||
}
|
||||
bat_samples_count = 0;
|
||||
}
|
||||
|
||||
nrfx_power_usb_state_t usbstate = nrfx_power_usbstatus_get();
|
||||
if (usbstate == NRFX_POWER_USB_STATE_CONNECTED || usbstate == NRFX_POWER_USB_STATE_READY)
|
||||
{
|
||||
// charging
|
||||
battery_state = BATTERY_STATE_CHARGING;
|
||||
}
|
||||
else
|
||||
{
|
||||
battery_state = BATTERY_STATE_DISCHARGING;
|
||||
}
|
||||
|
||||
if (battery_percent >= 98)
|
||||
{
|
||||
battery_state = BATTERY_STATE_CHARGED;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (battery_ready)
|
||||
{
|
||||
pmu_rc++;
|
||||
if (pmu_rc%PMU_R_INTERVAL == 0) {
|
||||
if (pmu_rc % PMU_R_INTERVAL == 0)
|
||||
{
|
||||
kiss_indicate_battery();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void update_pmu() {
|
||||
if (millis()-last_pmu_update >= pmu_update_interval) {
|
||||
void update_pmu()
|
||||
{
|
||||
if (millis() - last_pmu_update >= pmu_update_interval)
|
||||
{
|
||||
measure_battery();
|
||||
last_pmu_update = millis();
|
||||
}
|
||||
}
|
||||
|
||||
bool init_pmu() {
|
||||
#if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1
|
||||
pinMode(pin_vbat, INPUT);
|
||||
return true;
|
||||
#elif BOARD_MODEL == BOARD_TBEAM
|
||||
Wire.begin(I2C_SDA, I2C_SCL);
|
||||
bool init_pmu()
|
||||
{
|
||||
#if BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1
|
||||
pinMode(pin_vbat, INPUT);
|
||||
return true;
|
||||
|
||||
if (!PMU) {
|
||||
PMU = new XPowersAXP2101(PMU_WIRE_PORT);
|
||||
if (!PMU->init()) {
|
||||
Serial.println("Warning: Failed to find AXP2101 power management");
|
||||
delete PMU;
|
||||
PMU = NULL;
|
||||
} else {
|
||||
Serial.println("AXP2101 PMU init succeeded, using AXP2101 PMU");
|
||||
}
|
||||
#elif BOARD_MODEL == BOARD_HELTEC32_V3
|
||||
|
||||
pinMode(PIN_VBAT, INPUT);
|
||||
pinMode(VBAT_READ_CNTRL_PIN, OUTPUT);
|
||||
adcAttachPin(PIN_VBAT);
|
||||
analogReadResolution(12);
|
||||
|
||||
return true;
|
||||
|
||||
#elif BOARD_MODEL == BOARD_TBEAM
|
||||
Wire.begin(I2C_SDA, I2C_SCL);
|
||||
|
||||
if (!PMU)
|
||||
{
|
||||
PMU = new XPowersAXP2101(PMU_WIRE_PORT);
|
||||
if (!PMU->init())
|
||||
{
|
||||
Serial.println("Warning: Failed to find AXP2101 power management");
|
||||
delete PMU;
|
||||
PMU = NULL;
|
||||
}
|
||||
|
||||
if (!PMU) {
|
||||
PMU = new XPowersAXP192(PMU_WIRE_PORT);
|
||||
if (!PMU->init()) {
|
||||
Serial.println("Warning: Failed to find AXP192 power management");
|
||||
delete PMU;
|
||||
PMU = NULL;
|
||||
} else {
|
||||
Serial.println("AXP192 PMU init succeeded, using AXP192 PMU");
|
||||
}
|
||||
else
|
||||
{
|
||||
Serial.println("AXP2101 PMU init succeeded, using AXP2101 PMU");
|
||||
}
|
||||
}
|
||||
|
||||
if (!PMU) {
|
||||
return false;
|
||||
if (!PMU)
|
||||
{
|
||||
PMU = new XPowersAXP192(PMU_WIRE_PORT);
|
||||
if (!PMU->init())
|
||||
{
|
||||
Serial.println("Warning: Failed to find AXP192 power management");
|
||||
delete PMU;
|
||||
PMU = NULL;
|
||||
}
|
||||
|
||||
// Configure charging indicator
|
||||
PMU->setChargingLedMode(XPOWERS_CHG_LED_OFF);
|
||||
|
||||
pinMode(PMU_IRQ, INPUT_PULLUP);
|
||||
attachInterrupt(PMU_IRQ, setPmuFlag, FALLING);
|
||||
|
||||
if (PMU->getChipModel() == XPOWERS_AXP192) {
|
||||
|
||||
// Turn off unused power sources to save power
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC1);
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC2);
|
||||
PMU->disablePowerOutput(XPOWERS_LDO2);
|
||||
PMU->disablePowerOutput(XPOWERS_LDO3);
|
||||
|
||||
// Set the power of LoRa and GPS module to 3.3V
|
||||
// LoRa
|
||||
PMU->setPowerChannelVoltage(XPOWERS_LDO2, 3300);
|
||||
// GPS
|
||||
PMU->setPowerChannelVoltage(XPOWERS_LDO3, 3300);
|
||||
// OLED
|
||||
PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300);
|
||||
|
||||
// Turn on LoRa
|
||||
PMU->enablePowerOutput(XPOWERS_LDO2);
|
||||
|
||||
// Turn on GPS
|
||||
//PMU->enablePowerOutput(XPOWERS_LDO3);
|
||||
|
||||
// protected oled power source
|
||||
PMU->setProtectedChannel(XPOWERS_DCDC1);
|
||||
// protected esp32 power source
|
||||
PMU->setProtectedChannel(XPOWERS_DCDC3);
|
||||
// enable oled power
|
||||
PMU->enablePowerOutput(XPOWERS_DCDC1);
|
||||
|
||||
PMU->disableIRQ(XPOWERS_AXP192_ALL_IRQ);
|
||||
|
||||
PMU->enableIRQ(XPOWERS_AXP192_VBUS_REMOVE_IRQ |
|
||||
XPOWERS_AXP192_VBUS_INSERT_IRQ |
|
||||
XPOWERS_AXP192_BAT_CHG_DONE_IRQ |
|
||||
XPOWERS_AXP192_BAT_CHG_START_IRQ |
|
||||
XPOWERS_AXP192_BAT_REMOVE_IRQ |
|
||||
XPOWERS_AXP192_BAT_INSERT_IRQ |
|
||||
XPOWERS_AXP192_PKEY_SHORT_IRQ
|
||||
);
|
||||
|
||||
else
|
||||
{
|
||||
Serial.println("AXP192 PMU init succeeded, using AXP192 PMU");
|
||||
}
|
||||
else if (PMU->getChipModel() == XPOWERS_AXP2101) {
|
||||
}
|
||||
|
||||
// Turn off unused power sources to save power
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC2);
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC3);
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC4);
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC5);
|
||||
PMU->disablePowerOutput(XPOWERS_ALDO1);
|
||||
PMU->disablePowerOutput(XPOWERS_ALDO2);
|
||||
PMU->disablePowerOutput(XPOWERS_ALDO3);
|
||||
PMU->disablePowerOutput(XPOWERS_ALDO4);
|
||||
PMU->disablePowerOutput(XPOWERS_BLDO1);
|
||||
PMU->disablePowerOutput(XPOWERS_BLDO2);
|
||||
PMU->disablePowerOutput(XPOWERS_DLDO1);
|
||||
PMU->disablePowerOutput(XPOWERS_DLDO2);
|
||||
PMU->disablePowerOutput(XPOWERS_VBACKUP);
|
||||
|
||||
// Set the power of LoRa and GPS module to 3.3V
|
||||
// LoRa
|
||||
PMU->setPowerChannelVoltage(XPOWERS_ALDO2, 3300);
|
||||
// GPS
|
||||
PMU->setPowerChannelVoltage(XPOWERS_ALDO3, 3300);
|
||||
PMU->setPowerChannelVoltage(XPOWERS_VBACKUP, 3300);
|
||||
|
||||
// ESP32 VDD
|
||||
// ! No need to set, automatically open , Don't close it
|
||||
// PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300);
|
||||
// PMU->setProtectedChannel(XPOWERS_DCDC1);
|
||||
PMU->setProtectedChannel(XPOWERS_DCDC1);
|
||||
|
||||
// LoRa VDD
|
||||
PMU->enablePowerOutput(XPOWERS_ALDO2);
|
||||
|
||||
// GNSS VDD
|
||||
//PMU->enablePowerOutput(XPOWERS_ALDO3);
|
||||
|
||||
// GNSS RTC PowerVDD
|
||||
//PMU->enablePowerOutput(XPOWERS_VBACKUP);
|
||||
}
|
||||
|
||||
PMU->enableSystemVoltageMeasure();
|
||||
PMU->enableVbusVoltageMeasure();
|
||||
PMU->enableBattVoltageMeasure();
|
||||
// It is necessary to disable the detection function of the TS pin on the board
|
||||
// without the battery temperature detection function, otherwise it will cause abnormal charging
|
||||
PMU->disableTSPinMeasure();
|
||||
|
||||
// Set the time of pressing the button to turn off
|
||||
PMU->setPowerKeyPressOffTime(XPOWERS_POWEROFF_4S);
|
||||
|
||||
return true;
|
||||
#elif BOARD_MODEL == BOARD_RAK4631
|
||||
// board doesn't have PMU but we can measure batt voltage
|
||||
|
||||
// prep ADC for reading battery level
|
||||
analogReference(AR_INTERNAL_3_0);
|
||||
|
||||
// Set the resolution to 12-bit (0..4095)
|
||||
analogReadResolution(12);
|
||||
|
||||
// Let the ADC settle
|
||||
delay(1);
|
||||
|
||||
// Get a single ADC sample and throw it away
|
||||
float raw = analogRead(PIN_VBAT);
|
||||
return true;
|
||||
#else
|
||||
if (!PMU)
|
||||
{
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Configure charging indicator
|
||||
PMU->setChargingLedMode(XPOWERS_CHG_LED_OFF);
|
||||
|
||||
pinMode(PMU_IRQ, INPUT_PULLUP);
|
||||
attachInterrupt(PMU_IRQ, setPmuFlag, FALLING);
|
||||
|
||||
if (PMU->getChipModel() == XPOWERS_AXP192)
|
||||
{
|
||||
|
||||
// Turn off unused power sources to save power
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC1);
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC2);
|
||||
PMU->disablePowerOutput(XPOWERS_LDO2);
|
||||
PMU->disablePowerOutput(XPOWERS_LDO3);
|
||||
|
||||
// Set the power of LoRa and GPS module to 3.3V
|
||||
// LoRa
|
||||
PMU->setPowerChannelVoltage(XPOWERS_LDO2, 3300);
|
||||
// GPS
|
||||
PMU->setPowerChannelVoltage(XPOWERS_LDO3, 3300);
|
||||
// OLED
|
||||
PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300);
|
||||
|
||||
// Turn on LoRa
|
||||
PMU->enablePowerOutput(XPOWERS_LDO2);
|
||||
|
||||
// Turn on GPS
|
||||
// PMU->enablePowerOutput(XPOWERS_LDO3);
|
||||
|
||||
// protected oled power source
|
||||
PMU->setProtectedChannel(XPOWERS_DCDC1);
|
||||
// protected esp32 power source
|
||||
PMU->setProtectedChannel(XPOWERS_DCDC3);
|
||||
// enable oled power
|
||||
PMU->enablePowerOutput(XPOWERS_DCDC1);
|
||||
|
||||
PMU->disableIRQ(XPOWERS_AXP192_ALL_IRQ);
|
||||
|
||||
PMU->enableIRQ(XPOWERS_AXP192_VBUS_REMOVE_IRQ |
|
||||
XPOWERS_AXP192_VBUS_INSERT_IRQ |
|
||||
XPOWERS_AXP192_BAT_CHG_DONE_IRQ |
|
||||
XPOWERS_AXP192_BAT_CHG_START_IRQ |
|
||||
XPOWERS_AXP192_BAT_REMOVE_IRQ |
|
||||
XPOWERS_AXP192_BAT_INSERT_IRQ |
|
||||
XPOWERS_AXP192_PKEY_SHORT_IRQ);
|
||||
}
|
||||
else if (PMU->getChipModel() == XPOWERS_AXP2101)
|
||||
{
|
||||
|
||||
// Turn off unused power sources to save power
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC2);
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC3);
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC4);
|
||||
PMU->disablePowerOutput(XPOWERS_DCDC5);
|
||||
PMU->disablePowerOutput(XPOWERS_ALDO1);
|
||||
PMU->disablePowerOutput(XPOWERS_ALDO2);
|
||||
PMU->disablePowerOutput(XPOWERS_ALDO3);
|
||||
PMU->disablePowerOutput(XPOWERS_ALDO4);
|
||||
PMU->disablePowerOutput(XPOWERS_BLDO1);
|
||||
PMU->disablePowerOutput(XPOWERS_BLDO2);
|
||||
PMU->disablePowerOutput(XPOWERS_DLDO1);
|
||||
PMU->disablePowerOutput(XPOWERS_DLDO2);
|
||||
PMU->disablePowerOutput(XPOWERS_VBACKUP);
|
||||
|
||||
// Set the power of LoRa and GPS module to 3.3V
|
||||
// LoRa
|
||||
PMU->setPowerChannelVoltage(XPOWERS_ALDO2, 3300);
|
||||
// GPS
|
||||
PMU->setPowerChannelVoltage(XPOWERS_ALDO3, 3300);
|
||||
PMU->setPowerChannelVoltage(XPOWERS_VBACKUP, 3300);
|
||||
|
||||
// ESP32 VDD
|
||||
// ! No need to set, automatically open , Don't close it
|
||||
// PMU->setPowerChannelVoltage(XPOWERS_DCDC1, 3300);
|
||||
// PMU->setProtectedChannel(XPOWERS_DCDC1);
|
||||
PMU->setProtectedChannel(XPOWERS_DCDC1);
|
||||
|
||||
// LoRa VDD
|
||||
PMU->enablePowerOutput(XPOWERS_ALDO2);
|
||||
|
||||
// GNSS VDD
|
||||
// PMU->enablePowerOutput(XPOWERS_ALDO3);
|
||||
|
||||
// GNSS RTC PowerVDD
|
||||
// PMU->enablePowerOutput(XPOWERS_VBACKUP);
|
||||
}
|
||||
|
||||
PMU->enableSystemVoltageMeasure();
|
||||
PMU->enableVbusVoltageMeasure();
|
||||
PMU->enableBattVoltageMeasure();
|
||||
// It is necessary to disable the detection function of the TS pin on the board
|
||||
// without the battery temperature detection function, otherwise it will cause abnormal charging
|
||||
PMU->disableTSPinMeasure();
|
||||
|
||||
// Set the time of pressing the button to turn off
|
||||
PMU->setPowerKeyPressOffTime(XPOWERS_POWEROFF_4S);
|
||||
|
||||
return true;
|
||||
#elif BOARD_MODEL == BOARD_RAK4631
|
||||
// board doesn't have PMU but we can measure batt voltage
|
||||
|
||||
// prep ADC for reading battery level
|
||||
analogReference(AR_INTERNAL_3_0);
|
||||
|
||||
// Set the resolution to 12-bit (0..4095)
|
||||
analogReadResolution(12);
|
||||
|
||||
// Let the ADC settle
|
||||
delay(1);
|
||||
|
||||
// Get a single ADC sample and throw it away
|
||||
float raw = analogRead(PIN_VBAT);
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user