From 0f0a711cd7433f219cc499bb6be432e54f212689 Mon Sep 17 00:00:00 2001 From: Mark Qvist Date: Tue, 1 Oct 2024 14:57:57 +0200 Subject: [PATCH] Improved battery calculations for devices without dedicated PMU --- Power.h | 41 +++++++++++++++++++++++++++++------------ 1 file changed, 29 insertions(+), 12 deletions(-) diff --git a/Power.h b/Power.h index faf98f2..1f70da6 100644 --- a/Power.h +++ b/Power.h @@ -28,8 +28,6 @@ pmuInterrupt = true; } #elif BOARD_MODEL == BOARD_RNODE_NG_21 || BOARD_MODEL == BOARD_LORA32_V2_1 - #define BAT_C_SAMPLES 7 - #define BAT_D_SAMPLES 2 #define BAT_V_MIN 3.15 #define BAT_V_MAX 4.3 #define BAT_V_CHG 4.48 @@ -44,14 +42,13 @@ int bat_charged_samples = 0; bool bat_voltage_dropping = false; float bat_delay_v = 0; + float bat_state_change_v = 0; #elif BOARD_MODEL == BOARD_HELTEC32_V3 - #define BAT_C_SAMPLES 7 - #define BAT_D_SAMPLES 2 #define BAT_V_MIN 3.15 #define BAT_V_MAX 4.3 #define BAT_V_CHG 4.48 #define BAT_V_FLOAT 4.33 - #define BAT_SAMPLES 5 + #define BAT_SAMPLES 7 const uint8_t pin_vbat = 1; const uint8_t pin_ctrl = 37; float bat_p_samples[BAT_SAMPLES]; @@ -62,6 +59,7 @@ int bat_charged_samples = 0; bool bat_voltage_dropping = false; float bat_delay_v = 0; + float bat_state_change_v = 0; #endif uint32_t last_pmu_update = 0; @@ -105,33 +103,52 @@ void measure_battery() { battery_voltage = battery_voltage/BAT_SAMPLES; if (bat_delay_v == 0) bat_delay_v = battery_voltage; + if (bat_state_change_v == 0) bat_state_change_v = battery_voltage; if (battery_percent > 100.0) battery_percent = 100.0; if (battery_percent < 0.0) battery_percent = 0.0; if (bat_samples_count%BAT_SAMPLES == 0) { + float bat_delay_diff = bat_state_change_v-battery_voltage; + if (bat_delay_diff < 0) { bat_delay_diff *= -1; } + if (battery_voltage < bat_delay_v && battery_voltage < BAT_V_FLOAT) { - bat_voltage_dropping = true; + if (bat_voltage_dropping == false) { + if (bat_delay_diff > 0.008) { + bat_voltage_dropping = true; + bat_state_change_v = battery_voltage; + // SerialBT.printf("STATE CHANGE to DISCHARGE at delta=%.3fv. State change v is now %.3fv.\n", bat_delay_diff, bat_state_change_v); + } + } } else { - bat_voltage_dropping = false; + if (bat_voltage_dropping == true) { + if (bat_delay_diff > 0.008) { + bat_voltage_dropping = false; + bat_state_change_v = battery_voltage; + // SerialBT.printf("STATE CHANGE to CHARGE at delta=%.3fv. State change v is now %.3fv.\n", bat_delay_diff, bat_state_change_v); + } + } } bat_samples_count = 0; + bat_delay_v = battery_voltage; } if (bat_voltage_dropping && battery_voltage < BAT_V_FLOAT) { battery_state = BATTERY_STATE_DISCHARGING; } else { - battery_state = BATTERY_STATE_CHARGING; + battery_state = BATTERY_STATE_CHARGING; } - - // if (bt_state == BT_STATE_CONNECTED) { // SerialBT.printf("Bus voltage %.3fv. Unfiltered %.3fv.", battery_voltage, bat_v_samples[BAT_SAMPLES-1]); // if (bat_voltage_dropping) { - // SerialBT.printf(" Voltage is dropping. Percentage %.1f%%.\n", battery_percent); + // SerialBT.printf(" Voltage is dropping. Percentage %.1f%%.", battery_percent); // } else { - // SerialBT.print(" Voltage is not dropping.\n"); + // SerialBT.printf(" Voltage is not dropping. Percentage %.1f%%.", battery_percent); // } + // if (battery_state == BATTERY_STATE_DISCHARGING) { SerialBT.printf(" Battery discharging. delay_v %.3fv", bat_delay_v); } + // if (battery_state == BATTERY_STATE_CHARGING) { SerialBT.printf(" Battery charging. delay_v %.3fv", bat_delay_v); } + // if (battery_state == BATTERY_STATE_CHARGED) { SerialBT.print(" Battery is charged."); } + // SerialBT.print("\n"); // } }