mirror of
https://github.com/markqvist/RNode_Firmware.git
synced 2025-01-11 15:29:35 -05:00
883 lines
24 KiB
C++
883 lines
24 KiB
C++
// Copyright Sandeep Mistry, Mark Qvist and Jacob Eva.
|
|
// Licensed under the MIT license.
|
|
|
|
#include "Boards.h"
|
|
|
|
#if MODEM == SX1280
|
|
#include "sx128x.h"
|
|
|
|
#define MCU_1284P 0x91
|
|
#define MCU_2560 0x92
|
|
#define MCU_ESP32 0x81
|
|
#define MCU_NRF52 0x71
|
|
#if defined(__AVR_ATmega1284P__)
|
|
#define PLATFORM PLATFORM_AVR
|
|
#define MCU_VARIANT MCU_1284P
|
|
#elif defined(__AVR_ATmega2560__)
|
|
#define PLATFORM PLATFORM_AVR
|
|
#define MCU_VARIANT MCU_2560
|
|
#elif defined(ESP32)
|
|
#define PLATFORM PLATFORM_ESP32
|
|
#define MCU_VARIANT MCU_ESP32
|
|
#elif defined(NRF52840_XXAA)
|
|
#define PLATFORM PLATFORM_NRF52
|
|
#define MCU_VARIANT MCU_NRF52
|
|
#endif
|
|
|
|
#ifndef MCU_VARIANT
|
|
#error No MCU variant defined, cannot compile
|
|
#endif
|
|
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
#if MCU_VARIANT == MCU_ESP32 and !defined(CONFIG_IDF_TARGET_ESP32S3)
|
|
#include "hal/wdt_hal.h"
|
|
#endif
|
|
#define ISR_VECT IRAM_ATTR
|
|
#else
|
|
#define ISR_VECT
|
|
#endif
|
|
|
|
// SX128x registers
|
|
#define OP_RF_FREQ_8X 0x86
|
|
#define OP_SLEEP_8X 0x84
|
|
#define OP_STANDBY_8X 0x80
|
|
#define OP_TX_8X 0x83
|
|
#define OP_RX_8X 0x82
|
|
#define OP_SET_IRQ_FLAGS_8X 0x8D
|
|
#define OP_CLEAR_IRQ_STATUS_8X 0x97
|
|
#define OP_GET_IRQ_STATUS_8X 0x15
|
|
#define OP_RX_BUFFER_STATUS_8X 0x17
|
|
#define OP_PACKET_STATUS_8X 0x1D
|
|
#define OP_CURRENT_RSSI_8X 0x1F
|
|
#define OP_MODULATION_PARAMS_8X 0x8B
|
|
#define OP_PACKET_PARAMS_8X 0x8C
|
|
#define OP_STATUS_8X 0xC0
|
|
#define OP_TX_PARAMS_8X 0x8E
|
|
#define OP_PACKET_TYPE_8X 0x8A
|
|
#define OP_BUFFER_BASE_ADDR_8X 0x8F
|
|
#define OP_READ_REGISTER_8X 0x19
|
|
#define OP_WRITE_REGISTER_8X 0x18
|
|
#define IRQ_TX_DONE_MASK_8X 0x01
|
|
#define IRQ_RX_DONE_MASK_8X 0x02
|
|
#define IRQ_HEADER_DET_MASK_8X 0x10
|
|
#define IRQ_HEADER_ERROR_MASK_8X 0x20
|
|
#define IRQ_PAYLOAD_CRC_ERROR_MASK_8X 0x40
|
|
|
|
#define MODE_LONG_RANGE_MODE_8X 0x01
|
|
|
|
#define OP_FIFO_WRITE_8X 0x1A
|
|
#define OP_FIFO_READ_8X 0x1B
|
|
#define IRQ_PREAMBLE_DET_MASK_8X 0x80
|
|
|
|
#define REG_PACKET_SIZE 0x901
|
|
#define REG_FIRM_VER_MSB 0x154
|
|
#define REG_FIRM_VER_LSB 0x153
|
|
|
|
#define XTAL_FREQ_8X (double)52000000
|
|
#define FREQ_DIV_8X (double)pow(2.0, 18.0)
|
|
#define FREQ_STEP_8X (double)(XTAL_FREQ_8X / FREQ_DIV_8X)
|
|
|
|
#if defined(NRF52840_XXAA)
|
|
extern SPIClass spiModem;
|
|
#define SPI spiModem
|
|
#endif
|
|
|
|
extern SPIClass SPI;
|
|
|
|
#define MAX_PKT_LENGTH 255
|
|
|
|
sx128x::sx128x() :
|
|
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
|
|
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _rxen(pin_rxen), _busy(LORA_DEFAULT_BUSY_PIN), _txen(pin_txen),
|
|
_frequency(0), _txp(0), _sf(0x05), _bw(0x34), _cr(0x01), _packetIndex(0), _implicitHeaderMode(0), _payloadLength(255), _crcMode(0), _fifo_tx_addr_ptr(0),
|
|
_fifo_rx_addr_ptr(0), _rxPacketLength(0), _preinit_done(false), _tcxo(false) { setTimeout(0); }
|
|
|
|
bool ISR_VECT sx128x::getPacketValidity() {
|
|
uint8_t buf[2];
|
|
buf[0] = 0x00;
|
|
buf[1] = 0x00;
|
|
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
|
|
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, buf, 2);
|
|
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_8X) == 0) { return true; }
|
|
else { return false; }
|
|
}
|
|
|
|
void ISR_VECT sx128x::onDio0Rise() {
|
|
BaseType_t int_status = taskENTER_CRITICAL_FROM_ISR();
|
|
// On the SX1280, there is a bug which can cause the busy line
|
|
// to remain high if a high amount of packets are received when
|
|
// in continuous RX mode. This is documented as Errata 16.1 in
|
|
// the SX1280 datasheet v3.2 (page 149)
|
|
// Therefore, the modem is set into receive mode each time a packet is received.
|
|
if (sx128x_modem.getPacketValidity()) { sx128x_modem.receive(); sx128x_modem.handleDio0Rise(); }
|
|
else { sx128x_modem.receive(); }
|
|
|
|
taskEXIT_CRITICAL_FROM_ISR(int_status);
|
|
}
|
|
|
|
void sx128x::handleDio0Rise() {
|
|
_packetIndex = 0;
|
|
uint8_t rxbuf[2] = {0};
|
|
executeOpcodeRead(OP_RX_BUFFER_STATUS_8X, rxbuf, 2);
|
|
|
|
// If implicit header mode is enabled, use pre-set packet length as payload length instead.
|
|
// See SX1280 datasheet v3.2, page 92
|
|
if (_implicitHeaderMode == 0x80) { _rxPacketLength = _payloadLength; }
|
|
else { _rxPacketLength = rxbuf[0]; }
|
|
|
|
if (_receive_callback) { _receive_callback(_rxPacketLength); }
|
|
}
|
|
|
|
bool sx128x::preInit() {
|
|
pinMode(_ss, OUTPUT);
|
|
digitalWrite(_ss, HIGH);
|
|
|
|
// TODO: Check if this change causes issues on any platforms
|
|
#if MCU_VARIANT == MCU_ESP32
|
|
#if BOARD_MODEL == BOARD_RNODE_NG_22 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_TDECK
|
|
SPI.begin(pin_sclk, pin_miso, pin_mosi, pin_cs);
|
|
#else
|
|
SPI.begin();
|
|
#endif
|
|
#else
|
|
SPI.begin();
|
|
#endif
|
|
|
|
// Detect modem (retry for up to 500ms)
|
|
long start = millis();
|
|
uint8_t version_msb;
|
|
uint8_t version_lsb;
|
|
while (((millis() - start) < 500) && (millis() >= start)) {
|
|
version_msb = readRegister(REG_FIRM_VER_MSB);
|
|
version_lsb = readRegister(REG_FIRM_VER_LSB);
|
|
if ((version_msb == 0xB7 && version_lsb == 0xA9) || (version_msb == 0xB5 && version_lsb == 0xA9)) { break; }
|
|
delay(100);
|
|
}
|
|
|
|
if ((version_msb != 0xB7 || version_lsb != 0xA9) && (version_msb != 0xB5 || version_lsb != 0xA9)) { return false; }
|
|
_preinit_done = true;
|
|
return true;
|
|
}
|
|
|
|
uint8_t ISR_VECT sx128x::readRegister(uint16_t address) { return singleTransfer(OP_READ_REGISTER_8X, address, 0x00); }
|
|
void sx128x::writeRegister(uint16_t address, uint8_t value) { singleTransfer(OP_WRITE_REGISTER_8X, address, value); }
|
|
|
|
uint8_t ISR_VECT sx128x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value) {
|
|
waitOnBusy();
|
|
uint8_t response;
|
|
digitalWrite(_ss, LOW);
|
|
|
|
SPI.beginTransaction(_spiSettings);
|
|
SPI.transfer(opcode);
|
|
SPI.transfer((address & 0xFF00) >> 8);
|
|
SPI.transfer(address & 0x00FF);
|
|
if (opcode == OP_READ_REGISTER_8X) { SPI.transfer(0x00); }
|
|
response = SPI.transfer(value);
|
|
SPI.endTransaction();
|
|
digitalWrite(_ss, HIGH);
|
|
|
|
return response;
|
|
}
|
|
|
|
void sx128x::rxAntEnable() {
|
|
if (_txen != -1) { digitalWrite(_txen, LOW); }
|
|
if (_rxen != -1) { digitalWrite(_rxen, HIGH); }
|
|
}
|
|
|
|
void sx128x::txAntEnable() {
|
|
if (_txen != -1) { digitalWrite(_txen, HIGH); }
|
|
if (_rxen != -1) { digitalWrite(_rxen, LOW); }
|
|
}
|
|
|
|
void sx128x::loraMode() {
|
|
uint8_t mode = MODE_LONG_RANGE_MODE_8X;
|
|
executeOpcode(OP_PACKET_TYPE_8X, &mode, 1);
|
|
}
|
|
|
|
void sx128x::waitOnBusy() {
|
|
unsigned long time = millis();
|
|
while (digitalRead(_busy) == HIGH) {
|
|
if (millis() >= (time + 100)) { break; }
|
|
}
|
|
}
|
|
|
|
void sx128x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size) {
|
|
waitOnBusy();
|
|
digitalWrite(_ss, LOW);
|
|
SPI.beginTransaction(_spiSettings);
|
|
SPI.transfer(opcode);
|
|
for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); }
|
|
SPI.endTransaction();
|
|
digitalWrite(_ss, HIGH);
|
|
}
|
|
|
|
void sx128x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size) {
|
|
waitOnBusy();
|
|
digitalWrite(_ss, LOW);
|
|
SPI.beginTransaction(_spiSettings);
|
|
SPI.transfer(opcode);
|
|
SPI.transfer(0x00);
|
|
for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); }
|
|
SPI.endTransaction();
|
|
digitalWrite(_ss, HIGH);
|
|
}
|
|
|
|
void sx128x::writeBuffer(const uint8_t* buffer, size_t size) {
|
|
waitOnBusy();
|
|
digitalWrite(_ss, LOW);
|
|
SPI.beginTransaction(_spiSettings);
|
|
SPI.transfer(OP_FIFO_WRITE_8X);
|
|
SPI.transfer(_fifo_tx_addr_ptr);
|
|
for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); _fifo_tx_addr_ptr++; }
|
|
SPI.endTransaction();
|
|
digitalWrite(_ss, HIGH);
|
|
}
|
|
|
|
void sx128x::readBuffer(uint8_t* buffer, size_t size) {
|
|
waitOnBusy();
|
|
digitalWrite(_ss, LOW);
|
|
SPI.beginTransaction(_spiSettings);
|
|
SPI.transfer(OP_FIFO_READ_8X);
|
|
SPI.transfer(_fifo_rx_addr_ptr);
|
|
SPI.transfer(0x00);
|
|
for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); }
|
|
SPI.endTransaction();
|
|
digitalWrite(_ss, HIGH);
|
|
}
|
|
|
|
void sx128x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr) {
|
|
// because there is no access to these registers on the sx1280, we have
|
|
// to set all these parameters at once or not at all.
|
|
uint8_t buf[3];
|
|
buf[0] = sf << 4;
|
|
buf[1] = bw;
|
|
buf[2] = cr;
|
|
executeOpcode(OP_MODULATION_PARAMS_8X, buf, 3);
|
|
|
|
if (sf <= 6) { writeRegister(0x925, 0x1E); }
|
|
else if (sf <= 8) { writeRegister(0x925, 0x37); }
|
|
else if (sf >= 9) { writeRegister(0x925, 0x32); }
|
|
writeRegister(0x093C, 0x1);
|
|
}
|
|
|
|
uint8_t preamble_e = 0;
|
|
uint8_t preamble_m = 0;
|
|
uint32_t last_me_result_target = 0;
|
|
extern long lora_preamble_symbols;
|
|
void sx128x::setPacketParams(uint32_t target_preamble_symbols, uint8_t headermode, uint8_t payload_length, uint8_t crc) {
|
|
if (last_me_result_target != target_preamble_symbols) {
|
|
// Calculate exponent and mantissa values for modem
|
|
if (target_preamble_symbols >= 0xF000) target_preamble_symbols = 0xF000;
|
|
uint32_t calculated_preamble_symbols;
|
|
uint8_t e = 1;
|
|
uint8_t m = 1;
|
|
while (e <= 15) {
|
|
while (m <= 15) {
|
|
calculated_preamble_symbols = m * (pow(2,e));
|
|
if (calculated_preamble_symbols >= target_preamble_symbols-4) break;
|
|
m++;
|
|
}
|
|
|
|
if (calculated_preamble_symbols >= target_preamble_symbols-4) break;
|
|
m = 1; e++;
|
|
}
|
|
|
|
last_me_result_target = target_preamble_symbols;
|
|
lora_preamble_symbols = calculated_preamble_symbols+4;
|
|
_preambleLength = lora_preamble_symbols;
|
|
|
|
preamble_e = e;
|
|
preamble_m = m;
|
|
}
|
|
|
|
uint8_t buf[7];
|
|
buf[0] = (preamble_e << 4) | preamble_m;
|
|
buf[1] = headermode;
|
|
buf[2] = payload_length;
|
|
buf[3] = crc;
|
|
buf[4] = 0x40; // Standard IQ setting (no inversion)
|
|
buf[5] = 0x00; // Unused params
|
|
buf[6] = 0x00;
|
|
|
|
executeOpcode(OP_PACKET_PARAMS_8X, buf, 7);
|
|
}
|
|
|
|
void sx128x::reset() {
|
|
if (_reset != -1) {
|
|
pinMode(_reset, OUTPUT);
|
|
digitalWrite(_reset, LOW);
|
|
delay(10);
|
|
digitalWrite(_reset, HIGH);
|
|
delay(10);
|
|
}
|
|
}
|
|
|
|
int sx128x::begin(unsigned long frequency) {
|
|
reset();
|
|
|
|
if (_rxen != -1) { pinMode(_rxen, OUTPUT); }
|
|
if (_txen != -1) { pinMode(_txen, OUTPUT); }
|
|
if (_busy != -1) { pinMode(_busy, INPUT); }
|
|
|
|
if (!_preinit_done) {
|
|
if (!preInit()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
standby();
|
|
loraMode();
|
|
rxAntEnable();
|
|
setFrequency(frequency);
|
|
|
|
// TODO: Implement LNA boost
|
|
//writeRegister(REG_LNA, 0x96);
|
|
|
|
setModulationParams(_sf, _bw, _cr);
|
|
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
|
|
setTxPower(_txp);
|
|
|
|
// Set base addresses
|
|
uint8_t basebuf[2] = {0};
|
|
executeOpcode(OP_BUFFER_BASE_ADDR_8X, basebuf, 2);
|
|
|
|
_radio_online = true;
|
|
return 1;
|
|
}
|
|
|
|
void sx128x::end() {
|
|
sleep();
|
|
SPI.end();
|
|
_bitrate = 0;
|
|
_radio_online = false;
|
|
_preinit_done = false;
|
|
}
|
|
|
|
int sx128x::beginPacket(int implicitHeader) {
|
|
standby();
|
|
|
|
if (implicitHeader) { implicitHeaderMode(); }
|
|
else { explicitHeaderMode(); }
|
|
|
|
_payloadLength = 0;
|
|
_fifo_tx_addr_ptr = 0;
|
|
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int sx128x::endPacket() {
|
|
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
|
|
txAntEnable();
|
|
|
|
// Put in single TX mode
|
|
uint8_t timeout[3] = {0};
|
|
executeOpcode(OP_TX_8X, timeout, 3);
|
|
|
|
uint8_t buf[2];
|
|
buf[0] = 0x00;
|
|
buf[1] = 0x00;
|
|
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
|
|
|
|
// Wait for TX done
|
|
bool timed_out = false;
|
|
uint32_t w_timeout = millis()+LORA_MODEM_TIMEOUT_MS;
|
|
while ((millis() < w_timeout) && ((buf[1] & IRQ_TX_DONE_MASK_8X) == 0)) {
|
|
buf[0] = 0x00;
|
|
buf[1] = 0x00;
|
|
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
|
|
yield();
|
|
}
|
|
|
|
if (!(millis() < w_timeout)) { timed_out = true; }
|
|
|
|
// clear IRQ's
|
|
uint8_t mask[2];
|
|
mask[0] = 0x00;
|
|
mask[1] = IRQ_TX_DONE_MASK_8X;
|
|
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, mask, 2);
|
|
|
|
if (timed_out) { return 0; }
|
|
else { return 1; }
|
|
}
|
|
|
|
unsigned long preamble_detected_at = 0;
|
|
unsigned long header_detected_at = 0;
|
|
extern long lora_preamble_time_ms;
|
|
extern long lora_header_time_ms;
|
|
bool sx128x::dcd() {
|
|
bool carrier_detected = false;
|
|
uint8_t buf[2] = {0}; executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
|
|
|
|
if ((buf[0] & IRQ_PREAMBLE_DET_MASK_8X) != 0) {
|
|
carrier_detected = true;
|
|
if (preamble_detected_at == 0) preamble_detected_at = millis();
|
|
if (millis() - preamble_detected_at > lora_preamble_time_ms + lora_header_time_ms) {
|
|
preamble_detected_at = 0;
|
|
uint8_t clearbuf[2] = {0};
|
|
clearbuf[0] = IRQ_PREAMBLE_DET_MASK_8X;
|
|
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, clearbuf, 2);
|
|
}
|
|
}
|
|
|
|
if ((buf[1] & IRQ_HEADER_DET_MASK_8X) != 0) {
|
|
carrier_detected = true;
|
|
header_detected_at = millis();
|
|
}
|
|
|
|
return carrier_detected;
|
|
}
|
|
|
|
|
|
uint8_t sx128x::currentRssiRaw() {
|
|
uint8_t byte = 0;
|
|
executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1);
|
|
return byte;
|
|
}
|
|
|
|
int ISR_VECT sx128x::currentRssi() {
|
|
uint8_t byte = 0;
|
|
executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1);
|
|
int rssi = -byte / 2;
|
|
return rssi;
|
|
}
|
|
|
|
uint8_t sx128x::packetRssiRaw() {
|
|
uint8_t buf[5] = {0};
|
|
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
|
|
return buf[0];
|
|
}
|
|
|
|
int ISR_VECT sx128x::packetRssi(uint8_t pkt_snr_raw) {
|
|
// TODO: May need more calculations here
|
|
uint8_t buf[5] = {0};
|
|
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
|
|
int pkt_rssi = -buf[0] / 2;
|
|
return pkt_rssi;
|
|
}
|
|
|
|
uint8_t ISR_VECT sx128x::packetSnrRaw() {
|
|
uint8_t buf[5] = {0};
|
|
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
|
|
return buf[1];
|
|
}
|
|
|
|
float ISR_VECT sx128x::packetSnr() {
|
|
uint8_t buf[5] = {0};
|
|
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
|
|
return float(buf[1]) * 0.25;
|
|
}
|
|
|
|
long sx128x::packetFrequencyError() {
|
|
// TODO: Implement this, page 120 of sx1280 datasheet
|
|
int32_t freqError = 0;
|
|
const float fError = 0.0;
|
|
return static_cast<long>(fError);
|
|
}
|
|
|
|
void sx128x::flush() { }
|
|
int ISR_VECT sx128x::available() { return _rxPacketLength - _packetIndex; }
|
|
size_t sx128x::write(uint8_t byte) { return write(&byte, sizeof(byte)); }
|
|
size_t sx128x::write(const uint8_t *buffer, size_t size) {
|
|
if ((_payloadLength + size) > MAX_PKT_LENGTH) { size = MAX_PKT_LENGTH - _payloadLength; }
|
|
writeBuffer(buffer, size);
|
|
_payloadLength = _payloadLength + size;
|
|
return size;
|
|
}
|
|
|
|
int ISR_VECT sx128x::read() {
|
|
if (!available()) { return -1; }
|
|
|
|
// If received new packet
|
|
if (_packetIndex == 0) {
|
|
uint8_t rxbuf[2] = {0};
|
|
executeOpcodeRead(OP_RX_BUFFER_STATUS_8X, rxbuf, 2);
|
|
int size;
|
|
|
|
// If implicit header mode is enabled, read packet length as payload length instead.
|
|
// See SX1280 datasheet v3.2, page 92
|
|
if (_implicitHeaderMode == 0x80) {
|
|
size = _payloadLength;
|
|
} else {
|
|
size = rxbuf[0];
|
|
}
|
|
|
|
_fifo_rx_addr_ptr = rxbuf[1];
|
|
if (size > 255) { size = 255; }
|
|
|
|
readBuffer(_packet, size);
|
|
}
|
|
|
|
uint8_t byte = _packet[_packetIndex];
|
|
_packetIndex++;
|
|
return byte;
|
|
}
|
|
|
|
int sx128x::peek() {
|
|
if (!available()) { return -1; }
|
|
uint8_t b = _packet[_packetIndex];
|
|
return b;
|
|
}
|
|
|
|
|
|
void sx128x::onReceive(void(*callback)(int)) {
|
|
_receive_callback = callback;
|
|
|
|
if (callback) {
|
|
pinMode(_dio0, INPUT);
|
|
|
|
// Set preamble and header detection irqs, plus dio0 mask
|
|
uint8_t buf[8];
|
|
|
|
// Set irq masks, enable all
|
|
buf[0] = 0xFF;
|
|
buf[1] = 0xFF;
|
|
|
|
// On the SX1280, no RxDone IRQ is generated if a packet is received with
|
|
// an invalid header, but the modem will be taken out of single RX mode.
|
|
// This can cause the modem to not receive packets until it is reset
|
|
// again. This is documented as Errata 16.2 in the SX1280 datasheet v3.2
|
|
// (page 150) Below, the header error IRQ is mapped to dio0 so that the
|
|
// modem can be set into RX mode again on reception of a corrupted
|
|
// header.
|
|
// set dio0 masks
|
|
buf[2] = 0x00;
|
|
buf[3] = IRQ_RX_DONE_MASK_8X | IRQ_HEADER_ERROR_MASK_8X;
|
|
|
|
// Set dio1 masks
|
|
buf[4] = 0x00;
|
|
buf[5] = 0x00;
|
|
|
|
// Set dio2 masks
|
|
buf[6] = 0x00;
|
|
buf[7] = 0x00;
|
|
|
|
executeOpcode(OP_SET_IRQ_FLAGS_8X, buf, 8);
|
|
|
|
#ifdef SPI_HAS_NOTUSINGINTERRUPT
|
|
SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
|
|
#endif
|
|
|
|
attachInterrupt(digitalPinToInterrupt(_dio0), onDio0Rise, RISING);
|
|
|
|
} else {
|
|
detachInterrupt(digitalPinToInterrupt(_dio0));
|
|
#ifdef SPI_HAS_NOTUSINGINTERRUPT
|
|
_spiModem->notUsingInterrupt(digitalPinToInterrupt(_dio0));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void sx128x::receive(int size) {
|
|
if (size > 0) {
|
|
implicitHeaderMode();
|
|
// Tell radio payload length
|
|
//_rxPacketLength = size;
|
|
//_payloadLength = size;
|
|
//setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
|
|
} else {
|
|
explicitHeaderMode();
|
|
}
|
|
|
|
rxAntEnable();
|
|
|
|
// On the SX1280, there is a bug which can cause the busy line
|
|
// to remain high if a high amount of packets are received when
|
|
// in continuous RX mode. This is documented as Errata 16.1 in
|
|
// the SX1280 datasheet v3.2 (page 149)
|
|
// Therefore, the modem is set to single RX mode below instead.
|
|
|
|
// uint8_t mode[3] = {0x03, 0xFF, 0xFF}; // Countinuous RX mode
|
|
uint8_t mode[3] = {0}; // single RX mode
|
|
executeOpcode(OP_RX_8X, mode, 3);
|
|
}
|
|
|
|
void sx128x::standby() {
|
|
uint8_t byte = 0x01; // Always use STDBY_XOSC
|
|
executeOpcode(OP_STANDBY_8X, &byte, 1);
|
|
}
|
|
|
|
void sx128x::setPins(int ss, int reset, int dio0, int busy, int rxen, int txen) {
|
|
_ss = ss;
|
|
_reset = reset;
|
|
_dio0 = dio0;
|
|
_busy = busy;
|
|
_rxen = rxen;
|
|
_txen = txen;
|
|
}
|
|
|
|
void sx128x::setTxPower(int level, int outputPin) {
|
|
uint8_t tx_buf[2];
|
|
|
|
// RAK4631 with WisBlock SX1280 module (LIBSYS002)
|
|
#if BOARD_VARIANT == MODEL_13 || BOARD_VARIANT == MODEL_21
|
|
if (level > 27) { level = 27; }
|
|
else if (level < 0) { level = 0; }
|
|
|
|
_txp = level;
|
|
int reg_value;
|
|
switch (level) {
|
|
case 0:
|
|
reg_value = -18;
|
|
break;
|
|
case 1:
|
|
reg_value = -16;
|
|
break;
|
|
case 2:
|
|
reg_value = -15;
|
|
break;
|
|
case 3:
|
|
reg_value = -14;
|
|
break;
|
|
case 4:
|
|
reg_value = -13;
|
|
break;
|
|
case 5:
|
|
reg_value = -12;
|
|
break;
|
|
case 6:
|
|
reg_value = -11;
|
|
break;
|
|
case 7:
|
|
reg_value = -9;
|
|
break;
|
|
case 8:
|
|
reg_value = -8;
|
|
break;
|
|
case 9:
|
|
reg_value = -7;
|
|
break;
|
|
case 10:
|
|
reg_value = -6;
|
|
break;
|
|
case 11:
|
|
reg_value = -5;
|
|
break;
|
|
case 12:
|
|
reg_value = -4;
|
|
break;
|
|
case 13:
|
|
reg_value = -3;
|
|
break;
|
|
case 14:
|
|
reg_value = -2;
|
|
break;
|
|
case 15:
|
|
reg_value = -1;
|
|
break;
|
|
case 16:
|
|
reg_value = 0;
|
|
break;
|
|
case 17:
|
|
reg_value = 1;
|
|
break;
|
|
case 18:
|
|
reg_value = 2;
|
|
break;
|
|
case 19:
|
|
reg_value = 3;
|
|
break;
|
|
case 20:
|
|
reg_value = 4;
|
|
break;
|
|
case 21:
|
|
reg_value = 5;
|
|
break;
|
|
case 22:
|
|
reg_value = 6;
|
|
break;
|
|
case 23:
|
|
reg_value = 7;
|
|
break;
|
|
case 24:
|
|
reg_value = 8;
|
|
break;
|
|
case 25:
|
|
reg_value = 9;
|
|
break;
|
|
case 26:
|
|
reg_value = 12;
|
|
break;
|
|
case 27:
|
|
reg_value = 13;
|
|
break;
|
|
default:
|
|
reg_value = 0;
|
|
break;
|
|
}
|
|
|
|
tx_buf[0] = reg_value + 18;
|
|
tx_buf[1] = 0xE0; // Ramping time, 20 microseconds
|
|
executeOpcode(OP_TX_PARAMS_8X, tx_buf, 2);
|
|
|
|
// T3S3 SX1280 PA
|
|
#elif BOARD_VARIANT == MODEL_AC
|
|
if (level > 20) { level = 20; }
|
|
else if (level < 0) { level = 0; }
|
|
|
|
_txp = level;
|
|
int reg_value;
|
|
switch (level) {
|
|
case 0:
|
|
reg_value = -18;
|
|
break;
|
|
case 1:
|
|
reg_value = -17;
|
|
break;
|
|
case 2:
|
|
reg_value = -16;
|
|
break;
|
|
case 3:
|
|
reg_value = -15;
|
|
break;
|
|
case 4:
|
|
reg_value = -14;
|
|
break;
|
|
case 5:
|
|
reg_value = -13;
|
|
break;
|
|
case 6:
|
|
reg_value = -12;
|
|
break;
|
|
case 7:
|
|
reg_value = -10;
|
|
break;
|
|
case 8:
|
|
reg_value = -9;
|
|
break;
|
|
case 9:
|
|
reg_value = -8;
|
|
break;
|
|
case 10:
|
|
reg_value = -7;
|
|
break;
|
|
case 11:
|
|
reg_value = -6;
|
|
break;
|
|
case 12:
|
|
reg_value = -5;
|
|
break;
|
|
case 13:
|
|
reg_value = -4;
|
|
break;
|
|
case 14:
|
|
reg_value = -3;
|
|
break;
|
|
case 15:
|
|
reg_value = -2;
|
|
break;
|
|
case 16:
|
|
reg_value = -1;
|
|
break;
|
|
case 17:
|
|
reg_value = 0;
|
|
break;
|
|
case 18:
|
|
reg_value = 1;
|
|
break;
|
|
case 19:
|
|
reg_value = 2;
|
|
break;
|
|
case 20:
|
|
reg_value = 3;
|
|
break;
|
|
default:
|
|
reg_value = 0;
|
|
break;
|
|
}
|
|
tx_buf[0] = reg_value;
|
|
tx_buf[1] = 0xE0; // Ramping time, 20 microseconds
|
|
|
|
// For SX1280 boards with no specific PA requirements
|
|
#else
|
|
if (level > 13) { level = 13; }
|
|
else if (level < -18) { level = -18; }
|
|
_txp = level;
|
|
tx_buf[0] = level + 18;
|
|
tx_buf[1] = 0xE0; // Ramping time, 20 microseconds
|
|
#endif
|
|
|
|
executeOpcode(OP_TX_PARAMS_8X, tx_buf, 2);
|
|
}
|
|
|
|
void sx128x::setFrequency(uint32_t frequency) {
|
|
_frequency = frequency;
|
|
uint8_t buf[3];
|
|
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_8X);
|
|
buf[0] = ((freq >> 16) & 0xFF);
|
|
buf[1] = ((freq >> 8) & 0xFF);
|
|
buf[2] = (freq & 0xFF);
|
|
|
|
executeOpcode(OP_RF_FREQ_8X, buf, 3);
|
|
}
|
|
|
|
uint32_t sx128x::getFrequency() {
|
|
// We can't read the frequency on the sx1280
|
|
uint32_t frequency = _frequency;
|
|
return frequency;
|
|
}
|
|
|
|
void sx128x::setSpreadingFactor(int sf) {
|
|
if (sf < 5) { sf = 5; }
|
|
else if (sf > 12) { sf = 12; }
|
|
_sf = sf;
|
|
|
|
setModulationParams(sf, _bw, _cr);
|
|
handleLowDataRate();
|
|
}
|
|
|
|
uint32_t sx128x::getSignalBandwidth() {
|
|
int bw = _bw;
|
|
switch (bw) {
|
|
case 0x34: return 203.125E3;
|
|
case 0x26: return 406.25E3;
|
|
case 0x18: return 812.5E3;
|
|
case 0x0A: return 1625E3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void sx128x::setSignalBandwidth(uint32_t sbw) {
|
|
if (sbw <= 203.125E3) { _bw = 0x34; }
|
|
else if (sbw <= 406.25E3) { _bw = 0x26; }
|
|
else if (sbw <= 812.5E3) { _bw = 0x18; }
|
|
else { _bw = 0x0A; }
|
|
|
|
setModulationParams(_sf, _bw, _cr);
|
|
handleLowDataRate();
|
|
optimizeModemSensitivity();
|
|
}
|
|
|
|
// TODO: add support for new interleaving scheme, see page 117 of sx1280 datasheet
|
|
void sx128x::setCodingRate4(int denominator) {
|
|
if (denominator < 5) { denominator = 5; }
|
|
else if (denominator > 8) { denominator = 8; }
|
|
_cr = denominator - 4;
|
|
setModulationParams(_sf, _bw, _cr);
|
|
}
|
|
|
|
extern bool lora_low_datarate;
|
|
void sx128x::handleLowDataRate() {
|
|
if (_sf > 10) { lora_low_datarate = true; }
|
|
else { lora_low_datarate = false; }
|
|
}
|
|
|
|
void sx128x::optimizeModemSensitivity() { } // TODO: Check if there's anything the sx1280 can do here
|
|
uint8_t sx128x::getCodingRate4() { return _cr + 4; }
|
|
void sx128x::setPreambleLength(long preamble_symbols) { setPacketParams(preamble_symbols, _implicitHeaderMode, _payloadLength, _crcMode); }
|
|
void sx128x::setSyncWord(int sw) { } // TODO: Implement
|
|
void sx128x::enableTCXO() { } // TODO: Need to check how to implement on sx1280
|
|
void sx128x::disableTCXO() { } // TODO: Need to check how to implement on sx1280
|
|
void sx128x::sleep() { uint8_t byte = 0x00; executeOpcode(OP_SLEEP_8X, &byte, 1); }
|
|
uint8_t sx128x::getTxPower() { return _txp; }
|
|
uint8_t sx128x::getSpreadingFactor() { return _sf; }
|
|
void sx128x::enableCrc() { _crcMode = 0x20; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
|
|
void sx128x::disableCrc() { _crcMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
|
|
void sx128x::setSPIFrequency(uint32_t frequency) { _spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0); }
|
|
void sx128x::explicitHeaderMode() { _implicitHeaderMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
|
|
void sx128x::implicitHeaderMode() { _implicitHeaderMode = 0x80; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
|
|
void sx128x::dumpRegisters(Stream& out) { for (int i = 0; i < 128; i++) { out.print("0x"); out.print(i, HEX); out.print(": 0x"); out.println(readRegister(i), HEX); } }
|
|
|
|
sx128x sx128x_modem;
|
|
#endif |