mirror of
https://github.com/markqvist/RNode_Firmware.git
synced 2024-10-01 03:15:39 -04:00
395 lines
8.5 KiB
C++
395 lines
8.5 KiB
C++
#include <Arduino.h>
|
|
#include <EEPROM.h>
|
|
#include <LoRa.h>
|
|
#include "ROM.h"
|
|
#include "Config.h"
|
|
#include "Framing.h"
|
|
#include "MD5.h"
|
|
|
|
void led_rx_on() { digitalWrite(pin_led_rx, HIGH); }
|
|
void led_rx_off() { digitalWrite(pin_led_rx, LOW); }
|
|
void led_tx_on() { digitalWrite(pin_led_tx, HIGH); }
|
|
void led_tx_off() { digitalWrite(pin_led_tx, LOW); }
|
|
|
|
void led_indicate_error(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
digitalWrite(pin_led_rx, HIGH);
|
|
digitalWrite(pin_led_tx, LOW);
|
|
delay(100);
|
|
digitalWrite(pin_led_rx, LOW);
|
|
digitalWrite(pin_led_tx, HIGH);
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
digitalWrite(pin_led_rx, LOW);
|
|
digitalWrite(pin_led_tx, LOW);
|
|
}
|
|
|
|
void led_indicate_warning(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
digitalWrite(pin_led_tx, HIGH);
|
|
while(cycles > 0) {
|
|
digitalWrite(pin_led_tx, LOW);
|
|
delay(100);
|
|
digitalWrite(pin_led_tx, HIGH);
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
digitalWrite(pin_led_tx, LOW);
|
|
}
|
|
|
|
void led_indicate_info(int cycles) {
|
|
bool forever = (cycles == 0) ? true : false;
|
|
cycles = forever ? 1 : cycles;
|
|
while(cycles > 0) {
|
|
digitalWrite(pin_led_rx, LOW);
|
|
delay(100);
|
|
digitalWrite(pin_led_rx, HIGH);
|
|
delay(100);
|
|
if (!forever) cycles--;
|
|
}
|
|
digitalWrite(pin_led_rx, LOW);
|
|
}
|
|
|
|
uint8_t led_standby_min = 1;
|
|
uint8_t led_standby_max = 22;
|
|
uint8_t led_standby_value = led_standby_min;
|
|
int8_t led_standby_direction = 0;
|
|
unsigned long led_standby_ticks = 0;
|
|
unsigned long led_standby_wait = 11000;
|
|
void led_indicate_standby() {
|
|
led_standby_ticks++;
|
|
if (led_standby_ticks > led_standby_wait) {
|
|
led_standby_ticks = 0;
|
|
if (led_standby_value <= led_standby_min) {
|
|
led_standby_direction = 1;
|
|
} else if (led_standby_value >= led_standby_max) {
|
|
led_standby_direction = -1;
|
|
}
|
|
led_standby_value += led_standby_direction;
|
|
analogWrite(pin_led_rx, led_standby_value);
|
|
digitalWrite(pin_led_tx, 0);
|
|
}
|
|
}
|
|
|
|
void led_indicate_not_ready() {
|
|
led_standby_ticks++;
|
|
if (led_standby_ticks > led_standby_wait) {
|
|
led_standby_ticks = 0;
|
|
if (led_standby_value <= led_standby_min) {
|
|
led_standby_direction = 1;
|
|
} else if (led_standby_value >= led_standby_max) {
|
|
led_standby_direction = -1;
|
|
}
|
|
led_standby_value += led_standby_direction;
|
|
analogWrite(pin_led_tx, led_standby_value);
|
|
digitalWrite(pin_led_rx, 0);
|
|
}
|
|
}
|
|
|
|
void escapedSerialWrite(uint8_t byte) {
|
|
if (byte == FEND) { Serial.write(FESC); byte = TFEND; }
|
|
if (byte == FESC) { Serial.write(FESC); byte = TFESC; }
|
|
Serial.write(byte);
|
|
}
|
|
|
|
void kiss_indicate_error(uint8_t error_code) {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_ERROR);
|
|
Serial.write(error_code);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_radiostate() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_RADIO_STATE);
|
|
Serial.write(radio_online);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_stat_rx() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_STAT_RX);
|
|
escapedSerialWrite(stat_rx>>24);
|
|
escapedSerialWrite(stat_rx>>16);
|
|
escapedSerialWrite(stat_rx>>8);
|
|
escapedSerialWrite(stat_rx);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_stat_tx() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_STAT_TX);
|
|
escapedSerialWrite(stat_tx>>24);
|
|
escapedSerialWrite(stat_tx>>16);
|
|
escapedSerialWrite(stat_tx>>8);
|
|
escapedSerialWrite(stat_tx);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_stat_rssi() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_STAT_RSSI);
|
|
Serial.write((uint8_t)last_rssi+rssi_offset);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_radio_lock() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_RADIO_LOCK);
|
|
Serial.write(radio_locked);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_spreadingfactor() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_SF);
|
|
Serial.write((uint8_t)lora_sf);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_codingrate() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_CR);
|
|
Serial.write((uint8_t)lora_cr);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_txpower() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_TXPOWER);
|
|
Serial.write((uint8_t)lora_txp);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_bandwidth() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_BANDWIDTH);
|
|
escapedSerialWrite(lora_bw>>24);
|
|
escapedSerialWrite(lora_bw>>16);
|
|
escapedSerialWrite(lora_bw>>8);
|
|
escapedSerialWrite(lora_bw);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_frequency() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_FREQUENCY);
|
|
escapedSerialWrite(lora_freq>>24);
|
|
escapedSerialWrite(lora_freq>>16);
|
|
escapedSerialWrite(lora_freq>>8);
|
|
escapedSerialWrite(lora_freq);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_random(uint8_t byte) {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_RANDOM);
|
|
Serial.write(byte);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_ready() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_READY);
|
|
Serial.write(0x01);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_detect() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_DETECT);
|
|
Serial.write(DETECT_RESP);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void kiss_indicate_version() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_FW_VERSION);
|
|
Serial.write(MAJ_VERS);
|
|
Serial.write(MIN_VERS);
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
bool isSplitPacket(uint8_t header) {
|
|
return (header & FLAG_SPLIT);
|
|
}
|
|
|
|
uint8_t packetSequence(uint8_t header) {
|
|
return header >> 4;
|
|
}
|
|
|
|
void getPacketData(int len) {
|
|
while (len--) {
|
|
pbuf[read_len++] = LoRa.read();
|
|
}
|
|
}
|
|
|
|
|
|
void setSpreadingFactor() {
|
|
if (radio_online) LoRa.setSpreadingFactor(lora_sf);
|
|
}
|
|
|
|
void setCodingRate() {
|
|
if (radio_online) LoRa.setCodingRate4(lora_cr);
|
|
}
|
|
|
|
void setTXPower() {
|
|
if (radio_online) {
|
|
if (model == MODEL_A4) LoRa.setTxPower(lora_txp, PA_OUTPUT_RFO_PIN);
|
|
if (model == MODEL_A9) LoRa.setTxPower(lora_txp, PA_OUTPUT_PA_BOOST_PIN);
|
|
}
|
|
}
|
|
|
|
|
|
void getBandwidth() {
|
|
if (radio_online) {
|
|
lora_bw = LoRa.getSignalBandwidth();
|
|
}
|
|
}
|
|
|
|
void setBandwidth() {
|
|
if (radio_online) {
|
|
LoRa.setSignalBandwidth(lora_bw);
|
|
getBandwidth();
|
|
}
|
|
}
|
|
|
|
void getFrequency() {
|
|
if (radio_online) {
|
|
lora_freq = LoRa.getFrequency();
|
|
}
|
|
}
|
|
|
|
void setFrequency() {
|
|
if (radio_online) {
|
|
LoRa.setFrequency(lora_freq);
|
|
getFrequency();
|
|
}
|
|
}
|
|
|
|
uint8_t getRandom() {
|
|
if (radio_online) {
|
|
return LoRa.random();
|
|
} else {
|
|
return 0x00;
|
|
}
|
|
}
|
|
|
|
bool eeprom_info_locked() {
|
|
uint8_t lock_byte = EEPROM.read(eeprom_addr(ADDR_INFO_LOCK));
|
|
if (lock_byte == INFO_LOCK_BYTE) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void eeprom_dump_info() {
|
|
for (int addr = ADDR_PRODUCT; addr <= ADDR_INFO_LOCK; addr++) {
|
|
uint8_t byte = EEPROM.read(eeprom_addr(addr));
|
|
escapedSerialWrite(byte);
|
|
}
|
|
}
|
|
|
|
void eeprom_dump_config() {
|
|
for (int addr = ADDR_CONF_SF; addr <= ADDR_CONF_OK; addr++) {
|
|
uint8_t byte = EEPROM.read(eeprom_addr(addr));
|
|
escapedSerialWrite(byte);
|
|
}
|
|
}
|
|
|
|
void eeprom_dump_all() {
|
|
for (int addr = 0; addr < EEPROM_RESERVED; addr++) {
|
|
uint8_t byte = EEPROM.read(eeprom_addr(addr));
|
|
escapedSerialWrite(byte);
|
|
}
|
|
}
|
|
|
|
void kiss_dump_eeprom() {
|
|
Serial.write(FEND);
|
|
Serial.write(CMD_ROM_READ);
|
|
eeprom_dump_all();
|
|
Serial.write(FEND);
|
|
}
|
|
|
|
void eeprom_write(uint8_t addr, uint8_t byte) {
|
|
if (!eeprom_info_locked() && addr >= 0 && addr < EEPROM_RESERVED) {
|
|
EEPROM.update(eeprom_addr(addr), byte);
|
|
} else {
|
|
kiss_indicate_error(ERROR_EEPROM_LOCKED);
|
|
}
|
|
}
|
|
|
|
void eeprom_erase() {
|
|
for (int addr = 0; addr < EEPROM_RESERVED; addr++) {
|
|
EEPROM.update(eeprom_addr(addr), 0xFF);
|
|
}
|
|
while (true) { led_tx_on(); led_rx_off(); }
|
|
}
|
|
|
|
bool eeprom_lock_set() {
|
|
if (EEPROM.read(eeprom_addr(ADDR_INFO_LOCK)) == INFO_LOCK_BYTE) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool eeprom_product_valid() {
|
|
if (EEPROM.read(eeprom_addr(ADDR_PRODUCT)) == PRODUCT_RNODE) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool eeprom_model_valid() {
|
|
model = EEPROM.read(eeprom_addr(ADDR_MODEL));
|
|
if (model == MODEL_A4 || model == MODEL_A9) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool eeprom_hwrev_valid() {
|
|
hwrev = EEPROM.read(eeprom_addr(ADDR_HW_REV));
|
|
if (hwrev != 0x00 && hwrev != 0xFF) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool eeprom_checksum_valid() {
|
|
char *data = (char*)malloc(CHECKSUMMED_SIZE);
|
|
for (uint8_t i = 0; i < CHECKSUMMED_SIZE; i++) {
|
|
char byte = EEPROM.read(eeprom_addr(i));
|
|
data[i] = byte;
|
|
}
|
|
|
|
unsigned char *hash = MD5::make_hash(data, CHECKSUMMED_SIZE);
|
|
bool checksum_valid = true;
|
|
for (uint8_t i = 0; i < 16; i++) {
|
|
uint8_t stored_chk_byte = EEPROM.read(eeprom_addr(ADDR_CHKSUM+i));
|
|
uint8_t calced_chk_byte = (uint8_t)hash[i];
|
|
if (stored_chk_byte != calced_chk_byte) {
|
|
checksum_valid = false;
|
|
}
|
|
}
|
|
|
|
free(hash);
|
|
free(data);
|
|
return checksum_valid;
|
|
}
|
|
|
|
void unlock_rom() {
|
|
led_indicate_error(50);
|
|
eeprom_erase();
|
|
}
|
|
|